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We perform a lattice study of charmonium-like mesons with JPC = 1++ and three quark contents
c̄cd̄u, c̄c(ūu+ d̄d) and c̄cs̄s, where the later two can mix with c̄c. This simulation with Nf =2 and
mπ≃266 MeV aims at the possible signatures of four-quark exotic states. We utilize a large basis of
c̄c, two-meson and diquark-antidiquark interpolating fields, with diquarks in both anti-triplet and
sextet color representations. A lattice candidate for X(3872) with I=0 is observed very close to the
experimental state only if both c̄c and DD̄∗ interpolators are included; the candidate is not found
if diquark-antidiquark and DD̄∗ are used in the absence of c̄c. No candidate for neutral or charged
X(3872), or any other exotic candidates are found in the I=1 channel. We also do not find signatures
of exotic c̄cs̄s candidates below 4.2 GeV, such as Y (4140). Possible physics and methodology related
reasons for that are discussed. Along the way, we present the diquark-antidiquark operators as linear
combinations of the two-meson operators via the Fierz transformations.

I. INTRODUCTION

The experimental discovery of charged resonances
Zc(3900)

+ [1] and Z(4430)± [2, 3] gives signatures for
hadrons with minimal quark content c̄cd̄u. The neutral
X(3872) and yet-unconfirmed Y (4140) with charge par-
ity C = +1 also appear to have significant four-quark
Fock components. Most of the observed exotic states
have JP = 1+. The JP for some has not been settled ex-
perimentally and JP = 1+ presents one possible option.
In this work, we perform a lattice investigation of

the charmonium spectrum, looking for charmonium-like
states with quantum numbers JPC = 1++ and three
quark contents: c̄cd̄u, c̄c(ūu + d̄d) and c̄cs̄s, where the
later two channels have I = 0 and can mix with c̄c (C
indicates C-parity of neutral isospin partners for charged
states). Our main interest in these channels is aimed at
a first-principle study of X(3872) and Y (4140), which
were observed in X(3872) → J/ψρ, J/ψ ω, DD̄∗ and
Y (4140) → J/ψφ, for example.
From the experimental side, the long known exotic

candidate X(3872) [4] is confirmed to have JPC = 1++

[5]. However, questions about its isospin remain unset-
tled. If it has isospin I = 1, one expects charged part-
ners. Observation of a nearly equal branching fraction
for X(3872) → J/ψ ω and X(3872) → J/ψ ρ decays [6]
and searches for charged partner X(3872) states decay-
ing to J/ψρ± [7] speak against a pure I = 1 state. There
are a few other candidates with C=+1 that could possi-
bly have JPC = 1++ like X(3940) [8], Z(4050)± [3] and
Z(4250)± [3]. A detailed review on these can be found
in Refs. [9].
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The growing evidence for the Y (4140) resonance in the
J/ψφ invariant mass [10] serves as promising signature
for exotic hadrons with hidden strangeness. Similarities
in the properties of X(3930) and Y (4140) led to an in-
terpretation that X(3930) may be a D∗D̄∗ molecule and
Y (4140) is its hidden strange counterpartD∗

sD
∗
s molecule

[11]. However, the upper limit for the production of
Y (4140) in γγ → J/ψ φ is observed to be much lower
than theoretical expectations for a D∗

sD
∗
s molecule with

JPC = 0++ and 2++[12]. Hence the quantum num-
bers of Y (4140) stay unsettled and it remains open for a
JPC = 1++ assignment.

From a theoretical perspective, the description of such
resonances is not settled. Several suggestions have been
made interpreting them as mesonic molecules [13], as
diquark-antidiquark structures [14], as a cusp phenomena
[15] or as a |cc̄g〉 hybrid meson [16]. A great deal of theo-
retical studies are based on phenomenological approaches
like quark model, (unitarized) effective field theory and
QCD sum rules (see reviews [9]).

It is paramount to establish whether QCD supports the
existence of resonances with exotic character using first
principles techniques such as lattice QCD. Simulations
that considered only c̄c interpolators could not provide
evidence for X(3872). The first evidence from a lattice
simulation for X(3872) with I = 0 was reported in Ref.
[17], where a combination of c̄c as well as DD̄∗ and J/ψω
interpolators was used. Recently, another calculation us-
ing the HISQ action also gave evidence for X(3872), us-
ing c̄c and DD̄∗ interpolating fields [18]. The search for
the Y (4140) resonance was performed only in [19], where
a phase shift for J/ψφ scattering in s-wave and p-wave
was extracted from Nf =2 + 1 simulation using twisted
boundary conditions, and neglecting strange-quark an-
nihilation. The resulting phase shifts did not support
existence of a resonance.

The novel feature of the present study is to add
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diquark-antidiquark [c̄q̄]Ḡ [cq]G operators to the basis of
interpolating fields and to extend the extraction of the
charmonium spectrum with JPC = 1++ to a higher
energy range. This is the first dynamical lattice cal-
culation involving diquark-antidiquark operators along
with several two-meson and c̄c kind of interpolators to
study X(3872) and Y (4140). We consider the color
structures G = 3̄c, 6c for diquarks, which have been
suggested already in the late seventies [20]. Recently
many phenomenological studies [14, 21] and a few lat-
tice studies [22, 23] used them to extract the light and
heavy meson spectra. In Ref. [23] a calculation us-
ing two-meson and diquark-antidiquark interpolators was
performed to investigate mass spectrum of 1++ exotic
mesons in quenched lattice QCD. However, only one en-
ergy level was extracted, which is not sufficient to provide
evidence for X(3872) or Y (4140).
In this paper we address the following questions: Is

the lattice candidate for X(3872) reproduced in presence
of diquark-antidiquark operators? Which are the crucial
operator structures for its emergence? How important
are the [c̄q̄]Ḡ [cq]G Fock components in the established
X(3872)? Do we find a lattice candidate for charged
or neutral X(3872) with I =1? Do operators with hid-
den strangeness render a candidate for Y (4140)? Do we
find candidate states for other possible exotic states in
the channels being probed?
The paper is organized as follows. Section II addresses

the expected two-meson scattering channels below 4.2
GeV. The lattice methodology is discussed in Section III.
In Section IV and Appendix A we discuss the relations
between our diquark-antidiquark and two-meson interpo-
lators via Fierz transformations. Section V is dedicated
to results and we conclude in Section VI.

