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I. INTRODUCTION

With the recent discovery of a Higgs-like particle with a mass of about 125 GeV by both the ATLAS
[1] and CMS [2] collaborations, the focus has now turned to deciphering the properties of this particle and
determining whether it is the Standard Model (SM) Higgs particle, or part of an extended Higgs sector.
Analyses performed by ATLAS and CMS collaborations have shown that the couplings of the newly discovered
particle are consistent with a SM-like Higgs boson, within the accuracy of their measurements. In light of the
present precision of the Higgs data, the LHC can claim to have discovered a SM-like Higgs boson. However,
there is still plenty of room for deviations from SM behavior of O(10%). A SM-like Higgs boson is easily
achieved in an extended Higgs sector in the decoupling limit, where the lightest scalar is identified as the
observed SM-like Higgs boson, and the heavier scalars are somewhat separated in mass (e.g. with a mass scale
above 350 GeV [3, 4]).

Before the mass of the Higgs boson was known, upper bounds on the SM Higgs mass were obtained by
requiring that the running quartic coupling parameter avoid Landau poles (LPs), i.e., the coupling was required
to remain finite up to a given energy scale Λ [5–7]. Lower bounds were obtained by requiring that the scalar
potential remain stable during renormalization group (RG) evolution [8–13]. That is, the scalar potential is
bounded from below at all scales between the electroweak scale and Λ. These bounds were contingent on the
assumption that no new physics beyond the SM (BSM) enters between the electroweak scale and Λ. Turning
around the argument, the existence of a LP or an instability of the scalar potential at some energy scale Λ
suggests that new BSM physics must be present at or below Λ.

After the discovery of the Higgs boson, previously obtained bounds were updated using two-loop renormal-
ization group equations (RGEs) in Ref. [14] and three-loop RGEs by Ref. [15]. The most recent analysis of
Ref. [16] has shown that the SM scalar potential becomes unstable at a value of Λ well below the Planck scale,
if the Higgs boson mass is smaller than 129.6 ± 1.5 GeV.1 Taken at face value, these results would further
imply that we live in a metastable vacuum that will eventually (and catastrophically) decay via tunneling into
the true vacuum. However, the lifetime of the metastable vacuum is many orders of magnitude larger than
the age of the universe [16, 17]. On the other hand, if the electroweak vacuum is absolutely stable, then the
recent LHC discovery of a 125 GeV SM-like Higgs boson requires the existence of new BSM physics at an
energy scale below a scale of Λ ' 109.5 GeV, where there is an uncertainty of about 1 in the exponent due
to parametric uncertainties of mt, αs and the Higgs mass [16], in order to avoid the metastability of the SM
vacuum.

Although the prospect of existence of new BSM physics is exciting, there is no guarantee that the scale of
the new physics is close to the electroweak scale. Nevertheless, arguments motivated by naturalness of the
electroweak symmetry breaking (EWSB) mechanism suggest that BSM physics should be present at or near
the TeV scale (see e.g., Refs. [18, 19] for a review and a guide to the literature). Many models of new physics
have been proposed to address the origin of ESWB, and many of these approaches possess extended Higgs
sectors. However, in such models one must specify the BSM physics in order to study the behavior of running
couplings between the electroweak scale and some very high energy scale Λ. At present, there is no direct
experimental evidence that the origin of the EWSB scale is a consequence of naturalness. Adding additional
Higgs multiplets at or near the TeV scale by themselves does not address the origin of EWSB. Indeed, one
could argue that it makes matters worse by adding additional fine-tuning constraints. Nevertheless, in this
paper we shall accept the fine-tunings required to sustain an extended Higgs sector near the TeV scale. After
all, we know that multiple generations exists in the fermionic sector of the Standard Model. Thus, we should
be prepared for the possibility that the scalar sector of the theory is also non-minimal.

Here, we shall focus on the two-Higgs doublet model (2HDM), which was initially proposed by Lee in
1973 [20] (for a review, see e.g. Ref. [21]). It provides a richer Higgs particle spectrum, namely three neutral
scalars and a charged pair. The 2HDM admits the possibility of CP-violation in the scalar potential, both
explicit or spontaneous. In the limit of CP-conservation, two of the neutral scalars are CP-even, typically
denoted by h and H, (where mh < mH) while the other neutral scalar is CP-odd, denoted by A. We
shall consider a very general version of the 2HDM that is not inconsistent with present data. Such a model
must possess a SM-like Higgs boson (within the accuracy of the present Higgs data). In addition, Higgs-
mediated tree-level flavor changing neutral currents (FCNCs) must be either absent or highly suppressed.

1 The quoted uncertainty takes into account the parametric uncertainty of mt and αs and the effects of unknown higher order
corrections [16].
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These conditions are achieved if the non-minimal Higgs states of the model have masses above about 350 GeV
and if the Yukawa couplings are aligned in such a way that the neutral Higgs couplings are diagonal in the
mass-basis for the neutral Higgs bosons. The most general 2HDM parameter space allowed by the present
data is somewhat larger than the one specified here. Nevertheless, the restricted parameter space outlined
above is still quite general and incorporates the more constrained 2HDMs considered in the literature.

The existence of additional scalar degrees of freedom in an extended Higgs sector provides an opportunity to
cure the vacuum metastability problem of the SM Higgs boson. However, by demanding no Landau poles and
requiring a stable scalar potential at all energy scales up to the Planck scale, one imposes strong constraints on
the parameter space of the extended Higgs sector. Investigations of this type have been performed in extended
Higgs sectors prior to the discovery of the Higgs boson in Refs. [22–28]. With the discovery and identification
of a SM-like Higgs boson, the question of the validity of extended Higgs sectors up to the Planck scale has
become more focused. A number of authors have considered the stability properties of extended Higgs sectors
with additional singlet scalar fields [29–32] and 2HDMs with constrained scalar potentials [33–35].

In this paper, we examine the theoretical consistency of the most general 2HDM between the electroweak
scale and the Planck scale, using the one-loop RGEs of the model to investigate the possible occurrence of
Landau poles and instability of the scalar potential. We focus on the decoupling regime of the 2HDM where
the 125 GeV Higgs boson is SM-like [36, 37], and assume Yukawa alignment in the flavor sector [38] to avoid
Higgs-mediated tree-level FCNCs. Our aim is to exhibit the allowed regions of the 2HDM parameter space
that are free from both Landau poles and vacuum instability below the Planck scale. In particular, a 2HDM
that satisfies these constraints does not require further BSM physics to stabilize the theory.

One of the distinguishing features of the most general 2HDM is the fact that the two scalar doublet,
hypercharge-one fields are indistinguishable. One is always free to define new linear combinations of the scalar
doublets that preserve the kinetic energy terms of the Lagrangian. A specific choice for the scalar fields
is called a basis, and any physical prediction of the theory must be basis independent. In our analysis, we
employ a basis-independent formalism introduced in Ref. [39]. We consider the most general 2HDM scalar
potential (which is potentially CP-violating) and the most general Yukawa sector, which introduces three
additional independent 3 × 3 matrix Yukawa couplings. Without additional assumptions, the latter yields
Higgs-mediated tree-level FCNCs, in conflict with observed data. In order to circumvent this, we impose a
“flavor alignment ansatz”, introduced in Ref. [38], which postulates that the independent matrix Yukawa
couplings are proportional to the corresponding quark and charged lepton mass matrices. In this case one
finds that, in the mass basis for the quarks and leptons, the matrix Yukawa couplings are flavor diagonal, and
the Higgs-mediated tree-level FCNCs are absent. One way to achieve alignment in the Yukawa sector is to
introduce a set of discrete symmetries which constrain the Higgs scalar potential and Yukawa couplings. The
so-called Type-I and II 2HDMs [42], and the related Type X and Type Y 2HDMs [40, 41] provide examples
of this type. Indeed, Ref. [43] showed that the flavor alignment is preserved under RGE running if and only
if such discrete symmetries are present. The flavor alignment ansatz is more general, but requires fine-tuning
in the absence of an underlying symmetry.

This paper is organized as follows: In section II, we review the basis-independent formalism as applied to
the 2HDM. In section III, we describe the Yukawa sector and present the flavor alignment model used in this
analysis. In section IV, we present our numerical analysis of the mass bounds governing the lightest scalar,
which are derived by requiring the stability of the 2HDM potential and the absence of Landau poles in the
scalar quartic couplings below the Planck scale. Our analysis employs both the one-loop RG running of the
quartic couplings, along with an estimate of the effects of the two-loop corrections. In section VI, we present
our conclusions. The one-loop basis independent RGEs are presented in Appendix A, and stability conditions
on the basis-independent 2HDM potential are derived in Appendix B.
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II. BASIS-INDEPENDENT TREATMENT OF THE 2HDM

II.1. The Higgs Basis

In a generic basis, the most general renormalizable SU(3)C×SU(2)L×U(1)Y gauge-invariant 2HDM scalar
potential is given by

V = m2
11
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)
+m2

22

(
Φ†2Φ2

)
−
[
m2

12Φ†1Φ2 + h.c.
]

+ 1
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(
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+ 1
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(
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(
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, (1)

where Φ1,Φ2 are two hypercharge-one complex scalar doublets. The two doublets separately acquire vacuum
expectation values (vevs) 〈Φ0

1〉 = v1/
√

2 and 〈Φ0
2〉 = v2/

√
2 with the constraint v2 = |v1|2+|v2|2 ' (246 GeV)2.

