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Abstract

This paper deals with quantum fluctuations near the classical instanton configuration. Feynman

diagrams in the instanton background are used for the calculation of the tunneling amplitude (the

instanton density) in the three-loop order for quartic double-well potential. The result for the three-

loop contribution coincides in five significant figures with one given long ago by J. Zinn-Justin.

Unlike the two-loop contribution where all involved Feynman integrals are rational numbers, in

the three-loop case Feynman diagrams can contain irrational contributions.
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Introduction

There is no question that instantons [1], Euclidean classical solutions of the field equa-

tions, represent one of the most beautiful phenomena in theoretical physics [2]-[3]. In-

stantons in non-Abelian gauge theories of the QCD type are important component of the

non-perturbative vacuum structure, in particular they break chiral symmetries and thus sig-

nificantly contribute to the nucleon (and our) mass [4]. Instantons in supersymmetric gauge

theories lead to derivation of the exact beta function [5], and in the “Seiberg-Witten” N=2

case to derivation of the super potential by the exact evaluation of the instanton contribu-

tions to all orders [6]. The instanton method now has applications in stochastic settings

beyond quantum mechanics or field theories, and even physics – in chemistry and biology –

see e.g. discussion of its usage in the problem of protein folding in [7].

Since the work by A. Polyakov [1] the problem of a double well potential (DWP) has been

considered as the simplest quantum mechanical setting illustrating the role of instantons in

more complicated quantum field theories. In the case of the DWP one can perform certain

technical tasks – like we do below – which so far are out of reach in more complicated/realistic

settings.

Tunneling in quantum mechanical context has been studied extensively using WKB and

other semiclassical means. The aim of this paper is not to increase accuracy on these

quantum-mechanical results, but rather to develop tools - Feynman diagrams on top of an

instanton - which can be used in the context of many dimensions and especially in Quantum

Field Theories (QFTs). Therefore we do not use anything stemming from the Schrödinger

equation in this work, in particularly do not use series resulting from recurrence relations

or resurgence relations (in general, conjectured) by several authors.

Another reason to study DWP is existing deep connections between the quantum mechan-

ical instantons – via Schrödinger equation – with wider mathematical issues, of approximate

solutions to differential equations, defined in terms of certain generalized series. A particu-

lar form of an exact quantization condition was conjectured by Zinn-Justin [12], which links

series around the instantons with the usual perturbative series in the perturbative vacuum.

Unfortunately, no rigorous proof of such a connection exist, and it remains unknown if it can

or cannot be generalized to the field theory cases we are mainly interested in. Recently, for

the quartic double well and Sine-Gordon potentials Dunne and Ünsal (see [8] and also refer-
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ences therein) have presented more arguments for this connection, which they call resurgent

relation.

In [9] the method and key elements (a non-trivial instanton background and new effective

vertices) to calculate the two-loop correction to the tunneling amplitude for the DWP were

established. In particular, the anharmonic oscillator was considered in order to show how to

apply Feynman diagrams technique. In [10] the Green function in the instanton background

was corrected, and it was attempted to obtain two- and three-loop corrections. Finally,

Wöhler and Shuryak [11] corrected some errors made in [10] and reported the exact result

for the two-loop correction.

The goal of the present paper is to evaluate the three-loop correction to the tunneling

amplitude and compare it with the results obtained by Zinn-Justin [12] by a completely

different method, not available in the field theory settings.

Three-loop correction to the instanton density

Let us consider the quantum-mechanical problem of a particle of mass m = 1 in a double

well potential

V = λ (x2 − η2)
2
. (1)

The well-known instanton solution Xinst(t) = η tanh(1
2
ω(t− tc)), with ω2 = 8λ η2, describ-

ing the barrier tunneling is the path which possesses the minimal action S0 = S[Xinst(t)] =

ω3

12λ
. Setting ω = 1, and shifting to the origin one gets the anharmonic oscillator poten-

tial in a form Vanh = 1
2
x2 −

√
2λx3 + λx4 with one (small) dimensionless parameter λ.

Zinn-Justin et al [12] use the same potential with λ = g/2.