II. TWO PARTICLE STATES IN LATTICE QCD

A major hurdle in excited-state spectroscopy is that
most of the states lie above various thresholds and de-
cay strongly in experiments. All states carrying the
same quantum numbers, including the single-particle and
multi-particle states, in principle contribute to the eigen-
states of the Hamiltonian. The determination of scat-
tering properties relies on precise identification of all the
eigenstates below and close above the energy of our in-
terest. The continuous spectrum of scattering states in
the continuum gets reduced to discrete set of eigenstates,
because lattice momenta are discretized due to the finite
lattice size.
Considering two-meson states with total momentum

zero and without interaction, their energies are just the
sum of the individual particle energies

En.i.M1(n)M2(−n) = E1(p)+E2(p), p =
2π|n|
L

, n ∈ N3. (1)

In presence of the interactions, the energies get shifted
depending on the interaction strength. For our lattice

setting the non-interacting two-meson levels with JPC =
1++, total momentum zero in the indicated energy range
are:

• I = 0; c̄c(ūu+ d̄d) and c̄c; E . 4.2 GeV

D(0)D̄∗(0), J/ψ(0)ω(0), D(1)D̄∗(−1),

J/ψ(1)ω(−1), ηc(1)σ(−1), χc1(0)σ(0) .

• I = 1; c̄cd̄u ; E . 4.2 GeV

D(0)D̄∗(0), J/ψ(0)ρ(0), D(1)D̄∗(−1),

J/ψ(1)ρ(−1), χc1(1)π(−1), χc0(1)π(−1) .

• I = 0; c̄cs̄s and c̄c; E . 4.3 GeV

Ds(0)D̄
∗
s(0), J/ψ(0)φ(0), Ds(1)D̄

∗
s(−1),

J/ψ(1)φ(−1) .

The parenthesis denote meson momenta in units of 2π/L.
We consider the flavor sectors c̄c(ūu + d̄d) and c̄cs̄s

separately. In nature these two I = 0 sectors can mix
and they could in principle mix also in our simulation
without dynamical strange quarks. However, if both fla-
vor sectors would be treated together, then 6 + 4 = 10
two-particle I = 0 states are expected below 4.2 GeV.
This would make the resulting spectrum denser and nois-
ier, so the identification of eigenstates and the search for
exotics would be even more challenging. We therefore
consider these two sectors separately in this first search
for possible exotics in the extended energy region. The
corresponding assumptions will be discussed for each fla-
vor channel along with the results.
The non-interacting energies will be shown by the hor-

izontal lines in our plots, and follow from the masses
and the single meson energies determined on the same
set of gauge configurations [24–26]. The energies of the
σ meson using single-hadron approximation are amσ =
0.302(15) and aEσ(1) = 0.534(22). Including two-meson
operators up to 4.2 GeV at mπ = 266 MeV is should be
sufficient in searching for narrow exotic candidates below
4.2 GeV. Details of all the interpolators used, including
the diquark-antidiquark interpolators, can be found in
the next section.
The mesons R = ρ, σ are resonances that decay to

ππ or πη in QCD with Nf = 2. A proper simulation,
which would consider three-meson system [27] has not
been performed in practice yet. In absence of this, a
simplifying approximation for channels containing these
resonances is adopted. We determine energy of R(p) as
the ground state energy obtained from the correlation
matrix with

∑

x e
ipxq̄(x)Γq(x) interpolators. This en-

ergy is used for the horizontal lines in the plots. This
basis renders in all cases just one low-lying state. Within
our approximation this low-lying state corresponds to a
resonance R with momentum p, to a two-particle state
ππ/πη with total momentum p, or to some mixture of R
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and the two-particle state. We also do not consider non-
resonant three-meson levels which could appear above
ηcππ, J/ψππ, ηcKK̄, J/ψKK̄ thresholds. Based on the
experience with two-meson operators we do not expect
that without explicit incorporation of three-meson inter-
polating fields these three-meson states appear in the
spectra.

III. LATTICE METHODOLOGY

These calculations are performed on Nf = 2 dynam-
ical gauge configurations with mπ ≃ 266 MeV [28] and
with other parameters provided in Table I. The mass-
degenerate u/d quarks are based on a tree-level improved
Wilson-clover action. The strange quark is present only
in the valence sector and we assume that the valence
strange content could uncover hints on the possible ex-
istence of the c̄cs̄s exotics. The absence of dynamical
strange quarks prevents c̄cs̄s intermediate states in the
c̄c(ūu + d̄d) and c̄c sector, in accordance with treating
these two I = 0 sectors separately in our study. With

a rather small box size of L≃ 2 fm, one expects to have
large finite size effects. On the other hand this serves as
a crucial practical advantage by reducing the number of
two-meson scattering statesM1(n)M2(−n) in the energy
range of our interest. This helps in easier identification
of the possible resonances that could exist along with the
regular two-meson energy levels. It also reduces compu-
tational cost as one needs to consider smaller number
of distillation eigenvectors and two-meson interpolators
with respect to a study in larger volume.

Lattice size κ β Ncfgs mπ [MeV] a [fm] L [fm]

163 × 32 0.1283 7.1 280 266(3)(3) 0.1239(13) 1.98

TABLE I. Details of the gauge field ensemble used.

We construct altogether 22 interpolators with JPC =
1++ and total momentum zero for the three cases of our
interest (T++

1 irreducible representation of the discrete
lattice group Oh is employed):

Oc̄c1−8 = c̄M̂c(0) 1
2 (1 +Kd), see Table X of Ref. [25] (2)

