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Abstract

We compare two existing approaches to calculating the decay of molecular quarkonium states

to conventional quarkonia in effective field theory, using X(3872)→ χcJπ
0 as an example. In one

approach the decay of the molecular quarkonium proceeds through a triangle diagram with charmed

mesons in the loop. We argue this approach predicts excessively large rates for Γ[X(3872)→ χcJπ
0]

unless both charged and neutral mesons are included and a cancellation between these contributions

is arranged to suppress the decay rates. This cancellation occurs naturally if the X(3872) is

primarily in the I = 0 DD̄∗ + c.c. scattering channel. The factorization approach to molecular

decays calculates the rates in terms of tree-level transitions for the D mesons in the X(3872) to

the final state, multiplied by unknown matrix elements. We show that this approach is equivalent

to hadronic loops approach if the cutoff on the loop integrations is taken to be a few hundred MeV

or smaller, as is appropriate when the charged D mesons have been integrated out of XEFT.
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I. INTRODUCTION

The last ten years have seen a plethora of discoveries of unconventional quarkonia, 1

the first and most studied of these being the X(3872) [1–4]. Because of its proximity

to the D0D̄∗0 threshold it is thought by many authors to be a molecular state. If the

state consists primarily of the C even linear combination of neutral D mesons, D0D̄∗0

+ c.c., the binding energy is −0.11 ± 0.21 MeV, and this state is a very shallow bound

state. For the central value of this binding energy, one calculates the typical separation of

the D0 and D̄∗0 to be approximately 10 fm, which is an astonishingly large length scale

compared to typical hadronic scales. Ref. [9] exploited this separation of scales to construct

an effective field theory for the X(3872) called XEFT. Heavy hadron chiral perturbation

theory (HHχPT) [10–12] is matched onto a non-relativistic theory of neutral D mesons and

pions. Their interactions are constrained by the heavy quark and chiral symmetries of QCD.

A contact interaction is tuned to produce a shallow bound state in the D0D̄∗0 + c.c. channel

which is the X(3872). The structure of the theory is similar to effective field theories of the

deuteron and low energy two-body nuclear physics [13, 14].

For processes that are dominated by long-distance aspects of the X(3872), such as

X(3872)→ D0D̄0π0 or D0D̄0γ, this theory reproduces effective range theory (ERT) at low-

est order. ERT predictions for these X(3872) decays were first calculated in Refs. [15, 16].

XEFT allows for the systematic inclusion of corrections to these predictions from pion loops

and higher dimension operators. Ref. [9] showed the corrections from pion loops were neg-

ligible, at least for the process X(3872)→ D0D̄0π0. The effect of final state interactions on

the reaction X(3872)→ D0D̄0π0 was recently studied in Ref. [17]. For calculations of many

processes within XEFT, see Refs. [18–24]. XEFT has also been used to calculate the quark

mass dependence of the X(3872) binding energy in Ref. [25], for a related EFT calculation

see Ref. [26].

Many observations of X(3872) involve decays to conventional charmonia, including

X(3872)→ J/ψπ+π−, J/ψπ+π−π0, J/ψγ, and ψ(2S)γ. The X(3872) has also recently been

observed in the decay of the exotic quarkonium state Y (4260) → X(3872)γ [27]. Ref. [28]

predicted an enhanced rate for the decay Y (4260) → X(3872)γ based on the assumption

1 For a review of recent developments in quarkonium spectroscopy, we refer the reader to Refs. [5–8]
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that the Y (4260) is a DD̄1 molecule, while other authors interpret the Y (4260) as a char-

monium hybrid [29], so this transition probably does not involve a compact cc̄ state. Other

decay and production processes with conventional charmonia such as J/ψ or ψ(2S) involve

short-distance scales since the D and D̄∗ must coalesce to couple to a conventional char-

monium. For these decays there exist two distinct approaches to applying XEFT in the

literature. The approach first taken in Ref. [18] is to use HHχPT to calculate the transition

of D0D̄∗0 to the final state, then match the resulting amplitudes onto XEFT operators. The

resulting prediction for the partial decay width of the X(3872) is given by an expression of

the form

Γ[X(3872)→ F.S.] ∝ OXEFT × σ[D0D̄∗0 + c.c.→ F.S.] , (1)

where F.S. denotes the final state (which includes a charmonium) and OXEFT is an XEFT

operator. This operator plays the same role as the wave function at the origin squared

in a traditional approach to bound state calculations. The numerical value of the XEFT

operator is unknown and must be extracted from data. Since the D0 and D̄∗0 must coalesce

to form the compact charmonium, part of the process involves short-distance physics that

is not determined by the universal nature of the long-distance part of the X(3872) wave

function, and this physics is encoded in OXEFT . Similar factorization theorems for X(3872)

decay and production were developed in Refs. [30, 31]. We will refer to the approach to

X(3872) decays advocated in Refs. [18, 30, 31] which yields a factorized formulae of the

form of Eq. (1) as the factorization approach to X(3872) decays.

