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The sum of active neutrino masses is well constrained, 58 meV ≤ mν . 0.23 eV, but the origin of
this scale is not well understood. Here we investigate the possibility that it arises by environmental
selection in a large landscape of vacua. Earlier work had noted the detrimental effects of neutrinos on
large scale structure. However, using Boltzmann codes to compute the smoothed density contrast on
Mpc scales, we find that dark matter halos form abundantly for mν & 10 eV. This finding rules out
an anthropic origin of mν , unless a different catastrophic boundary can be identified. Here we argue
that galaxy formation becomes inefficient for mν & 10 eV. We show that in this regime, structure
forms late and is dominated by cluster scales, as in a top-down scenario. This is catastrophic:
baryonic gas will cool too slowly to form stars in an abundance comparable to our universe. With
this novel cooling boundary, we find that the anthropic prediction for mν agrees at better than 2σ
with current observational bounds. A degenerate hierarchy is mildly preferred.

I. INTRODUCTION

In a theory with a large multidimensional potential
landscape [1], the smallness of the cosmological constant
can be anthropically explained [2].1 The lack of a
viable alternative explanation for a small or vanishing
cosmological constant, the increasing evidence for a fine-
tuned weak scale, and several other complexity-favoring
coincidences and tunings in cosmology and the Standard
Model, all motivate us to consider landscape models
seriously, and to extract further pre- or post-dictions
from them.

A large landscape can also explain an aspect of the
Standard Model that has long remained mysterious: the
origin of the masses and mixing angles of the quarks and
leptons. Plausible landscape models allow for some of the
first generation quark and lepton masses to be anthrop-
ically determined, while the remaining parameters are
set purely by the statistical distribution of the Yukawa
matrices. Results are consistent with the observed hier-
archical, generation, and pairing structures [29–36]. In
such analyses, the overall mass scale of neutrinos may be
held fixed and ascribed, e.g., to a seesaw mechanism. But
ultimately, one expects that the mass scale will vary, no
matter what the dominant origin of neutrino masses is
in the landscape. For Dirac neutrinos, Yukawa couplings
can vary; in the seesaw, a coupling or the right-handed
neutrino mass scale can vary.

1 It cannot be explained in a one-dimensional landscape, no mat-
ter how large [3–5], because an empty univere is produced. The
string theory landscape [1, 6, 7] is an example of a multidimen-
sional landscape in which the cosmological constant scans densely
and our vacuum can be produced with sufficient free energy. Re-
lated early work includes [8–21]. Reviews with varying ranges of
detail and technicality are available, for example [22–28].

Thus we may ask whether anthropic constraints play
a role in determining the overall scale, or sum, of the
standard model neutrino masses,

mν ≡ m(νe) +m(νµ) +m(ντ ) . (1)

Current observational bounds imply

58 meV ≤ mν . 0.23 eV . (2)

The lower bound comes from the mass splittings observed
via solar and atmospheric neutrino oscillations [37]. The
upper bound comes from cosmological observations that
have excluded the effects that more massive neutrinos
would have had on the cosmic microwave background
and on large scale structure [38, 39]. The proximity of
the lower to the upper bound gives us confidence that
cosmological experiments in the coming decade will de-
tect mν , and that they may determine its value with a
precision approaching the 10−2 eV level [40].

An anthropic origin of the neutrino mass scale is sug-
gested by the remarkable coincidence that neutrinos have
affected cosmology just enough for their effects to be no-
ticeable, but not enough to significantly diminish the
abundance of galaxies. A priori, mν could range over
dozens of orders of magnitude. If mν was only two or-
ders of magnitude smaller than the observed value, its
effects on cosmology would be hard to discern at all. If
mν was slightly larger, fewer galaxies would form, and
hence fewer observers like us. The goal of this paper is
to assess this question quantitatively.

The basic framework for computing probabilities in
a large landscape of vacua is reviewed in Sec. II, and
the probability distribution dP/d logmν is computed
in Sec. III. In the remainder of this introduction, we
will describe the key physical effects that enter into the
analysis, and we will present our main results.

Summary: There are two competing effects that de-
termine the neutrino mass sum. We assume that the sta-
tistical distribution of neutrino masses among the vacua
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FIG. 1: (a) The dimensionless power spectrum at z = 0 for a range of neutrino masses with a normal hierarchy, computed using
CAMB. From top to bottom at high wavenumber: mν = 0 (red), mν = 5 eV (purple), mν = 10 eV (blue), and mν = 15 eV
(black). Free-streaming of massive neutrinos causes a suppression of power at high wavenumbers. Above a critical neutrino
mass m ∼ 8 eV, this effect is large enough so that the dimensionless power spectrum develops a peak near the free-streaming
scale knr < kgal. This implies that the first structure consists of cluster-size halos. (b) We obtain the smoothed density contrast
σR at z = 0 numerically, essentially by integrating k3P (k) up to the wavenumber 1/R; see Eq. (3) and surrounding discussion.
We take R to be the comoving scale of the Milky Way (1012M�). The orange (upper) curve corresponds to a normal hierarchy;
the green (lower) to a degenerate hierarchy. We see that neutrinos suppress halo formation only in the regime mν . 10 eV where
the dimensionless power spectrum has no maximum and the integral is dominated by the large-k cutoff. For larger neutrino
masses, the formation of galactic and larger halos is actually enhanced, because the dimensionless power spectrum develops a
peak that dominates the integral. At higher neutrino masses, the peak power increases, due to a decrease of the free-streaming
scale and a lengthening of the matter era. (This is more pronounced for a normal hierarchy.) Hence σR increases. If observers
formed in proportion to the mass fraction in large dark matter halos, this would rule out an anthropic origin of mν ; see Fig. 2.

of the landscape favors a large neutrino mass sum, with a
force of order unity or less (see Sec. II A for the definition
of the multiverse force).