OMM
9 = c̄γ5u(0) ūγic(0)− c̄γiu(0) ūγ5c(0) +Kd{u→ d},

OMM
10 = ǫijk c̄γjc(0) { ūγku(0) +Kd{u→ d} },

OMM
11 =

∑

ep=±ex,y,z

{c̄γ5u(ep) ūγic(−ep)− c̄γiu(ep) ūγ5c(−ep)}+Kd {u→ d},

OMM
12 = c̄γ5γ4u(0) ūγiγ4c(0)− c̄γiγ4u(0) ūγ5γ4c(0) +Kd{u→ d},

OMM
13 = ǫijk c̄γjγ4c(0) {ūγkγ4u(0) +Kd{u→ d}},

OMM
14 =

∑

ep=±ex,y,z

ǫijl c̄γjc(ep) {ūγlu(−ep) +Kd{u→ d}},

OMM
15 = {c̄γ5c(ep) ūu(−ep) − c̄γ5c(−ep) ūu(ep)}p=i +Kd{u→ d},

OMM
16 = ǫijp{c̄γjγ5c(−ep) ūγ5u(ep) − c̄γjγ5c(ep) ūγ5u(−ep)}+Kd{u→ d},

OMM
17 = c̄γiγ5c(0) ūu(0) +Kd{u→ d},

OMM
18 = {c̄c(ep) ūγ5u(−ep) − c̄c(−ep) ūγ5u(ep)}p=i +Kd{u→ d},
O4q

19 = [c̄ Cγ5ū
T ]3c [c

TγiCu]3̄c + [c̄ Cγiū
T ]3c [c

T γ5Cu]3̄c +Kd{u→ d},
O4q

20 = [c̄ CūT ]3c [c
Tγiγ5Cu]3̄c + [c̄ Cγiγ5ū

T ]3c [c
TCu]3̄c +Kd{u→ d},

O4q
21 = [c̄ Cγ5ū

T ]6̄c [c
TγiCu]6c + [c̄ Cγiū

T ]6̄c [c
T γ5Cu]6c +Kd{u→ d},

O4q
22 = [c̄ CūT ]6̄c [c

Tγiγ5Cu]6c + [c̄ Cγiγ5ū
T ]6̄c [c

TCu]6c +Kd{u→ d}.

The indices i, j, k and l define the Euclidean Dirac gamma
matrices, while the index p indicates the momentum di-
rection. Einstein’s summation convention is implied for
repeated indices. The un-summed index i in all the op-
erators defines the polarization. The C = iγ2γ4 is the
charge conjugation matrix. The coefficient Kd depends
on the quark content: Kd=1 is used for c̄c(ūu+ d̄d) and
Kd = 0 for c̄cs̄s followed by using strange quark propa-

gators instead of the light quark propagators. For I = 1
channel we apply Kd=−1 which gives the flavor content
c̄c(ūu− d̄d) and has same spectrum as c̄cd̄u in the isospin
limit.

We emphasize the use of four operators O4q with
diquark-antidiquark structure and color anti-triplet or
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N c̄c(ūu+ d̄d) c̄cūd c̄cs̄s

Oc̄c
1−8 c̄ M̂ c does not couple c̄ M̂ c

OMM
9 D(0)D̄∗(0) D(0)D̄∗(0) Ds(0)D̄

∗
s(0)

OMM
10 J/ψ(0)ω(0) J/ψ(0)ρ(0) J/ψ(0)φ(0)

OMM
11 D(1)D̄∗(−1) D(1)D̄∗(−1) Ds(1)D̄

∗
s(−1)

OMM
12 D(0)D̄∗(0) D(0)D̄∗(0) Ds(0)D̄

∗
s(0)

OMM
13 J/ψ(0)ω(0) J/ψ(0)ρ(0) J/ψ(0)φ(0)

OMM
14 J/ψ(1)ω(−1) J/ψ(1)ρ(−1) J/ψ(1)φ(−1)

OMM
15 ηc(1)σ(−1) ηc(1)a0(−1) not used

OMM
16 χc1(1)η(−1) χc1(1)π(−1) not used

OMM
17 χc1(0)σ(0) χc1(0)a0(0) not used

OMM
18 χc0(1)η(−1) χc0(1)π(−1) not used

O4q
19−20 [c̄q̄]3c [cq]3̄c [c̄ū]3c [cd]3̄c [c̄s̄]3c [cs]3̄c

O4q
21−22 [c̄q̄]6̄c [cq]6c [c̄ū]6̄c [cd]6c [c̄s̄]6̄c [cs]6c

TABLE II. List of interpolators (JPC = 1++) and their cor-
respondence with various two-meson scattering channels.

sextet diquarks

[c̄Γ1q̄]G [cΓ2q]Ḡ ≡
∑

x1

Gab1c1 c̄α1

b1
Γα1β1

1 q̄β1

c1 (x1, tf )

·
∑

x2

Gab2c2cα2

b2
Γα2β2

2 qβ2

c2 (x2, tf ). (3)

Here a = 1, 2, 3 for color triplet and a = 1, .., 6 for sextet,

while b, c = 1, 2, 3 for both.

G3
abc = G3̄

abc = ǫabc (4)

G6
abc = G6̄

abc = 1 : a = 1, 2, 3 & a 6= b 6= c

G6
abc = G6̄

abc =
√
2 : a = 4, 5, 6 & a− 3 = b = c

while the remaining Gabc are zero. The operator (eq. (3))
reduces to

∑

x
c̄(x)q̄(x)c(x)q(x) on ensemble averaging,

where the gauge configurations are not gauge fixed.
The interpolators are related with the two-meson chan-

nels as listed in Table II. Non-interacting levels corre-
sponding to some of these two-meson channels lie above
our energy of interest, and the corresponding interpola-
tors are not considered.
The Wick contractions considered in the computation

of the correlation functions are shown in Figure 1. There
are two other classes of diagrams, which are not consid-
ered: one in which no valence quark propagates from
source to sink, and the other class in which only the
light/strange quarks propagate from source to sink and
the c̄c pair annihilates. The effects from these two classes
of diagrams, with the charm quark not propagating from
source to the sink, are known to be suppressed due to
the Okubo-Zweig-Iizuka rule. They correspond to mix-
ing with a number of channels that contain only the u/d
and s quarks, which represents currently unsolved chal-
lenge in lattice QCD. Note that the annihilation of u/d
and s quarks as well as mixing with c̄c is taken into ac-
count, unlike in the simulation [19] aimed at Y (4140), for
example.

4q4q
c̄q

4q
q̄c

c̄c

q̄q
4q

q̄c

c̄q
4q

c̄qq̄c

q̄cc̄q

q̄c c̄c

c̄q q̄q

c̄c

q̄q
4q

c̄qc̄c

q̄cq̄q

c̄c

q̄q

c̄c

q̄q

(a)

4q4q
q̄c

4q
c̄q c̄c

q̄q
4q

c̄c4q

c̄q
4q

q̄c

q̄c

c̄q

c̄q

q̄c

q̄q

q̄c

c̄q

c̄c

c̄q
c̄c

q̄c

c̄c
4q

q̄q q̄q

c̄q

q̄c

c̄c

q̄q

c̄c

q̄q

c̄c
c̄c

c̄c
q̄q

4qc̄c
q̄c

c̄c
c̄q c̄c

q̄q
c̄c

c̄cc̄c

(b)

FIG. 1. The Wick contractions considered in our calculations. (a) Connected contraction diagrams. (b) Diagrams, in which
the light/strange quarks do not propagate from source to sink. The correlation functions in the c̄c(ūu + d̄d) and c̄cs̄s cases
are linear combinations of the diagrams of kind (a) and (b), while the correlation functions between the operators with quark
content c̄cūd are constructed purely from diagrams of kind (a).