The parameters λ1,2,3,4 and m2
11,m

2
22 are real whereas λ5,6,7 and m2

12 are potentially complex. The 2HDM is
CP-conserving if there exists a basis in which all of the parameters and the vacuum expectation values are
simultaneously real.

We shall adopt a basis-independent formalism as developed in Ref. [39], which provides basis-independent
2HDM potential parameters that are invariant under a global U(2) transformation of the two scalar doublet
fields, Φa → Uab̄Φb (a, b̄ = 1, 2).

It is convenient to define the so-called Higgs basis of scalar doublet fields,

H1 =

(
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1
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1
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v
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2
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v
, (2)

so that 〈H0
1 〉 = v/

√
2 and 〈H0

2 〉 = 0. The Higgs basis is uniquely defined up to a rephasing of the H2 field,
H2 → eiχH2. In the Higgs basis, the scalar potential takes the familiar form,2
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, (3)

where Y1, Y2, and Z1,2,3,4 are real parameters and uniquely defined, whereas Y3 and Z5,6,7 transform under a
rephasing of H2, viz., [Y3, Z6, Z7]→ e−iχ[Y3, z6, Z7] and Z5 → e−2iχZ5. Minimizing the scalar potential then
yields

Y1 = − 1
2Z1v

2, Y3 = − 1
2Z6v

2. (4)

The scalar potential is CP-violating if no choice of χ can be found in which all Higgs basis scalar potential
parameters are simultaneously real.

The tree-level mass eigenstates of the neutral scalars can be obtained by diagonalizing the neutral scalar
squared-mass matrix in the Higgs basis [44, 45],

M = v2

 Z1 Re(Z6) −Im(Z6)
Re(Z6) 1

2 [Z3 + Z4 + Re(Z5)] + Y2/v
2 − 1

2 Im(Z5)
−Im(Z6) − 1

2 Im(Z5) 1
2 [Z3 + Z4 − Re(Z5)] + Y2/v

2

 . (5)

The diagonalizing matrix is a real orthogonal 3 × 3 matrix that is parameterized by three mixing angles
θ12, θ13, and θ23 (details can be found in Ref. [45]). In terms of U(2)-invariant combinations of the mixing

2 As discussed in Appendix A, the squared-mass and coupling coefficients, Y1, Y2, and Z1,2,3,4 can be expressed as U(2)-invariant
combinations of the scalar potential coefficients and the vevs, whereas Y3 and Z5,6,7 are U(2)-pseudoinvariant combinations of
the scalar potential coefficients and the vevs that are rephased under a U(2) transformation [39].
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TABLE I: qki as a function of the neutral Higgs mixing angles in the Higgs basis.

k qk1 qk2
1 cos θ12 cos θ13 − sin θ12 − i cos θ12 sin θ13
2 sin θ12 cos θ13 cos θ12 − i sin θ12 sin θ13
3 sin θ13 i cos θ13

angles and scalar potential parameters, the squared-masses of the three neutral Higgs bosons, denoted by h1,
h2 and h3 respectively, are given by [45],

m2
k = |qk2|2 Y2 + v2

{
q2
k1Z1 + 1

2 |qk2|2
[
Z3 + Z4 − Re(Z5e

−2iθ23)
]

+Re(qk2)Re(qk2Z5e
−2iθ23) + 2qk1Re(qk2Z6e

−iθ23)

}
, for k = 1, 2, 3, (6)

where the qki are invariant combinations of the mixing angles shown in Table I. It is convenient to choose a
convention where m1 < m2 < m3 (which can always be arranged by an appropriate choice of neutral Higgs
mixing angles). The squared-mass of the charged scalars is given by

m2
H± = Y2 + 1

2Z3v
2. (7)

II.2. Decoupling Limit

The decoupling limit corresponds to taking the squared-mass parameter of the Higgs basis field H2 large
while holding the Higgs quartic coupling parameters fixed. In the perturbative regime, we take |Zi| ∼< O(1)

and Y2 � v2. In this case [37, 45],

sin θ12 ∼ sin θ13 ∼ O
(
v2

Y2

)
. (8)

In addition, the decoupling limit requires that

Im(Z5e
−2iθ23) ∼ O

(
v2

Y2

)
, (9)

which implies that

Re(Z5e
−2iθ23) = −|Z5| . (10)

The overall sign in eq. (10) [which is not determined by eq. (9)] is fixed in the convention where m2 < m3.
Using the above results in eq. (6) yields

m2
1 = Z1v

2

[
1 +O

(
v2

Y2

)]
, (11)

m2
2 = Y2 + 1

2v
2

[
Z3 + Z4 − |Z5|+O

(
v2

Y2

)]
, (12)

m2
3 = Y2 + 1

2v
2

[
Z3 + Z4 + |Z5|+O

(
v2

Y2

)]
. (13)

At energy scales below Y2, the effective low-energy theory corresponds to the Standard Model with one Higgs
doublet. Consequently, in the decoupling limit the properties of h1 approach those of the SM Higgs boson.
The non-minimal Higgs states are roughly degenerate in mass, m2

2 ∼ m2
3 ∼ m2

H± ∼ Y2, with squared-mass
splittings of O(v2),

m2
3 −m2

2 ' |Z5|v2 , (14)

m2
3 −m2

H± ' 1
2

(
Z4 + |Z5|

)
v2 . (15)
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In the decoupling limit of a general 2HDM, the tree-level CP-violating and flavor-changing neutral Higgs
couplings of the SM-like Higgs state h1 are suppressed by factors of O(v2/Y 2

2 ). The corresponding interactions
of the heavy neutral Higgs bosons (h2 and h3) and the charged Higgs bosons (H±) can exhibit both CP-
violating and flavor non-diagonal couplings. If Y2 is sufficiently large, then FCNCs mediated by the lightest
neutral scalar can be small enough to be consistent with experimental data. However, for values of Y2 of order
1 TeV and below, tree-level Higgs-mediated FCNCs are problematical in the case of a generic Yukawa sector.

III. YUKAWA SECTOR

The most general 2HDM Yukawa sector, describing Higgs-fermion interactions, includes six Yukawa matrices
(as compared to three in the SM). In a generic basis, the Yukawa Lagrangian for the Higgs–quark interactions
is given by eq. (A1). Following the discussion of Appendix A, we can re-express the Yukawa Lagrangian in
terms of the quark mass-eigenstate fields [46],

−LY = UL
(
ηU1 Φ0∗

1 + ηU2 Φ0∗
2

)
−DLK

†(ηU1 Φ−1 + ηU2 Φ−2
)
UR

+ULK
(
ηD†1 Φ+

1 + ηD†2 Φ+
2

)
DR +DL

(
ηD†1 Φ0

1 + ηD†2 Φ0
2

)
DR + h.c., (16)

where ηU,D1,2 are 3× 3 Yukawa coupling matrices and K is the CKM matrix.

Using eq. (2), one can rewrite eq. (16) in terms of the Higgs basis scalar doublet fields,

−LY = UL(κUH0†
1 + ρUH0†

2 )UR −DLK
†(κUH−1 + ρUH−2 )UR

+ULK(κD†H+
1 + ρD†H+

2 )DR +DL(κD†H0
1 + ρD†H0

2 )DR + h.c., (17)

where3

κQ ≡ v∗1η
Q
1 + v∗2η

Q
2

v
, ρQ ≡ −v2η

Q
1 + v1η

Q
2

v
. (18)

Note that ρQ → e−iχρQ with respect to the rephasing H2 → eiχH2. Since 〈H0
1 〉 = v/

√
2 and 〈H0

2 〉 = 0,
it follows that the κU,D are proportional to the diagonal quark mass matrices, MU and MD, whose matrix
elements are real and non-negative,

MU =
vκU√

2
= diag(mu,mc,mt), MD =

vκD√
2

= diag(md,ms,mb) . (19)

The Yukawa couplings of the Higgs doublets to the leptons can be similarly treated by replacing U → N ,
D → E, MU → 0, MD → ME and K → 1, where N = (µe, νµ, ντ ), E = (e, µ, τ) and ME is the diagonal
charged lepton mass matrix.

Since the Yukawa matrices ρU,D,E are independent complex 3 × 3 matrices, it follows that the Yukawa
Lagrangian exhibited in eq. (17) generically exhibits tree-level Higgs mediated FCNCs. The off-diagonal
elements of the ρU,D matrices are highly constrained by experimental data to be very small. As first shown by
Glashow, Weinberg and Paschos (GWP) [47, 48], it is possible to naturally eliminate tree-level Higgs mediated
FCNCs if, for some choice of basis of the scalar fields, at most one Higgs multiplet is responsible for providing
mass for quarks or leptons of a given electric charge. In the 2HDM, the GWP condition is usually imposed in
four different ways by employing the appropriate Z2 discrete symmetry [40–42, 49, 50]:

1. Type-I Yukawa couplings: ηU1 = ηD1 = ηL1 = 0,

2. Type-II Yukawa couplings: ηU1 = ηD2 = ηL2 = 0.

3. Type-X Yukawa couplings: ηU1 = ηD1 = ηL2 = 0,

3 As noted in eq. (A6), the ρQ are U(2)-pseudoinvariant combinations of the Yukawa coupling matrices and the vevs, whereas
the κQ are U(2)-invariants.
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4. Type-Y Yukawa couplings: ηU1 = ηD2 = ηL1 = 0.

