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We revisit the issue of the large negative next-to-leading order (NLO) cross section for

single inclusive hadron production in pA collisions in the saturation formalism. By im-

plementing the exact kinematical constraint in the modified dipole splitting functions, two

additional positive NLO correction terms are obtained. In the asymptotic large k⊥ limit, we

analytically show that these two terms become as large as the negative NLO contributions

found in our previous calculation. Furthermore, the numerical results demonstrate that the

applicable regime of the saturation formalism can be extended to a larger k⊥ window, where

the exact matching between the saturation formalism (in the asymptotic k⊥ regime) and the

collinear factorization calculations will have to be performed separately. In addition, after

significantly improving the numerical accuracy of the NLO correction, we obtain excellent

agreement with the LHC and RHIC data for forward hadron productions.

PACS numbers: 24.85.+p, 12.38.Bx, 12.39.St

I. INTRODUCTION

A focal point of the frontier of high energy nuclear physics at RHIC and the LHC is the study of

saturation in hadron collisions. Saturation is an effect that emerges due to bremsstrahlung gluon

radiation in the hadronic wavefunction. It was prompted by the theoretical prediction that, at

high energy, the gluon density rises rapidly as x, the longitudinal momentum fraction of the gluons

with respect to their parent hadron, decreases. This rise is governed by the famous Balitskii,

Fadin, Kuraev, and Lipatov (BFKL) evolution equation [1], which emerges from resummation

of terms proportional to αs ln 1
x . However, when the gluon density becomes high, it is expected

that gluons start to recombine and QCD dynamics becomes nonlinear. This eventually leads to

the onset of gluon saturation [2–4], as a result of the nonlinear QCD dynamics. To quantify the

recombination effect, a nonlinear term in the gluon evolution equation was proposed in Ref. [2, 3].

This nonlinear extension of the BFKL evolution equation was later independently derived by

Balitsky and Kovchegov; accordingly, the equation is referred to as the BK evolution equation [5, 6].

Theoretically, it seems that gluon saturation is bound to occur as a result of high energy evolution.
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The task remains to find a “smoking gun” signature of gluon saturation in experimental data at

e.g. RHIC or the LHC. A wealth of results in pA collisions, ideal for observing saturation [7], are

becoming available. But it is critical to have precise, quantitative phenomenological calculations

in the saturation formalism to compare to these experimental results.

Single inclusive hadron production in pA collisions at high energy reveals the interesting physics

of gluon saturation particularly well, compared to pp collisions. The effect of dense gluons in the

target nucleus can be characterised by the introduction of a semi-hard momentum scale, which

is known as the saturation scale Qs, a function of the momentum fraction xg =
k+gluon
k+nucleon

, and the

nuclear mass number A. Roughly speaking, the saturation scale can be used to separate the

saturated (dense) regime, in which the nonlinear energy evolution applies, from the (dilute) regime

in which the evoution is linear. When the typical hard scale of the scattering, Q, is less than Qs,

one expects that the target partons involved in the interaction are saturated. On the other hand,

when Q� Qs, the saturation effect is no longer important, and standard perturbative QCD should

be sufficient to describe the data.

It is generally believed that the transverse momentum of typical gluons inside nuclear targets

is roughly Qs(xg, A). In high energy pA collisions, before partons from the proton projectile

fragment into hadrons with transverse momentum p⊥, they undergo multiple interactions with the

dense gluonic fields in the highly boosted target nucleus, picking up a transverse momentum of

roughly Qs in the process. The squared saturation momentum Q2
s in nuclear targets is A1/3 times

of that in protons, due to random multiple scatterings. Therefore, the transverse momentum (p⊥)

spectrum of the produced hadrons exhibits different behaviour in pA collisions, especially in the

relatively low p⊥ regime, than in pp collisions.

Measurements of single inclusive hadron production in pA collisions at RHIC [8–13] and the

LHC [14–21] have provided plenty of data. There have been many theoretical and phenomenological

efforts [22–39] on this subject, which imply that gluon saturation (or shadowing) plays an important

role in the production of forward rapidity hadrons.

The first complete next-to-leading order (NLO) calculation for inclusive hadron productions [40,

41] in pA collisions was achieved a few years ago, using the Mueller’s dipole formalism (see Ref [42]

for discussion at NLO). This computation is the first complete NLO calculation which uses di-

mensional regularization and with the MS regularization scheme, which is necessary to correctly

incorporate the available NLO collinear parton distributions (PDFs) and fragmentation functions

(FFs) without introducing additional scheme dependence.

Schematically, the full NLO cross section for hadron production at forward rapidity y, with the
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hadron having transverse momentum p⊥ = zk⊥, can be written as follows:

d3σ

dyd2p⊥
=

∫
xpfi(xp)⊗Dh/i(z)⊗Fxgi (k⊥)⊗H(0) +

αs
2π

∫
xpfi(xp)⊗Dh/j(z)⊗Fxg(N)ij ⊗H

(1)
ij , (1)

All the hard factors H are given in Refs. [40, 41]. Fxgi (k⊥) and Fxg(N)ij , which are functions of the

transverse momentum k⊥ of the produced parton, represent the Fourier transforms of dipole scat-

tering amplitudes. xpfi(xp) and Dh/j(z) are the parton distribution and fragmentation function,

respectively.

The first numerical analysis of forward hadron production in pA and dA collisions in the small-x

saturation formalism, based on the NLO results in Refs. [40, 41], was presented in Refs. [43, 44].

It was found that the theoretical uncertainty is significantly reduced compared to leading order

(LO) results, and the calculated NLO cross section agrees well with forward-rapidity RHIC data

for p⊥ . Qs. Recall that Qs is the characteristic scale for the gluon density in a heavy nucleus. In

general, the p⊥ region in which the calculation and results agree increases with the center-of-mass

scattering energy
√
sNN , since the typical gluon density probed is larger at high energy. However,

the numerical results of the NLO cross section abruptly drop to negative values above some cutoff

momentum which is generally slightly greater than Qs.
1

Strictly speaking, the saturation formalism always takes the high energy limit s → ∞, which

yields large saturation momentum Qs. In this limit, the NLO results in Refs. [40, 41] are obtained

after the subtraction of the rapidity divergence (associated with the small-x evolution in the s→∞
limit) as well as the collinear divergences (associated with the DGLAP evolution of PDFs and

FFs). However, in phenomenological studies of saturation physics, the center-of-mass energy of

scatterings is finite and the saturation momentum is not very large. It is natural to expect that

the saturation formalism works when k⊥ ≤ Qs. On the other hand, when k⊥ � Qs, the saturation

formalism is believed to be no longer applicable since xg is no longer small, and the collinear

factorization approach should be the relevant formalism to describe the large k⊥ part of the cross

section. Studies [45] have shown that the transverse momentum dependent (TMD) factorization

is closely related or equivalent to the small-x factorization in terms of gauge links [46–48], if one

puts them in the same kinematical region. A similar kinematic restriction is also required for the

TMD factorization in the hard scattering processes, where the transverse momentum k⊥ is much

smaller than the hard momentum scale Q (like the invariant mass of lepton pair in the Drell-Yan

1 The relationship between the saturation scale Qs, the cutoff momentum at which the results become negative,

and the boundary of the region in which the calculation accurately describes the data appears to be some sort

of rapidity-dependent proportionality, but the details are not clear. Ref. [44] includes some discussion of the

relationship among these momenta.
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process) [49]. In other words, the TMD factorization would be invalid in the large k⊥ ∼ Q region.