Using the interpolators listed in eq. (2) and Table II,
we compute the full coupled correlation functions

Cjk(t) = 〈Ω|Oj(ts+ t)O†
k(ts)|Ω〉 =

∑

n

Zn∗k Znj e
−Ent. (5)

For an efficient computation of these correlation matri-
ces, we utilize the ‘Distillation’ method for the quark
sources as proposed in Ref. [29]. In this method the
quark sources are build from the Nv lowest eigenmodes
of the gauge-covariant Laplacian on a given time slice, ts.
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We use Nv=64 for computation of correlators involving
u/d quarks, while for the correlators with hidden strange
content, we use Nv=48. The correlation functions with
u/d quarks are computed only for polarization along x-
axis and averaged over all ts, while correlation functions
involving hidden strange quarks are averaged over all po-
larizations and for all even values of ts.

The energies En and overlaps Z
(n)
j = 〈Ω|Oi|n〉 for

all eigenstates n are extracted using the well-established
generalized eigenvalue problem [30]

C(t)u(n)(t) = λ(n)(t, t0) C(t0)u(n)(t). (6)

The energies En are extracted asymptotically from two-
exponential fits to the eigenvalues

λ(n)(t, t0) ∝ Ane
−Ent +A′

ne
−E′

n
t , E′

n > En. (7)

We find consistent results for t0 = 2, 3 and present the
results for t0 = 2. The 2-exponential fits were typically
done in the range 3 ≤ t ≤ 14. The eigenvectors u(n)

determine the overlaps

Z
(n)
j (t) = eEnt/2

|Cjk(t)u(n)k (t)|
|C(t)u(n)(t)| . (8)

The statistical errors obtained using single-elimination
jackknife analysis are quoted throughout.
The complete basis was used in the initial analysis,

which was later reduced to an optimized basis, separately
in each of the three cases, based on a systematic opera-
tor pruning. This procedure is aimed at getting better
signals (in terms of the numbers of states and the qual-
ity of the effective mass plateau and the overlap factors)
in comparison with the spectrum extracted from the full
set of operators. After finalizing the optimized set of
two-meson interpolators, we fixed the c̄c and [c̄q̄]Ḡ [cq]G
operators that give good signals for a maximum number
of extractable states below 4.2 GeV. The optimized basis
that we used for the three cases of quark content are

c̄c(ūu+ d̄d) : Oc̄c1,3,5, O
MM
9−12,14,15,17, O

4q
19,21

c̄cūd : OMM
9−16,18, O

4q
19,21

c̄cs̄s : Oc̄c1,5, O
MM
9−11,14, O

4q
19,21 . (9)

Our principal aim is to find out whether QCD sup-
ports exotic states in addition to the conventional char-
monia and the two-meson scattering levels, which in-
evitably appear in dynamical QCD. Analytic techniques
have been proposed for the determination of the scat-
tering matrix for coupled two-hadron scattering chan-
nels based on Lüscher-type finite volume formalisms [31].
These would in principle allow extraction of the masses
and decay widths for resonances of interest. A number
of lattice calculations have already dealt with resonances
and shallow bound states in the elastic scattering (see

[32] and [33] for an example of each). The first calcula-
tion of a scattering matrix for two coupled channels also
promises progress in this direction [34]. However, such an
analysis is beyond the scope of current lattice simulations
for more than two coupled channels and/or three-hadron
scattering channels, which applies to case considered.
Therefore we take a simplified approach, where the ex-

istence of possible exotic states is investigated by ana-
lyzing the number of energy levels, their positions and
overlaps with the considered lattice operators 〈Ω|Oj |n〉.
The formalism does predict an appearance of a level in
addition to the (shifted) two-particle levels if there is a
relatively narrow resonance in one channel. We have, for
example, found additional levels related to the resonances
ρ [26], K∗(892) [35], D∗

0(2400) [25], and the bound state
D∗
s0(2317) [33]. Additional levels related to K∗

0 (1430)
[34] and X(3872) [17] have been found in the simulations
of two coupled channels. Based on this experience, we
expect an additional energy level if an exotic state is of
similar origin, i.e. if it corresponds to a pole of the scat-
tering matrix near the physical axis.
Consider a non-interacting situation. Several two-

meson operators considered in Table II contain the vector
meson V (1) with one unit of momentum. This can reside
in irreducible representations (irreps) A1 or E2 of the cor-
responding symmetry group Dic4 [36, 37]. One expects
two degenerate energy levels for P (1)V (−1) since there
are two ways to combine the vector-meson irrep (A1, E2)
with the pseudoscalar-meson irrep (A2) to obtain the rest
frame irrep of interest T+

1 (see Table III of [36]). The un-
derlying reason is that PV state with JP = 1+ can be
in s-wave or in d-wave (also in continuum) [38–40]. In
the limit of small coupling between s and d wave, one
energy level is due solely to the s-wave and the other one
to d-wave [39, 40]1. We implement only the s-wave in-
terpolator OP (1)V (−1) (eq. (2)) and therefore expect to
see only one energy level; this is verified in our observed
spectra shown in Section V. One would need to employ
two distinct interpolators in order to find two P (1)V (−1)
energy levels, but the extraction of such eigenstates has
not been attempted yet for two-meson systems in QCD
to our knowledge. Our two-meson operators contain also
V1(1)V2(−1), where three levels are expected based on
analogous arguments [36]; we expect to find only one
level related to s-wave interpolators (eq. (2)), and in-
deed we do not find two other levels related to d-wave
(for total spins S = 1, 2). We emphasize that the omis-
sion of additional interpolator structures and avoidance
of levels related to d-waves makes the search for possible
exotics within our approach less cumbersome and results

1 The PV spectrum resembles (in the non-interacting limit) the
spectrum in the deuterium channel pn, since S = 1, JP = 1+

and l = 0, 2 apply in both cases. Fig. 2 of [39] indicates that
one level n(1)p(−1) is related mostly to s-wave and the other to
d-wave. Lüscher’s quantisation condition [38] does not depend
on the spins of the individual particles, but on their total spin S.
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more transparent 2.
Charm quarks being heavy are subject to large dis-

cretization errors. We treat the charm quarks using
the Fermilab formulation [41], according to which we
tune the charm quark mass by equating the spin aver-
aged kinetic mass of the 1S charmonium to its physical
value. With this formulation, the discretization errors
are highly suppressed in the energy splitting En −ms.a.,
ms.a. =

1
4 (mηc + 3mJ/ψ), which will be compared with

the experiments. We utilized this method in our ear-
lier calculations on this ensemble and found good agree-
ment with the experiments for conventional charmonium
in Ref. [25] as well as, for masses and widths of charmed
mesons in Refs. [25, 33, 42].