If the anthropic approach is successful, we must
demonstrate a compensating effect: that neutrino masses
much greater than the observed value are not frequently
observed. That is, we must multiply the prior probabil-
ity for some value of mν by the number of observers that
will be produced in regions where mν takes this value.
Observers are usually represented by some proxy such as
galaxies. We consider two models for observations: at
any given time, their rate is proportional to the number
of Milky Way-like galaxies, or proportional to the growth
rate of this galaxy population (see Sec. II B). We sum this
rate over a spacetime region called the causal patch [41]
(a standard regulator for the divergent spacetime that re-
sults from a positive cosmological constant; see Sec. II C).
The product of prior distribution and the abundance of
galaxies yields a predicted probability distribution. As
usual, if the observed value lies some number of standard
deviations from the mean of the predicted distribution,
we reject the model (in this case the anthropic approach
to mν) at the corresponding level of confidence.

The neutrino mass spectrum—the individual distribu-
tion of masses among the three active neutrinos—has a
noticeable effect on structure formation. We consider two
extreme cases. In the normal hierarchy, one neutrino
contributes dominantly to the mass sum mν ; here we ap-
proximate the remaining two as massless. In this case the
observed mass splittings require mν ≥ 58 meV. In the de-
generate hierarchy, each mass is of order mν/3 (and here

we approximate them as exactly equal). This case will
soon be tested by cosmological observations, since the
observed mass splittings would imply mν & 150 meV,
near the present upper limit. We do not explicitly con-
sider the intermediate case of an inverted hierarchy, with
two nearly degenerate massive neutrinos and one light or
massless neutrino.

The main challenge lies in estimating the galaxy abun-
dance as a function of mν . The effects of one or more
massive neutrinos on structure formation are somewhat
complex; hence, we compute the linear evolution of den-
sity perturbations numerically using Boltzmann codes
CAMB [42] and CLASS [43], wherever possible. We will
now summarize the key physical effects. A more exten-
sive summary and analytic approximations are given in
Sec. III and Appendix B; we recommend Refs. [44, 45]
for detailed study.

After becoming nonrelativistic, neutrinos contribute
approximately as pressureless matter to the Friedmann
equation. However, they contribute very differently from
cold dark matter (CDM) to the growth of perturbations,
because neutrinos are light and move fast. This intro-
duces a new physical scale into the problem of structure
formation: the free-streaming scale is set by the distance
over which neutrinos travel until becoming nonrelativis-
tic. It is roughly given by the horizon scale when they
become nonrelativistic, with comoving wavenumber knr

(see Appendix B 1 for more details). On this and smaller
scales, k & knr, neutrinos wipe out their own density per-
turbations. More importantly, as a nonclustering matter
component they change the rate at which CDM perturba-
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FIG. 2: No cooling boundary: if one assumed that observers
trace dark matter halos of mass 1012M� or greater, one would
find a bimodal probability distribution over the neutrino mass
sum mν . This distribution is shown here for a normal hier-
archy (orange/upper curve) and degenerate hierarchy (green
curve). The range of values mν consistent with observation
(58 meV < mν < 0.23 eV, shaded in red) is greatly disfa-
vored, ruling out this model.—By contrast, we shall assume
here that observers trace galaxies. Crucially, we shall argue
that for mν & 10 eV, galaxies do not form even though halos
do. This novel catastrophic boundary excludes the mass range
above 10 eV, leading to a successful anthropic explanation of
the neutrino mass (see Fig. 3).

tions grow, from linear growth in the scale factor (δ ∝ a)
on large scales, to sub-linear growth on smaller scales
k & knr. This suppresses the CDM power spectrum at
small scales, see Fig. 1a.

The linear quantity most closely related to the abun-
dance of dark matter halos on the galactic scale R is
not the dimensionless CDM power spectrum k3Pcc(k).
Rather, halo abundance is controlled by the smoothed
density contrast σR, which is approximately given by the
integrated power,

σR ∼
∫ 1/R

0

dk

k
k3Pcc(k) , (3)

up to the wavenumber corresponding to the relevant
scale. (A more precise formula is given in the main text,
where we also describe in detail how halo abundance is
computed from σR using the Press-Schechter formalism.)
This distinction turns out to be crucial for large neutrino
masses.

We see from Fig. 1a that for small neutrino masses
mν . 10 eV, the integrand k3Pcc(k) increases monotoni-
cally. Hence the integral for σR is dominated by its upper
limit, i.e., by the power on the scale kgal ∼ 1/R. This
yields the “bottom-up” scenario of hierarchical struc-
ture formation familiar from our own universe: small ha-
los typically form first, and more massive halos virialize
later.

However, for mν & 10 eV, the small scale power be-
comes so suppressed that the dimensionless power spec-
trum develops a maximum at the free-streaming scale

knr < kgal. In this regime, the smoothed density con-
trast σR on galactic scales R is no longer dominated by
the power at wavenumber ∼ 1/R. Instead, the power at
larger scales than R contributes dominantly to σR. This
results in a top-down scenario, where halos first form on
cluster scales, nearly simultaneously with galactic-scale
halos.

The transition from bottom-up to top-down structure
formation around mν ≈ 10 eV has not (to our knowledge)
been noted in the context of anthropic explanations of the
neutrino mass sum. We find here that it is crucial to the
analysis, for two reasons. First, it implies that the scales
that dominantly contribute to σR are unaffected by free-
streaming for mν & 10 eV. Therefore, increasing mν be-
yond ∼ 10 eV does not suppress CDM structure. In fact,
we find that σR increases in this range (Fig. 1b). The sec-
ond implication works in the opposite direction: in the
top-down scenario that arises for mν & 10 eV, galaxies
will not form inside halos at an abundance comparable to
our universe.