In this region, a matching to the collinear factorization calculation is usually performed [49]. This

argument applies to the case studied in this paper as well.

In Ref. [50], the matching between the perturbative results is reached by taking the large

k⊥ limit of the NLO cross section in the small-x formalism and enforcing the exact kinematic

constraint. One might wonder if there is a way to naturally implement the kinematic constraint in

the small-x formalism. Doing so could help extend the applicability of the formalism to the large

k⊥ regime. Recently, the authors of Refs. [52] performed another independent NLO calculation of

single inclusive hadron production in pA collisions. Their discussion of the Ioffe time dependence,

which is equivalent to the kinematical constraint, motivated us to investigate the details of the

dipole formalism application in this process and compute the effect of the kinematical constraints.

We find that we obtain two additional NLO corrections from incorporating these constraints. These

two terms were conjectured to be small in the s → ∞ high energy limit, and therefore implicitly

neglected in the original derivation of the NLO corrections [40, 41]. It is interesting to note that,

in Ref. [53], a similar logarithmic term played an important role in deriving the Sudakov factor in

other hard processes. We need to emphasize that there is no Sudakov factor in the process of single

hadron productions. As we will show later, these additional NLO corrections are indeed small as

long as k⊥ < Qs. However, they become large when k⊥ > Qs. By including these two terms, we

can offset the negativity of the NLO terms at larger p⊥ and extend the applicability window of the

saturation formalism towards larger p⊥ for single hadron productions.

The goal of this paper is to revisit the issue of the negative NLO cross section found in the large

k⊥ regime of forward-rapidity single inclusive hadron production in pA collisions, and the numerical

implementation of the exact kinematics in the small-x formalism at one-loop order. We find that,

with the exact kinematical constraint imposed, we can obtain two additional NLO hard factors,

with one from the q → q channel and the other from the g → g channel. We first analytically show

that these two terms are large enough to partially overcome the negative NLO terms found earlier

in the simple Golec-Biernat and Wusthoff (GBW) model [54]. Numerically, these two terms are

found to be negligible when k⊥ < Qs, but they become important when k⊥ rises to ≈ 2Qs and

higher.

More importantly, we have significantly improved our numerical implementation of all NLO

corrections, which allows us to do phenomenological studies at the LHC energy. We find excellent

agreement between the full NLO cross section and the forward hadron production data at the LHC.

This paves the road for a quantitative and precise phenomenological test of saturation physics at
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(xpP
+, 0⊥)

x′
gP

−

((1− ξ)xpP
+, l⊥)

(ξxpP
+, k⊥)

FIG. 1. A typical real diagram at NLO

the LHC.

The rest of this paper is organized as follows. In Sec. II, we present a detailed derivation of

the implementation of the kinematical constraint into the dipole model, and obtain two additional

NLO corrections (one for the quark channel and one for the gluon channel) after subtracting the

corresponding small-x large logarithms. We further evaluate these two terms by Fourier transform,

and demonstrate that they have the same 1
k4⊥

behavior exhibited by perturbative QCD in the high

k⊥ limit. In particular, we analytically show that the additional terms are large compared to the

negative cross section at NLO. In Sec. III, we present the numerical results and compare them to

RHIC and LHC results. We summarize our paper in Sec. IV.

II. DIPOLE MODEL AND KINEMATICAL CONSTRAINTS AT NLO

Let us first review the exact kinematical constraint discussed in previous publications [50–53],

since it plays an important role in this paper. We will continue to use light-cone perturbation

theory as in Refs. [40, 41], and define p+ = p0+p3√
2

and p− = p0−p3√
2

.

The kinematical constraint is derived from the conservation of the − component of the four

momentum before and after interactions for 2→ 2 processes. For quark production with transverse

momentum k⊥, as illustrated in Fig. 1, we obtain

x′gP
− =

l2⊥
2(1− ξ)xpP+

+
k2⊥

2ξxpP+
≤ P−. (2)

As ξ approaches 1, the above kinematical constraint indicates

l2⊥ ≤ (1− ξ)xps , or ξ ≤ 1− l2⊥
xps

. (3)

For a rapidity divergent term, we find that the above constraint modifies the upper limit of the
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divergent integral as follows

∫ 1− l2⊥
xps

0

dξ

1− ξ = ln
xps

l2⊥
= ln

1

xg
+ ln

k2⊥
l2⊥
, (4)

where xg ≡ k2⊥
xps

according to the leading order kinematics. In the high energy limit, we assume

k⊥ ∼ l⊥ which makes the second term very small. However, as we shall show in the following

discussion, the ln
k2⊥
l2⊥

term becomes important when k⊥ gets larger than the typical saturation

momentum. The direct evaluation of this ln
k2⊥
l2⊥

term is not easy in the momentum space, but

indirectly evaluating it in coordinate space is quite straightforward, as we shall demonstrate in the

following discussion, after encoding it into the modified dipole splitting functions.2

Inspired by Ref. [51], which proposes the kinematical constraint on the BK evolution, and

Ref. [52], which introduces the Ioffe time cutoff in the one-loop calculation, we find that it is

convenient to encode the kinematical constraint by modifying the dipole splitting function for the

q → qg splitting, shown in Fig. 1, as follows:

ψλαβ(p+, k+, u⊥) = 2πi

√
2

(1− ξ)p+ [1− J0 (u⊥∆)]





u⊥·ε(1)⊥
u2⊥

(δα−δβ− + ξδα+δβ+), λ = 1,

u⊥·ε(2)⊥
u2⊥

(δα+δβ+ + ξδα−δβ−), λ = 2.

, (5)

with ∆2 = ξ(1 − ξ)xps. The original dipole splitting function, which is proportional to
u⊥·ε(1,2)⊥
u2⊥

,

arises from the Fourier transform of
l⊥·ε(1,2)⊥
l2⊥

. The additional term of −J0(u⊥∆) arises from the

kinematical constraint, Eq. (3), imposed during the Fourier transform.