IV. FIERZ RELATIONS

The diquark-antidiquark operators [c̄q̄]3c [cq]3̄c and
[c̄q̄]6̄c [cq]6c can be expressed as linear combinations of
color singlet currents (c̄c)1c(q̄q)1c and (c̄q)1c(q̄c)1c [14,
43]. These relations are obtained for local currents via
Fierz rearrangement [44] and are presented in Appendix
A. Note that our quarks are smeared and each meson
in OMM has definite momentum, but the Fierz relation
suggest that O4q and OMM are still linearly dependent.
The Fierz rearrangement is the key idea behind Cole-

man’s argument [45] that in the largeNc limit application
of Fermion quadrilinears to the vacuum creates meson
pairs and nothing else. In the physical world with Nc=3,
it is argued that tetraquarks could exist at sub-leading
orders [46] of large Nc QCD. However, in presence of the
leading order two-meson terms, one should take caution
in interpreting the nature of the levels purely based on
their overlap factors onto various four-quark interpola-
tors.
Let us consider a comparative study between the lat-

tice correlators and the Fierz expansion of O4q operators.
From eq. (A5), we see that the first and second terms
in the Fierz expansion represent DD̄∗, while the seventh
term is similar to the OMM

17 = χc1 σ. Hence we expect
significant correlations between these operators. This is
indeed verified in Figure 2, showing the time averaged
normalized ensemble averaged correlation matrix

C̃ij =
1

9

10
∑

t=2

C̄ij(t)
√

C̄ii(t)C̄jj(t)
. (10)

With this normalization all the diagonal entries are
forced to unity and all the off-diagonal entries to be less

2 If one would find an extra state near V (1)P (−1) or V1(1)V2(−1),
one would indeed have to identify whether this extra state arises
due to the presence of the d-wave or is related to exotics. We
do not address this question since we do not find such an extra
state.
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FIG. 2. Time averaged normalized correlation matrix C̃ (eq.
(10)) for the operator basis O1−22 with quark content c̄c(ūu+
d̄d) and c̄c. The axis ticks correspond to the order of operators
used in eq. (2).

than unity. The [c̄q̄]Ḡ [cq]G = O4q
19−22 have large correla-

tions onto the DD̄∗ = OMM
9,11,12 and χc1 σ = OMM

17 . The

strong correlations between O4q and Occ operators can
also be explained by the χc1σ component in O4q , where
σ couples to the vacuum.

V. RESULTS

The discrete spectra in Figure 3 and Figure 4 are the
main results from our lattice calculation. They show the
energies

En = Elatn −mlat
s.a. +mexp

s.a., ms.a. =
1

4
(mηc + 3mJ/ψ)

(11)
of the states with JPC = 1++ and three quark contents.
The horizontal lines represent various two-meson non-
interacting energies.
The states that have dominant overlap with two-meson

scattering operators are represented by circles and the
color coding identifies the respective scattering channels
based on the following criteria:

• The levels appear close to the expected two-meson
non-interacting energies.

• They have dominant overlaps 〈Ω|OM1M2

j |n〉 with

corresponding OM1M2

j . This is also verified based

on the ratios Znj /maxm(Zmj ),which are indepen-
dent of normalization of operators and are shown
in Figure 6.

• If the corresponding two-meson interpolators are
excluded from the basis, this eigenstate disappears
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FIG. 3. The spectra of states with JPC = 1++ for the cases with u/d valence quarks. The energies En = Elat
n −mlat

s.a. +mexp
s.a.

(eq. (11)) are shown. The horizontal lines show energies of non-interacting two-particle states (1) and experimental thresholds,
indicating uncertainty related to σ width. In each subplot, the middle block shows the discrete spectrum determined from our
lattice simulation from the optimized basis (eq. (9)). The right-hand block shows the spectrum we obtained from the optimized
basis of operators with the [c̄q̄]Ḡ [cq]G operators excluded. The gray marks, on the right hand side of each pane, indicate the
lowest three-meson threshold mηc + 2mπ, while the actual lowest ηcππ level on the lattice appears higher due to l = 1, which
requires relative momenta. The left-hand block shows the physical thresholds and possible experimental candidates (a) χc1,
X(3872) and X(3940), (b) Z+

c (4050) and Z+
c (4250). The violet error-bars for experimental candidates show the uncertainties

in the energy and the black error-bars show its width.

 3.4

 3.55

 3.7

 3.85

 4
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 4.3

 4.45

E
n
 [

G
e
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 Expt. Lat. Lat. − O
4q

 

Ds(0) 
-
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-
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J/Ψ(1) φ(-1)

I=0 : 
-
cc
-
ss & 

-
cc 

FIG. 4. The spectrum of states with JPC = 1++ and hidden
strange quarks. The possible experimental candidates shown
are χc1, X(3872), Y (4140) and Y (4274). The gray marks, on
the right hand side of each pane, indicate the lowest three-
meson threshold mηc + 2mK . However, the actual lowest
ηcKK level on the lattice appears higher due to l = 1, which
requires relative momenta. For further details see Figure 3.

or becomes too noisy to be identified. This is de-
termined by comparing the pattern of the effective
masses and overlaps between the original basis and
the basis after operator exclusion.

The remaining states, that are not attributed to the
two-meson scattering channels, are represented by red

 3.4

 3.55

 3.7

 3.85

 4
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 4.45

E
n
 [
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e
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MM
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D*(0)

J/Ψ(0) ω(0)

D(1) 
-
D* (-1)

J/Ψ(1) ω(-1)

ηc(1) σ(-1)

FIG. 5. The spectrum of states (eq. (11)) with JPC = 1++

and quark content c̄c(ūu + d̄d) & c̄c. (i) Optimized basis
(without OMM

17 ), (ii) Optimized basis without c̄c operators
(and without OMM

17 ) and (iii) basis with only c̄c operators.
Note that candidate forX(3872) disappears when removing c̄c
operators although diquark-antidiquark operators are present
in the basis. While it is not clear to infer on the dominant
nature of this state just from the third panel. The OMM

17 =
χc1(0)σ(0) is excluded from the basis to achieve better signals
and clear comparison.

squares.

