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Abstract

In this second paper on quantum fluctuations near the classical instanton configurations, see [1],

we focus on another well studied quantum-mechanical problem, the one-dimensional Sine-Gordon

potential (the Mathieu potential). Using only the tools from quantum field theory, the Feynman

diagrams in the instanton background, we calculate the tunneling amplitude (the instanton density)

to the three-loop order. The result agrees (in six significant figures) with the one given long ago by

J. Zinn-Justin using Schrödinger equation. As in the double well potential case, we found that the

largest contribution is given by the diagrams originated from the Jacobian. We again observe that

in the three-loop case individual Feynman diagrams contain irrational contributions, while their

sum does not.
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Introduction

Since it is our second paper of the series, following the one on the double-well potential

[1], it does not need an extensive introduction. Topological solitons, instantons in particular,

are widely used in the context of quantum field theories and condense matter physics. Their

relation to standard perturbative series is an old issue, which continues to produce interesting

results, so far mostly in quantum mechanical context.

The Sine-Gordon (SG) field has been extensively studied in classical context, with an enor-

mous literature dedicated to it, see e.g. [2] and references therein. Coleman [3] has extended

the results to the quantized theory by relating the SG field to the zero-charge sector of the

massive Thirring model. Also in [4] the explicit calculations for the tunneling amplitude

using the so-called nonvacuum instantons at finite energy were presented.

The quantum mechanical SG potential (the Mathieu potential) is the basic element of

condense matter theory. Tunneling from one minimum to the next, in the path integral

formulation, is described by Euclidean classical paths – the instantons. The issues we dis-

cuss in this paper deal with quantum fluctuations around these paths. We would like to

demonstrate by an explicit calculation how our tools work in this – well controlled and

studied setting –before applying them to more complicated/realistic settings in quantum

field theory. Therefore we do not use anything stemming from the Schrödinger equation in

this work, in particularly do not use series resulting from recurrence relations or resurgence

relations (in general, conjectured) by several authors.

One reason to study SG is to explore further the existing deep connections between

the quantum mechanical instantons – via Schrödinger equation – with wider mathematical

issues, of approximate solutions to differential equations, defined in terms of certain gen-

eralized series. A particular form of an exact quantization condition was conjectured by

Zinn-Justin [5], which links series around the instantons with the usual perturbative series

in the perturbative vacuum. It remains unknown whether it can or cannot be generalized to

the field theory cases we are mainly interested in. Recently, for the quartic double well and

Sine-Gordon potentials Dunne and Ünsal (see [6] and also references therein) have presented

more arguments for this connection, which they call resurgent relation between perturbative

and instanton sectors.

Another reason for which we decided to do this work is a certain set of observations about
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Feynman diagrams on top of the instanton for the double well potential with degenerate

minima we observed in our first paper [1]. We wanted to see how general they are, using

another example, now with infinitely many degenerate minima. The SG potential also has

new vertices and thus many new diagrams. As we will show below, indeed all these trends

repeat themselves in this second setting as well.

Few comments on the history of present approach. Omitting well known classic papers

on instanton calculus we mention a pioneering paper [7], where the two-loop correction to

the tunneling amplitude for the SG was calculated. In particular, the formalism for treating

the zero-mode singularities was described in detail.

Three-loop correction to the instanton density

Let us consider the quantum-mechanical problem of a particle of mass m = 1 in the Sine-

Gordon potential

V =
1

g2
[ 1− cos(g x) ] . (1)

The well-known instanton solution Xinst(t) = 4
g

arctan(et) describes the tunneling between

adjacent minima is the classical path with the action S0 = S[Xinst(t)] = 8
g2

. Our notation

for the coupling is related to those used in [5] by gZJ = g2

16
. The classical action S0 of the

instanton solution is therefore large and 1
S0

is used in the expansion.

The SG potential has an infinite number of degenerate minima, and perturbative levels

in them form a continuous band, with states within the band labeled by Bloch angular

parameter θ. The energy of the lowest band is

E
(lowest band)
θ = E0 −

δ E

2
cos θ , (2)

where E0 is the naive ground state energy, without tunneling, written as the following

expansion

E0 =
1

2

∞∑
n=0

An
Sn0

, (A0 = 1) , (3)

while δ E = E
(lowest band)
θ=π − E(lowest band)

θ=0 generates another series, related to the so called

instanton density

δ E = ∆E
∞∑
n=0

Bn

Sn0
, (B0 = 1) , (4)
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here ∆E = 2
√

2S0

π
e−S0 is the well-known one-loop semiclassical result [7]. Coefficients An

in the series (3) can be calculated using the ordinary perturbation theory (see [8]) while

many coefficients Bn in the expansion (4) were found by Zinn-Justin, 1981-2005 (see [5] and

references therein), obtained via the so called exact Bohr-Sommerfeld quantization condition.