The second EFT approach to X(3872) production and decays is advocated in, e.g.,

Refs. [28, 32]. The decay involving the conventional quarkonium proceeds through a

loop diagram in which both the X(3872) and the conventional quarkonium couple to

heavy mesons. In this case the X(3872) coupling to heavy mesons in the loop is fixed

by the residue of the pole in the T -matrix. In some cases [28] a power counting argu-

ment shows that the hadronic loop is lower order than any tree-level diagram and the

hadronic loop approach is more predictive than factorization since there is no undeter-

mined XEFT matrix element. Whether or not this happens depends on the quantum

numbers of the states involved in the transition. For example, in the radiative transitions

J/ψ, ψ(2S) → X(3872)γ a counterterm appears at leading order, so it is not possible to

predict the ratio Γ[ψ(2S)→ X(3872)γ]/Γ[J/ψ → X(3872)γ] [32]. A similar conclusion was
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reached in the factorization approach in Ref. [21]. Even when there is no tree-level countert-

erm at leading order, this approach still may not be entirely predictive since the couplings

of heavy mesons to conventional quarkonia in the loop could be unknown. We will refer to

the approach to X(3872) decays in which the decay is assumed to go through a hadronic

loop as the hadronic loop approach to calculating X(3872) decays.

In addition to two different approaches to calculating X(3872) decays, there are also dif-

ferent choices of the relevant degrees of freedom appropriate for an effective theory suitable

for describing the X(3872). In the literature there are calculations within both the factoriza-

tion approach and the hadronic loop approach that only include neutral D mesons as explicit

degrees of freedom, since the X(3872) is considered a shallow bound state of these mesons

alone. 2 Refs. [33, 34] have emphasized the importance of including charged D mesons as well

in the calculations of the decays X(3872) → J/ψγ, J/ψπ+π−, and J/ψπ+π−π0. Note that

the charged meson threshold D+D∗− + c.c. is considerably farther away from the X(3872)

mass than the neutral threshold. The binding energy is 8.2 MeV and the corresponding

estimate of the separation of the charged mesons in the X(3872) is 1.1 fm. This is roughly

a factor of 10 smaller than the central value for the corresponding estimate for the neutral

channel. The charged D mesons are separated by a distance that is not much larger than the

size of the hadrons themselves. At length scales larger than 1 fm, the wavefunction is cer-

tainly dominated by the neutral mesons. In the original formulation of XEFT the charged

mesons are integrated out of the theory and their effects subsumed in to short-distance

XEFT operators. However, for processes like decays to conventional charmonium, in which

both long and short distance scales are important, it may be desirable to include these as

explicit degrees of freedom.

The purpose of this paper is to compare the different approaches to calculating the

decay of X(3872) to conventional quarkonia, using the decays X(3872) → χcJπ
0 as an

example. These decays were first studied in Ref. [35] where it was pointed out that the

relative rates for different J are predicted by heavy quark symmetry and can be used to

distinguish between different interpretations of the X(3872). These decays were studied

2 For some processes there are other justifications for neglecting the charged mesons. For example, in

the calculation of X(3872) radiative decays in Ref. [28], the charged mesons were neglected because the

neutral charmed mesons couple much more strongly to the photon. However, charged mesons are included

in analysis of X(3872) radiative decays in Ref. [32].
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in XEFT in Ref. [18], which used factorization in a theory with only neutral D mesons as

explicit degrees of freedom. Ref. [18] showed that within this approach there are two distinct

long-distance and short-distance mechanisms contributing to the decay and the relative rates

depend on the relative importance of the two mechanisms. The authors of Ref. [18] also

computed the partial widths using the hadronic loop formalism, with only neutral D mesons

as explicit degrees of freedom, but as we will see in the next section, this yields exceedingly

large partial widths for X(3872) → χcJπ
0 that are in conflict with experiment, so this

approach was discarded and the calculation was not published in Ref. [18]. This result

is somewhat model dependent as the predicted rates depend on the unknown coupling of

the χcJ to charmed mesons, which is estimated using the model in Ref. [36]. However, to

make the predicted partial widths for X(3872)→ χcJπ
0 consistent with experiment requires

that this coupling be almost two orders of magnitude smaller than what one expects from

naive dimensional analysis. We conclude that the hadronic loop approach with only neutral

charmed mesons as explicit degrees of freedom is inconsistent with experiment. The hadronic

loop approach can be made consistent with data if charged mesons are included as explicit

degrees of freedom. If the X(3872) has nearly equal couplings to the charged and neutral

channels a cancellation between charged and neutral loop diagrams suppresses the rate. This

cancellation occurs naturally if the X(3872) is an I = 0 state. An I = 0 interpretation of

the X(3872) has been put forth by other authors [33, 34] and is consistent with the observed

ratio Γ[X(3872) → J/ψπ+π−π0]/Γ[X(3872) → J/ψπ+π−] = 0.8 ± 0.3 [37] if one accounts

for differences in two- and three-body phase space [38].

In section III, we discuss how the hadronic loops approach is related to the factorization

approach. We show that the hadronic loop integral can be expressed as the convolution of the

ERT wave function of the X(3872) with the tree-level matrix element for D∗0D̄0 → χcJπ
0 3.

We simplify the calculation by dropping some terms O(p2
π/(mDEπ)) which only changes

answers by a few percent. Then the hadronic loop integrals contain contributions from

two very different scales, γn = 14 MeV and
√
mDEπ ≈ 850 MeV. Here γn is the binding

momentum in the neutral channel, mD is the D meson mass, and Eπ is the energy of the pion

in the decay. The contribution from loop momentum of order
√
mDEπ gives the dominant

contribution to the integral, but we argue that in a theory in which the charged mesons

3 Here and throughout this paper charge conjugate channels are implied.
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have been integrated out, the theory must be thought of as having a cutoff Λ ∼ γc, where

γc is the binding momentum in the charged channel, since the ERT form of the X(3872)

wave function, with only neutral D mesons, is no longer reliable above this momenta. If

the hadronic loop integral is performed with a cutoff, Λ, such that γn � Λ �
√
mDEπ,

one recovers the results from the factorization formalism. We also show that if the theory

contains both charged and neutral D mesons and the cutoff is taken to be large compared to
√
mDEπ, and the couplings of the X(3872) to the charged and neutral channels are equal,

then the large contributions from the O(
√
mDEπ) part of the hadronic loop integrals cancel

and the remainder is well approximated by the factorization formulae, with Λ ≈ πγc/2 ≈ 200

MeV. In the final section we give our conclusions.