In general, the correction to the splitting function J0 (u⊥∆) does not play any important role

since it vanishes when we take the high energy limit s→∞. It only becomes important when the

gluon longitudinal momentum fraction 1− ξ approaches zero. Specifically, for quark production at

one-loop order, we always get the following DGLAP-type contribution from real diagrams:
∫ 1

τ
dξ

1 + ξ2

1− ξ =

∫ 1

τ
dξ

1 + ξ2

(1− ξ)+
+

∫ 1

0
dξ

2

1− ξ . (6)

For the first term on the right hand side of the above equation, we can safely take the s→∞ limit,

since this term is regular when ξ → 1. However, one can not neglect the correction J0 (u⊥∆) for

the second term, since it is singular when ξ → 1. Clearly, in this NLO calculation for single hadron

production in pA collisions, the kinematical constraint only affects the rapidity subtraction term.

2 A similar term, ln M2

l2⊥
, where M is another hard scale (e.g. the Higgs mass or dijet invariant mass), is used to

derive the Sudakov factor when M2 � k2
⊥ [53]. The Sudakov physics is different from what we are discussing here,

since basically the single hadron production process is a single scale problem. First of all, the new terms that

we obtain can be never interpreted as a Sudakov factor, instead it should be viewed as part of the NLO power

correction. In addition, the color flow is completely different. Note that the color factor for the quark Sudakov

factor is CF while the one for BFKL physics is always Nc/2.
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The relevant contribution to the cross section, with the modified splitting function, can be

written as

αsNc

2π2

∫ 1

0

dξ

1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥)

[
−S(x⊥, y⊥) + S(x⊥, b⊥)S(b⊥, y⊥)

]

×
{[

1− J0(u⊥∆)
]2

u2⊥
+

[
1− J0(u′⊥∆)

]2

u′2⊥
− 2u⊥ · u′⊥

u2⊥u
′2
⊥

[
1− J0(u⊥∆)

][
1− J0(u′⊥∆)

]}
, (7)

where u⊥ ≡ x⊥ − b⊥ and u′⊥ ≡ y⊥ − b⊥.

This term looks similar to the last term of Eq. (4.21) in Ref. [52]. In this paper, we are

implementing the kinematical constraint, while the authors in Ref. [52] are discussing the Ioffe

time cutoff. In fact, by identifying 2P+

τ in Ref. [52] to the center-of-mass energy s in our paper, we

find that these two effects become the same. One of the most important differences between our

calculation and Ref. [52], as demonstrated below, is that we subtract the small-x logarithms and

extract the NLO corrections which can be computed numerically in SOLO. It will be interesting

to compare the factorization approach of our calculations with that in Ref. [52], and in particular

to see the phenomenological consequence. This, however, is beyond the scope of our paper.

One can actually approximately integrate over ξ and find that

∫ 1

0

dξ

1− ξ

[
1− J0

(
u⊥
√
xps(1− ξ)

)]2
' ln

xpsu
2
⊥

c20
= ln

1

xg
+ ln

k2⊥u
2
⊥

c20
(8)

∫ 1

0

dξ

1− ξ

[
1− J0

(
u⊥
√
xps(1− ξ)

)][
1− J0

(
u′⊥

√
xps(1− ξ)

)]

' ln
xpsu⊥u′⊥

c20
= ln

1

xg
+ ln

k2⊥u⊥u
′
⊥

c20
,

(9)

with c0 = 2e−γE . Here we have used xpxgs = k2⊥. It is then clear that the first term ln 1
xg

can be

subtracted from the NLO cross section and interpreted as the BK evolution of the dipole amplitude

S up to rapidity Yg = ln 1
xg

. The second term in the above equations, which is conjugate to the term

ln
k2⊥
l2⊥

as in Eq. (4) (see also Eq. (3.12) of Ref. [52]) with l⊥ being the gluon transverse momentum,

arises due to the exact kinematical constraint. More precisely, the second integral should give

ln 1
xg

+ ln
k2⊥u

2
<

c20
instead of ln 1

xg
+ ln

k2⊥u⊥u
′
⊥

c20
with u< ≡ min{u⊥, u′⊥}, which makes the calculation

for Lq(k⊥) non-analytical and the precise numerical evaluation more challenging. Fortunately, one

can numerically check that the resulting Lq(k⊥) has similar large-k⊥ behaviour, and it gives the

same high k⊥ tail, since u⊥ ' u′⊥ when k⊥ → ∞. Besides, as we will show later, in the low-k⊥

region, Lq(k⊥) is negligible in the total cross section. Our goal here is to extract the correct large

k⊥ tail of the additional hard factor, which eventually helps to extend the applicability of the

small-x calculation. In this sense, we can approximate ln
k2⊥u

2
<

c20
as ln

k2⊥u⊥u
′
⊥

c20
. Also, because the
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rest of the expression is symmetric under the exchange u⊥ ↔ u′⊥, it is useful to note that this is

equivalent to using ln
k2⊥u

2
⊥

c20
or ln

k2⊥u
′2
⊥

c20
.

The leftover terms can be cast into an additional hard factor which reads

Lq(k⊥) =
αsNc

2π2

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥)

[
S(x⊥ − b⊥)S(y⊥ − b⊥)− S(x⊥ − y⊥)

]

×
[

1

u2⊥
ln
k2⊥u

2
⊥

c20
+

1

u′2⊥
ln
k2⊥u

′2
⊥

c20
− 2u⊥ · u′⊥

u2⊥u
′2
⊥

ln
k2⊥|u⊥||u′⊥|

c20

]
. (10)

The corresponding contribution to the single inclusive cross section in this channel can be written

as

d3σLq
dyd2p⊥

=

∫ 1

τ

dz

z2

∑

f

xpqf (xp)Dh/q(z)Lq(k⊥). (11)

It is not hard to show that the above contribution from L(k⊥) is free of both UV and IR divergences.

When b⊥ → x⊥, the first bracket vanishes. When b⊥ → ∞, the second bracket vanishes. Due to

these strong cancellations, it was believed that this contribution should be small. In fact, Ewerz

et al [55] studied the Ioffe time effect of the dipole model in deep inelastic scattering for inclusive

total cross sections, and they found that this effect is small. For single inclusive hadron production

in pA collisions, as we demonstrate below, the effect is small when p⊥ is small, but it becomes as

large as other NLO corrections when p⊥ ∼ Qs.

Note that this term is physically and fundamentally different from the so-called ∆H correction

from Kang et al [56], which is proportional to the rapidity interval Y − Yg = ln 1
xp

+ ln
k2⊥
m2
p
. As

commented in Ref. [57], the choice of the rapidity interval leads to an unphysical conclusion and

violates the small-x factorization. The new additional term Lq(k⊥) does not depend on either the

projectile longitudinal momentum fraction xp, or the hadronic mass mp. It is important to notice

that QCD factorization does not allow us to have hadronic mass mp in any hard factors. Otherwise,

this implies that we can not separate the non-perturbative physics from the perturbative calculable

hard factors. It is also clear from our above derivation that xp naturally cancels out and thus does

not appear in Lq. We would like to emphasize that the so-called ∆H correction discussed in

Ref. [56] is unjustified and should be absent in view of the small-x factorization.