Figure 3 and Figure 4 also compare the spectra be-
tween the two bases of operators, one with optimized
operator set and another with the optimized set exclud-



8

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Z
n

i
/max

m
(Z

m

i
)

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

n= 1 n= 2 n= 3 n= 4

n= 8n= 7n= 6n= 5

(a)  I=0  : cc ( uu +dd )  &  cc 

10 15 20

0

0.2

0.4

0.6

0.8

1

Z
n

i
/max

m
(Z

m

i
)

10 15 20

0

0.2

0.4

0.6

0.8

1

10 15 20

0

0.2

0.4

0.6

0.8

1

10 15 20

0

0.2

0.4

0.6

0.8

1

10 15 20

0

0.2

0.4

0.6

0.8

1

10 15 20

0

0.2

0.4

0.6

0.8

1

10 15 20

0

0.2

0.4

0.6

0.8

1

n= 1 n= 2 n= 3 n= 4

n= 5 n= 6 n= 7

(a)  I=1  : ccud

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Z
n

i
/max

m
(Z

m

i
)

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

n= 1 n= 2 n= 3 n= 4

n= 5 n= 6

(a)  I=0  : cc ss  & cc

FIG. 6. The overlap factors Z
(n)
j = 〈Ω|Oj |n〉 (eq. (8)) shown in units of the maximal |Zm

j | for a given operator j across all the
eigenstates m. These ratios are independent of the normalization of the interpolators Oj . The horizontal axis corresponds to
the complete basis of interpolators (eq. (2)), where the optimized subsets (eq. (9)) were employed. The levels are ordered from
lowest to highest En as in the middle pane of the spectrum Figs. 3 and 4. The values are averages of the ratios over 4 ≤ t ≤ 13
with errorbars due to jackknife sampling.
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ing [c̄q̄]Ḡ [cq]G . In all three cases we see almost negligible
effect on the low lying states, while we do observe an
improvement in the signals for higher lying states in the
basis without [c̄q̄]Ḡ [cq]G . The same conclusion applies for
overlaps.
The employed irreducible representation T++

1 con-
tains the states JPC = 1++ of interest, as well as
JPC = 3++ states due to the broken rotational sym-
metry. Upon inclusion of the interpolator Oc̄c8 to the
basis (eq. (9)) the spectra for both I = 0 channels re-
main essentially unchanged except for an additional level
at E ≃ 4.1−4.2 GeV (eq. (11)). This is where the earlier
simulation on the same ensemble [25] and the simula-
tion [47] have identified the only 3++ state in the energy
region of our interest. In the following subsections, we
present the spectra of JPC = 1++ states in three flavor
channels for the basis (eq. (9)), where Oc̄c8 is excluded.

A. I = 0 channel with flavor c̄c(ūu+ d̄d) and c̄c

This is the channel where the experimental X(3872)
resides. We will argue that the energy levels affected
by this state are n = 2 (red squares) and n = 6 (blue
circle) from Figure 3(a). The lowest state is the con-
ventional χc1(1P ). The overlaps of the three low lying
levels represented by circles show dominant J/ψ(0)ω(0),
ηc(1)σ(−1) and χc1(0)σ(0) Fock components. The high-
est two states in Figure 3(a) have significant overlap with
the J/ψ(1)ω(−1) and D0(1)D̄

∗
0(−1) operators.

Now we focus on the eigenstates that are related to
X(3872). The c̄c interpolators alone give an eigenstate
close to DD̄∗ threshold (right pane of Figure 5), but
one cannot establish whether this eigenstate is related
to X(3872) or to nearby two-meson states in this case.
Therefore we turn to the spectrum of the full optimized
basis (mid-pane in Figure 3a), where levels n = 2 (red
squares) and n=6 (blue circles) are found to have dom-
inant overlap with the c̄c and DD̄∗ operators. Exclud-
ing either of these operators results in disappearance of
one level and a shift in the other level towards the DD̄∗

threshold. We emphasize that one of the two levels re-
mains absent when DD̄∗ and O4q are used and Oc̄c is
not, as is evident from the first and second panel from
left of Figure 5. This indicates that the c̄c Fock compo-
nent is crucial for X(3872), while the [c̄q̄]Ḡ [cq]G structure
alone does not render it. This also implies a combined
dominance of c̄c and DD̄∗ operators in determining the
position of these two levels, while their resulting ener-
gies are not significantly affected whether O4q is used in
addition or not.
We determine the DD̄∗ scattering phase shift from lev-

els n = 2, 6 via Lüscher’s relation [31] assuming elastic
scattering. The phase shift is interpolated near threshold
using the effective-range approximation. The eigenstate
n = 6 (blue circle) is interpreted as D(0)D̄∗(0) scatter-
ing state, which is significantly shifted up due to a large
negative scattering length [48]. The resulting scatter-

X(3872) mX −ms.a. mX −mD0
−mD∗

0

Lat. 816(15) -8(15)

Lat. - O4q 815(8) -9(8)

LQCD [17] 815(7) -11(7)

LQCD [18] - -13(6)

Exp. 803(1) -0.11(21)

TABLE III. Mass of X(3872) with respect to ms.a. and the
D0D̄

∗
0 threshold. Our estimates are from the correlated fits

to the corresponding eigenvalues using single exponential fit
form with and without diquark-antidiquark operators. Re-
sults from previous lattice QCD simulations [17, 18] and ex-
periment are also presented.

ing matrix T ∝ 1/(cot δ(p) − i) has a pole just below
threshold where cot δ(pB) = i is satisfied. We neglect
possible effects of the left-hand cut in the partial wave
amplitude. The results confirm a shallow bound state
just below DD̄∗ threshold and the binding momentum
pB renders mass of the bound state, interpreted as ex-
perimentally observed X(3872). The resulting mass of
X(3872) and its binding energy are provided in Table
III and in Figure 7, which indicate that it is insensitive
to inclusion of diquark-antidiquark interpolators within
errors. The mass of X(3872) was extracted along these
lines for the first time in Ref. [17], where this channel was
studied in a smaller energy range on the same ensemble
without diquark antidiquark interpolators. The error on
the binding energy in the present work is larger due the
larger interpolator basis. These results are in agreement
with a possible interpretation of X(3872), where its prop-
erties are due to the accidental alignment of a c̄c state
with the D0D̄∗0 threshold [49, 50], but we cannot rule
out other options.