Alternatively, using the Feynman diagrams technique Lowe and Stone [7] calculated the

two-loop correction B1 = −56/64 which was later on reproduced by Zinn-Justin [5] in the

so-called exact Bohr-Sommerfeld quantization technique. Higher order coefficients Bn in (4)

can also be computed in this way. Since we calculate the energy difference, all Feynman

diagrams in the instanton background (with the instanton-based vertices and the Green’s

function) need to be accompanied by subtraction of the same diagrams for the trivial x = 0

saddle point (see [9] for details). For 1
∆E
� τ � 1 it permits to evaluate the ratio

〈 π |e−H τ |0 〉x=Xinst

〈 0 |e−H τ |0 〉x=0

where the matrix elements 〈π|e−H τ |0〉x=Xinst
, 〈0|e−H τ |0〉x=0 are calculated using the

instanton-based Green’s function and the Green function of the harmonic oscillator, re-

spectively.

The instanton-based Green’s function G(x, y) form to be used

G(x, y) =
G0(x, y)

2 (1 + x2)(1 + y2)

[
1 + 4 x y + x2 y2 + x2 + y2

+ (1− 4xy + x2y2 + x2 + y2 + 2(1− xy)|x− y|) log(2G0(x, y))

]
,

(5)

is expressed in variables x = tanh( t1
2

), y = tanh( t2
2

) , in which the familiar Green function

1
2
e−|t1−t2| of the harmonic oscillator is

G0(x, y) =
1− |x− y| − x y

2(1 + |x− y| − x y)
, (6)

In its derivation there were two steps. One was to find a function which satisfies the Green

function equation, used via two linearly-independent solutions and standard Wronskian

method. The second step is related to a zero mode: one can add a term φ0(t1)φ0(t2) with

any coefficient and still satisfy the equation. The coefficient is then fixed from orthogonality

to the zero mode.

The two-loop coefficient in (4) is [7]

B1 = a+ b1 + b2 + c ,
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a = −53

60
, b1 =

3

40
, b2 =

7

20
, c = − 5

12
. (7)

reflecting the contribution of four Feynman diagrams, see Fig. 1.

The three-loop correction B2 (4) we are interested in is given by the sum of twenty-two

3-loop Feynman diagrams, which we group as follows (see Figs. 2 - 3)

B2 = a1 + b11 + b12 + b21 + b22 + b23 + b24

+ d+ e+ f + g + h+ j + k + l + c1 + c2 + c3 + c4 + c5 + c6 + c7 +B2loop ,
(8)

complementing by a contribution from two-loop Feynman diagrams, see Fig. 1,

B2loop =
1

2
(a+ b1 + b2)2 + (a+ b1 + b2) c =

341

1152
,

(see (7)).

The rules of constructing the integrals for each diagram should be clear from an example:

the explicit expression for the Feynman integral b23 in Fig. 2, which is

b23 = 32768

∫ 1

−1

dx

∫ 1

−1

dy

∫ 1

−1

dz

∫ 1

−1

dw J(x, y, z, w)

(
x y z wGxxGxyGyzGywG

2
zw

)
, (9)

while for c4 in Fig. 3 it takes the form

c4 = 256

∫ 1

−1

dx

∫ 1

−1

dy

∫ 1

−1

dz
x y (1− 6z2 + z4)

(1 + x2)2(1 + y2)2(1 + z2)2(1− z2)
Gxy G

2
yz Gzz , (10)

here we introduced notations Gxy ≡ G(x, y), G0
xy ≡ G0(x, y) and J =

1
(1+x2)2

1
(1+y2)2

1
(1+z2)2

1
(1+w2)2

. Notice that the c´s diagrams come from the Jacobian of the

zero mode and have no analogs in the perturbative vacuum problem.