Let us discuss each of these implications in turn. We
begin by pretending that the stellar mass per halo mass is
unaffected by mν ; in particular, let us suppose that there
is no dramatic suppression of star formation in the top-
down regime, mν & 10 eV. If so, we would be justified in
regarding halos as a fair proxy for observers. Here we con-
sider 1012M� halos [46]. From Fig. 1b, we see that halo
abundance decreases with mν up to mν ∼ 10 eV; then
it begins to increase. Combining this with the assumed
prior distribution that favors large mν , we would find
the probability distribution over mν is bimodal (Fig. 2).
The first peak is at mν ≈ 1 eV, followed by a mini-
mum near 10 eV and a second peak at much greater
mass.2 Therefore, if observers traced dark matter halos
with M & 1012M�, one should conclude that small neu-
trino masses are greatly disfavored. Such a result would
be in significant tension with the current upper bound of
0.23 eV, and it would seem to render an anthropic origin
of the neutrino mass sum implausible.

However, our fundamental assumption is that ob-
servers trace galaxies, not halos. In some cosmologies
including our own, galaxies in turn trace halos; if they
do, halos are an equally good proxy. But the change of
regime from bottom-up to top-down structure formation
for mν & 10 eV is catastrophic for galaxy formation.

From observation, we know that stars do not form effi-
ciently in bound structures that are much larger than the
mass scale of our own galactic halo, 1012M�. Heuristi-

2 Fig. 2 does not show the entire peak since CAMB gives results
only for mν . 40 eV. Absent the earlier catastrophic boundary
at 10 eV that we will assert, a robust effect that would eventu-
ally suppress the probability at large neutrino mass is the small-
ness of the baryon fraction for mν & 100 eV. This would sup-
press the number of baryons (and hence, observers) in the causal
patch [47]. It would also impose dynamical obstructions to star
formation [48].
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FIG. 3: Our main result: the probability distribution over the neutrino mass sum mν for (a) a normal hierarchy and (b) a
degenerate hierarchy, assuming that observers require galaxies. The plot is the same as Fig. 2, but the mass range is cut off
at 7.7 eV (10.8 eV) in the normal (degenerate) case. For greater masses, the first halos form late and are of cluster size; we
argue that galaxies do not form efficiently in such halos. We use the second observer model described in Sec. II B; results
look nearly identical with the first model. We assume a flat prior over mν (see Fig. 4 for other priors).—The central 1σ and
2σ regions are shaded. Vertical red lines indicate the lowest possible values for the neutrino mass consistent with available
data: mobs ≈ 58 meV for a normal hierarchy, and mobs ≈ 150 meV for a degenerate hierarchy. We find that these values are
within 2σ of the median. The agreement would further improve with a less conservative treatment of the detrimental effects of
neutrinos on gas cooling in halos, and/or the cosmological detection of a neutrino mass sum larger than the minimal value.

cally, this can be explained by noting that in halos of this
size, the cooling timescale for the baryonic gas is greater
than the age of the universe [48–52]. In our universe there
are galaxies because galactic halos, which produce stars
efficiently, formed earlier than these larger halos, which
do not. Clusters inherit galaxies that formed in smaller
halos, but they do not have significant star formation
themselves.

In a top-down scenario due to large neutrino mass,
however, galactic halos would form much later. They
would typically be embedded in larger halos that virialize
roughly at the same time, with masses characteristic of
galaxy groups clusters—but without many galaxies to
inherit. The virial temperature and dynamical timescale
relevant for baryon cooling will be set by the largest of
the nested halos. (See Sec. III D and Appendix C for
details.) Therefore, cooling will not be efficient: the top-
down scenario produces star-poor dark matter clumps,
with most baryons remaining in hot gas.

As a first approximation for this cooling boundary, we
cut off the probability distribution at a value mν ∼ 10 eV
that corresponds to the onset of the top-down regime.
This overestimates the amount of galaxies just below the
cutoff and underestimates it just above. In future work,
we plan to include explicit models for successful galaxy
cooling beyond the crude top-down vs. bottom-up crite-
rion. This should replace the sharp cutoff by a smooth
decay of the probability.

We believe that our argument for a cooling catas-
trophe is robust, because the transition to a top-down
scenario is a drastic change of regime. However, the
underlying physics is complicated, involving shocks,
complicated cooling functions, fragmentation, and feed-
back from stars, black holes, and supernovae. Suppose
therefore that we are wrong. That is, suppose that

at mν & 10 eV, some unanticipated combination of
processes lead to a stellar mass inside the causal patch
that is not much less than in our universe. Then one
would find that large neutrino masses are unsuppressed
(Fig. 2), and the observed value of mν cannot be
explained anthropically. In this sense, the cooling
catastrophe we assert can be regarded as a prediction
of the anthropic approach to the neutrino mass. To
test this prediction, it will be important to investigate
galaxy formation for mν & 10 eV using simulations that
give an adequate treatment of cooling flows and feedback.

Results: Our main results, with the cooling cutoff
mν . 10 eV imposed, are shown in Fig. 3. We find that
the currently allowed range of values for mν is entirely
consistent with an anthropic explanation, at better than
2σ. Fig. 4 shows that that our approach succeeds for a
wide range of prior distributions dPvac/dmν ∝ mn−1

ν : as-
suming a normal (degenerate) hierarchy, mobs lies within
2σ of the median if 0.09 < n ≤ 1.0 (0.09 < n < 1.4).

Our chief conclusion is that the neutrino mass sum can
be anthropically explained, but only if detrimental effects
of neutrinos on galaxy and star formation (rather than
halo formation) already become significant at or below
mν ≈ 10 eV.

Our results favor larger mν than the minimum values
allowed by the observed mass splittings, and in particular
they favor a degenerate over a normal hierarchy. Since
the observed range is consistent within 2σ in either case,
these are mild preferences rather than sharp predictions.