Let us derive the following simplified expression for Lq(k⊥) which is much easier to evaluate
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numerically. It is straightforward to use the following Fourier transform identities3

1

u2⊥
ln
k2⊥u

2
⊥

c20
=

1

8π

∫
d2l⊥e

il⊥·u⊥
(

ln
k2⊥
l2⊥

)2

(12)

~u⊥
u2⊥

ln
k2⊥u

2
⊥

c20
=

1

2π

∫
d2l⊥e

il⊥·u⊥ i
~l⊥
l2⊥

ln
k2⊥
l2⊥

(13)

to find that

Lq(k⊥) =
αsNc

4π2
S⊥ [Lq1(k⊥) + Lq2(k⊥) + Lq3(k⊥)] with (14)

Lq1(k⊥) = −
∫

d2r⊥
2π

e−ik⊥·r⊥S(r⊥)

(
ln
k2⊥r

2
⊥

c20

)2

, (15)

Lq2(k⊥) = (2π)F (k⊥)

∫
d2l⊥F (k⊥ − l⊥)

(
ln
k2⊥
l2⊥

)2

, (16)

Lq3(k⊥) = −4

∫
d2l⊥d2l′⊥F (k⊥ − l′⊥)F (k⊥ − l⊥)

l′⊥ · l⊥
l′2⊥l

2
⊥

ln
k2⊥
l2⊥
. (17)

In deriving the above expression, we have used the fact that the impact parameter integration

simply gives S⊥, which is the area of the target nucleus. (see Appendix for detailed derivations.)

In fact, one can further evaluate Lq(k⊥) analytically in the GBW model by assuming

S(R⊥) = exp

(
−Q

2
sR

2
⊥

4

)
, =⇒ F (k⊥) =

1

πQ2
s

exp

(
−k

2
⊥
Q2
s

)
, (18)

and find

Lq1(k⊥) =
−2

Q2
s

{
L(2,0)

[
−1,−k

2
⊥
Q2
s

]
− 2 ln

k2⊥e
γE

Q2
s

L(1,0)

[
−1,−k

2
⊥
Q2
s

]

+

[(
ln
k2⊥e

γE

Q2
s

)2

+
π2

6

]
exp

(
−k

2
⊥
Q2
s

)}
,

Lq2(k⊥) = 4π2F (k⊥)F (k⊥)

∫ ∞

0
dl⊥l⊥ exp

(
− l

2
⊥
Q2
s

)
I0

(
2l⊥k⊥
Q2
s

)(
ln
k2⊥
l2⊥

)2

,

Lq3(k⊥) = −8π

k⊥
F (k⊥)

[
1− exp

(
−k

2
⊥
Q2
s

)]∫ ∞

0
dl⊥I1

(
2l⊥k⊥
Q2
s

)
exp

(
− l

2
⊥
Q2
s

)
ln
k2⊥
l2⊥
. (19)

For Lq2(k⊥) and Lq3(k⊥), in principle, one can also perform the dl⊥ integration and obtain ana-

lytical final results in terms of derivatives of hyper-geometrical functions. Asymptotically, Lq1(k⊥)

and Lq3(k⊥) give 8Q2
s

k4⊥
and −4Q2

s

k4⊥
in the large k⊥ limit, respectively, while Lq2(k⊥) is exponentially

suppressed. The most interesting observation is that Lq(k⊥)
∣∣
k⊥→∞ = αsNcS⊥

4π2
4Q2

s

k4⊥
. Comparing to

the NLO quark channel hard factor, which involves

αsNc

4π2

∫ 1

τ/z
dξ xq(x)

(1 + ξ2)2

(1− ξ)+
Q2
s

k4⊥
∼ −αsNc

4π2
xpq(xp)

61

12

Q2
s

k4⊥
(20)

3 Note that this Fourier transform may be problematic for u⊥ = 0, therefore we should exclude the point where

u⊥ = 0, in principle. However, since the first bracket in Eq. (10) vanishes when x⊥ → b⊥ (or equivalently

u⊥ → 0), which suggests that we are justified in ignoring the fact that Lq(k⊥) is undefined at that point. We have

also numerically tested that the two expressions of L(k⊥), before and after the Fourier transform, give the same

numerical results.
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Lq(k⊥) C++ mom

F (k⊥) (GBW)

αsNc/(π
2k4⊥)

0 1 2 3 4 5

0

1

2
·10−4

abs diff from pos space

0 1 2 3 4 5
−5

0

5

·10−2

rel diff from pos space

k⊥/Qs

FIG. 2. The comparison between
Q2

s

S⊥
Lq(k⊥) and Q2

sF (k⊥) with S⊥ factored out. (One can also simply set

Qs = 1 GeV.) Here we have employed three different numerical methods to evaluate Lq(k⊥). The blue dots

indicate the direct numerical evaluation of Lq(k⊥) as in Eq. (10) with Mathematica, while the red circles

represent the evaluation of Eq. (14). The golden diamonds correspond to the numerical results obtain from

Eq. (14) by using our SOLO code programmed with C + +. The asymptotic k⊥ behaviour of Lq(k⊥) is

indicated by the green dashed line. The numerical uncertainties are very small as shown in the right plot.

in the large k⊥ limit, it is conceivable that this term is sufficient to largely cancel the large and

negative NLO cross section found earlier. In order to understand the importance of the additional

contribution
d3σLq
dyd2p⊥

as in Eq. (11), it is illuminating to compare it with the leading order cross

section in the quark channel which can be written as

d3σqLO
dyd2p⊥

=

∫ 1

τ

dz

z2

∑

f

xpqf (xp)Dh/q(z)S⊥F (k⊥), with F (k⊥) ≡
∫

d2r⊥
(2π)2

e−ik⊥·r⊥S(r⊥), (21)

since the LO cross section can provide an order of magnitude estimate of the total cross section.

It is then straightforward to see that one just needs to compare Lq(k⊥) (after factorizing out S⊥)

with F (k⊥). As shown in Fig 2, L(k⊥) is small compared to F (k⊥) in the low k⊥ region, therefore

the additional contribution is negligible when k⊥ < Qs. One the other hand, Lq(k⊥) falls slowly

with k⊥ and becomes important when k⊥ > 2Qs.