Our study is closely related to that in Ref. [39] which compared the wavefunction at the

origin squared prescription to the hadronic loop approach in hadronic molecule decays to

two photons. Their main conclusion, relevant to this paper, is that when the range of the

forces binding the hadronic molecule is much smaller than the distance scale associated with

the annihilation, the hadronic loop approach is appropriate, while the wavefunction at the

origin prescription is appropriate in the opposite limit. This is consistent with our analysis,

but it is unclear whether the assumptions appropriate to the hadronic loop approach apply

in the case of the X(3872). The momentum scale characterizing the annihilation process is
√
mDEπ ∼ 850 MeV, corresponding to a length scale of ≈ 0.23 fm, which is comparable to

the size of the charmed mesons themselves. It is not clear a priori that the ERT wavefunction

of X(3872) will be correct down to such a short distance, but if it is then charged charmed

mesons must be included as explicit degrees of freedom. If the ERT wavefunctions are only

valid for much longer distance scales, than a factorization approach may be more appropriate.

Hopefully, future experimental and theoretical studies will clarify which approach is more

suitable for X(3872).
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II. HADRONIC LOOPS

In this section we will consider the X(3872) decays to χcJ in the hadronic loops approach.

The LO HHχPT lagrangian for the charmed mesons is

L = Tr[H†a(iD0)baHb]− gTr[H†aHb ~σ · ~Aba] +
∆H

4
Tr[H†a σ

iHa σ
i]

+ Tr[H̄†a(iD0)abH̄b] + gTr[H̄†a ~σ · ~AabH̄b] +
∆H

4
Tr[H̄†a σ

i H̄a σ
i] . (2)

We use the two component notation of Ref. [40]. The field Ha is given by

Ha = ~Va · ~σ + Pa , (3)

where ~Va annihilates D∗a mesons and Pa annihilates Da mesons. The subscript a is an SU(2)

index, and a = 1 for neutral D mesons. The corresponding field for antimesons is H̄a. The

field ~Aab is the axial current of chiral perturbation theory, ~Aab = −~∇πab/fπ + ..., where fπ

is the pion decay constant and πab are the Goldstone boson fields. The lagrangian coupling

the χcJ to heavy mesons is

Lχ = i
g1

2
Tr[χ† iHaσ

i H̄a] +
c1

2
Tr[χ† iHaσ

j H̄b]εijkA
k
ab + h.c. , (4)

where the χcJ fields are represented by

χi = σj χij

= σj
(
χij2 +

1√
2
εijkχk1 +

δij√
3
χ0

)
. (5)

The transformation rules for the various fields under the symmetries of the theory can be

found in Ref. [18].

In the first part of this section we will include only the neutral D mesons as physical

degrees of freedom. The hadronic loop diagrams for the decays of X(3872) to the χcJ are

shown in Fig. 1. In this figure the black line represents the interpolating field for the X(3872)

and the gray lines are the χcJ . The internal lines are the neutral D mesons, with a single line

representing the D0 or D̄0 and a double line for the D∗0 or D̄∗0. For power counting we use

the v counting of Refs. [28, 32], which is appropriate for the hadronic loop approach. The

couplings of the X(3872) and the χcJ to the D mesons have no derivatives, so these scale

as v0. The pion is derivatively coupled so that interaction scales as pπ. In the loops, the

integration measure scales as v5 and each propagator scales as v−2, so the diagrams scale as
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a) b)

c)

FIG. 1: Hadronic loop diagrams contributing to the decays X(3872)→ χcJπ
0.

pπ/v. There is also a loop diagram that contains a bubble with the four-particle interaction

multiplied by c1 in Eq. (4). This diagram contains one fewer propagator, the four-particle

interaction still has a derivative acting on the pion field, so the diagram scales as pπv and

is suppressed by v2 in the v expansion. Finally, there is a possible tree-level X(3872)-χcJ -π

coupling, which would scale as pπ and is suppressed by v in the v expansion. Hence, the

diagrams shown in Fig. 1 are the leading contribution to X(3872)→ χcJπ
0 in the hadronic

loop approach.

The coupling of the X(3872) to the D0D̄∗0 + c.c. is
√

2πγn/µDD∗ [41], where µDD∗ is the

reduced mass of the D0 and D̄∗0 and γn is the binding momentum in the neutral channel, i.e.,

γn =
√

2µDD∗BEn, where BEn is the binding energy in the neutral channel, mD∗0 +mD0 −

mX(3872). If one uses the interpolating field (D0D̄∗0 + D̄0D∗0)/
√

2 to represent the X(3872)

this factor arises from wave function renormalization obtained using the LSZ formalism for

composite operators, see, e.g., Refs. [9, 42]. Computation of the rates is straightforward and
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we simply quote the prediction for the rates:

Γ[X(3872)→ χc0π
0] =

2g2g2
1

9π2f 2
π

γnµ
2
DD∗

mχc0

mX(3872)

p3
π F0[γn,∆0, Eπ]2

Γ[X(3872)→ χc1π
0] =

g2g2
1

6π2f 2
π

γnµ
2
DD∗

mχc1

mX(3872)

p3
π F1[γn,∆0, Eπ]2

Γ[X(3872)→ χc2π
0] =

5g2g2
1

18π2f 2
π

γnµ
2
DD∗

mχc2

mX(3872)

p3
π F2[γn,∆0, Eπ]2 . (6)