For example, it follows from eq. (18) that in the Type-I 2HDM,

ρU,D,L =
v1

v∗2
κU,D,L , (20)

and in the Type-II 2HDM,

ρU =
v1

v∗2
κU , ρD,L = −v2

v∗1
κD,L . (21)

In light of eq. (19), the ρF (F = U,D,L) are, in these cases, diagonal matrices in which case the neutral
Higgs–fermion Yukawa interactions are flavor-diagonal at tree-level.

If only phenomenological considerations are invoked in choosing the Higgs–fermion Yukawa couplings, then
it is possible to consider the more general case of the flavor-aligned 2HDM introduced in Ref. [38]. In this
model applied to the Higgs basis, one imposes the following conditions

ρU = αUκU , ρD = αDκD, and ρL = αLκL, (22)

which generalize the Type-I and II results exhibited in eqs. (20) and (21). In eq. (22), the alignment parameters,
αU,D,L, are arbitrary complex constants.4 The flavor alignment condition shown in eq. (22) is not imposed by
any symmetry, and is strictly unnatural (i.e., it can be achieved only by a fine-tuning of the model parameters).
Equivalently, as observed in Ref. [43], the flavor alignment is preserved under RGE running only in the case
of Type I, II, X and Y Yukawa couplings. Nevertheless, one can imagine the possibility of new dynamics
above the electroweak scale that could be responsible for an approximately flavor-aligned 2HDM. Thus, in
our analysis we shall employ the more general eq. (22), which is sufficient for satisfying the phenomenological
FCNC constraints.5

IV. RG STABILITY AND PERTURBATIVITY OF THE 2HDM

Let us assume that the observed SM-like Higgs boson (with mh ' 125 GeV) is part of a 2HDM in the
decoupling limit with a flavor-aligned Yukawa sector, with no other new physics present beyond the 2HDM
below the Planck scale.6 We shall examine whether there are regions of the 2HDM parameter space that yield
a consistent model under RG running from the electroweak to the Planck scale. In general, two potential
problems can arise in the RG evolution. First, Landau poles could arise from the divergence of the 2HDM
quartic scalar couplings and/or Yukawa couplings. Second, the 2HDM scalar potential could become unstable
at a higher energy scale. The case of Landau poles is fairly straightforward, although the precise energy scale
at which they arise cannot be strictly determined, since it lies outside the perturbative regime of the RGEs.
In practice, we shall consider that a Landau pole occurs when the relevant coupling exceeds 100 for some
energy scale Λ ≤MPl. Indeed, once such a large coupling is reached, it will very quickly diverge at an energy
scale very close to Λ. In our analysis, we employ the one-loop RGEs for the quartic scalar couplings of the
2HDM in the Higgs basis given in Appendix A. These equations are strongly coupled, and thus a divergence
in one quartic scalar coupling will cause a divergence in the rest. The leading effects of two-loop running will
be assessed at the end of this section.

In the SM, the requirement that the scalar potential is stable at all energy scales below the scale Λ is easily
implemented. It is sufficient to require that the SM quartic scalar coupling is positive, i.e. λSM(Λ) > 0 for
Λ > v. Requiring that the 2HDM scalar potential is stable at all energy scales below the scale Λ leads to a
more complicated set of conditions. In the 2HDM with an unbroken, or softly broken, Z2 discrete symmetry

4 In practice, if the magnitude of the alignment constants are too large, then some of the Higgs-fermion Yukawa couplings will
develop Landau poles below the Planck scale. In our analysis, we will determine the allowed regions of the flavor-aligned 2HDM
parameter space where such Landau poles are absent.

5 By choosing to work in the decoupling limit where Y2 ∼> 500 GeV, we ensure that FCNCs generated by one-loop radiative

effects are not too large to be in conflict with experimental data (see e.g. Ref. [51]).
6 Incorporating light neutrino masses via the seesaw mechanism [52] with the mass scale of the right-handed neutrino sector

assumed to be of order a typical grand unified scale has a very minor impact on the considerations in this paper.
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that sets λ6 = λ7 = 0 in eq. (1), the stability conditions were first obtained in Ref. [53],

λ1 > 0 , (23)

λ2 > 0 , (24)

λ3 > −
√
λ1λ2 , (25)

λ3 + λ4 − |λ5| > −
√
λ1λ2 . (26)

However, in the case of a completely general scalar potential, the corresponding stability conditions are far
more complicated (with no simple analytic form). Ref. [54] provides an algorithm for deriving the stability
conditions for a general 2HDM, with no symmetry or CP assumptions imposed on the 2HDM scalar potential.
In terms of the Higgs basis parameters, this algorithm is summarized in Appendix B. Except for special cases
for the quartic scalar couplings, the corresponding stability conditions must be determined numerically.

We now describe in detail the procedure used in our analysis. We assume that we are in the decoupling
regime of the 2HDM, where the mass scale of the heavy Higgs sector is of O(ΛH). In light of eqs. (7), (12)
and (13), we henceforth set Λ2

H ≡ Y2.

1. Start with the SM Higgs potential defined at the scale of the 125 GeV Higgs boson.

2. Use SM RG evolution to run the Higgs-self coupling parameter λ and the fermion mass matrices up to
the scale ΛH .7

3. Match the one-doublet Higgs potential with the 2HDM potential by taking Z1 = λ(ΛH) and κF =√
2MF (ΛH)/v (for F = U,D). This establishes the low energy boundary conditions. The effects of the

lepton masses are negligible and have been ignored.

4. Scan over all other 2HDM quartic scalar coupling parameters Zi and Yukawa alignment parameters αF

(F = U,D). The latter fix the values of the ρF (ΛH).

5. Run the 2HDM RGEs for the Zi, κ
F and ρF up to higher energies Λ. Check for stability of the potential

at the scale Λ using the procedure summarized in Appendix B.

6. Stop the running if a Landau pole is encountered or if the stability conditions cannot be satisfied.

For the scalar sector, we scanned over the parameter space using 100,000 points, with |Zi| . O(1), for
i = 2, ..., 7, to enforce the decoupling limit. These points were also subject to the constraint that they obey
the stability conditions presented in Appendix B. Note that when |Zi| � 1 for i = 2, ..., 7, we recover the SM
Higgs sector. The choice of ΛH is subject to the condition Λ2

H � v2, so that we are safely in the decoupling
regime. Moreover, in order for the 2HDM to be distinguishable from the SM Higgs sector, ΛH should not be
significantly larger than O(1 TeV). We considered two different values, ΛH = 500 GeV and 1 TeV, although
the allowed parameter regime in which the 2HDM remains consistent up to the Planck scale is not especially
sensitive to the precise value of ΛH in the desired mass range. In the case of ΛH = 500 GeV, it is plausible
that the heavy Higgs boson states could be detected in high luminosity LHC running. Indeed, as we shall
demonstrate later in this section, differences in the squared-masses of the heavy Higgs states can provide an
important consistency check of this framework.

The Yukawa couplings play a fundamental role in this analysis. As discussed in Section III, we have employed
the flavor aligned 2HDM to describe the Yukawa sector, with random complex alignment parameters whose
moduli were varied by several orders of magnitude. The evolution of the Yukawa couplings in the flavor-aligned
2HDM was first performed in Ref. [57]. Notice that the running of the Yukawa couplings can also generate
Landau poles. Due to the large size of the top quark mass, at least one of the Yukawa couplings will be of
order one at the electroweak scale, so that a Landau pole in the top-quark Yukawa coupling below the Planck
scale can be generated by the RG running. The alignment parameters, unique for both the up and down
quark sectors, were log random generated in such a way as to prevent such Landau poles in the running of the
Yukawa couplings up to Planck scale. In the RG running, the initial value of the top Yukawa coupling was

7 Starting the RG evolution at mZ , we use a five flavor scheme to run up to mt and a six flavor scheme above mt. Running
quark mass masses at mZ and mt are obtained from the RunDec Mathematica software package [55], based on quark masses
provided in Ref. [56]. For simplicity, the effects of the lepton masses are ignored, as these contribute very little to the running
of the Zi.
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FIG. 1: Distribution of absolute values of the flavor alignment parameters, for regions of 2HDM parameter space
which remain valid up to the Planck scale, assuming ΛH = 500 GeV.

taken to be yt(mt) = 0.94, corresponding to an MS top quark mass of mt(mt) = 163.71± 0.9 GeV [56]. The
non-occurrence of Landau poles then leads to the constraints8

|αU | . 0.95 and |αD| . 81.5, (27)

as seen in Fig. 1. These results are quite consistent with those obtained in Ref. [57].

The effect of the alignment parameters in the one-loop quartic scalar coupling RGEs is to bolster the negative
Yukawa terms, thereby further driving the quartic scalar couplings to be negative during RGE evolution. The
influence of the Yukawa couplings in the scalar couplings RG evolution is dominated by y4

t terms (where yt
is the top quark Yukawa coupling) in the one-loop β-functions, where they provide a negative contribution.
In this manner, the large size of the top quark Yukawa coupling tends to drive Z1 negative at large energy
scales, thus provoking an instability in the potential. This will occur unless the starting point value (at the
electroweak scale) of Z1 is large enough. Since Z1 is directly related to the lightest CP-even mass in the
decoupling regime, requiring the stability of the scalar potential between the electroweak scale and the Planck
one therefore yields a lower bound on mh. Similarly, if the initial value of Z1 at the electroweak scale is too
large, then a Landau pole will appear in the running of Z1 below the Planck scale due to the fact that the
leading Zi contributions to the β-functions of the quartic scalar couplings are positive, thereby driving the
quartic scalar couplings to larger values as the energy scale increases. Preventing the occurrence of Landau
poles thus establishes an upper bound on Z1, and thus on mh.