There are however two additional reasons why a de-
generate hierarchy appears more natural in the context
of the anthropic approach. First, with a normal hier-
archy one might expect that each neutrino mass scans



5

0.0 0.5 1.0 1.5 2.0

0.05

0.10

0.50

1.00

5.00

10.00

0.5 1.0 1.5 2.0

1

2

3

4

0.1

10

1

FIG. 4: The prior distribution of cosmologically produced vacua is assumed to favor large neutrino mass and to have no special
feature near the observed magnitude: dPvac/d logmν ∝ mn

ν , n > 0. One then expects n ∼ O(1), and the previous two figures
all show the case n = 1. This figure shows that the same conclusions obtain for a considerable range of n. (a) The median
of the probability distribution as a function of the multiverse force n. (b) The standard deviation of the worst case observed
value from the median, as a function of n. The 2σ region is shaded. Orange (the upper curve at large n in each plot) is for a
normal hierarchy; green is for a degenerate hierarchy.

separately with prior ni. Each prior would have to be
assumed positive and O(1). The prior for mν would then
be n =

∑
ni, and it becomes less plausible that n should

be small enough to render the anthropic prediction com-
patible with observation. A degenerate hierarchy, on the
other hand, may be the result of some flavor symmetry
that links the masses of the individual neutrinos, leaving
only a single scanning parameter. Then it is more plau-
sible that n is small enough to include the observed mν .

The second reason to prefer a degenerate hierarchy
is that it eliminates a viable anthropic window where
two neutrinos are extremely massive. If each neutrino
has mass of order MeV or greater, neutrons would be
stable, leading to a (catastrophic) helium-dominated
universe [53]. But neutrons will be unstable and the
catastrophe is averted, if one neutrino remains light and
only the other two become very heavy. With a normal
or inverted hierarchy, one has to explain why the one
or two heavy neutrinos did not end up in the extremely
large mass range above the MeV scale. This can be
resolved by assuming that the prior distributions for the
individual neutrino masses do have a feature between
the eV and the MeV scale, such that the much larger
scale is disfavored. With a degenerate hierarchy, this
problem does not arise in the first place, since either all
neutrinos are light or all are heavy.

Relation to earlier work: Our analysis builds on the
pioneering work of Tegmark, Vilenkin and Pogosian [53,
54] (see also [55, 56]), who were the first to argue that
the neutrino mass admits an anthropic explanation. We
agree with their conclusion, but we claim here that the
nature of the relevant catastrophic boundary was not cor-
rectly identified.

Ref. [53] does not justify its restriction to the region
mν . 10 eV. Moreover, it employs an analytic approx-
imation to σR that greatly underestimates the halo

abundance for mν & 5−10 eV. With this approximation,
the probability distribution appears to vanish near
10 eV due to a paucity of CDM structure; see Fig. 5.
Thus, suppression of CDM structure due to massive
neutrinos—rather than the obstruction to cooling at
m & 10 eV—would appear to provide the relevant catas-
trophic boundary underlying the anthropic explanation
of the neutrino mass sum.

Here we go further in two respects: our numerical
computations show that CDM structure becomes unsup-
pressed for mν & 10 eV. Hence, if neutrino masses have
an anthropic origin, a different catastrophic boundary
is relevant. And we identify a specific physical effect,
the transition to a top-down regime, which had not been
noted and which supplies a suitable boundary by sup-
pressing galaxy formation.

The analytic approximation in question is Eq. (5) in
Ref. [53]. It assumes that massive neutrinos suppress the
smoothed density contrast σR on galactic scales by the
same factor by which they suppress the matter power
on galactic scales. This is accurate for small neutrino
masses, because in a bottom-up scenario the shortest
scales dominate the integral for σR. The approximation
underestimates the abundance of dark matter halos for
mν & 10 eV, because in this regime σR is dominated by
power at larger scales, which is relatively unsuppressed by
free-streaming. More details can be found after Eq. (3)
and in Sec. III D.

The discrepancy is revealed by explicit numerical com-
putation of the smoothed density contrast σR on galactic
scales from Boltzmann codes (see Fig. 1). One also finds
significantly different results for a normal versus degen-
erate hierarchy, a distinction that was suppressed in the
analytical approximation of Ref. [53].

When the halo abundance is correctly computed, the
need for a novel catastrophic boundary at or before 10 eV
becomes evident (Fig. 5). Without it, the probabil-
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FIG. 5: The dashed black line shows the probability distri-
bution found by Tegmark et al. [53] for a flat prior over mν .
This result would seem to remain compatible at about 2σ
with current observational constraints (red shaded region).
However, the analytic fitting function for the density con-
trast σR used in [53, 54] underestimates σR above a few eV.
The solid curves show the probability distribution that results
when σR is computed numerically from Boltzmann codes: or-
ange/upper=normal hierarchy; green/lower=degenerate hier-
archy. They differ slightly from Fig. 2 because Ref. [53] used
a different measure and observer model. Either way, a suc-
cessful anthropic explanation of mν requires the identification
of a catastrophic boundary at or below 10 eV.

ity distribution would strongly disfavor small neutrino
masses. It would be in significant tension with the an
upper bound of 0.23 eV or even 1 eV, and it would seem
to render an anthropic origin of the neutrino mass sum
implausible.

Our computation of σR from Boltzmann codes, and
our compensating identification of a novel catastrophic
boundary at 10 eV are the main differences to Ref. [53].
Another difference is that we use the causal patch mea-
sure [41] to regulate the infinities of eternal inflation.
Refs. [53, 54] used a different measure that is no longer
viable; see Sec. II C for details. This has a visible but
comparatively small effect on the probability distribu-
tion: by comparing Fig. 2 with Fig. 5, one sees that the
causal patch is somewhat more favorable to an anthropic
explanation of mν . The causal patch also renders more
robust our conjecture that star formation is ineffective
for mν & 10 eV, as discussed in more detail later.

We also build on the seminal investigation of catas-
trophic boundaries in cosmology by Tegmark et al. [48]
(see also Ref. [57]), who emphasized the crucial role of
cooling. We believe that our present work is the first
to associate catastrophic cooling failure to a top-down
structure formation scenario. Ref. [53] points out a
number of distinct catastrophies at very large neutrino
mass: For example, neutrinos act as cold dark matter
for mν � 100 eV, which also may be detrimental to star
formation. (However, this does not counteract the abun-
dance of CDM structure we find at mν & 10 eV. Fig. 5
illustrates that a cutoff at any scale larger than 10 eV,

say at mν ≈ 30 eV, would make small neutrino masses
too improbable for an anthropic explanation to work.)