The classical action S0 of the instanton solution is therefore large and 1
S0

is used in the

expansion.The ground state energy E0 within the zero-instanton sector (pure perturbation

theory) is written in the form

E0 =
1

2

∞∑
n=0

An
Sn0

, (A0 = 1) , (2)

Another series to be discussed is the splitting δ E = Efirst excited state−Eground state related

to the so called instanton density [17] in the one-instanton approximation as

δ E = ∆E
∞∑
n=0

Bn

Sn0
, (B0 = 1) , (3)
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where ∆E = 2
√

6S0

π
e−S0 is the well-known one-loop semiclassical result [2]. Coefficients

An in the series (2) can be calculated using the ordinary perturbation theory (see [15])

while many coefficients Bn in the expansion (3) were found by Zinn-Justin, 1981-2005 (see

[12] and references therein), obtained via the so called exact Bohr-Sommerfeld quantization

condition.

Alternatively, using the Feynman diagrams technique Wöhler and Shuryak [11] calculated

the two-loop correction B1 = −71/72 in agreement with the result by Zinn-Justin [12].

Higher order coefficients Bn in (3) can also be computed in this way. Since we calculate the

energy difference, all Feynman diagrams in the instanton background (with the instanton-

based vertices and the Green’s function) need to be accompanied by subtraction of the same

diagrams for the anharmonic oscillator (see [9] for details). For 1
∆E
� τ � 1 it permits to

evaluate the ratio
〈−η|e−H τ |η〉inst
〈η|e−H τ |η〉anh

where the matrix elements 〈−η|e−H τ |η〉inst , 〈η|e−H τ |η〉anh are calculated using the

instanton-based Green’s function and the Green function of the harmonic oscillator, re-

spectively.

The instanton-based Green’s function G(x, y) form to be used

G(x, y) = G0(x, y)

[
2−xy+

1

4
|x−y|(11−3xy)+(x− y)2

]
+

3

8
(1−x2)(1−y2)

[
logG0(x, y)−11

3

]
,

(4)

is expressed in variables x = tanh( t1
2

), y = tanh( t2
2

) , in which the familiar Green function

e−|t1−t2| of the harmonic oscillator is

G0(x, y) =
1− |x− y| − x y
1 + |x− y| − x y

, (5)

In its derivation there were two steps. One was to find a function which satisfies the Green

function equation, used via two independent solutions and standard Wronskian method. The

second step is related to a zero mode: one can add a term φ0(t1)φ0(t2) with any coefficient

and still satisfy the equation. The coefficient is then fixed from orthogonality to the zero

mode, see [10].

The two-loop coefficient is [11]

B1 = a+ b1 + b2 + c ,
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a = − 97

1680
, b1 = − 53

1260
, b2 = − 39

560
, c = −49

60
. (6)

The three-loop correction B2 (3) we are interested in is given by the sum of diagrams, which

we group as follows (see Fig. 1)

B2 = B2loop + a1 + b11 + b12 + b21 + b22 + b23 + b24

+ d+ e+ f + g + h+ c1 + c2 + c3 + c4 + c5 + c6 .
(7)

All Feynman diagrams in (7) are presented in Figs. 1-3. The rules of constructing the

integrals for each should be clear from an example, the explicit expression for the Feynman

integral b23 in Fig. 2, which is

b23 =
9

8

∫ 1

−1

dx

∫ 1

−1

dy

∫ 1

−1

dz

∫ 1

−1

dw

J(x, y, z, w)

(
x y z wGxxGxyGyzGywG

2
zw −G0

xxG
0
xyG

0
yzG

0
yw(G0

zw)
2
)
, (8)

while for c4 in Fig. 3 it takes the form

c4 =
3

8

∫ 1

−1

dx

∫ 1

−1

dy

∫ 1

−1

dz
x y

(1− y2)(1− z2)
Gxy G

2
yz Gzz , (9)

here we introduced notations Gxy ≡ G(x, y), G0
xy ≡ G0(x, y) and J =

1
(1−x2)

1
(1−y2)

1
(1−z2)

1
(1−w2)

. Notice that the c´s diagrams come from the Jacobian of the zero

mode and have no analogs in the anharmonic oscillator problem.