Within the SM, these demands can only be satisfied up to the Planck scale by a rather narrow window of
Higgs boson masses, which excludes the observed value of 125 GeV. As we shall now see, the complexity of
the 2HDM scalar potential “opens up” that narrow window to include the known value of the Higgs mass.

8 For ΛH = 1 TeV, we find |αU | . 0.97 and |αD| . 84. The figure corresponding to Fig. 1 looks nearly identical, so we do not
display it here.
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FIG. 2: RG running of 2HDM quartic scalar couplings, with ΛH = 1 TeV. Red points correspond to parameter
choices for which an instability occurs in the scalar potential; blue points indicate the presence of a Landau pole. The

upper solid black line indicates the occurrence of a Landau pole in the SM. The lower solid black line indicates the
limit for which the SM potential becomes unstable.

V. NUMERICAL ANALYSIS

V.1. Results from one-loop RG running

Let us now compare the effect of the one-loop running of the SM scalar coupling, with its effect on the
2HDM quartic scalar couplings. The results of our calculations are shown in Fig. 2, which we now analyze in
detail. The full 2HDM running begins at ΛH = 1 TeV, where the Zi for i = 2, . . . , 7 are chosen.9 The red
points in Fig. 2 correspond to choices of parameters Zi for which an instability of the potential occurred for a
given higher scale Λ > ΛH . The blue points correspond to parameter choices for which a Landau pole occurred
during the RG running at some scale Λ > ΛH . These results are to be compared with the corresponding results
of the SM Higgs sector also shown in Fig. 2: the upper solid line indicates the maximally allowed value of mh

to avoid a Landau pole and the lower solid line indicates the minimal value of mh needed to avoid a negative
SM quartic scalar coupling, at all energy scales below Λ. We recover the well-known one-loop SM result that
140 . mh . 175 GeV in order to preserve vacuum stability and avoid Landau poles in the running of the
quartic scalar coupling at all energy scales up to MPL [5–12] .

The distribution of red and blue points in Fig. 2 has some interesting features. First, there are no blue points
above the SM-Landau pole line. In fact, although the 2HDM scalar potential has several scalar couplings,
their contributions to the 2HDM β-functions are mostly positive. As such, when one of these couplings starts
to become very large in its RG evolution, the others will not be able to counteract that growth, and a Landau
pole is reached. Consequently, the upper limit for the quartic scalar coupling Z1 that controls the value of
mh hardly differs from the corresponding SM result. Second, note the appearance of many blue points below
the SM-instability line. These correspond to Landau poles that occur for relatively low values of mh, which is
equivalent to low values of Z1. However, even though the initial value of Z1 at ΛH may be small, the values of
other Zi can be large, and thus Landau poles in these couplings can be generated, yielding those blue points
below the SM instability line.

9 The corresponding plot for ΛH = 500 GeV looks nearly identical, so we do not exhibit it here.
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FIG. 3: Histograms of squared-mass differences of the heavy scalar states for ΛH = 500 GeV. The left panel shows
values of squared-mass difference between the two heavier neutral states. The right panel shows the values of the

squared-mass difference between the lighter of the two heavy neutral states and the charged Higgs boson. The
histograms correspond to 2HDM parameters for which there are no Landau poles and vacuum stability is satisfied at

all energies below the Planck scale.

The most interesting aspect of our results concerns the distribution of the red points, which correspond to
the violation of one or more of the 2HDM stability conditions at the energy scale Λ. We see a great “density”
of points around the SM-instability line. These points may be interpreted as regions of 2HDM parameter space
that constitute small deviations from SM behavior. But the remarkable difference with the SM result is the
appearance of many points below and to the right of the SM-instability line. For these points, the instability of
the scalar potential occurs at a larger value of Λ for a given value of mh as compared to the SM. Indeed, the
full impact of the 2HDM on the RG evolution may be best appreciated by examining the rightmost boundary
of Fig. 2 corresponding to Λ = MPL. On this boundary, we find both blue and red points, for a range of Higgs
masses from about 118 GeV up to 175 GeV. Thus we see that a range of 2HDM parameters exists for which
it is possible to have a SM-like Higgs boson with a mass of 125 GeV, without that mass value implying an
instability of the potential (or a Landau pole) between the electroweak and Planck scales.

Let us now analyze more closely the region of parameter space for which the 2HDM is consistent up to
the Planck scale. According to Fig. 2, only a narrow range of mh (which corresponds to a narrow interval of
values of Z1) is consistent with a 2HDM with a stable vacuum and no Landau poles from the electroweak to
the Planck scale. Since the 2HDM quartic couplings are all coupled together in their RG running, it follows
that the allowed ranges for all Zi, not only Z1, will likewise be quite narrow. This has interesting implications
on the scalar mass spectrum. In fact, in light of eq. 14, the squared-mass splitting of the two heavy neutral
Higgs states depends primarily on |Z5|. Likewise, eq. 15 shows that the squared-mass splitting of the heavier
neutral Higgs boson and the charged Higgs boson primarily depends on Z4 and |Z5|. Since the possible values
of Z4 and |Z5| are restricted to a narrow range of values, it follows that the squared-mass splittings of the
heavy Higgs states should also be strongly constrained.

For a 125 GeV SM-like Higgs boson, we have evaluated the squared-mass splittings of the heavier Higgs
bosons for 2HDM parameters that are consistent with a stable scalar potential and an absence of Landau
poles up to the Planck scale. The histograms shown in Fig. 3 exhibit the distributions in arbitrary units of
the squared-mass difference between the two heavy neutral states (which is positive by definition) and the
difference between the lighter of the two heavy neutral states and the charged Higgs pair, for ΛH = 500 GeV.
Given the formulae in section II.2, all the heavy scalars have masses of order ΛH in the decoupling limit. The
statistics of these histograms are summarized in Table II. If the 2HDM is valid up to the Planck scale, then
the mass differences among the heavy Higgs states must be quite small. This presents a challenge for heavy
Higgs searches at future colliders. It may be that such a spectrum could only be reliably determined at a
multi-TeV lepton collider. Indeed, if the heavy Higgs spectrum could be determined at some future collider, it
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min max mean std. dev.
(m2

3 −m2
2)/v2 0.01 0.26 0.09 0.05

(m2
2 −m2

H±)/v2 −0.20 0.11 0 0.05
(m2

3 −m2
H±)/v2 −0.07 0.19 0.09 0.04

TABLE II: Squared mass splittings of the heavier Higgs bosons of the 2HDM with ΛH = 500 GeV, for
124 . mh . 126 GeV, for points that survive up to the Planck scale, using one-loop calculations.

min max mean std. dev.
(m2

3 −m2
2)/v2 0 0.29 0.09 0.05

(m2
2 −m2

H±)/v2 −0.23 0.12 0 0.06
(m2

3 −m2
H±)/v2 −0.08 0.19 0.09 0.04

TABLE III: Squared mass splittings of the heavier Higgs bosons of the 2HDM with ΛH = 1 TeV, for
124 . mh . 126 GeV, for points that survive up to the Planck scale, using one-loop calculations.

would provide a nontrivial check of the present framework in which the 2HDM is valid up to the Planck scale.
The results shown in Table II are not particularly sensitive to the value of ΛH . For example, if ΛH = 1 TeV,

then the distribution of possible squared-mass differences yields the results shown in Table III. Of course, in
this case the corresponding mass differences are even smaller, and the separate discovery of each of these new
scalar states at a future collider is even more challenging.

V.2. The effects of two-loops RG running

In the SM, the inclusion of the two-loop terms in the RGEs shifts the scalar potential instability boundary
to a higher energy scale, which lowers the minimum Higgs boson mass that is consistent with a stable scalar
potential all the way up to the Planck scale. In particular, the results in Ref. [14] yield a minimal value of
mh ' 129 GeV for vacuum stability. Moreover, given the currently observed value of 125 GeV for the Higgs
boson, the SM vacuum is metastable under the assumption of no new physics beyond the Standard Model
below about 1010 GeV. This means that the effect of including two-loop effects in the RG running lowers by
about 10 GeV the minimal value of the Higgs mass that is consistent with vacuum stability.