Here g = 0.54 4 is the axial coupling of the D mesons to the pion, g1 is the coupling of the

χcJ to D mesons, fπ = 130 MeV is the pion decay constant, mχcJ (mX(3872)) is the mass of

the χcJ (X(3872)), and Eπ(pπ) is the energy (momentum) of the pion in the decay. The

factors Fi[γn,∆0, Eπ] come from the loop integration and are given by

F0[γn,∆0, Eπ] =
3

4
F

(
γ2
n, 2µDD∗(Eπ −∆0) +

p2
π

2
,−p

2
π

4

)
(7)

+
1

4
F

(
γ2
n, 2µDD∗(Eπ + ∆0) +

p2
π

2
,−p

2
π

4

)
F1[γn,∆0, Eπ] = F

(
γ2
n, 2µDD∗Eπ +

p2
π

2
,−p

2
π

4

)
F2[γn,∆0, Eπ] = F

(
γ2
n, 2µDD∗(Eπ + ∆0) +

p2
π

2
,−p

2
π

4

)
.

To simplify Eq. (7) in some places we have approximated mD0 ≈ mD∗0 ≈ 2µDD∗ , which is

accurate to 4%. In Eq. (7), ∆0 = mD∗0 −mD0 is the hyperfine splitting for the neutral D

mesons, and the function F (a, b, c) is given by

F (a, b, c) =

∫ 1

0

dx
1√

a+ b x− c x2
.

=
1√
c

[
tan−1

(
b

2
√
ac

)
− tan−1

(
b− 2c

2
√
c
√
a+ b− c

)]
=

1√
c

[
sin−1

(
b√

b2 + 4ac

)
− sin−1

(
b− 2c√
b2 + 4ac

)]
. (8)

The first analytic expression for the evaluation of the integral is appropriate for a, b, c > 0,

a, c, a + b − c 6= 0, which is always the case for us. In our case we always have b � a, c,

and the second analytic expression in Eq. (8) is better suited for expanding in a/b and/or

c/b. In the heavy quark limit where the χcJ are degenerate and ∆0 = 0, F0[γn,∆0, Eπ] =

4 This value for g is obtained using the recent measurement of Γ[D∗+] = 83.4 ± 1.8 keV[37, 43] times the

measured strong decay branching fractions for the D∗+ [37] and the tree-level HHχPT expression for the

strong decay width of the D∗+.

9



F1[γn,∆0, Eπ] = F2[γn,∆0, Eπ], Eπ and pπ are the same for all three decays, and the rates

are in the ratio Γ0 : Γ1 : Γ2 :: 4 : 3 : 5, where ΓJ ≡ Γ[X(3872) → χcJπ
0]. In reality, the

small hyperfine splittings significantly affect the value of pπ multiplying each decay, and the

factors of p3
π(mχcJ/mX(3872))FJ [γn,∆0, Eπ] differ significantly between the three decays, so

we find

Γ0 : Γ1 : Γ2 :: 3.2 : 1.2 : 1.0 . (9)

Ref. [35] calculates these ratios by weighting the heavy quark spin symmetry prediction with

the p3
π factors multiplying each decay, obtaining Γ0 : Γ1 : Γ2 :: 4p3

π : 3p3
π : 5p3

π :: 2.7 : 0.95 :

1.0. The factors of p3
π account for most of the deviation from heavy quark spin symmetry

predictions, remaining factors give corrections of order 20− 25%.

To compute the absolute rates in this approach, one needs to know the coupling constant

g1 in Eq. (6) and the binding momentum, γn. From the binding energy BEn = 0.11 ± 21

MeV, we find γn = 14.6+12.3
−14.6 MeV. Because χcJ is a conventional quarkonium rather than

a bound state of charmed mesons the coupling g1 is an unknown parameter. We will use

the results of Ref. [36], which estimates the coupling 5 by using a vector meson dominance

argument to find g2
1 ≈ mχc0/(6f

2
χc0

), where fχc0 = 〈0|c̄c|χc0〉 and is calculated to be 510 MeV

from QCD sum rules. Using this estimate, g2
1 = 1/(457 MeV), and we find

Γ[X(3872)→ χc0π
0] = 3.8 MeV

Γ[X(3872)→ χc1π
0] = 1.4 MeV

Γ[X(3872)→ χc2π
0] = 1.2 MeV . (10)

All of these partial widths separately exceed the current experimental bound on the total

width, ΓX < 1.2 MeV [37].

The partial widths, Γ[X(3872)→ χcJπ
0], which are presently unmeasured, must in fact be

orders of magnitude smaller than the existing bound on the total width. We will next find an

upper bound on the sum of the partial widths,
∑

J Γ[X(3872)→ χcJπ
0]. Theoretical calcula-

tions [9, 15, 17, 22] of Γ[X(3872)→ D0D̄0π0] find Γ[X(3872)→ D0D̄0π0] = Γ[D∗0 → D0π0]

in the limit of zero binding energy. Γ[D∗0 → D0π0] has not been directly measured, but can

be obtained using the total width Γ[D∗+] = 83.4± 1.8 keV [37, 43] and Br[D∗+ → D+π0] =