-30

-20

-10

 0

 10

Exp. Lat. Lat.-O
4q [17] [18]

mX(3872)−mD−m-D*

 770

 790

 810

 830

 850
mX(3872)−ms.a.

FIG. 7. Mass of X(3872) with respect to ms.a. from the
present simulation, previous lattice studies [17, 18] and ex-
periment [6].

With regard to the other experimentally observed
charmonia-like states (e.g. X(3940)), that could appear
in this channel, we do not find any candidate in addition
to the expected two-meson scattering levels. We also do
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not find candidates for other c̄c states with JPC = 1++

(e.g. χ1c(nP )) in the region between the DD̄∗ threshold
and 4.2 GeV.

B. I = 1 channel with flavor c̄cd̄u

A careful analysis of this isospin channel is crucial due
to the large branching ratio for the decay X(3872) →
J/ψρ and current experimental interests in search of a
charged X(3872). With no disconnected diagrams al-
lowed in the light quark propagation, the correlation ma-
trix is constructed purely of four-quark interpolators and
connected Wick contractions in Figure 1(a).
The spectrum of eigenstates is shown in Figure 3(b),

where all energies are close to non-interacting energy lev-
els. All the eigenstates have dominant overlap with the
two-meson interpolators. The spectrum shows very little
influence on the inclusion of [c̄q̄]Ḡ [cq]G , which is evident
from Figure 3(b). Given that all the levels below 4.2 GeV
can be attributed to the expected two-meson scattering
states, we conclude that our lattice simulation gives no
evidence for Zc(4050)

+ and Zc(4250)
+.

Our results also do not support charged or neutral
X(3872) with I = 1. There is no experimental indica-
tion for charged X , while the neutral X does have a large
decay rate to I = 1 final state J/ψρ0. One popular phe-
nomenological explanation for this decay is that X(3872)
has I = 0 and the isospin is broken in the decay mech-
anism (due to the D+D̄∗− vs. D0D̄∗0 mass difference)
[50, 51]. According to another explanation, X is a linear
combination of I = 0 and I = 1 components, where the
I = 1 component vanishes in the isospin limit [52]. Our
simulation is performed in the isospin limit mu = md,
so it is perhaps not surprising that X with I =1 is not
observed. Future simulations with non-degenerate u/d
quarks would be very welcome for this channel.
As pointed out in Section II, ρ in J/ψρ is treated as

stable, although ρ(1) is kinematically close to the decay
channel π(1)π(0). In absence of a simulation of a three-
meson system, it is disputable what ‘non-interacting’ en-
ergy should be taken for the ρ(1). An estimate from
the diagonal correlator ρ(1) leads to ‘non-interacting’
energy roughly 65 MeV below the eigenstate energy,
which is identified to have dominant overlap with the
J/ψ(1)ρ(−1) interpolator. However, taking the reso-
nance position [26] brings the ‘non-interacting’ level in
agreement with the measured eigenenergy.

C. I = 0 channel with flavor c̄cs̄s and c̄c

Our goal in simulating this channel is to search for a
possible presence of the Y (4140) resonance, which was
found in J/ψφ scattering in several experiments [10].
Our lattice simulation of J/ψφ scattering takes into ac-
count the annihilation of the valence strange quarks and
thereby the mixing with c̄c flavour content.

With no strange quark effects in the sea, the study
of this channel is based on the following assumptions.
We construct a basis with only c̄c and four-quark oper-
ators (OMM , O4q) with valence hidden strange content
for this analysis. We assume that these interpolators
have negligible coupling to two-meson states with flavor
content c̄c(ūu + d̄d). In other words, we assume that
two-meson states like DD̄∗ and J/ψω will not appear
in the spectrum based on the chosen interpolators. The
resulting spectrum in this channel confirms this assump-
tion. We point out that Y (4140) has been experimen-
tally observed only in the J/ψφ final state with valence
strange content, but it has not been observed inDD̄∗ and
J/ψω final states. Although this ensemble does not have
strange quarks in the sea, we assume that the valence
strange content could uncover hints on the existence of
the charm-strange exotics, if they exists.
Spectra in this channel are shown in Figure 4. We

identify the lowest two states, represented by squares,
to be χc1(1P ) and the level related to X(3872). The
remaining four states are identified with the expected
DsD̄

∗
s and J/ψφ scattering levels. Thus in the energy

region below 4.2 GeV, we find no levels that could be
related to Y (4140) or any other exotic structure. Note
that the existence of Y (4140) is not yet finally settled
from experiment, and its quantum numbers, except for
C = +1, are unknown. Therefore it is possible that its
absence in our simulation is related to the fact that we
explored the channel JP = 1+ only.

D. Discussion

The only exotic charmonium-like state found in our
simulation is a X(3872) candidate with JPC = 1++ and
I = 0. It is found as a bound state slightly below DD̄∗

threshold and has a mass close to the experimental mass
of X(3872). We point out that this mass corresponds
to our mπ ≃ 266 MeV and was obtained from a rather
small lattice volume, while chiral and continuum extrap-
olations have not been performed. Precision determina-
tion of its mass with respect to DD̄∗ threshold will be
a challenging task for future lattice simulation on larger
volumes, which also should account for its coupling with
multiple open scattering channels involving two or more
hadrons. Recent analytic studies consider the quark mass
dependence, the volume dependence and the effect from
the isospin breaking relevant for future lattice studies of
X(3872) [53].
Candidates for no other “exotic” charmonium-like

states (except for X(3872)) are found in our exploration
of the three JPC = 1++ channels. We list several possi-
ble reasons for the absence of the energy levels related to
other possible exotic states in our simulation:

• The existence of Y (4140), Z+
c (4050), Z

+
c (4250) or

any other exotic state in these channels, is not yet
settled experimentally. Even if they exist, only C=
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+1 is established experimentally, while their JP is
unknown. This could explain their absence in our
simulation, which probes only JP = 1+.