We expect that employing the full two-loop RG analysis for the 2HDM would provide a similar downward
shift in the lower bound of Higgs masses that survive up to the Planck scale, as well as increase the fraction
of points that survive. In practice, implementing this full two-loop procedure is computationally expensive.
Instead, we present a procedure to estimate the two-loop RG results. Note that the stability curve for the
SM scalar potential at two-loops is both shifted to a higher energy scale, and is less steep as a function of
the Higgs mass, relative to the one-loop SM scalar potential stability curve. In essence, going from one-loop
to two-loops shifts the stability curve energy scale to a higher scale for a particular Higgs mass. From our
one-loop SM calculations and the two-loop SM calculations of Ref. [14], we determine the energy scale shift
of the SM scalar potential stability curves due to the inclusion of two-loop RG running. Taking ΛH = 1 TeV,
the resulting scale shift function is shown in the left panel of Fig. 4, which then yields our “two-loop” result
shown in the right panel, which is obtained by applying the scale shift to our one-loop calculation. This shift
is applied only to those points in which the scalar potential became unstable, not for points that hit a Landau
pole before the Planck scale. The upper bound on the SM Higgs mass due to the absence of Landau poles
does not exhibit a similar shift from one-loop to two-loop calculations. As in the case of Fig. 2, the case of
ΛH = 500 GeV yields nearly identical results.

min max mean std. dev.
(m2

3 −m2
2)/v2 0 0.31 0.11 0.05

(m2
2 −m2

H±)/v2 −0.23 0.12 0 0.05
(m2

3 −m2
H±)/v2 −0.09 0.23 0.11 0.04

TABLE IV: Squared-mass splittings of the heavy Higgs bosons of the 2HDM with ΛH = 1 TeV, for mh ' 125 GeV,
for points that survive to the Planck scale, using the two-loop extended procedure.
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FIG. 4: Left panel: Scale shift for converting the one-loop scalar potential instability boundary to the two-loop scalar
potential instability boundary for a SM-like Higgs boson. Right panel: Higgs boson mass bounds in the flavor-aligned

2HDM, incorporating the scale shift shown in the left panel, assuming that ΛH = 1 TeV. Red points indicate an
instability in the running; blue points indicate the presence of a Landau pole.

In our one-loop calculations, only 707 (or 0.707%) of the 100,000 points analyzed survive to the Planck
scale in the 123 GeV to 128 GeV region. With the conversion shift and a double check that they satisfy
the stability requirement for 2HDM quartic scalar coupling parameters, 1,371 more points reach the Planck
scale for a total of 2,078 (or 2.078%) at the Planck scale, an increase of 94% relative to the one-loop results.
With an increase in the number of points, the “two-loop” squared mass splittings of the heavier Higgs bosons
for points that survive up to the Planck scale are given in Table IV. Comparing Tables III and IV, we see
that there exists only slight differences in the squared-mass splittings of the heavier Higgs bosons when the
approximate two-loop effects are included. Nonetheless, the increase in the number of points for which the
model remains consistent all the way up to the Planck scale is according to what one should expect, in light
of the observation that the two-loop contributions increase the stability of the SM potential. Thus, this quick
estimate suggests that the 2HDM parameter space corresponding to a stable scalar potential and no Landau
poles in the RG running to the Planck scale is somewhat larger than the parameter regime identified in the
one-loop analysis. In particular, given the observed Higgs mass of the 125 GeV, there exists a robust region
of the parameter space for which the validity of the 2HDM and the stability of the Higgs vacuum is preserved
up to the Planck scale.

VI. CONCLUSIONS

The discovery of a SM-like Higgs boson with a mass mh = 125 GeV has focused attention on the validity of
the Standard Model at higher energies. Putting aside the question of the origin of the electroweak symmetry
breaking (e.g., accepting the fine-tuning of parameters inherent in fixing the electroweak scale), one can ask
whether the Standard Model is consistent all the way up to the Planck scale. Refined calculations of the
radiatively-corrected scalar potential suggest that the Standard Model vacuum is at best metastable (and
long-lived), with a deeper vacuum located at field values near 1010 GeV, well below the Planck scale.

Adding new degrees of freedom has the potential of ameliorating the problem of an unstable vacuum. In
this paper we considered the two Higgs doublet extension of the Standard Model (2HDM) and examined the
range of parameters for which the 2HDM is stable and perturbative at all energy scales below the Planck scale.
Our aim was to make the minimal number of assumptions regarding the structure of the 2HDM required by
the experimental data. Since the observed Higgs boson is SM-like (within the accuracy of the limited Higgs
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data set), we considered the 2HDM with the most general scalar potential in the decoupling regime. The
Yukawa sector was treated using the flavor alignment ansatz, in which the second set of Yukawa matrices is
proportional to the SM-like set at the electroweak scale to protect against tree-level Higgs-mediated FCNCs.
Although the flavor alignment condition is not protected by a low-energy symmetry (except in special cases,
which lead to 2HDMs of Types I, II, X or Y), it provides a more general framework which at present is
consistent with experimental data.

We scanned over the scalar potential parameters and the flavor alignment parameters to fix the boundary
conditions at the scale of the heavy Higgs states. We then employed one-loop RGEs to run the 2HDM
parameters up to the Planck scale, and required that no Landau poles are encountered, without generating
an instability in the scalar potential. In contrast to the Standard Model, it is possible to have a SM-like
Higgs boson with a mass of 125 GeV while maintaining the validity of the 2HDM up to the Planck scale. We
also presented a scheme to estimate the effects of the RG-running at two-loops, by applying a scale shift seen
in going from the one-loop SM scalar potential stability curve to the two-loop SM scalar potential stability
curve. Such effects increase the number of points in the 2HDM parameter scan that survive Landau pole and
stability requirements up to the Planck scale.

The larger range of allowed values of mh in the 2HDM (as compared with the SM) is a direct consequence of
the fact that the 2HDM scalar potential contains more quartic scalar couplings than the SM, which increases
the stability of the potential at all scales between the electroweak and the Planck scale. In contrast, we
observed that the theoretical upper bound on mh in the 2HDM based on the non-existence of Landau poles
up to Planck scale hardly differs from the corresponding SM behavior. This can be understood as follows. In
the SM, the negative top Yukawa contribution in the quartic scalar coupling β-function drives that coupling
to negative values during RG running, unless its starting point is sufficiently large. In the 2HDM, even if the
initial values of some of the quartic scalar couplings are small, and even though the top quark contributions
to the β-functions are still negative, other couplings are allowed to have large values, which (in some cases)
counterbalance any putative instabilities arising due to RG running. The 2HDM scalar potential is thus
comparatively more stable than that of the SM.

Finally, we have obtained bounds on the square-mass differences of the heavier Higgs bosons in the parameter
regime where the 2HDM remains valid up to the Planck scale. If the 2HDM is realized in nature, this could
provide an important check of the consistency of the model.
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Appendix A: One-Loop Renormalization Group Equations

The one-loop RGEs for the SM used in this analysis are provided by Ref. [58]. The 2HDM one-loop RGEs
in various bases are given in Refs. [43, 54, 59–61]. The one-loop RGEs found in the literature typically assume
a 2HDM scalar potential with a Z2 symmetry, Φ1 → Φ1, Φ2 → −Φ2, to avoid FCNCs and/or are explicitly
CP-conserving. Here, we present one-loop RGEs for the full 2HDM, using a basis-independent approach and
making no CP assumptions.

In a general 2HDM, the Higgs fermion interactions are governed by the following interaction Lagrangian:

−LY = Q0
L Φ̃āη

U,0
a U0

R +Q
0

L Φa(ηD,0ā )†D0
R + E

0

L Φa(ηE,0ā )†E0
R + h.c. , (A1)

summed over a, ā = 1, 2, where Φ1,2 are the Higgs doublets, Φ̃ā ≡ iσ2Φ∗ā, Q0
L and E0

L are the weak isospin
quark and lepton doublets, and U0

R, D0
R, E0

R are weak isospin quark and lepton singlets. [The right and
left-handed fermion fields are defined as usual: ψR,L ≡ PR,Lψ, where PR,L ≡ 1

2 (1 ± γ5).] Here, Q0
L, E0

L,

U0
R, D0

R, E0
R denote the interaction basis states, which are vectors in the quark and lepton flavor spaces, and

ηU,01 , ηU,02 , ηD,01 , ηD,02 , ηE,01 , ηE,02 are 3× 3 matrices in quark and lepton flavor spaces.
The neutral Higgs states acquire vacuum expectation values,

〈Φ0
a〉 =

vv̂a√
2
, (A2)

where v̂av̂
∗
ā = 1 and v = 246 GeV. It is also convenient to define

ŵb ≡ v̂∗āεab , (A3)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0.
It is convenient to define invariant and pseudo-invariant matrix Yukawa couplings [39, 45],

κF,0 ≡ v̂∗āηF,0a , ρF,0 ≡ ŵ∗āηF,0a , (A4)

where F = U , D or E. Inverting these equations yields

ηF,0a = κF,0v̂a + ρF,0ŵa . (A5)

Note that under the U(2) transformation, Φa → Uab̄Φb [cf. eq. (A35)],

κF,0 is invariant and ρF,0 → (detU)ρF,0 . (A6)
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The Higgs fields in the Higgs basis are defined by [45]

H1 ≡ v̂∗āΦa , H2 ≡ ŵ∗āΦa , (A7)

which can be inverted to yield Φa = H1v̂a+H2ŵa . One can rewrite eq. (A1) in terms of the Higgs basis fields,

−LY = Q0
L (H̃1κ

U,0 + H̃2ρ
U,0)U0

R +Q
0

L (H1κ
D,0 † +H1ρ

D,0 †)D0
R

+E
0

L (H1κ
E,0 † +H1ρ

E,0 †)E0
R + h.c. , (A8)

The next step is to identify the quark and lepton mass-eigenstates. This is accomplished by replacing
H1 → (0 , v/

√
2) and performing unitary transformations of the left and right-handed up and down quark

and lepton multiplets such that the resulting quark and charged lepton mass matrices are diagonal with
non-negative entries. In more detail, we define:

PLU = V UL PLU
0 , PRU = V UR PRU

0 , PLD = V DL PLD
0 , PRD = V DR PRD

0 ,

PLE = V EL PLE
0 , PRE = V DR PRE

0 , PLN = V EL PLN
0 , (A9)

and the Cabibbo-Kobayashi-Maskawa (CKM) matrix is defined as K ≡ V UL V
D †
L . Note that for the neutrino

fields, we are free to choose V NL = V EL since neutrinos are exactly massless in this analysis. (Here we are
ignoring the right-handed neutrino sector, which gives mass to neutrinos via the seesaw mechanism).