5 Our definition of the coupling g1 is a factor of 1/
√

2 smaller than the g1 defined in Ref. [36].
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30.7±0.5% which together give Γ[D∗+ → D+π0] = 25.6±0.69 keV. In the isospin symmetry

limit, Γ[D∗+ → D+π0] = Γ[D∗0 → D0π0]. Noting that each decay scales like p3
π and taking

into account differences in phase space, we find Γ[D∗0 → D0π0] = 36.4±0.98 keV. Therefore,

we expect Γ[X(3872)→ D0D̄0π0] = 36+6
−10 keV. The central value here is our extracted value

of Γ[D∗0 → D0π0], which has only a few percent uncertainty from experimental uncertainties

and isospin violation. The uncertainty in Γ[X(3872) → D0D̄0π0] is obtained by assuming

that the binding energy of the X(3872) is between 0 and 0.3 MeV, and using the theoretical

calculation of Γ[X(3872)→ D0D̄0π0] in Ref. [9], which includes corrections from range cor-

rections, pion loops, and higher dimension operators. Furthermore, the branching fraction

Γ[X(3872) → D0D̄0π0]/Γ[X(3872)] > 32% [37], implying Γ[X(3872)] <∼ 131 keV. (We use

the largest value of Γ[X(3872)→ D0D̄0π0] in our quoted range to obtain this bound.) The

branching ratio for any of the strong decays to conventional quarkonia is considerably smaller

than this. For example, Γ[X(3872)→ D0D̄0π0]/Γ[X(3872)→ J/ψπ+π−] = 8.8+3.1
−3.6 [37], im-

plying Γ[X(3872) → J/ψπ+π−] = 4.1+2.8
−1.1 keV if Γ[X(3872) → D0D̄0π0] = 36 keV. The

total partial width to final states D0D̄0π0, J/ψπ+π−, J/ψπ+π−π0, and ψ(2S)γ constitute

at least 39.5% of the total width [37], so the total partial width to all other states is less

than 79 keV, so
∑

J Γ[X(3872) → χcJπ
0] < 79 keV and we can see from Eq.(10) that the

hadronic loops prediction is almost two orders of magnitude too large. If this situation is to

be fixed by using smaller values of g2
1 and changing no other parameters, we must require

g2
1 ≤ 1/(37 GeV) which seems implausibly small from the point of view of naive dimensional

analysis.

One way to fix this is to include both the charged and neutral mesons in the theory, since

the decay rate is naturally suppressed if the X(3872) couples to charm-anticharm mesons in

the I = 0 channel. Refs. [33, 34] have emphasized the necessity of including both charged

and neutral D mesons in the context of X(3872)→ J/ψγ, Jψπ+π− and J/ψπ+π−π0 decays.

When the charged channel is included as well the formulae of Eq. (6) generalize to

Γ[X(3872)→ χc0π
0] =

g2g2
1

9π3f 2
π

µ4
DD∗

mχc0

mX(3872)

p3
π (g0F0[γn,∆0, Eπ]− g+F0[γc,∆+, Eπ])2(11)

Γ[X(3872)→ χc1π
0] =

g2g2
1

12π3f 2
π

µ4
DD∗

mχc1

mX(3872)

p3
π (g0F1[γn,∆0, Eπ]− g+F1[γc,∆+, Eπ])2

Γ[X(3872)→ χc2π
0] =

5g2g2
1

36π3f 2
π

µ4
DD∗

mχc2

mX(3872)

p3
π (g0F2[γn,∆0, Eπ]− g+F2[γc,∆+, Eπ])2 ,

where γc is the binding momentum in the charged channel, γc =
√

2µDD∗BEc, where BEc =

11



mD∗± +mD± −mX(3872), and g0 and g+ are the couplings of the X(3872) to the neutral and

charged channels. These obey the constraint [44]

g2
0 ReΣ′0(−EX) + g2

+ ReΣ′+(−EX) = 1. (12)

where Σ0(−EX) and Σ+(−EX) are the contribution to the self-energy of the X(3872) from

the neutral and charged mesons, respectively, and ′ denotes differentiation with respect to

the energy. Eq. (12) can derived by solving the coupled channel problem, see for example

Ref. [45] where the coupled channel problem is solved for a theory of non-relativistic heavy

mesons with contact interactions that mediate S-wave scattering in both the I = 0 and

I = 1 channels. The coupling can be extracted from the residues of the T -matrix at the

X(3872) pole, which can be shown to satisfy Eq. (12).6 If only I = 0 scattering is present

then g0 = g+.

Noting that Re Σ′0(−EX) =
µ2
DD∗

2πγn
and Re Σ′+(−EX) =

µ2
DD∗

2πγc
, the constraint in Eq. (12)

can be solved by setting

g0 =

√
2πγn
µ2
DD∗

cos θ , g+ =

√
2πγc
µ2
DD∗

sin θ , (13)

so the decay rates in terms of θ and the binding momenta are

Γ[X(3872)→ χc0π
0] = (14)

2g2g2
1

9π2f 2
π

µ2
DD∗

mχc0

mX(3872)

p3
π (cos θ

√
γnF0[γn,∆0, Eπ]− sin θ

√
γcF0[γc,∆+, Eπ])2

Γ[X(3872)→ χc1π
0] =

g2g2
1

6π2f 2
π

µ2
DD∗

mχc1

mX(3872)

p3
π (cos θ

√
γnF1[γn,∆0, Eπ]− sin θ

√
γcF1[γc,∆+, Eπ])2

Γ[X(3872)→ χc2π
0] =

5g2g2
1

18π2f 2
π

µ2
DD∗

mχc2

mX(3872)

p3
π (cos θ

√
γnF2[γn,∆0, Eπ]− sin θ

√
γcF2[γc,∆+, Eπ])2 .