Results

The obtained results are summarized in Table I. All diagrams are of the form of one-

dimensional, two-dimensional, three-dimensional and four-dimensional integrals. The five

diagrams b11, d, k, l, c7, in particular (see Fig. 2)

b11 =
16

3

∫ 1

−1

dx

∫ 1

−1

dy
1

(1− x2)(1− y2)

(
(1− 6x2 + x4)(1− 6y2 + y4)

(1 + x2)2(1 + y2)2 G4
xy − (G0

xy)
4
)

d = 16

∫ 1

−1

dx

∫ 1

−1

dy
1

(1− x2)(1− y2)(
(1− 6x2 + x4)(1− 6y2 + y4)

(1 + x2)2(1 + y2)2 GxxG
2
xyGyy −G0

xx(G
0
xy)

2
Gyy

)
,

(11)
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correspond to two-dimensional integrals and together with diagram j, a one-dimensional

integral, are the only ones which we are able to calculate analytically

b11 = −189199

756000
+

1

900

(
178 ζ(2)− 204 ζ(3) + 27 ζ(4)

)
≡ brat11 + birrat11

d = −73931

47250
+

289

900
ζ(2) ≡ drat + dirrat ,

j =
184

315
, k = −379

630
, l = −244

945
, c7 =

16

45
,

(12)

here ζ(n) denotes the Riemann zeta function of argument n (see [10]). Diagrams b11, d,

contain a rational and an irrational contribution such that

birrat11

brat11

≈ −0.341 ,
dirrat

drat
≈ −0.338 .

It shows that for diagrams b11 and d the rational contribution is three times larger than

the irrational part. In the case of the DW potential the situation is opposite, the irrational

part is dominant (see [1]). Other diagrams, see Table I, were evaluated numerically with an

absolute accuracy ∼ 10−7. Surprisingly, almost all of them (20 diagrams out of 22 ones in

total) are of order ≥ 10−1 as for B2 itself with two of them (diagrams b12, b21) which are of

order 10−2.

J. Zinn-Justin (see [5] and references therein) reports a value of

BZinn−Justin
2 = − 59

128
≈ −0.4609375 , (13)

while present calculation shows that

Bpresent
2 ≈ −0.4609377 , (14)

which is in agreement, up to the precision employed in the numerical integration.

Similarly to the two-loop correction B1 the coefficient B2 is negative. For not-so-large

barriers (S0 ∼ 1), the two-loop and three-loop corrections are of the same order of magnitude.

The dominant contribution comes from the sum of the two-vertex diagrams d, b11, k, l, c7

while the four-vertex diagrams b12, b21, b23, e, h, c1, c5, c6 provides minor contribution, the

absolute value of their sum represents less than 0.2% of the total correction B2. Interesting

that for both two and three loop cases the largest contribution comes from the ’ears’-like

diagrams a and d, respectively, a
B1
≈ 1.01 and d

B2
≈ 2.25 .
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We already noted that individual three-loop diagrams contain irrational numbers. If J. Zinn-

Justin´s rational result is correct, then there must be a cancelation of these irrational contri-

butions in the sum (8). From (12) we note that the term (birrat11 + dirrat) gives a contribution

of order one to the mentioned sum (8), and therefore the coincidence in the order of 10−7

between present result (14) and one of Zinn-Justin (13) is an indication that such a can-

celation occurs. Now, we evaluate the coefficients A1, A2 in (3) using Feynman diagrams

(see [8]). In order to do it let us consider the Sine-Gordon potential V = 1
g2

[ 1 − cos(g x) ]

and calculate the transition amplitude 〈x = 0|e−H τ |x = 0〉. All involved Feynman integrals

can be evaluated analytically. In the limit τ → ∞ the coefficients of order S−1
0 and S−2

0 in

front of τ gives us the value of A1 and A2, respectively. As it was mentioned above the c´s

diagrams do not exist in this case. The Feynman integral a in Fig. 1 give us the value of

A1, explicitly it is equal to

A1 = −2 .

The diagrams b11, d and j in Fig. 2 determine A2, b11 = −4
3
d = −8 and j = 16

3
. Then

A2 = −4 ,

which is in agreement with the results obtained in standard multiplicative perturbation

theory (see e.g. [11]). No irrational numbers appear in the evaluation of A1 and A2.

Conclusions and Discussion

In conclusion, we have calculated the tunneling amplitude (level splitting related to the

instanton density) up to three-loops using Feynman diagrams for quantum perturbations on

top of the instanton. Summing all of these contributions we obtain the third coefficients B2

( defined in (4)). The result – to the numerical accuracy we kept – is found to be in good

agreement with the resurgent relation between perturbative and instanton series suggested

by Zinn-Justin (for modern reference see [5]).