In particular, the unitary matrices V FL and V FR (for F = U , D and E) are chosen such that

MU =
v√
2
V UL κ

U,0V U †R = diag(mu , mc , mt) , (A10)

MD =
v√
2
V DL κD,0 †V D †R = diag(md , ms , mb) , (A11)

ME =
v√
2
V EL κ

E,0 †V E †R = diag(me , mµ , mτ ) . (A12)

It is convenient to define

κU = V UL κ
U,0V U †R , κD = V DR κD,0V D †L , κE = V DR κE,0V E †L , (A13)

ρU = V UL ρ
U,0V U †R , ρD = V DR ρD,0V D †L , ρE = V DR ρE,0V E †L . (A14)

Eq. (A6) implies that under the U(2) transformation, Φa → Uab̄Φb,

κF is invariant and ρF → (detU)ρF , (A15)

for F = U , D and E. Indeed, κF is invariant since eqs. (A10)–(A12) imply that

MF =
v√
2
κF , (A16)

which is a physical observable. The matrices ρU , ρD and ρE are independent pseudoinvariant complex 3 × 3
matrices. The Higgs-fermion interactions given in eq. (A8) can be rewritten in terms of the quark and lepton
mass eigenstates,

−LY = UL(κUH0 †
1 + ρUH0 †

2 )UR −DLK
†(κUH−1 + ρUH−2 )UR

+ULK(κD †H+
1 + ρD †H+

2 )DR +DL(κD †H0
1 + ρD †H0

2 )DR

+NL(κE †H+
1 + ρE †H+

2 )ER + EL(κE †H0
1 + ρE †H0

2 )ER + h.c. (A17)

We now write down the renormalization group equations (RGEs) for the Yukawa matrices ηU,0a , ηD,0a and
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ηE,0a . Defining D ≡ 16π2µ(d/dµ), the RGEs are given by [43]:

DηU,0a = −
(
8g2
s + 9

4g
2 + 17

12g
′ 2)ηU,0a +

{
3Tr
[
ηU,0a (ηU,0

b̄
)† + ηD,0a (ηD,0

b̄
)†
]

+ Tr
[
ηE,0a (ηE,0

b̄
)†
]}
ηU,0b

−2(ηD,0
b̄

)†ηD,0a ηU,0b + ηU,0a (ηU,0
b̄

)†ηU,0b + 1
2 (ηD,0

b̄
)†ηD,0b ηU,0a + 1

2η
U,0
b (ηU,0

b̄
)†ηU,0a , (A18)

DηD,0a = −
(
8g2
s + 9

4g
2 + 5

12g
′ 2)ηD,0a +

{
3Tr
[
(ηD,0
b̄

)†ηD,0a + (ηU,0
b̄

)†ηU,0a

]
+ Tr

[
(ηE,0
b̄

)†ηE,0a

]}
ηD,0b

−2ηD,0b ηU,0a (ηU,0
b̄

)† + ηD,0b (ηD,0
b̄

)†ηD,0a + 1
2η
D,0
a ηU,0b (ηU,0

b̄
)† + 1

2η
D,0
a (ηD,0

b̄
)†ηD,0b , (A19)

DηE,0a = −
(

9
4g

2 + 15
4 g
′ 2)ηE,0a +

{
3Tr
[
(ηD,0
b̄

)†ηD,0a + (ηU,0
b̄

)†ηU,0a

]
+ Tr

[
(ηE,0
b̄

)†ηE,0a

]}
ηE,0b

+ηE,0b (ηE,0
b̄

)†ηE,0a + 1
2η
E,0
a (ηE,0

b̄
)†ηE,0b . (A20)

The RGEs above are true for any basis choice. Thus, they must also be true in the Higgs basis in which

v̂ = (1, 0) and ŵ = (0, 1). In this case, we can simply choose ηF,01 = κF,0 and ηF,02 = ρF,0 to obtain the RGEs
for the κF,0 and ρF,0. Alternatively, we can multiply eqs. (A18)–(A20) first by v̂∗a and then by ŵ∗a. Expanding

η†ā, which appears on the right-hand sides of eqs. (A18)–(A20), in terms of κ† and ρ† using eq. (A5), we
again obtain the RGEs for the κF,0 and ρF,0. Of course, both methods must yield the same results, since the
diagonalization matrices employed in eqs. (A10)–(A12) are defined as those that bring the mass matrices to
their diagonal form at the electroweak scale. No scale dependence is assumed in the diagonalization matrices,
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and as such they are not affected by the operators D.

DκU,0 = −
(
8g2
s + 9

4g
2 + 17

12g
′ 2)κU,0 +

{
3Tr
[
κU,0κU,0 † + κD,0κD,0 †

]
+ Tr

[
κE,0κE,0 †

]}
κU,0

+

{
3Tr
[
κU,0ρU,0 † + κD,0ρD,0 †

]
+ Tr

[
κE,0ρE,0 †

]}
ρU,0 − 2

(
κD,0 †κD,0κU,0 + ρD,0 †κD,0ρU,0

)
+κU,0(κU,0 †κU,0 + ρU,0 †ρU,0) + 1

2 (κD,0 †κD,0 + ρD,0 †ρD,0)κU,0 + 1
2 (κU,0κU,0 † + ρU,0ρU,0 †)κU,0 ,

DρU,0 = −
(
8g2
s + 9

4g
2 + 17

12g
′ 2)ρU,0 +

{
3Tr
[
ρU,0κU,0 † + ρD,0κD,0 †

]
+ Tr

[
ρE,0κE,0 †

]}
κU,0

+

{
3Tr
[
ρU,0ρU,0 † + ρD,0ρD,0 †

]
+ Tr

[
ρE,0ρE,0 †

]}
ρU,0 − 2

(
κD,0 †ρD,0κU,0 + ρD,0 †ρD,0ρU,0

)
+ρU,0(κU,0 †κU,0 + ρU,0 †ρU,0) + 1

2 (κD,0 †κD,0 + ρD,0 †ρD,0)ρU,0 + 1
2 (κU,0κU,0 † + ρU,0ρU,0 †)ρU,0 ,

DκD,0 = −
(
8g2
s + 9

4g
2 + 5

12g
′ 2)κD,0 +

{
3Tr
[
κD,0 †κD,0 + κU,0 †κU,0

]
+ Tr

[
κE,0 †κE,0]

}
κD,0

+

{
3Tr
[
ρD,0 †κD,0 + ρU,0 †κU,0

]
+ Tr

[
ρE,0 †κE,0]

}
ρD,0 − 2(κD,0κU,0κU,0 † + ρD,0κU,0ρU,0 †)

+(κD,0κD,0 † + ρD,0ρD,0 †)κD,0 + 1
2κ

D,0(κU,0κU,0 † + ρU,0ρU,0 †) + 1
2κ

D,0(κD,0 †κD,0 + ρD,0 †ρD,0) ,

DρD,0 = −
(
8g2
s + 9

4g
2 + 5

12g
′ 2)ρD,0 +

{
3Tr
[
κD,0 †ρD,0 + κU,0 †ρU,0

]
+ Tr

[
κE,0 †ρE,0]

}
κD,0

+

{
3Tr
[
ρD,0 †ρD,0 + ρU,0 †ρU,0

]
+ Tr

[
ρE,0 †ρE,0]

}
ρD,0 − 2(κD,0ρU,0κU,0 † + ρD,0ρU,0ρU,0 †)

+(κD,0κD,0 † + ρD,0ρD,0 †)ρD,0 + 1
2ρ
D,0(κU,0κU,0 † + ρU,0ρU,0 †) + 1

2ρ
D,0(κD,0 †κD,0 + ρD,0 †ρD,0) ,

DκE,0 = −
(

9
4g

2 + 15
4 g
′ 2)κE,0 +

{
3Tr
[
κD,0 †κD,0 + κU,0 †κU,0

]
+ Tr

[
κE,0

†
κE,0

]}
κE,0

+

{
3Tr
[
ρD,0 †κD,0 + ρU,0 †κU,0

]
+ Tr

[
ρE,0

†
κE,0

]}
ρE,0

+(κE,0κE,0 † + ρE,0ρE,0 †)κE,0 + 1
2κ

E,0(κE,0 †κE,0 + ρE,0 †ρE,0) ,

DρE,0 = −
(

9
4g

2 + 15
4 g
′ 2)ρE,0 +

{
3Tr
[
κD,0 †ρD,0 + κU,0 †ρU,0

]
+ Tr

[
κE,0

†
ρE,0

]}
κE,0

+

{
3Tr
[
ρD,0 †ρD,0 + ρU,0 †ρU,0

]
+ Tr

[
ρE,0

†
ρE,0

]}
ρE,0

+(κEκE,0 † + ρE,0ρE,0 †)ρE,0 + 1
2ρ
E,0(κE,0 †κE,0 + ρE,0 †ρE,0) .
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Using eqs. (A13) and (A14), we immediately obtain the RGEs for the κF and ρF ,