• Based on the experience, discussed in Section III,
we expect an additional energy level if the exotic
state is a resonance associated to a pole near the
real axis in the unphysical Riemann sheet. The
absence of an additional energy level could also in-
dicate a different origin of the experimental peak,
e.g., a coupled-channel threshold effect. Further
analytical work and lattice simulations are needed
to settle the question whether an additional energy
level is expected in this case.

• Finally, we can not exclude the possibility that
some exotic candidates could be absent due to the
relatively heavy pion mass mπ ≃ 266 MeV, isospin
limit mu = md, neglect of the charm annihilation
contributions, or the absence of the strange dynam-
ical quarks in our simulation.

VI. CONCLUSIONS

We present the spectra from a lattice QCD simulation
of JPC = 1++ channels with three different quark con-
tents: c̄cd̄u, c̄c(ūu+ d̄d) and c̄cs̄s, where the later two can
mix with c̄c. The pion mass in this study with u/d dy-
namical quarks ismπ≃266 MeV. Using a large number of
interpolating fields [c̄q̄]3c [cq]3̄c , [c̄q̄]6̄c [cq]6c , (c̄q)1c(q̄c)1c ,
(c̄c)1c(q̄q)1c and (c̄c)1c , we extract the spectra up to
4.2 GeV. We find evidence for χc1 and X(3872), while all
the remaining eigenstates are related to the expected two-
meson scattering channels, which inevitably appear in
the dynamical QCD. The c̄c Fock component in X(3872)
appears to be more important than the [c̄q̄]Ḡ [cq]G , since
we find a candidate for X(3872) only when c̄c interpolat-
ing fields are used. The DD̄∗ interpolators show more
prominent effect on the position of X(3872) than the
[c̄q̄]Ḡ [cq]G . Candidates for charged or neutral X(3872)
with I = 1 are not found in our simulation withmu=md,
and future simulations with broken isospin would be wel-
come for this channel. We also do not find a candidate for
Y (4140) or any other exotic charmonium-like structure.
Our search for the exotic states assumes an appearance of
an additional energy eigenstate on the lattice, which is a
typical manifestation for conventional hadrons. Further
analytic work is needed to establish whether this working
assumption applies also for several coupled channels and
all exotic structures of interest.
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Appendix A: Fierz transformation of

diquark-antidiquark operators

In this appendix we express the local diquark-
antidiquark interpolator as

O4q(x) =
∑

Fi M
i
1(x) M

i
2(x) (A1)

using Fierz transformations [44], where

M(x) = q̄aΓq
′
a (x) (A2)

are local color-singlet currents. The momentum pro-
jected interpolator O4q(p) is then given by

O4q(p) =
∑

i

Fi
∑

x

eipxM i
1(x)M

i
2(x)

=
∑

i

Fi
V 2

∑

x

eipx
∑

q

e−iqxM i
1(q)

∑

k

e−ikxM i
2(k)

=
∑

i

Fi
V

∑

q

M i
1(q)M

i
2(p− q).

Thus the projection to total momentum zero O4q(p = 0)
can be rewritten as sum over two-meson operators with
back-to-back momenta.
Fierz transformation is an operation of rearranging the

Fermion fields in a Fermion quadrilinear. Expressing our
local diquark-antidiquark interpolator with explicit color
(lower) indices and Dirac (upper) indices, we have

[c̄ P q̄]G [c N q]G |(3c
6̄c
) = GabcGade c̄αb Pαβ q̄βc cηdNηδqδe

= (δbdδce ∓ δbeδcd) P
αβNηδ c̄αb q̄

β
c c

η
dq
δ
e

= PαβNηδ
{

−(c̄αcη)1c(q̄
βqδ)1c ∓ (c̄αqδ)1c(q̄

βcη)1c
}

= −(c̄αΓαηI cη)1c(q̄
βGβδI q

δ)1c ∓ (c̄αΓαδI qδ)1c(q̄
βHβη

I cη)1c
= −(c̄ ΓI c)1c(q̄ GI q)1c ∓ (c̄ ΓI q)1c(q̄ HI c)1c (A3)

where we have accounted for GabcGade|(3c
6̄c
) = δbdδce ∓

δbeδcd in the second line and a minus sign for Fermion
exchange in the third. Each term on the right-hand side
of the fourth line is expressed as a sum over the index
I = 1, .., 16, where ΓI are the elements of Clifford alge-
bra {Γ} and (GI , HI) the unknown coefficient matrices.
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These coefficient matrices can be determined using the
orthogonality relation Tr[ΓIΓJ ] = 4δIJ

GI =
1

4
(NTΓIP )

T and HI =
1

4
(NΓIP )

T (A4)

The diquark-antidiquark fields can therefore be ex-
pressed as linear combination of products of two color sin-
glet currents with various Dirac structures. Local analogs
of our diquark-antidiquark interpolating fields can be ex-
pressed as

O4q

(1921)
= [c̄ Cγ5 ū]G [c γiC u]G + [c̄ Cγi ū]G [c γ5C u]G +Kd{u→ d} (A5)

= ∓ (−1)i

2
{ (c̄ γ5 u)(ū γi c)− (c̄ γiu)(ū γ5 c)

+ (c̄ γνγ5 u)(ū γiγν c)|i6=ν − (c̄ γiγν u)(ū γ
νγ5 c)|i6=ν}

+
(−1)i

2
{ (c̄ c)(ū γiγ5 u) + (c̄ γiγ5 c)(ū u)

− (c̄ γνc)(ū γiγνγ5 u)|i6=ν − (c̄ σαβ c)(ū σαβγiγ5 u)|i6=(α<β)}
+ Kd{u→ d}

and

O4q

(2022)
= [c̄ C ū]G [c γiγ5C u]G + [c̄ Cγiγ5 ū]G [c C u]G +Kd{u→ d} (A6)

= ∓ (−1)i

2
{ − (c̄ u)(ū γiγ5 c) + (c̄ γiγ5 u)(ū c)

− (c̄ γνu)(ū γiγνγ5 c)|i6=ν + (c̄ σαβ u)(ū σαβγiγ5 c)|i6=(α<β)}

− (−1)i

2
{ (c̄ c)(ū γiγ5 u)− (c̄ γiγ5 c)(ū u)

+ (c̄ γνc)(ū γiγνγ5 u)|i6=ν − (c̄ σαβ c)(ū σαβγiγ5 u)|i6=(α<β)}
+ Kd{u→ d}.

Various terms resemble two-meson operators OMM (eq. 2), where (q̄Γq′) denote color singlet currents.
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