The actual value of θ depends on the underlying dynamics, and cannot be determined from

the EFT a priori, so we will leave it as a free parameter. By tuning θ we can arrange a

cancellation between charged and neutral loops which allows the prediction to be consistent

with the bounds. Demanding
∑

J Γ[X(3872) → χcJπ
0] < 79 keV, we find that θ = 0.37 ±

0.04. For this range of θ, 0.78 < g0/g+ < 0.99, so the ratio of these couplings is close to

6 I thank R. P. Springer and J. Z. Liu for discussions about this point.
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FIG. 2: Γ0/Γ2 (solid) and Γ1/Γ2 (dashed) as a function of θ.

1. This range is consistent with scattering being dominated by the I = 0 channel. The

constraint on θ, and hence g0/g+, is correct so long as γn ≈ 14 MeV, and g1 ≈ 1/(500 MeV).

Unfortunately, the uncertainties on both these parameters are O(1). If these parameters are

an order of magnitude smaller, which seems unlikely but is not ruled out by experiment,

then the constraints on θ and g0/g+ would be considerably weaker.

Finally, we comment on the predicted ratios for Γ0 : Γ1 : Γ2 in this approach. Because

the desired rates are achieved by a fine-tuned cancellation between charged and neutral pion

loops, the ratios vary wildly as a function of θ near θ = 0.37 where all three decay rates

are very close to zero. The plots in Fig. 2 show the ratios Γ0/Γ2 (solid) and Γ1/Γ2 (dashed)

as a function of θ. The plot on the left in Fig. 2 shows these ratios for a wide range of θ

and one sees that Γ0/Γ2 ≈ 3.2 and Γ1/Γ0 ≈ 1.2 for most values of θ, except near θ = 0.37.

The plot on the right shows the prediction for the allowed range 0.33 < θ < 0.41. In this

range the ratios deviate significantly from Γ0 : Γ1 : Γ2::3.2:1.2:1. It would be interesting

to obtain experimental information on Γ0 : Γ1 : Γ2 as this could distinguish between the

various approaches to calculating the X(3872) decays to conventional charmonia. In the

hadronic loop approach, with both charged and neutral mesons included as explicit degrees

of freedom, measurement of these ratios could determine the correct value of θ.

III. FACTORIZATION

In this section we discuss how the hadronic loop approach discussed in the previous

section is related to the factorization approach of Ref. [18]. We begin by considering the

13



amplitude from the loop diagram in Fig. 1b), 7 with only neutral D mesons in the loop.

This is given by

A1b[X(3872)→ χc0π
0] = iεX · pπ

√
3

2

gg1

fπ
× (15)∫

d4l

(2π)4

1

EX −∆0 + l0 − l2

2m∗
D

+ iε

1

−l0 − l2

2mD
+ iε

1

EX + l0 − Eπ − (l−pπ)2

2mD
+ iε

.

Here EX is the energy of the X(3872) relative to 2mD, so EX = ∆0 − γ2
n/(2µDD∗). The l0

integral is done by contour integration, resulting in the integral:

A1b[X(3872)→ χc0π
0] = −εX · pπ

√
3

2

gg1

fπ

∫
d3l

(2π)3

2µDD∗

l2 + γ2
n

1

EX − Eπ − l2+(l−pπ)2

2mD

. (16)

Note that the integrand scales as
∫
d3l/(l2)2 for large l and hence the integral is finite.

When we multiply this amplitude by the factor
√

2πγn/µDD∗ coming from the wavefunction

renormalization, this result can be written as

M1b[X(3872)→ χc0π
0] =

√
2πγc
µDD∗

A1b[X(3872)→ χc0π
0] (17)

=

∫
d3l

(2π)3
ψDD∗(~l )M[D∗0(~l )D̄0(−~l )→ χc0π

0] ,

where

ψDD∗(~l ) =

√
8πγn

l2 + γ2
n

, (18)

is the momentum space wavefunction of the D0-D̄∗0 in the X(3872), and

M[D∗0(~l )D̄0(−~l )→ χc0π
0] = −εX · pπ

√
3

2

gg1

fπ

1

EX − Eπ − l2

2mD
− (l−pπ)2

2mD

, (19)

is a tree-level contribution to the HHχPT amplitude for D0D̄∗0 → χc0π
0. The momentum

space wavefunction, ψDD∗(~l ), has the form dictated by ERT and is correct so long as the D

mesons are separated by large distances compared to the strong force that binds them. In

a theory in which the charged D mesons have been integrated out, the scale γc = 126 MeV

should be considered large and the wavefunction ψDD∗(~l ) can only be trusted below this

momentum.

7 The discussion that follows applies to all three diagrams.
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With this in mind, we will continue evaluating Eq. (16) in the hadronic loops formalism,

but now imposing a UV cutoff on the integral. Combining the two terms with Feynman

parameters, we get

A1b[X(3872)→ χc0π
0] = εX · pπ

√
3

2

gg1

fπ

∫ 1

0

dx

∫ Λ d3l

(2π)3

2µDD∗mD

(l2 + ∆(x))2
(20)

= εX · pπ

√
3

2

gg1

4π2fπ
2µDD∗mD

∫ 1

0

dx

[
− Λ

Λ2 + ∆(x)
+

1√
∆(x)

tan−1

(
Λ√
∆(x)

)]
,

where ∆(x) is given by

∆(x) = γ2
n + x

(
mD(Eπ −∆0) +

p2
π

2
+ γ2

n

mD − 2µDD∗

2µDD∗

)
− x2p

2
π

4
. (21)

The term γ2
n(mD − 2µDD∗)/(2µDD∗) ≈ −2.8 MeV2 is negligible compared to the remaining

terms so we will drop it as well as the terms proportional to p2
π in ∆(x) since p2

π � mD(Eπ−

∆0). One can check that setting p2
π = 0 only changes the numerical values of the functions in

Eq. (7) by a few percent. This approximation allows the integral in Eq. (20) to be evaluated

analytically and one obtains

A1b[X(3872)→ χc0π
0] = εX · pπ

√
3

2

gg1

2π2fπ

2µDD∗

Eπ −∆0

(22)

×

[√
mD(Eπ −∆0) + γ2

n tan−1

(
Λ√

mD(Eπ −∆0) + γ2
n

)
− γn tan−1

(
Λ

γn

)]
.