II. PREDICTIONS IN A LARGE LANDSCAPE

If a theory has a large number of metastable vacua,
most predictions will be statistical in nature. We are
usually interested in understanding the magnitude of a
particular parameter x, such as the cosmological constant
or in the present case, the neutrino mass; hence we wish
to compute a probability distribution dP

d log x .

Fundamentally, the probability dP is proportional to
the number of observations dNobs that find the parame-
ter to lie in the range (log x, log x + d log x). Thus, our
task is to compute dNobs. This can be done by weighting
a prior probability distribution f(x), which comes from
the underlying theory, by the number w(x) of observa-
tions that will be made in a vacuum where x takes on a
particular value:

dP
d log x

= w(x)f(x) . (4)

We will discuss each factor in turn. Our presentation in
each subsection will be general at first, before specializing
to the case of the neutrino mass, x = mν .

A. Prior as a Multiverse Probability Force

The prior is defined by

f(x) =
dNvac

d log x
, (5)

Here x will be a parameter in the effective theory at low
energies whose scale log x one would like to predict or
explain; dNvac = f(x)d log x is the number of long-lived
metastable vacua3in which the parameter takes on values
in the range (log x, log x+ d log x).

With the notable exception of the cosmological con-
stant, the prior distribution for most parameters is not
well known. This is a technical problem: in the string
landscape, f(x) should in principle be computable. In
practice, it is difficult to derive phenomena far below the
fundamental scale (the Planck or string scale) directly.
However, this need not be an obstruction to progress,

3 Strictly, what matters is not the abundance of such vacua in the
effective potential but in the multiverse: cosmological dynamics
or initial conditions could favor the production of some vacua
over others. For most low-energy parameters one expects that
such selection effects are uncorrelated with x in the range of
interest [58]. In any case, we shall take the prior f to be an
effective distribution that incorporates not only the distribution
of vacua but also cosmological dynamics and initial conditions.
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any more than the fact that we cannot derive the Stan-
dard Model from a more fundamental theory prevented
us from discovering it.

Consider an arbitrary low-energy parameter x. In any
large landscape the prior distribution f(x) should admit
an effective description [29, 57, 59]. To avoid putting
in the answer, one may assume that f(x) has no special
features (such as a maximum) in a wide logarithmic range
of values. This range should include but be much larger
than the range compatible with observation. One can
then parametrize the prior distribution by a “statistical
pressure” or “multiverse probability force” towards large
or smaller values,

n ≡ d log f

d log x
, (6)

where n is approximately constant. For example, a flat
prior distribution over log x corresponds to n = 0. If the
prior is flat over x, dNvac/dx = const., then n = 1.

Suppose that there is a regime change sufficiently near
the observed value log x0, such that the number of ob-
servers (or at least, of observers like us) w(x) drops dra-
matically above or below a critical value log xc. Suppose
for definiteness that x0 . xc. If the probability force
favors large values of x, but not too strongly [n > 0,
n ∼ O(1)], then the observed value can be explained.
Similarly, with a negative probability force, one can ex-
plain the proximity of x to nearby catastrophic boundary
at some smaller xc . x0.

Recent successful examples of this approach include
an explanation of the coincidence that dark and bary-
onic densities are comparable [47], the fine-tuning of the
weak scale [47, 60, 61], and the comparability of several
large, a priori unrelated timescales in cosmology [57]. In
each case, the required assumption about the probabil-
ity force is weak and qualitative: n ∼ ±O(1). Thus
phenomenological models of the landscape have signifi-
cant explanatory value, while constraining the underly-
ing prior distributions through the sign (and roughly the
strength) of the probability force n. It is particularly
instructive to keep track of the combination of (and pos-
sible conflict between) forces ni needed to simultaneously
explain multiple parameters xi [57, 61, 62].

Now let us turn to the prior for the total neutrino mass,
Pvac(mν). We know of no physical reason why a mini-
mum neutrino mass should be necessary for observers.
Hence, to obtain a normalizable probability distribution
f , we must assume that the effective prior distribution
favors large mν :

dPvac

d logmν
∝ mn

ν , n > 0 , (7)

in some large logarithmic neighborhood of the observed
value, ∼ 0.1 eV. A natural and simple choice is n = 1, and
we will use this value for definiteness in most plots. More
generally, we will find that a comfortable range of values
0 < n ≈ O(1) is consistent with an anthropic explanation

of the neutrino mass, but not a value much greater than
1 (see Fig. 4).

B. Anthropic Weighting

The probability distribution over log x relevant for
comparing the theory with observation is obtained by
conditioning p̃ on the presence of observers. More quan-
titatively, one weights by the number of observations

w(x) = dNobs/dNvac (8)

that are made in a vacuum where x takes on a specific
value. Generically, w(x) will be unsuppressed in a large
region either above or below the observed value, or both.
Thus, the anthropic factor is not doing all the work; the
prior distribution is crucial for comparing the theory to
observation.

In this paper we will consider two different models for
the number of observations w(x) that are performed in
the universe. Both are based on the assumption that
observers require galaxies, say of halo mass comparable
to the Milky Way’s, 1012 solar masses. The first model
assumes that the rate at which observations occur in a
given spatial region per unit proper time, ẇ(x), is pro-
portional to the total mass Mgal of such galaxies, at every
instant; hence

w(x) =

∫
dt Mgal(t) (Observer Model 1) . (9)

The second model (which reduces to the choice made
in [53]) assumes instead that the rate of observation is

proportional to the rate Ṁ at which the above total
galaxy mass grows:

w(x) =

∫
dt Ṁgal(t) (Observer Model 2) . (10)

The two models can be thought of as two different ap-
proximations taken to an extreme. In the first, observa-
tions would be made continuously in the galaxy, at fixed
rate per unit stellar mass, no matter how old the stars
become. In the second model, observations would occur
instantaneously as baryons cool and form stars; no obser-
vations would be assigned to a galaxy that is not growing.
(The second model was used in Ref. [53]; note that in the
context of the measure used there the integral over time
is trivial, yielding the collapse fraction FR.) The truth is
likely somewhere in between the two models. However,
we will find that our results depend only weakly on the
model, so we expect our conclusions to be robust.