Results

The obtained results are summarized in Table I. All diagrams are of the form of two-

dimensional, three-dimensional and four-dimensional integrals. In particular, the diagrams

b11 and d (see Fig. 2)

b11 =
1

48

∫ 1

−1

dx

∫ 1

−1

dy ( G4
xy − (G0

xy)
4

)

d =
1

16

∫ 1

−1

dx

∫ 1

−1

dy ( GxxG
2
xy Gyy −G0

xx (G0
xy)

2
Gyy ) ,

(10)
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being equal to two-dimensional integrals are the only ones which we are able to calculate

analytically

b11 = − 1842223

592704000
− 1

9800

(
367 ζ(2)− 180 ζ(3)− 486 ζ(4)

)
≡ brat11 + birrat11

d =
205441

2469600
+

525

411600
ζ(2) ≡ drat + dirrat ,

(11)

here ζ(n) denotes the Riemann zeta function of argument n (see E. Whittaker and G. Watson

(1927)). They contain a rational and an irrational contribution such that

birrat11

brat11

≈ −4.55 ,
dirrat

drat
≈ 0.025 .

It shows that b11 irrational contribution is dominant with respect to the rational part while

for diagram d the situation is opposite. Other diagrams, see Table I, were evaluated numer-

ically with an absolute accuracy ∼ 10−5. Surprisingly, almost all of them are of order 10−1

with few of them (diagrams a1, b12, b21) which are of order 10−2.

J. Zinn-Justin (see [12] and references therein) reports a value of

BZinn−Justin
2 = − 6299

10368
≈ −0.607542 , (12)

while present calculation shows that

Bpresent
2 ≈ −0.607535 , (13)

which is in agreement, up to the precision employed in the numerical integration.

Similarly to the two-loop correction B1 the coefficient B2 is negative. For not-so-large

barriers (S0 ∼ 1), the two-loop and three-loop corrections are of the same order of magnitude.

The dominant contribution comes from the sum of the four-vertex diagrams

b12, b21, b23, e, h, c1, c5, c6 while the three-vertex diagrams a1, b22, b24, f, g, c2, c3, c4 provides

minor contribution, their sum represents less than 3% of the total correction B2. Inter-

esting that for both two and three loop cases the largest contribution comes from diagrams

stemming from the Jacobian, c for B1 and c5, c6 for B2. Those diagrams are absent in the

perturbative vacuum series, and thus do not have subtractions.

We already noted that individual three-loop diagrams contain irrational numbers. If J.

Zinn-Justin´s rational result is correct, then there must be a cancelation of these irrational

contributions in the sum (7). From (11) we note that the term (birrat11 +dirrat) gives a contri-

bution of order 10−2 to the mentioned sum (7), and therefore the coincidence 10−5 between
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present result (13) and one of Zinn-Justin (12) is an indication that such a cancelation oc-

curs. Now, we evaluate the coefficients A1, A2 in (2) using Feynman diagrams (see [15]). In

order to do it let us consider the anharmonic oscillator potential Vanh = 1
2
x2−
√

2λx3 +λx4

and calculate the transition amplitude 〈x = 0|e−Hanhτ |x = 0〉. All involved Feynman inte-

grals can be evaluated analytically. In the limit τ → ∞ the coefficients of order S−1
0 and

S−2
0 in front of τ gives us the value of A1 and A2, respectively. As it was mentioned above

the c´s diagrams do not exist for the anharmonic oscillator problem. The Feynman integrals

in Fig. 1 give us the value of A1, explicitly they are equal to

a =
1

16
, b1 = − 1

24
, b2 = − 3

16
.

The diagrams in Fig. 2 determine A2 and corresponding values are presented in Table I,

b11 = − 1
384

and d = − 1
64

. Straightforward evaluation gives

A1 = −1

3
, A2 = −1

4
,

which is in agreement with the results obtained in standard multiplicative perturbation

theory (see [16]). No irrational numbers appear in the evaluation of A1 and A2. It is worth

noting that (see Table I) some Feynman integrals give the same contribution,

f = g =
3

32
, b22 = b24 =

1

24
.

In the instanton background the corresponding values of these diagrams do not coincide but

are very close.