III. THE GLUON CHANNEL CONTRIBUTION

For the gluon channel, we can use the same procedure to take into account the kinematical

constraint. As discussed above, all the hard factors were computed in Refs. [40, 41] except for the
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rapidity divergent piece. For a large nucleus target and in the large Nc limit, we can write the

rapidity divergent term as

αsNc

π2

∫ 1

0

dξ

1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥)

[
−S(x⊥, y⊥) + S(x⊥, b⊥)S(b⊥, y⊥)

]
S(x⊥, y⊥)

×
{

[1− J0 (u⊥∆)]2

u2⊥
+

[1− J0 (u′⊥∆)]2

u′2⊥
− 2u⊥ · u′⊥

u2⊥u
′2
⊥

[1− J0 (u⊥∆)]
[
1− J0

(
u′⊥∆

)]
}
, (22)

where u⊥ ≡ x⊥ − b⊥ and u′⊥ ≡ y⊥ − b⊥. We have put in the kinematical constraint in the

same fashion as we did for the quark channel. Again, after subtracting the small-x logarithm ln 1
xg

through the BK evolution equation for the dipole scattering amplitude in the adjoint representation

appearing in the gluon channel, we can obtain the remaining additional hard correction due to the

kinematical constraint

Lg(k⊥) =
αsNc

π2

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥) [−S(x⊥, y⊥) + S(x⊥, b⊥)S(b⊥, y⊥)]S(x⊥, y⊥)

×
[

1

u2⊥
ln
k2⊥u

2
⊥

c20
+

1

u′2⊥
ln
k2⊥u

′2
⊥

c20
− 2u⊥ · u′⊥

u2⊥u
′2
⊥

ln
k2⊥|u⊥||u′⊥|

c20

]
. (23)

At the end of the day, we can find the following additional contributions from the gluon channel

d3σLg
dyd2p⊥

=

∫ 1

τ

dz

z2
xpg(xp)Dh/g(z)Lg(k⊥), (24)

with Lg(k⊥) = αsNc
4π2 S⊥ [Lg1(k⊥) + Lg2(k⊥) + Lg3(k⊥)] and

Lg1(k⊥) = −2

∫
d2r⊥
2π

e−ik⊥·r⊥S(r⊥)S(r⊥)

(
ln
k2⊥r

2
⊥

c20

)2

, (25)

Lg2(k⊥) = (4π)

∫
d2l⊥d2l′⊥F (k⊥ − l⊥ − l′⊥)F (k⊥ − l′⊥)F (l′⊥)

(
ln
k2⊥
l2⊥

)2

, (26)

Lg3(k⊥) = −8

∫
d2l⊥d2l′⊥d2l′′⊥F (l′′⊥)F (k⊥ − l′⊥ − l′′⊥)F (k⊥ − l⊥ − l′′⊥)

l′⊥ · l⊥
l′2⊥l

2
⊥

ln
k2⊥
l2⊥

(27)

In the GBW model, using Eq. (18), these expressions can be simplified to

Lg1(k⊥) = − 2

Q2
s

{
L(2,0)

[
−1,− k2⊥

2Q2
s

]
− 2 ln

k2⊥e
γE

2Q2
s

L(1,0)

[
−1,− k2⊥

2Q2
s

]

+

[(
ln
k2⊥e

γE

2Q2
s

)2

+
π2

6

]
exp

(
− k2⊥

2Q2
s

)}
,

(28)

Lg2(k⊥) =
16π

Q4
s

F (k⊥)

∫ ∞

0
dl⊥l⊥

∫ ∞

0
dq⊥q⊥I0

(
2k⊥q⊥
Q2
s

)
I0

(
2l⊥q⊥
Q2
s

)
e
− l

2
⊥+3q2⊥
Q2
s

(
ln
k2⊥
l2⊥

)2

, (29)

Lg3(k⊥) = −32π

Q2
s

F (k⊥)

∫ ∞

0
dl⊥

∫ ∞

0
dq⊥

(
1− e−q2⊥/Q2

s
)
I0

(
2k⊥q⊥
Q2
s

)
I1

(
2l⊥q⊥
Q2
s

)
e
− l

2
⊥+2q2⊥
Q2
s ln

k2⊥
l2⊥
.

(30)

It is straightforward to find that the leading power behaviour of Lg(k⊥) is αsNc
4π2 S⊥

8Q2
s

k4⊥
with Qs

defined as the quark saturation momentum.
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IV. NUMERICAL RESULTS AND PHYSICAL DISCUSSIONS

A. Numerical setup

The calculation of single inclusive hadron production in pA collisions up to NLO level with the

full running coupling has been recently implemented as the computer program Saturation physics

at One Loop Order, or SOLO [43]. Initial results from the program showed that the full NLO

pA → hX cross section agrees fairly well with the forward RHIC data. The same paper also

provided numerical results at the energy scale of the LHC at extreme forward rapidities y & 5,

since at the time no LHC experiment had published any results.

Since then, ALICE, CMS, and ATLAS have released their experimental data of the pA→ hX

differential cross section, all of which are at roughly central rapidity, −2 . y . 2. Unfortunately,

the initial version of SOLO gives results with very large uncertainties for LHC central rapidity

collisions, for basically the following reasons: first, several of the terms involve oscillatory factors

of the form J0
(p⊥r⊥

z

)
or J0

(p⊥r⊥
zξ

)
, which are integrated over r⊥. At the LHC, the physical scenario

where a high xp parton from the proton projectile radiates a soft (small ξ) gluon (or quark), which

then fragments into the produced hadron, becomes a much more significant contribution than at

RHIC. Specifically, ξ or z can be as small as τ = p⊥√
sNN

ey, which decreases from 0.04 at BRAHMS

with y = 2.2, to 0.0002 at ALICE or ATLAS with y = 0 for p⊥ = 1 GeV. Such small values of

z and ξ produce rapid oscillations in the integrand, which most numerical integration algorithms

are notoriously bad at handling. Although there are specialized algorithms available, they are

prohibitively difficult when the integrals have 4, 6, or even 8 dimensions, as is the case with most

terms in the cross section.

Other terms involve factors like F (k⊥− l⊥) which are integrated over l⊥, or similar factors with

other forms of the argument. These functions have their peaks where the argument is zero: for

example, l⊥ = k⊥ in the first case. The numerical integration algorithms used by SOLO are most

effective when the function being integrated has its peak where the integration variable l⊥ = 0,

which is approximately satisfied at RHIC (the largest contributions come from k⊥ ∼ 10 GeV), but

not at the LHC. Under LHC kinematical conditions, we have to accommodate much larger values

of k⊥ while keeping the numerical uncertainties under control.

Through a series of transformations and various tricks, together with a tremendous amount of

effort, we have converted the formulas originally used by SOLO [44] to improved versions with vastly

smaller numerical uncertainties. At this moment, we believe that all the numerical uncertainties
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are well under control even at the middle rapidity region of the LHC. Appendix B explains some

of the key points of these transformations, but we will reserve the full details of the numerical

implementation for a separate document to be released later.

We have computed results for two different parametrizations of the dipole scattering amplitude

S (or its momentum space expression, F ). First, the GBW model, defined by

SGBW(r⊥) = exp

(
−Q

2
sr

2
⊥

4

)
(31)

with

Q2
s(xg) = cA1/3Q2

0

(
x0
xg

)λ
(32)

where A represents the number of nucleons in the target nucleus and c =
√

1− b2/R2, where b is

the impact parameter and R is the nuclear radius, accounts for the centrality of the collision. We

use the same parameters as in previous SOLO results [43, 44, 50]: c = 0.56 to represent minimum

bias collisions, and the original GBW fit parameters from Ref. [54], x0 = 0.000304, λ = 0.288 and

Q2
0 = 1 GeV2, which are based on HERA data. The GBW model is often used in phenomenological

calculations due to its simple analytical form.