Since the integral is finite we can send Λ→∞ and the result is

A1b[X(3872)→ χc0π
0] = εX · pπ

√
3

2

gg1

4πfπ

2µDD∗

Eπ −∆0

[
−γn +

√
mD(Eπ −∆0) + γ2

n

]
. (23)

This is the result from the hadronic loops formalism when we set p2
π = 0. To see this it

is helpful to note F (a, b, 0) = 2(−
√
a +
√
a+ b)/b. As stated earlier, setting p2

π = 0 is

an excellent approximation to the exact result. However, we have argued that in a theory

without explicit charged mesons the cutoff Λ should be not much larger than γc ≈ 126 MeV.

The factor mD(Eπ − ∆0) ≈ (736 MeV)2, so mD(Eπ − ∆0) � γ2
c . In Figs. 1a) and c), the

factor of mD(Eπ −∆0) is replaced with mD(∗)(Eπ + ∆0) or 2µDD∗Eπ, which are even larger.

Typically these quantities are of order (850 MeV)2 and can be as large as (1073 MeV)2. So,

for a physical value of the cutoff we should take γn � Λ�
√
mD(Eπ −∆), then we have

A1b[X(3872)→ χc0π
0] = εX · pπ

√
3

2

gg1

4πfπ

2µDD∗

Eπ −∆0

(
2Λ

π
− γn

)
+O

(
γn
Λ
,

Λ

mDEπ

)
.(24)
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This is actually the result in the factorization approach. Starting with Eq. (16) we note

that in the second propagator EX−Eπ−(l2+(l−pπ)2)/(2mD) ≈ ∆0−Eπ+O(Q
2,pπQ,p2π
mDEπ

), where

l ∼ γn ∼ Q (Q denotes any generic scale of order the binding momentum). Consistency of

XEFT power counting requires that we drop the O(Q
2,pπQ,p2π
mDEπ

) terms. Then the l integral

is straightforward and one obtains Eq. (24) for the amplitude. Note that after dropping

the O(Q
2,pπQ,p2π
mDEπ

) terms the integrand scales as
∫
d3l/l2 for large l, hence the integral is

divergent and depends on the cutoff. In the factorization formalism, the divergent integral

is interpreted as the nonperturbative matrix element

1

3

∑
λ

|〈0| 1√
2
εi(λ) (V i P̄ + V̄ i P )|X(3872, λ)〉|2 =

γn
2π

(
2Λ

π
− γn

)2

. (25)

Here the evaluation of this matrix element is sensitive to the cutoff Λ. This indicates

the matrix element is sensitive to the short-distance nature of the X(3872) and cannot be

calculated with XEFT. Still, we can use the formula in Eq. (25) to parametrize the matrix

element and the constraint on this matrix element from the requirement
∑

J Γ[X(3872) →

χcJπ
0] < 79 keV, when expressed in terms of Λ, is Λ ≤ 325 MeV. This confirms that in the

theory with charged mesons integrated out, the cutoff must be interpreted as being a few

hundred MeV at most and much lower than the scale set by
√
mDEπ.

In the context of Non-Relativistic QCD, making similar expansions in non-relativistic

propagators inside loop diagrams in order to maintain consistent power counting is known

as the multipole expansion [46]. In the present case, this keeps contributions from the loop

integral that come from low scales l ∼ γn but discards contributions that come from high

momentum region of integration l ∼
√
mDEπ ∼ 850 MeV. When the cutoff is taken to

infinity, contributions from both regions contribute to the finite answer (see the two terms

in Eq. (23) ) and the contributions from large l ∼
√
mDEπ give the dominant contribution.

It is conceivable that in a theory with explicit charged and neutral D mesons the true cutoff

can be taken O(GeV ) and this second contribution can be reliably computed. But in a

theory with only neutral D mesons the cutoff cannot be interpreted as being much higher

γc ∼ 126 MeV, otherwise the charged mesons should appear as explicit degrees of freedom.

Finally we consider what happens when the charged mesons are included in the theory.

Let us assume that in the theory with explicit charged mesons that we can take Λ to be

large and keep the region of the integral from l ∼
√
mDEπ. Neglecting terms suppressed by

p2
π/(mDEπ), the contribution to the matrix element for X(3872)→ χc0π

0 from the diagram
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in Fig. 1b), with both neutral and charged mesons and the relevant couplings included, is

M1b[X(3872)→ χc0π
0] = εX · pπ

√
3

2

gg1

4πfπ
2µDD∗ (26)

×

[
g0

−γn + g0

√
mD(Eπ −∆0) + γ2

n

Eπ −∆0

+ g+

γc − g+

√
mD(Eπ −∆+) + γ2

c

Eπ −∆+

]
.

In the I = 0 limit, g0 = g+, the terms proportional to g0

√
mD(Eπ −∆0) + γ2

n and

g+

√
mD(Eπ −∆+) + γ2

c essentially cancel because they differ by only 2% in magnitude.