C. Measure

A cosmology with at least one long-lived de Sitter vac-
uum gives rise to eternal inflation: the universe will grow
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without bound and remain at finite temperature in ar-
bitrarily large volumes at late times. Hence, all possible
events will occur infinitely many times. This applies in
particular to observations. Thus a regulator or “mea-
sure” must be introduced to obtain a finite anthropic
factor w(x). For this problem to exist, it is not necessary
that the theory predict a large landscape; one de Sitter
vacuum (such as, apparently, ours [63, 64]) is enough.
But the measure problem becomes particularly glaring
in the landscape context: globally, every type of vacuum
bubble is produced infinitely many times, and each bub-
ble universe contains an infinite comoving volume.

Existing analyses of the anthropic origin of neutrino
masses preceded a period of significant progress on the
measure problem of eternal inflation. Following Wein-
berg [2], Refs. [53, 54] regulate the divergences of the
cosmological dynamics by estimating the number of ob-
servers per baryon. This measure can no longer be con-
sidered viable [65, 66]. Note, however, that our choice
of measure is not responsible for the main differences be-
tween our results and those of [53], as described at the
end of Sec. I.

In this paper, we will use the causal patch measure [41],
which regulates eternal inflation by considering a single
causally connected region and averaging over its possi-
ble histories. This proposal is very generally defined,
requiring only causal structure. It is also well moti-
vated: it merely applies to cosmology an existing re-
striction that was already needed for the unitary evap-
oration of black holes [67]. Though proposed on formal
grounds, the causal patch has met with phenomenologi-
cal success; two examples are described in Appendix A.
We take this as evidence that it approximates the correct
measure well (at least in regions with positive cosmolog-
ical constant4 [71]).

A potential landscape is consistent with the observed
cosmological history only if it is multi-dimensional with
large energy differences between neighboring vacua [27].5

String theory gives rise to such a structure upon com-
pactification to three spatial dimensions [1], with ∆Λ not
much below unity.

The causal patch will contain a particular decay chain
through de Sitter vacua in the landscape, ending with a
big crunch in a vacuum with negative cosmological con-

4 We are not aware of a generally defined measure that succeeds in
the Λ < 0 regime, when rigorously implemented [68]. However,
at least for the causal patch measure, the restriction to regions
with Λ > 0 can be justified a priori by its close relation to the
lightcone-time cutoff [69, 70]. The latter is well-motivated only
for Λ > 0.

5 The decay of our parent vacuum must release enough energy to
heat our universe at least to the temperature of big bang nucle-
osynthesis, which requires ∆Λ � 1 (MeV)4. This is the reason
why a multidimensional landscape is essential. One-dimensional
“washboard” landscapes [3–5] are ruled out, because they must
have ∆Λ . 10−35 (MeV)4 so as to naturally include at least one
vacuum like ours.

stant; each such chain is weighted by its probability, i.e.,
by the product of branching ratios [41]. For a typical de-
cay chain, none of the vacua will have anomalously small
cosmological constant Λ � ∆Λ. Thus, after condition-
ing on observers, there will be one vacuum with small
cosmological constant in the causal patch, and we need
only be concerned with how the causal patch regulates
the volume of the corresponding bubble universe.

Here we focus on the variation of the neutrino mass
only, so we shall take this vacuum to be otherwise like
ours. In particular we set the cosmological constant to
the observed value, Λ ∼ 10−123, and we take the spa-
tial geometry to be flat. The metric is of the Friedman-
Robertson-Walker (FRW) type:

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2) , (11)

where a is the scale factor, r is the comoving radius, t
is proper time, and dΩ2 is the metric on the unit two-
sphere.

By definition, the causal patch is the causal past of the
future endpoint of a geodesic; thus its boundary consists
of the past light-cone of such a point. We are interested
in the boundaries of the causal patch during the time
when a long-lived de Sitter vacuum still contains matter.
A future decay has an exponentially small effect on the
location of the patch boundary at much earlier times,
so the patch can be computed by treating the vacuum
as completely stable. The patch boundary is thus the
cosmological event horizon. Its comoving radius at FRW
time t is obtained by tracing a light-ray back from future
de Sitter infinity:

rpatch(t) =

∫ ∞
t

dt′

a(t′)
. (12)

The physical volume of the patch is

Vphys(t) =
4π

3
a(t)3rpatch(t)3 . (13)

As described in the previous subsection, we estimate
the rate of observations per unit time as proportional to
the total mass of all galaxies in the physical volume of the
patch (for observer model 1), or to the rate of increase
of this mass (for observer model 2). We can write this
quantity as

Mgal(t) = ρbc(t)Vphys(t)FR(t)GR(t) . (14)

The first two factors give the total mass Mbc of baryons
and cold dark matter in the patch at the time t. The col-
lapse fraction FR is the fraction of this mass that is con-
tained in halos of mass greater than 1012M�, correspond-
ing to a comoving distance scale R: Mhalo = MbcFR. The
galaxy fraction GR is the fraction of this latter mass that
represents baryons in galaxies, Mgal = MhaloGR.

Combining this with Eqs. (9), (7), and (4), the (unnor-
malized) probability distribution over the neutrino mass
is given by

dp

d logmν
∝ mn

ν

∫
dt (rpatcha)3 ρbc FRGR . (15)
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in the first observer model; we replace FRGR by
d
dt (FRGR) for the second observer model.6 Factors in
the integrand may in general depend on both mν and t.