In addition, we also show results computed using the numerical solution of the BK equation [5, 6]

with the running coupling correction [58–61], setting the QCD running coupling scale in the rcBK

equation to Λ = 0.1 GeV. This solution has been shown [62–65] to be very useful in phenomenol-

ogy, especially at high transverse momenta. Previous studies have also considered the McLerran-

Venugopalan (MV) model [4], an analytical expression which gives a high-k⊥ power tail similar to

the BK solution, but we have omitted those results from the present analysis because the GBW

and rcBK models are sufficient to show the interesting features of the results.

Results computed from SOLO are for the quantity 1
S⊥

d3σpA→πX

dyd2p⊥
, which can be trivially converted

into the differential yield for production of a single pion species in the center-of-mass frame,

d3NpA→πX

dyd2p⊥
=

S⊥
σinel

1

S⊥

d3σpA→πX

dyd2p⊥
(33)

where π is a single species of pion: π+, π0, or π−. However, the experiments measure

1

2πp⊥

d2NpA→hX

dηdp⊥
=

1

2πp⊥σinel

d2σpA→hX

dηdp⊥
(34)

where h may include several different hadron species, depending on the detector, and σinel is the

total inelastic cross section. We neglect the difference between rapidity in the lab frame and

pseudorapidity η. Accordingly, we multiply the output from SOLO by a factor σh

σπS⊥/σinel to make

it compatible with the experimental measurements.
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forward
hadron
production

y = 0
(RHIC)

y = 0
(LHC)

y > 0y < 0

p,d A

FIG. 3. The orientation of rapidities used by SOLO and throughout this paper. Positive (or forward)

rapidity is always in the direction of the proton (or deuteron, for RHIC) beam. Some results published by

ALICE [15] and ATLAS [21] use the opposite orientation. In this paper we always use y to represent the

rapidity in the center-of-mass frame.

• BRAHMS measures negatively charged hadrons. We use σh

σπ = 1.3 to account for the yields

from kaons and other hadrons. We also set S⊥ ≈ π(7.5 fm)2 = 1770 mb, and use σinel =

2400 mb [66].

• STAR measures only neutral pions, so σh

σπ = 1, and σinel = 2210 mb [11], with the same S⊥

as BRAHMS.

• ALICE and ATLAS measure all charged pions, kaons, and protons. We use a result from

CMS [67] that the kaon and proton yields are 13% and 6%, respectively, of the pion yield,

giving σh

σπ ≈ 2.4, and σinel = 2100 mb from LHCb [68]. For lead nuclei, S⊥ ≈ SAu
⊥ ×

(208/197)2/3 = 1830 mb.

As far as the definition of rapidities is concerned, deuteron beams have positive rapidity and gold

nuclei beams have negative rapidity at RHIC. The energy of both beams per nucleon is
√
sNN =

200 GeV. Therefore, the center-of-mass frame is the same as the lab frame. The specification

of rapidities in the SOLO package follows the above setup: positive rapidity always refers to

the deuteron-going direction (or proton-going, at the LHC), as shown in Fig. 3. On the other

hand, some of the ATLAS and ALICE pPb data measured at
√
sNN = 5.02 TeV are presented

in the opposite rapidity configuration, with the proton beams having negative rapidity. In order

to compare our results with those data without confusion, we have flipped the sign of rapidity in

the experimental results and labeled our plots with the rapidity y in the center-of-mass frame in
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FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
√
sNN = 200 GeV per nucleon

at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the

grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO

corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2

from 10 GeV2 to 50 GeV2.

the SOLO convention. Throughout this paper, forward rapidity, y > 0, always means the rapidity

region along the proton (or deuteron) beam direction in the center-of-mass frame.

B. Discussion of numerical results

Figures 4 and 5 show the differential dA → hX yields at forward rapidity for BRAHMS [9]

and STAR [10], respectively, along with the corresponding results from SOLO using the new

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published

in Ref. [43]; some slight differences are due to the increased precision of the new formulas. In the

meantime, the Lq and Lg corrections are completely negligible in the region where p⊥ . Qs. On
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FIG. 5. Comparison of STAR data [10] with
√
sNN = 200 GeV at y = 4 with results from SOLO for the

GBW and rcBK models. The color scheme is the same as in figure 4, and again, the error band comes from

µ2 = 10 GeV2 and 50 GeV2. We do not see the negative total cross section because the cutoff momentum

above which the cross section becomes negative is larger than the p⊥ of the available data, and in fact larger

than the kinematic limit
√
sNNe

−y.
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FIG. 6. Comparison of ATLAS forward-rapidity data [21] with the center-of-mass energy of
√
sNN =

5.02 TeV at y = 1.75 with SOLO results for the GBW and rcBK models. Again, the color scheme is the

same as in figure 4. Here the error band shows plots for µ2 = 10 GeV2 and µ2 = 100 GeV2. Since the

numerical data for these measurements are not published, we have extracted the ATLAS points from Fig. 6

of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.
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FIG. 7. Comparison of mid-rapidity data at
√
sNN = 5.02 TeV at y = 0 from ALICE [15] and ATLAS [21]

with SOLO results for the GBW and rcBK models. Both data sets correspond to the same kinematic

parameters. Again, the color scheme is the same as in figure 4. These results display the breakdown of the

dilute-dense factorization approach when the separation between xp and xg is not sufficiently large.
xg

xp
is

roughly on the order of 1.

the other hand, where p⊥ & Qs, Lq and Lg start to become important and alleviate the negativity

problem in the GBW model, and help us to better describe the data in the high p⊥ region. In the

rcBK case, we find that the full NLO cross section now becomes completely positive and provides

us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the

numerical results from SOLO. We observe remarkable agreement between the full NLO calculation

from the saturation formalism and experimental data up to 6 GeV. Again, as we have seen earlier,

the newly added Lq and Lg corrections help to increase the applicable p⊥ window of the saturation

formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section

still becomes negative, which implies that the saturation formalism does not apply anymore and

the collinear factorization should be used. Admittedly, what we have seen is only one piece of

a promising clue for the gluon saturation phenomenon. More data in different forward rapidity

windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and

may eventually provide us the smoking gun proof.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the

numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK

solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
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that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks

down at y = 0. This is completely expected for the following reason. First, the collinear parton

distributions of the proton projectile do not resum small-x logarthms and may have considerable

uncertainties in the very low-x region. Most importantly, the dilute-dense factorization derived in

Refs. [40, 41] assumes that the proton projectile is dilute while the nuclear target is dense. In the

forward rapidity region, for example y = 1.75, one can estimate that roughly xg/xp ∼ 10−2, which

indicate that the small-x evolution is more important in the nuclear target than in the proton

projectile. Therefore, we can use the integrated parton distributions in the proton projectile and

use the small-x evolution for the unintegrated gluon distribution in the nuclear target. On the other

hand, in the middle rapidity region, xg/xp ∼ 1, we should use the small-x evolution to resum both

αs ln 1
xg

and αs ln 1
xp

simultaneously, since they are of the same order. This means that we need to do

a complete NLO calculation in the framework of the so-called k⊥ factorization with unintegrated

parton distributions for both the proton projectile and the nuclear target. Unfortunately, this

calculation is very challenging, therefore we shall leave it to future studies.