Conclusions and Discussion

In conclusion, we have calculated the tunneling amplitude (level splitting to the instanton

density) up to three-loops using Feynman diagrams for quantum perturbations on top of the

instanton. Our result for B2 is found to be in good agreement with the resurgent relation

between perturbative and instanton series suggested by Zinn-Justin (for modern reference

see [12]).

Let us remind again, that this paper is methodical in nature, and its task was to develop

tools to calculate tunneling phenomena in multidimensional or QFT context, in which any

results stemming from Schrödinger equation are not available. We use a quantum mechanical
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example as a test of the tools we use: but the tools themselves are expected to work in much

wider context.

One comment on the results is that the final three-loops answer has a rational value.

However, unlike the evaluation of the two-loop coefficient B1 where all Feynman diagrams

turned out to be rational numbers, in our case of B2 at least two diagrams contain irrational

parts. What is the origin of these terms and how they cancel out among themselves are

questions left unanswered above, since several diagrams had resisted our efforts to get the

analytic answer, so that we used numerical integration methods. Perhaps this can still be

improved.

Another intriguing issue is the conjectured relation between the instanton and vacuum

series: at the moment we don’t understand its origin from the path integral settings. Some

diagrams are similar, but expressions quite different and unrelated. New diagrams originate

from the instanton zero mode Jacobian, and those have no analogues in the vacuum. Sur-

prisingly, they provide the dominant contribution to two-, three-loop corrections B1 and B2:

∼ 80% and ∼ 140%, respectively, see Table I.

Finally, we note that to our knowledge this is the first three-loop calculation on a nontrivial

background of an instanton. Similar calculations for gauge theories would be certainly

possible and are of obvious interest. One technical issue to be solved is gauge Green function

orthogonal to all (including gauge change) zero modes.
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Feynman Instanton Vacuum

diagram B2 A2

a1 −0.0650 5
192

b12 0.0257 − 1
64

b21 0.0496 − 11
384

b22 −0.1323 1
24

b23 0.2807 −1
8

b24 −0.1271 1
24

e 0.3950 − 9
64

f −0.3524 3
32

g −0.3964 3
32

h 0.3142 − 3
32

c1 −0.3268 −

c2 0.6333 −

c3 0.1266 −

c4 0.2975 −

c5 −0.7710 −

c6 −0.8082 −

I2D 0.0963 - 7
384

I3D −0.0158 19
64

I4D −0.8408 -155
384

Table I: Contribution of diagrams in Fig. (2)-(3) for the three-loop corrections B2 (left) and

A2 (right). We write B2 = (B2loop + I2D + I3D + I4D) where I2D, I3D, I4D denote the sum of

two-dimensional, three-dimensional and four-dimensional integrals, respectively. Similarly, A2 =

I2D + I3D + I4D. The term B2loop = 39589/259200 ≈ 0.152735 (see text).
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b1

c   
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ï
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12
1
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11
8

2

8

Figure 1: Diagrams contributing to the two-loop correction B1 = a+b1+b2+c. They enter into the

coefficient B2 via the term B2loop. For the instanton field the effective triple and quartic coupling

constants are V3 = −
√

3
2 tanh(t/2)S

−1/2
0 and V4 = 1

2 S
−1
0 , respectively, while for the subtracted

anharmonic oscillator we have V3 = −
√

3
2 S

−1/2
0 and V4 = 1

2 S
−1
0 . The tadpole in diagram c, which

comes from the zero-mode Jacobian rather than from the action, is effectively represented by the

vertex Vtad =
√

3
4

tanh(t/2)

cosh2(t/2)
S
−1/2
0 . The signs of contributions and symmetry factors are indicated.
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8 48 16
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8

8

d e f

g h

1
16

ï
1

11
ï

1
16 8

16 48

Figure 2: Diagrams contributing to the coefficient B2. The signs of contributions and symmetry

factors are indicated.
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c c c

c c c

2 3
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ïï

ï
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Figure 3: Diagrams contributing to the coefficient B2. They come from the Jacobian of the zero

mode and have no analogs in the anharmonic oscillator problem. The signs of contributions and

symmetry factors are indicated.
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