III. CALCULATION OF dP/d logmν

A. Fixed, Variable, and Time-dependent
Parameters

We will consider a one-parameter family7 of cosmolo-
gies, differing from our universe only in the total mass
of active neutrinos. More precisely, we consider two such
families, since we treat the cases of normal and degen-
erate neutrino hierarchy separately. Thus, we hold fixed
all fundamental parameters other than mν . In partic-
ular, we fix the vacuum energy density, ρΛ = Λ/8πG,
and the spatially flat geometry of the universe (imposed,
presumably, by a mechanism like inflation that is uncor-
related with mν). We also hold fixed χb ≡ ρb/nγ and
χc ≡ ρc/nγ , the masses per photon of baryons and CDM.
These quantities remain invariant under changes of mν ,
since we hold fixed the fundamental processes that pro-
duced the observed baryon and CDM abundances.

For the actual values of these parameters, we use the
Planck TT+lowP+lensing+ext best fit cosmological pa-
rameters [39]; see Table I. The best fit assumes a neu-
trino mass of about 0.06 eV [39], whereas strictly, one
should use a best fit marginalized over mν for the pur-
poses of our paper. However, this has virtually no ef-
fect on the fixed cosmological parameters such as ρΛ,
χb, and χc, because neutrinos are already constrained
to contribute a very small fraction to the total den-
sity. For example, the best-fit for the Hubble param-
eter8 (Planck TT+lowP+lensing+ext [39]) shifts from
67.9 ± 0.55 (mν ≈ 0.06 eV) to 67.7 ± 0.6 (marginalized
over mν). This difference is negligible compared to cur-
rent error bars and the discrepancies between different
cosmological datasets.

6 Note that the time derivative should not be taken of the entire
integrand, for this model. The loss of mass across the horizon due
to the shrinking comoving volume of the patch does not produce
“negative galaxies” inside the patch. At some cost in readability,
we could have made this more explicit by defining the integrand
in Eq. (10) as the causal patch volume times the rate of change
of the average physical density contributed by galaxies.

7 It would clearly be of interest to compute the probability distri-
bution over several parameters including the neutrino mass; for
examples of multivariate probability distributions in the land-
scape, see e.g. [54]. Each additional scanning parameter is an
additional opportunity to falsity the model. But already with
one parameter scanning, one can falsify a model, in the usual
way: by computing a probability distribution from the theory. If
one finds that the observed value is several standard deviations
from the mean, the model is ruled out at the corresponding level
of confidence.

8 Unless otherwise specified, we quote the Hubble parameter in
units km s−1 Mpc−1 throughout.

TABLE I: The cosmological parameters used in our calcu-
lation, as well as the resulting mass per photon of baryons
and CDM, χb and χc. TCMB is a Planck TT+lowP+BAO fit,
while all others are from Planck TT+lowP+lensing+ext best
fit values. We take kpivot = 0.05 Mpc−1.

Parameter Value

TCMB 2.722 K

H0 67.90

Ωm 0.3065

ΩΛ 0.6935

Ωbh
2 0.02227

Ωch
2 0.1184

109As 2.143

ns 0.9681

χb 0.5745 eV

χc 3.054 eV

When considering entire cosmological histories, as we
do, it is best to specify each cosmology in terms of time-
independent parameters such as Λ, χb, χc, and mν . How-
ever, we use Boltzmann codes such as CAMB and CLASS
to compute power spectra wherever possible (i.e., for
z ≥ 0). These codes expect input parameters that specify
the cosmological model in terms of their present values,
at redshift z = 0. It is not clear what one would mean
by the “present” time in an alternate cosmology, but for
the purposes of CAMB and CLASS, z = 0 is defined to
be the time at which the CMB temperature takes the
observed value, TCMB ≈ 2.7 K.

Thus we must derive the values of various time-
dependent quantities at the time when the universe
reaches this temperature, as a function of mν , with other
time-independent parameters fixed as described above.
One finds for the Hubble parameter and the density pa-
rameters

H(mν ; z = 0) = H0

(
χbcΛν
χbcΛν0

)1/2

, (16)

ΩX(mν ; z = 0) =
χX
χbcΛν

, X ∈ {b, c,Λ, ν} . (17)

Here multiple indices imply summation, for example
χbc ≡ χb + χc. The fixed parameters χb and χc were
defined above. The fixed parameter χΛ ≡ ρΛ/nγ(z =
0) is defined for notational convenience as the ob-
served vacuum energy per photon at the present ob-
served CMB temperature. The mν-dependent parame-
ter χν(mν) = 3

11mν is the neutrino mass per photon.
H0 ≡ H(0.06 eV; z = 0) and χν0

= χν(0.06 eV) are ob-
served values, corresponding to the Planck best fit base-
line model.
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FIG. 6: The comoving volume of the causal patch for mν = 0
(black), mν = 4 (blue), and mν = 8 (red).

B. Homogeneous Evolution

For computing the volume of the causal patch, the fac-
tor (rpatcha)3 in Eq. (15), we will need to know the scale
factor. Unless structure is present, the integrand will
be suppressed by the Press-Schechter factor FR; hence
it suffices to use an analytic solution valid to excellent
approximation in the matter and vacuum eras:

a(mν ; t) =

[
cotλ sinh

(
3 sinλ

2
H0t

)]2/3

, (18)

The solution depends on mν through ΩΛ(mν ; z = 0) ≡
sin2 λ.

Since χbc does not depend on mν and ρbc = nγχbc,
ρbc(z = 0) does not depend on mν . Moreover, since the
scale factor in Eq. (18) is normalized so that a = 1 at
z = 0, we have ρbc(t) = ρbc(z = 0)/a(t)3 for all values of
mν . Thus Eq. (15) simplifies to

dP
d logmν

∝ mn
ν

∫
dt r3

patch FRGR , (19)

where rpatch is given by Eq. (12), and we are dropping
mν-independent normalization factors as usual.