Noting that ∆0/∆+ = 1.01, the final result is well approximated by

M1b[X(3872)→ χc0π
0] = g0εX · pπ

√
3

2

gg1

4πfπ

2µDD∗

Eπ −∆0

[−γn + γc] . (27)

which is the factorization result in a theory with only neutral mesons, Eq. (24), with the

UV cutoff, Λ, replaced with Λ = πγc/2 ≈ 198 MeV. So in this limit the hadronic loops

result is equal to the factorization result in a theory with only neutral D mesons, with an

appropriately low value for the UV cutoff. Note that in isospin conserving decays the high

energy contributions from charged and neutral loops will add not cancel. Their effects must

be reproduced by diagrams with local counterterms in XEFT.

IV. CONCLUSIONS

In this paper we studied the decays Γ[X(3872)→ χcJπ
0] within the two commonly used

approaches to calculating X(3872) decays to conventional quarkonium within EFT: the

hadronic loop approach and the factorization approach. Within the hadronic loop approach,

we find that if one only includes neutral mesons as explicit degrees of freedom, and uses

the estimate of the χcJ coupling to D mesons from Ref. [36], then predictions for each of

these partial widths exceeds the known bound on the total width. We then obtained a

bound on
∑

J Γ[X(3872) → χcJπ
0] by exploiting the fact that Γ[X(3872) → D0D̄0π0] =

Γ[D∗0 → D0π0] in the limit of small binding energy within ERT. Combining this with

known results for Γ[X(3872)→ D0D̄0π0]/Γ[X(3872)] as well as lower bounds on branching

fractions to observed decays of the X(3872), we found
∑

J Γ[X(3872) → χcJπ
0] < 79 keV.

To calculate the theoretical uncertainties in the estimation of Γ[X(3872) → D0D̄0π0] we

use the results of Ref. [9], which supplement ERT with range corrections, corrections from

higher dimension operators in XEFT, and pion exchange. We conclude that the prediction
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for
∑

J Γ[X(3872)→ χcJπ
0] is almost two orders of magnitude too large if γn ≈ 14 MeV and

g1 ≈ 1/(457 MeV). Within the hadronic loop approach, the prediction for
∑

J Γ[X(3872)→

χcJπ
0] can be made consistent with experiment by including charged charmed mesons in

addition to neutral charmed mesons as explicit degrees of freedom. The couplings of the

X(3872) to the neutral (g0) and charged (g+) channels must be tuned to arrange a near

cancellation between the charged and neutral meson loop contributions. Consistency with

data requires 0.78 < g0/g+ < 0.99. If X(3872) appeared as a pole in the I = 0 channel only

then we would expect g0/g+ = 1, so the cancellation is naturally explained if the X(3872)

is an I = 0 state.

Next we discussed the relationship between the hadronic loop approach and the factoriza-

tion approach to X(3872) decays. We showed that the hadronic loop diagram is proportional

to the integral
∫
d3l ψDD∗(l)M[D∗0(l)D̄0(−l) → χcJπ

0], where ψDD∗(l) is the momentum

space wave function of the X(3872) predicted by ERT andM[D∗0(l)D̄0(−l)→ χcJπ
0] is the

tree-level amplitude for D∗0D̄0 → χcJπ
0 in HHχPT. The integrals are well-approximated

(within ∼ 5%) dropping terms that are p2
π/(mDEπ) suppressed. Making this approxima-

tion, we see that the hadronic loop integral contains two widely separated energy scales:

γn = 14 MeV and
√
mDEπ ≈ 850 MeV. The hadronic loop result is numerically dominated

by large loop momenta of order
√
mDEπ. For these high momenta, ψDD∗(l) is likely to

deviate from ERT form, since this form is only known to be correct for l ∼ γn. If charged

mesons have been integrated out of the theory, the ERT form of the wave function is only

reliable for l <∼ γc. If this is the case the theory must be interpreted as having a UV cutoff

∼ 100 − 200 MeV. In the limit γn � Λ � mDEπ, the hadronic loop is well approximated

by the factorization formulae for the decay rate.

The factorization formulae for the X(3872) decay rate can be interpreted as performing

the multipole expansion on the hadronic loop integral, i.e., the XEFT power counting l ∼

γn ∼ Q �
√
mDEπ is imposed at the level of the integrand in XEFT. Since l ∼ γn ∼ Q

there is no further approximation for ψDD∗(l), but within M[D∗0(l)D̄0(−l) → χcJπ
0] we

drop corrections suppressed by (l, γn)/mD and pπ/mD. This has the effect of removing the

l ∼
√
mDEπ contribution to the hadronic loop and keeping only the low energy l ∼ γn

contributions. In the hadronic loops approach with both charged and neutral charmed

meson, if we choose g0 = g+ so the large l ∼
√
mDEπ contributions cancel, the remaining

terms in the integral are the same as the factorization result in a theory with explicit neutral
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mesons only, and Λ = πγc/2 ≈ 200 MeV.

We conclude that within the hadronic loop approach it is inconsistent to keep only neu-

tral charmed mesons and integrate loop momenta to arbitrarily large momentum. If loop

integrations are taken to infinity, keeping large contributions from l ∼ mDEπ ∼ 850 MeV

then charged D mesons must be included and the coupling of the X(3872) to the charged

channel must be nearly equal to that of the neutral channel so the predicted rates for∑
J Γ[X(3872)→ χcJπ

0] are consistent with data. If the charged mesons are integrated out

of the theory, then the cutoff on the loop momenta should be Λ ∼ O(γc) and the results

of the hadronic loop approach will be consistent with what is obtained in the factorization

approach to X(3872) decays to conventional charmonia.
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