Let us remind again, that this paper is methodical in nature, and its task was to develop

tools to calculate tunneling phenomena in multidimensional QM or QFT context, in which

any results stemming from Schrödinger equation are not available. We use a quantum

mechanical example as a test of the tools we use: but the tools themselves are expected to

work in much wider context.
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When we started these works (see [1]) we, naively, expected to see some correspondence

between vacuum and instanton series on the level of individual Feynman diagrams. However,

no such trend has been detected so far. Furthermore, “new” diagrams originating from the

instanton zero mode Jacobian, surprisingly, provide the dominant contribution (∼ 114%) to

the three-loop correction B2, see Table I, both for 2-loop and 3-loop contributions, both for

the double well and SG problems. In the double well case the “new” individual diagrams

c and c5 give the dominant contribution (83% and 126%) to the overall loop coefficients

B1 and B2 out of 4 and 18 diagrams, respectively, while in the SG case they give signif-

icant contributions 48% and 25% out of 4 and 22 diagrams, respectively. (However, the

corresponding c5-like four-loop diagram in the SG case represents the 4% of the four-loop

correction B3 only.)

Another observation is that the final three-loops answer has a rational value. However,

unlike the evaluation of the two-loop coefficient B1 where all Feynman diagrams turned out

to be rational numbers, in our case of B2 at least two diagrams contain irrational parts.

What is the origin of these terms and how they cancel out among themselves are questions

left unanswered above, since several diagrams had resisted our efforts to get the analytic

answer, so that we used numerical integration methods. Perhaps this can still be improved.

Similar calculations for scalar and eventually gauge theories would be certainly possible

and are of obvious interest. The diagrams are the same, and the basic element remains

explicit Green functions. (In the case of gauge theories those should be orthogonal to all

–including gauge– zero modes.)
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Feynman Contribution to

diagram B2

a1 0.07649737

b12 0.01201803

b21 0.02179546

b22 0.1266254

b23 0.08934351

b24 0.1367672

e 0.09567712

f 0.3168478

g 0.3089885

h 0.06178483

c1 −0.05369549

c2 −0.3472822

c3 −0.07161299

c4 −0.1830249

c5 −0.1149061

c6 −0.1112634

I2D −1.70563

I3D 0.36380

I4D 0.00075

Table I: Contribution of diagrams in Fig. (2)-(3) for the three-loop correction B2. We write

B2 = (B2loop + I1D + I2D + I3D + I4D) where j = I1D and I2D, I3D, I4D denote the sum of two-

dimensional, three-dimensional and four-dimensional integrals, respectively. The term B2loop =

341/1152 ≈ 0.296 (see text).
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b1

c   

a b2

−

−

12
1

1

11
8

2

8

Figure 1: Diagrams contributing to the two-loop correction B1 = a+b1+b2+c. They enter into the

coefficient B2 via the term B2loop. For the instanton field the effective triple, quartic, quintic and

sextic vertices are V3 = 4
√

2 sinh(t)

cosh2(t)
S
−1/2
0 , V4 = 8 (2/ cosh2(t)−1)S−1

0 , V5 = −32
√

2 sinh(t)

cosh2(t)
S
−3/2
0 ,

V6 = −64 (2/ cosh2(t) − 1)S−2
0 , respectively, while for the subtracted vacuum field diagrams we

have V3 = V5 = 0, V4 = 8S−1
0 and V6 = 64S−2

0 . The tadpole in diagram c, which comes

from the zero-mode Jacobian rather than from the action, is effectively represented by the vertex

Vtad = 1√
2

sinh(t)

cosh2(t)
S
−1/2
0 , (see text). The signs of contributions and symmetry factors are indicated.
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a b b

b b

b

b

1 11 21

12 22

23

24

−

−

−

1 1 1

1 1

1

1

8 48 16

24 12

8

8

1
8

g

1

16

1

12

h

1

48

1
16

−
1
16

−

ed f

1

48
−

1

16

j

k l

Figure 2: Diagrams contributing to the coefficient B2. The signs of contributions and symmetry

factors are indicated.
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c c c

c c c

2 3

4 5 6

1

1 1 1

1 1 1
−−

−
4 4 6

4 4 8

c

1

8
−

7

Figure 3: Diagrams contributing to the coefficient B2. They come from the Jacobian of the zero

mode and have no analogs in the perturbative vacuum. The signs of contributions and symmetry

factors are indicated.
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