DκU = −
(
8g2
s + 9

4g
2 + 17

12g
′ 2)κU +

{
3Tr
[
κUκU † + κDκD †

]
+ Tr

[
κEκE †

]}
κU

+

{
3Tr
[
κUρU † + κDρD †

]
+ Tr

[
κEρE †

]}
ρU − 2K

(
κD †κDK†κU + ρD †κDK†ρU

)
+ κU (κU †κU + ρU †ρU ) + 1

2K(κD †κD + ρD †ρD)K†κU + 1
2 (κUκU † + ρUρU †)κU , (A21)

DρU = −
(
8g2
s + 9

4g
2 + 17

12g
′ 2)ρU +

{
3Tr
[
ρUκU † + ρDκD †

]
+ Tr

[
ρEκE †

]}
κU

+

{
3Tr
[
ρUρU † + ρDρD †

]
+ Tr

[
ρEρE †

]}
ρU − 2K

(
κD †ρDK†κU + ρD †ρDK†ρU

)
+ ρU (κU †κU + ρU †ρU ) + 1

2K(κD †κD + ρD †ρD)K†ρU + 1
2 (κUκU † + ρUρU †)ρU , (A22)

DκD = −
(
8g2
s + 9

4g
2 + 5

12g
′ 2)κD +

{
3Tr
[
κD †κD + κU †κU

]
+ Tr

[
κE †κE ]

}
κD

+

{
3Tr
[
ρD †κD + ρU †κU

]
+ Tr

[
ρE †κE ]

}
ρD − 2(κDK†κUκU † + ρDK†κUρU †)K

+ (κDκD † + ρDρD †)κD + 1
2κ

DK†(κUκU † + ρUρU †)K + 1
2κ

D(κD †κD + ρD †ρD) , (A23)

DρD = −
(
8g2
s + 9

4g
2 + 5

12g
′ 2)ρD +

{
3Tr
[
κD †ρD + κU †ρU

]
+ Tr

[
κE †ρE ]

}
κD

+

{
3Tr
[
ρD †ρD + ρU †ρU

]
+ Tr

[
ρE †ρE ]

}
ρD − 2(κDK†ρUκU † + ρDK†ρUρU †)K

+ (κDκD † + ρDρD †)ρD + 1
2ρ
DK†(κUκU † + ρUρU †)K + 1

2ρ
D(κD †κD + ρD †ρD) , (A24)

DκE = −
(

9
4g

2 + 15
4 g
′ 2)κE +

{
3Tr
[
κD †κD + κU †κU

]
+ Tr

[
κE
†
κE
]}
κE +

{
3Tr
[
ρD †κD

+ ρU †κU
]

+ Tr
[
ρE
†
κE
]}
ρE + (κEκE † + ρEρE †)κE + 1

2κ
E(κE †κE + ρE †ρE) , (A25)

DρE = −
(

9
4g

2 + 15
4 g
′ 2)ρE +

{
3Tr
[
κD †ρD + κU †ρU

]
+ Tr

[
κE
†
ρE
]}
κE +

{
3Tr
[
ρD †ρD

+ ρU †ρU
]

+ Tr
[
ρE
†
ρE
]}
ρE + (κEκE † + ρEρE †)ρE + 1

2ρ
E(κE †κE + ρE †ρE) . (A26)
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The 2HDM scalar potential in a generic basis shown in eq. (1) can be written in a more compact form
following the notation of Ref. [39],

V = Yab̄(Φ
†
āΦb) + 1

2Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd) . (A27)

Hermiticity requires that Yab̄ = Y ∗bā and Zab̄cd̄ = Z∗dc̄bā. In addition, the form of the scalar potential given in
eq. (A27) implies that Zab̄cd̄ = Zcd̄ab̄. The full one-loop β-function for Zab̄cd̄ is given by,

DZab̄cd̄ = 4Zab̄ef̄Zcd̄fē + 2Zaf̄ed̄Zcd̄fē + 2Zaf̄cēZfb̄ed̄ + 2Zab̄ef̄Zcēfd̄ + 2Zaēfb̄Zcd̄ef̄

−
(
3g′2 + 9g2

)
Zab̄cd̄ + 3

4

(
3g4 − 2g′2g2 + g′4

)
δab̄δcd̄ +

(
3g′2g2

)
δad̄δcb̄ − 4NcTr

[
ηQa η

Q†
b̄
ηQc η

Q†
d̄

]
+4
(
Tr
[
ηQ†ē ηQa ]Zeb̄cd̄ + Tr

[
ηQ†
b̄
ηQe
]
Zaēcd̄ + Tr

[
ηQ†ē ηQc

]
Zab̄ed̄ + Tr

[
ηQ†
d̄
ηQe
]
Zab̄cē

)
. (A28)

The squared-mass and coupling coefficients of the 2HDM scalar potential in the Higgs basis [cf. eq. (3)] can
be written in the form of invariants or pseudoinvariants with respect to the U(2) transformations, Φa → Uab̄Φb,
as shown in Ref. [39]. The three squared-mass parameters are given by

Y1 ≡ Yab̄ v̂∗ā v̂b , Y2 ≡ Yab̄ ŵ∗ā ŵb , Y3 ≡ Yab̄ v̂∗ā ŵb , (A29)

and seven coupling parameters are given by

Z1 ≡ Zab̄cd̄ v̂∗ā v̂b v̂∗c̄ v̂d , Z2 ≡ Zab̄cd̄ ŵ∗ā ŵb ŵ∗c̄ ŵd , (A30)

Z3 ≡ Zab̄cd̄ v̂∗ā v̂b ŵ∗c̄ ŵd , Z4 ≡ Zab̄cd̄ ŵ∗ā v̂b v̂∗c̄ ŵd , (A31)

Z5 ≡ Zab̄cd̄ v̂∗ā ŵb v̂∗c̄ ŵd , (A32)

Z6 ≡ Zab̄cd̄ v̂∗ā v̂b v̂∗c̄ ŵd , (A33)

Z7 ≡ Zab̄cd̄ v̂∗ā ŵb ŵ∗c̄ ŵd . (A34)

Note that under a U(2) transformation, v̂a → Uab̄v̂b, whereas

ŵa → (detU)−1Uab̄ŵb . (A35)

Consequently, Y1, Y2, Z1,2,3,4 are real U(2)-invariants, whereas Y3, Z5,6,7 are potentially complex U(2)-
pseudoinvariants, which are rephased under a U(2) transformation,

[Y3, Z6, Z7]→ (detU)−1[Y3, Z6, Z7] and Z5 → (detU)−2Z5 . (A36)

Using the above results in eq. (A28), the one-loop RGEs for the quartic scalar couplings in the Higgs basis
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are:

DZ1 = 12Z2
1 + 4Z2

3 + 4Z3Z4 + 2Z2
4 + 2|Z5|2 + 24|Z6|2 −

(
3g′2 + 9g2

)
Z1 + 3

4

(
g′4 + 2g′2g2 + 3g4

)
−4NcTr

[
κQ†κQκQ†κQ

]
+ 16

(
2Tr
[
κQ†κQ

]
Z1 + Tr

[
κQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z∗6
)
, (A37)

DZ2 = 12Z2
2 + 4Z2

3 + 4Z3Z4 + 2Z2
4 + 2|Z5|2 + 24|Z7|2 −

(
3g′2 + 9g2

)
Z2 + 3

4

(
g′4 + 2g′2g2 + 3g4

)
−4NcTr

[
ρQ†ρQρQ†ρQ

]
+ 8
(
2Tr
[
ρQ†ρQ

]
Z2 + Tr

[
κQ†ρQ

]
Z7 + Tr

[
ρQ†κQ

]
Z∗7
)
, (A38)

DZ3 = 2
(
Z1 + Z2

)(
3Z3 + Z4

)
+ 4Z2

3 + 2Z2
4 + 2|Z5|2 + 4|Z6|2 + 4|Z7|2 + 8Z6Z

∗
7 + 8Z∗6Z7

−
(
3g′2 + 9g2

)
Z3 +

3

4

(
g′4 − 2g′2g2 + 3g4

)
− 4NcTr

[
κQ†κQρQ†ρQ

]
+ 4
(
2Tr
[
κQ†κQ

]
Z3

+2Tr
[
ρQ†ρQ

]
Z3 + Tr

[
κQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z∗6 + Tr

[
κQ†ρQ

]
Z7 + Tr

[
ρQ†κQ

]
Z∗7
)
, (A39)

DZ4 = 2(Z1 + Z2)Z4 + 8Z3Z4 + 4Z2
4 + 8|Z5|2 + 10|Z6|2 + 10|Z7|2 + 2Z6Z

∗
7 + 2Z∗6Z7

−
(
3g′2 + 9g2

)
Z4 +

3

2
g′2g2 − 4NcTr

[
κQ†ρQρQ†κQ

]
+ 4
(
2Tr
[
κQ†κQ

]
Z4 + 2Tr

[
ρQ†ρQ

]
Z4

+Tr
[
κQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z∗6 + Tr

[
κQ†ρQ

]
Z7 + Tr

[
ρQ†κQ

]
Z∗7
)
, (A40)

DZ5 = 2Z5

(
Z1 + Z2 + 4Z3 + 6Z4

)
+ 10Z2

6 + 10Z2
7 + 4Z6Z7 −

(
3g′2 + 9g2

)
Z5 − 4NcTr

[
κQ†ρQκQ†ρQ

]
+8
(
Tr
[
κQ†κQ

]
Z5 + Tr

[
ρQ†ρQ

]
Z5 + Tr

[
ρQ†κQ

]
Z6 + Tr

[
ρQ†κQ

]
Z7

)
, (A41)