Some more discussion and comments are in order, as follows. First of all, as we have shown

analytically and numerically in the GBW model, the two additional NLO corrections derived in

this work extend the applicability of the saturation physics calculation further into the large p⊥

region, without significantly modifying the low p⊥ results. The numerical results using the rcBK

solution also support the same conclusion. In the very large p⊥ region where the saturation effect is

extremely small, the full NLO cross section may still become negative, but this is already beyond

the applicability of the saturation formalism. In this region, it is well-known that the collinear

factorization is the relevant framework and provides the best description of the QCD dynamics.

Second, the comparison between the data and our calculation suggests that the implementation

of the kinematical constraint works slightly better for the rcBK approach. As compared to the

GBW model, the rcBK solution of the dipole scattering amplitude has the correct perturbative

tail.

Last but not least, as shown in the numerical results, the negative cross section at NLO may

still persist when p⊥ of the measured hadron is much larger than the saturation momentum Qs.

We recall the results of Ref. [50]: first, that the perturbative QCD calculation from collinear

factorization can describe data in the large p⊥ region; and also, with exact kinematics (which simply

removes the plus function), the perturbative QCD calculation analytically matches the large-p⊥

expansion of the results from small-x factorization at next-to-leading order in αs. Therefore, the

nuclear modification factor RpA measured in pA collisions at large p⊥ (p⊥ � Qs(A) > Qs(p))
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becomes

RpA ≡
dσpA/dyd2p⊥

Ncolldσpp/dyd2p⊥
' SA⊥Q

2
s(A)

ASp⊥Q
2
s(p)

=
xGA(x)

AxGp(x)
' 1. (35)

Here the number of binary collisions Ncoll is A in pA collisions. (Ncoll is A1/3 if RpA is computed

from the measured yields.) This has been repeatedly seen in a lot of experimental data, for

example PHENIX [8], BRAHMS [9], STAR [10], ALICE [15], CMS [19] and ATLAS [21]. As

indicated by both the experimental data and our NLO analysis, it seems more and more clear that,

at sufficiently high energy and forward rapidity, the saturation effect is dominant in the low p⊥

region where RpA < 1. On the other hand, the moderate and large p⊥ region, where RpA ≥ 1,

is described by simple perturbative QCD, with the saturation effects encoded in the subleading

power corrections O(Q
2
s

p2⊥
) as shown in e.g. Eqs. (28) and (29) of Ref.[69]. To search for clear and

compelling evidence of gluon saturation in single inclusive hadron production, one should focus

on the low-p⊥ part of spectra in the forward rapidity region of the proton beam in pA collisions,

which is dominated by semi-hard scattering in the vicinity of the saturation scale Qs. Having said

that, one should also be aware that p⊥ of the measured hadron should be kept sufficiently large

(at least 0.5 GeV) to avoid nonperturbative QCD effects.

V. CONCLUSION

In this paper, we have investigated the details of applying the dipole formalism to inclusive

hadron production in forward pA collisions at the energy ranges of RHIC and the LHC. In partic-

ular, we derived two additional terms by considering the kinematical constraint (2) in the dipole

formalism at next-to-leading order. These two terms were assumed to be negligible in the high

energy limit s → ∞ in previous studies. In order to do more precise and reliable numerical cal-

culations for phenomenological studies of saturation physics, we have to include these additional

terms at finite center-of-mass energy
√
sNN . From an extensive phenomenological study, we found

that these additional terms extend the applicability of the NLO cross section in the small-x satu-

ration physics formalism to higher values of the produced hadron momentum p⊥. Matching to the

perturbative collinear factorization will further extend the kinematic coverage of the theoretical

predictions for this process [50].

From the explicit NLO analysis of the single inclusive hadron spectrum in pA collisions, we

argue that the nuclear modification factor RpA shall approach 1 at sufficient large transverse

momentum, where the collinear factorization calculations apply to both pp and pA collisions. In
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the low transverse momentum region p⊥ ≤ Qs, the small-x factorization approach is the appropriate

framework to compute inclusive hadron production in pA collisions, where the gluon saturation

effects can be systematically included. Therefore, this process pA → h + X provides a unique

opportunity to investigate the interplay between two important QCD dynamical effects (small-x

resummation and the collinear factorization calculation) in high energy hadronic reactions.

In our calculations, by including the kinematical constraint and the newly added NLO correction

terms, we are able to improve the results of SOLO and achieve excellent agreement with the

forward rapidity RHIC data in dAu collisions. Furthermore, we have significantly improved the

numerical accuracy of the SOLO package, which allows us to compute forward rapidity observables

at LHC energy with small uncertainties and obtain remarkable agreement with the forward rapidity

ATLAS data at
√
sNN = 5.02 TeV in the relatively low-p⊥ region. These results could be additional

compelling evidence for the observation of the onset of saturation effects at the LHC.

Our results provide a benchmark framework for the small-x saturation calculation for high

energy processes in pA collisions at the next-to-leading order. Recent theoretical developments

have revolutionized the test of the saturation physics from the qualitative level to the quantitative

level. With more and more experimental data available from the LHC, we will be able to tell

whether and when gluon saturation has an effect at extremely small x and large nucleus mass

numbers. The theoretical advances in computing these processes at the next-to-leading order

will be crucial to help identify the signature of gluon saturation phenomena. We expect more

developments along the line discussed in this paper.

Phenomenologically, the SOLO program has been developed from a single-purpose program,

for specific formulas under RHIC conditions only, to a more general-purpose program that can

easily be adapted to different expressions and produce results for both RHIC and the LHC. During

the development process, we have found an efficient method to perform the numeric computations

involve. This will become useful and applicable to other interesting processes.
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Appendix A: The evaluation of some integrals

First of all, all the Fourier transform formula used in this paper can be derived with the following

two identities for u⊥ > 0 together with analytical continuation

G(α) ≡
∫ ∞

0
dl⊥l

1+α
⊥ J0(l⊥u⊥) =

21+αΓ[1 + α
2 ]

u2+α⊥ Γ[−α
2 ]

(A1)

∫ ∞

0
dl⊥l⊥J0(l⊥u⊥) lnn l⊥ =

dnG(α)

dαn

∣∣∣∣
α→0

. (A2)

Let us now provide some essential details for deriving L1(k⊥), which comes from the following

integral

− αsNc

π2

∫
d2x⊥d2y⊥d2b⊥

(2π)2
e−ik⊥·(x⊥−y⊥)S(x⊥ − y⊥)

×
[

1

(x⊥ − b⊥)2
ln
k2⊥(x⊥ − b⊥)2

c20
− (x⊥ − b⊥) · (y⊥ − b⊥)

(x⊥ − b⊥)2(y⊥ − b⊥)2
ln
k2⊥|x⊥ − b⊥||y⊥ − b⊥|

c20

]

= lim
ρ→0

αsNcS⊥
2π

∫
d2r⊥
(2π)2

e−ik⊥·r⊥S(r⊥)

[
−
(

ln
k2⊥
ρ2

)2

+ 4

∫ ∞

ρ

dl⊥
l⊥

ln
k2⊥
l2⊥
J0(l⊥r⊥)

]

= −αsNcS⊥
4π2

∫
d2r⊥
2π

e−ik⊥·r⊥S(r⊥)

(
ln
k2⊥r

2
⊥

c20

)2

, (A3)

where we have used ρ as an infrared cutoff to compute the above integration. It is important to

notice that the above result is independent of regularization scheme, since the whole expression

is finite. Furthermore, by using the following trick (see also Ref. [70]), we can evaluate L1(k⊥)

analytically. Let us define

I(β) ≡
∫ ∞

0
dr⊥r

1+β
⊥ J0(k⊥r⊥) exp

(
−Q

2
sr

2
⊥

4

)
=

21+βΓ[1 + β
2 ]L
[
−1− β

2 ,−
k2⊥
Q2
s

]

Q2+β
s

, (A4)

where L[−1 − β
2 , x] is defined as the Multivariate Laguerre Polynomial. It is then trivial to find

that

Lq1(k⊥) = −4

[
I ′′(0) + 2 ln

k⊥
c0
I ′(0) +

(
ln
k⊥
c0

)2

I(0)

]
, (A5)

which gives Lq1(k⊥) found above. It is useful to note that L[−1, x] = ex and its first derivative on

its first argument L(1,0)[−1, x] = − [γE + Γ[0, x] + lnx] ex.

Now let us further evaluate L1(k⊥) in the limit of k⊥ → ∞. We can rewrite the integral in
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question as follows

− 1

k2⊥

∫ ∞

0
dz zJ0(z) exp

(
− Q2

s

4k2⊥
z2
)(

ln
z2

c20

)2

=
−4

k2⊥
lim
λ→0

∫ ∞

0
dz zJ0(z) exp

(
− Q2

s

4k2⊥
z2
)[

K0(λ)−K0(λ
z

c0
)

]2
. (A6)

It is straightforward to show that the leading power expansion of the above integral gives 8Q2
s

k4⊥
.

Appendix B: Some important Fourier transforms

Although the original derivation [40, 41] of the NLO correction for hadron productions in pA

collisions are completed in the coordinate space, in order to achieve better numerical accuracy, we

have used Fourier transforms to convert most of the NLO corrections into momentum space in

Ref. [43] when the first version of the SOLO package was developed (see [44] for more details of

the implementation). We only evaluate a couple of NLO terms, for example H(1)
2qq, in coordinate

space, since the evaluation can be done pretty accurately even in the coordinate space for forward

rapidity kinematical region at RHIC and the LHC.

However, when we try to compare to LHC data at middle rapidity, those terms which are left

in the coordinate space, suddenly give huge numerical uncertainty. The typical integration which

poses a challenge to numerical integrations is

∫
d2x⊥
(2π)2

S(x⊥) ln
c20

x2⊥µ
2
e−ik⊥·x⊥ . (B1)

In the LHC middle rapidity kinematical region, the allowed region of k⊥ is quite large. Note that

k⊥ ≡ p⊥
z , which is the transverse momentum of the produced parton, can be much larger than

p⊥ which is the transverse momentum of the measured hadron. Although the expression is well-

defined analytically, the above integration oscillates too fast when k⊥ is large, therefore it causes

a lot of numerical uncertainty. Luckily, we manage to find a way to convert the above integration

into momentum space which is much more stable. Using the identity

∫
d2x⊥
(2π)2

ln
c20

x2⊥µ
2
e−ik⊥·x⊥ =

1

π

[
1

k2⊥
− 2πδ(2)(k⊥)

∫ ∞

0

dl⊥
l⊥

J0(
c0
µ
l⊥)

]
, (B2)

we find

∫
d2x⊥
(2π)2

S(x⊥) ln
c20

x2⊥µ
2
e−ik⊥·x⊥ =

1

π

∫
d2l⊥
l2⊥

[
F (k⊥ + l⊥)− J0(

c0
µ
l⊥)F (k⊥)

]
. (B3)

It is straightforward to test the above identity and find the momentum space expression stable and

finite.
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In addition, for the same reason, the new Lq1 contribution that we found in this paper, as shown

in Eq. (15), is even more unstable in the coordinate space at the LHC kinematical region. Again,

we manage to find a nice trick to convert that expression into momentum space. Using dimensional

regularization in the MS scheme, we can find the following results

∫
d2l⊥

(2π)2l2⊥
e−il⊥·R⊥ ln

k2⊥
l2⊥

=
1

4π

[
1

ε2
− 1

ε
ln
k2⊥
µ2

+
1

2

(
ln
k2⊥
µ2

)2

− 1

2

(
ln
k2⊥R

2
⊥

c20

)2

− π2

12

]
(B4)

∫
d2l⊥

(2π)2l2⊥
ln
k2⊥
l2⊥

∣∣∣∣
l2⊥≤k2⊥

=
1

4π

[
1

ε2
− 1

ε
ln
k2⊥
µ2

+
1

2

(
ln
k2⊥
µ2

)2

− π2

12

]
, (B5)

The derivation of the first expression can be found in Eq. (A4) of Ref. [53], while the second

expression can be computed directly. This trick is inspired by the computations of the Sudakov

factors in the saturation formalism. Subtracting Eq. (B5) from Eq. (B4) and taking ε → 0 gives

the identity

(
ln
k2⊥R

2
⊥

c20

)2

= 8π

∫
d2l⊥

(2π)2l2⊥
ln
k2⊥
l2⊥

[
θ(k⊥ − l⊥)− e−il⊥·R⊥

]
. (B6)

At the end of the day, one can easily find

∫
d2r⊥
(2π)2

S(r⊥)

(
ln
r2⊥k

2
⊥

c20

)2

e−ik⊥·r⊥ =
2

π

∫
d2l⊥
l2⊥

ln
k2⊥
l2⊥

[θ(k⊥ − l⊥)F (k⊥)− F (k⊥ + l⊥)] . (B7)

Up to this point, we have transformed all the NLO corrections into momentum space in SOLO

package, which is relatively more stable numerically at both RHIC and the LHC kinematical region.
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