DZ6 = 12Z1Z6 + 6Z3

(
Z6 + Z7

)
+ 4Z4

(
2Z6 + Z7

)
+ 2Z5

(
5Z∗6 + Z∗7

)
−
(
3g′2 + 9g2

)
Z6

−4NcTr
[
κQ†κQκQ†ρQ

]
+ 4
(
3Tr
[
κQ†κQ

]
Z6 + Tr

[
ρQ†ρQ

]
Z6 + Tr

[
ρQ†κQ

]
Z1

+Tr
[
ρQ†κQ

]
Z3 + Tr

[
ρQ†κQ

]
Z4 + Tr

[
κQ†ρQ

]
Z5

)
, (A42)

DZ7 = 12Z2Z7 + 6Z3

(
Z6 + Z7

)
+ 4Z4

(
Z6 + 2Z7

)
+ 2Z5

(
Z∗6 + 5Z∗7

)
−
(
3g′2 + 9g2

)
Z7

−4NcTr
[
κQ†ρQρQ†ρQ

]
+ 4
(
3Tr
[
ρQ†ρQ

]
Z7 + Tr

[
κQ†κQ

]
Z7 + Tr

[
ρQ†κQ

]
Z2 + Tr

[
ρQ†κQ

]
Z3

+Tr
[
ρQ†κQ

]
Z4 + Tr

[
κQ†ρQ

]
Z5

)
. (A43)
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Finally, we note that the anomalous dimensions, which contribute to the quartic scalar coupling β-functions,
are given by

γab̄ = − 1

32π2
(3g′2 + 9g2)δab̄ +

1

4π2
Tr[ηQa η

Q†
b̄

]. (A44)

Appendix B: Bounded from below conditions for a general 2HDM potential

To ensure the existence of a stable vacuum, the 2HDM scalar potential must be bounded from below, i.e.
it must assume positive values for any direction for which the fields are tending to infinity. This places some
restrictions on the allowed values of the quartic scalar couplings. For the case of the scalar potential given in
eq. (1) with λ6 = λ7 = 0, those necessary and sufficient conditions are given in eqs. (23)–(26).

We now review the analogous conditions for the most general renormalizable 2HDM potential, found in
Refs. [54, 62]. It is particularly convenient to introduce a new notation for the scalar potential, based on gauge
invariant field bilinears. Indeed, in many 2HDM studies, such as the comparison of the value of the potential in
different vacua, the classification of scalar symmetries and stability conditions, the bilinear formalism provides
a significant simplification in the calculations. This formalism also reveals a hidden Minkowski structure in
the potential, which was established in Refs. [54, 62]. A similar Minkowskian notation has been employed in
Refs. [63, 64].

There are four independent gauge-invariant field bilinears, which are defined by

r0 = Φ†1Φ1 + Φ†2Φ2,

r1 = −
(

Φ†1Φ2 + Φ†2Φ1

)
= −2 Re

(
Φ†1Φ2

)
,

r2 = i
(

Φ†1Φ2 − Φ†2Φ1

)
= −2 Im

(
Φ†1Φ2

)
,

r3 = −
(

Φ†1Φ1 − Φ†2Φ2

)
.

(B1)

These four quantities form the components of a covariant four-vector, rµ = (r0 , ~r) with respect to SO(3,1)
transformations. We also define rµ = gµνrµ = (r0 , −~r) where gµν is the usual Minkowski metric. It is straight-
forward to verify that r0 ≥ 0 and rµrµ ≥ 0, the latter being a consequence of the Schwarz inequality. That
is, the four-vector rµ lives on or inside the forward lightcone LC+. The vacuum that preserves SU(2)×U(1)
electroweak symmetry [i.e., 〈Φ1〉 = 〈Φ2〉 = 0] corresponds to the apex of LC+; all neutral vacua correspond
to the surface of LC+, and any charge breaking vacua would lie on the interior of LC+. Transformations of
the scalar fields that preserve the scalar field kinetic energy terms leave r0 invariant and correspond to SO(3)
rotations of the three-vectors, ~r.

In terms of the bilinears defined in eq. (B1), the scalar potential of eq. (3) can be written as

V = −Mµr
µ + 1

2r
µΛµ

νrν , (B2)

with the 4-vector Mµ and the mixed tensor Λµ
ν given by

Mµ =

(
− 1

2 (Y1 + Y2), Re Y3, −Im Y3, − 1
2 (Y1 − Y2)

)
(B3)

and

Λµ
ν =

1

2


1
2 (Z1 + Z2) + Z3 −Re (Z6 + Z7) Im (Z6 + Z7) − 1

2 (Z1 − Z2)

Re (Z6 + Z7) −Z4 − Re Z5 Im Z5 −Re (Z6 − Z7)

−Im (Z6 + Z7) Im Z5 −Z4 + Re Z5 Im (Z6 − Z7)

1
2 (Z1 − Z2) −Re (Z6 − Z7) Im (Z6 − Z7) − 1

2 (Z1 + Z2) + Z3

 . (B4)

To ensure that the scalar potential is bounded from below one needs to evaluate the eigenvalues and
eigenvectors of the matrix Λµ

ν . Then one can determine conditions on those eigenvalues and eigenvectors
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such that rµΛµ
νrν ≥ 0. The eigenvalues Λa (a = 0, 1, 2, 3) of the matrix Λµ

ν will be determined by the usual
characteristic equation,

det(Λµ
ν − Λa gµ

ν) = 0. (B5)

since gµ
ν = δνµ is just the 4 × 4 identity matrix. The corresponding eigenvectors corresponding to eigenvalue

Λa will be denoted by V (a). For the most general 2HDM potential, the eigenvalues are the solutions of a
quartic equation, which can in principle be determined analytically (although the corresponding expressions
are not particularly transparent). However, it is straightforward to numerically evaluate the eigenvalues and
corresponding eigenvectors. Note that, in general, some of the eigenvalues may be complex (since the real
matrix Λµ

ν is not symmetric unless Z6 = Z7 = 0 and Z1 = Z2).
Having evaluated the eigenvalues and eigenvectors of Λµ

ν , we make use of Proposition 10 of Ref. [54] to
conclude that the 2HDM potential is bounded from below if and only if the following conditions are met:

1. All the eigenvalues Λa are real.

2. Λ0 > 0.

3. Λ0 > {Λ1 , Λ2 , Λ3}. There may or may not be degeneracies among the three eigenvalues Λi (i = 1, 2, 3).

4. There exist four linearly independent eigenvectors V (a) corresponding to the four eigenvalues Λa, for
a = 0, 1, 2, 3.

5. The eigenvector V (0) = (v00, v10, v20, v30), corresponding to the eigenvalue Λ0, is real and time-like. That
is, it can be normalized so that

|V (0)|2 = v2
00 − v2

10 − v2
20 − v2

30 = 1.

6. The remaining three eigenvectors V (i) = (v0i, v1i, v2i, v3i) are real and space-like, i.e. normalized so that

|V (i)|2 = v2
0i − v2

1i − v2
2i − v2

3i = −1.

To illustrate this technique, we shall reproduce the bounded from below conditions for a potential with a
Z2 symmetry in the Higgs basis so that Z6 = Z7 = 0. Without loss of generality, we can choose Z5 real by
rephasing the Higgs basis field H2. The matrix Λ = Λµ

ν is then given by

Λ =
1

2


1
2 (Z1 + Z2) + Z3 0 0 − 1

2 (Z1 − Z2)

0 −Z4 − Z5 0 0

0 0 −Z4 + Z5 0

1
2 (Z1 − Z2) 0 0 − 1

2 (Z1 + Z2) + Z3

 , (B6)

so that two of its eigenvalues can be immediately read off as Λ1 = −Z4 − Z5 and Λ2 = −Z4 + Z5. The
remaining two eigenvalues are

Λ± = Z3 ±
√
Z1Z2. (B7)

Since the eigenvalues must be real, if follows that

Z1Z2 > 0. (B8)

Λ+ is the largest eigenvalue and thus must corresponds to the time-like eigenvector. Hence, we identify
Λ0 = Z3 +

√
Z1Z2 and Λ3 = Z3 −

√
Z1Z2. Imposing the requirement that the scalar potential is bounded

from below, it follows that the eigenvalues obtained above must all be real and obey the following inequalities:

Λ0 > 0⇒ Z3 > −
√
Z1Z2 (B9)

Λ0 > {Λ1 , Λ2 , Λ3} ⇒ Z3 + Z4 − |Z5| > −
√
Z1Z2 , (B10)
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which are the Higgs basis equivalents of eqs. (25) and (26). The time-like eigenvector is V (0) = (x, 0, 0, y),
where the components x and y are related via the eigenvector equation by

y =
Z1 + Z2 −

√
Z1Z2

Z1 − Z2
x . (B11)

Since the time-like normalization condition implies that x2 − y2 = 1, we obtain

x2 =
(Z1 − Z2)2

4
√
Z1Z2(Z1 + Z2)

. (B12)

Thus we see that we must have Z1 + Z2 > 0, which when combined with eq. (B8) yields

Z1 > 0 , Z2 > 0. (B13)

Thus we recover the Higgs basis equivalents of eqs. (23) and (24).
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