The comoving volume of the causal patch is shown in
Fig. 6. We note that already at the homogeneous level,
a nonzero neutrino mass is slightly disfavored because it
decreases the size of the causal patch. We also note that
the patch size is maximal at early times and decreases
rapidly. Hence galaxies that form very late effectively
fail to contribute to the probability for a given parameter
value.

C. Halo Formation

The next factor in Eq. (19) is the collapse fraction
FR(mν , t). It captures the effects of neutrinos on struc-
ture formation: recall that FR is defined as the fraction

of baryonic and cold dark matter that is contained in ha-
los of mass 1012M� or greater. It captures the effects
of neutrinos on structure formation. Recall that FR is
defined as the fraction of baryonic and cold dark matter
in virialized halos of mass scale 1012M� or greater. This
corresponds to a comoving distance scale R ∼ 1.8 Mpc.9

The collapse fraction can be determined using the
Press-Schechter formalism [72]. Before nonlinearities are
important, the density contrast10 δ(x, t) smoothed on a
scale R has a Gaussian distribution,

P(δ, t) dδ ∼ exp

(
− δ2

2σ2
R

)
dδ , (20)

with standard deviation σR(t). Fluctuations that exceed
a certain threshold δ∗ ∼ O(1) in the linear analysis will
have become gravitationally bound. Hence,

FR(t) =

∫ ∞
δ∗

P(δ, t)dδ = erfc

(
δ∗√

2σR(t)

)
. (21)

We use the canonical value δ∗ = 1.69, which is obtained
by comparing the linear perturbation to a spherical col-
lapse model.11

The standard deviation of the smoothed density con-
trast is given by [75]

σ2
R ≡ 〈δ2

R(x)〉 , (22)

with

δR ≡
∫
d3x′ δ(x)WR(|x− x′|) , (23)

where δ(x) = δρc/ρc is the fractional overdensity of
cold dark matter. We use the top hat window function,
WR(x) = 1 for |x| ≤ R and WR(x) = 0 otherwise.

Equivalently, the smoothed density contrast can be
computed from Fourier-transformed quantities:

σ2
R =

∫ ∞
0

dk

k

k3Pcc(k)

2π2
|WR(k)|2 , (24)

9 The comoving scale R is independent of mν because ρbc(z = 0)
is. However, when expressed in units of Mpc/h it depends on
mν through Eq. (16).

10 We use the CDM density contrast and power spectrum to com-
pute the Press-Schechter factor F . This matches N -body simula-
tions better than using the full matter density contrast including
neutrinos [73]. It is also a conservative choice, since the total
matter power spectrum is further suppressed at large mν , by a
factor (1 − fν)2 below the free streaming scale.

11 For structure that forms in the vacuum era, the collapse thresh-
old is slightly lowered [53], whereas in the presence of an appre-
ciable neutrino fraction δ∗ should be slightly increased [74]. If
we adapted δ∗ accordingly, the net effect would be to further
suppress structure at large mν , in favor of an anthropic origin
of the neutrino mass. However, appropriate values of δ∗ have so
far been estimated only for rather small neutrino masses. Ulti-
mately, it would be preferable to sidestep the Press-Schechter ap-
proximation altogether. Our analysis could be dramatically im-
proved by using proper N -body simulations to compute structure
formation, including an adequate treatment of baryonic physics.
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FIG. 7: The Press-Schechter factor (solid lines) and its deriva-
tive (dashed lines) at the galaxy scale, 1012M�, for a nor-
mal hierarchy with mν = 0 eV (black), mν = 2 eV (brown),
mν = 4 eV (blue), mν = 6 eV (purple) and mν = 8 eV (red).
Each is used to define either of the two observer models of
Sec. II B. Note that massive neutrinos suppress structure at
all times, but much more so at early times [76–81].

where WR(k) = 3
(kR)3 (sin kR − kR cos kR). The CDM

power spectrum is defined by

〈δ̃(k)δ̃(k′)〉 = (2π)3Pcc(k)δ3(k− k′) , (25)

where δ̃(k) is the Fourier transform of δ(x) and δ3 is the
Dirac delta function.

To evaluate σR(mν , t), we use the CAMB code [42] to
compute the CDM power spectrum Pcc(k) as a function
of time, in models with different neutrino mass. We eval-
uate the integral in Eq. (24) numerically. We have also
checked our results using the CLASS code [43]. We no-
ticed a small discrepancy in the output of k3Pcc at the
largest neutrino masses we consider, mν ∼ 10 eV, where
CLASS gives a slightly larger amplitude for the free-
streaming peak. By lowering the cutoff on mν described
in Sec. III D, the CLASS output would only strengthen
the anthropic explanation of the observed neutrino mass
range.

Available Boltzmann codes do not return power spec-
tra for negative redshifts, that is, for times when the
CMB temperature is below 2.7 K. In this regime only,
we estimate σR by extrapolating our numerical results to
negative redshifts semi-analytically as described in Ap-
pendix B 2. This regime is not a dominant contributor
to the overall probability distribution, due to the small-
ness of the causal patch at late times, and since vacuum
domination terminates structure formation in any case.

We compute FR and ḞR from Eq. (21); the results are
shown in Fig. 7.

D. Galaxy Formation: Neutrino-Induced Cooling
Catastrophe

The final factor GR(mν , t) in Eq. (19) is the fraction
of the halo mass in baryons within galaxies. To approx-

imate this, we must first investigate the effect of a top-
down structure scenario (present at mν & 8 − 10 eV, as
discussed in Sec. I) on galaxy formation.

In our universe galaxies form in halos with masses be-
tween 107M� and 1012M�. Larger halos can inherit
galaxies from mergers, resulting in galaxy groups and
clusters, with masses ranging from 1013M� to 1015M�.
However, halos in the latter mass range do not them-
selves produce a significant amount of stars, relative to
their total mass.

This fact can be understood as a consequence of the
ability, or failure, of baryons to cool rapidly inside newly
formed dark matter halos. (For more detail, see Ap-
pendix C and references given there.) Baryons are shock-
heated to a virial temperature Tvir when they fall into a
large dark matter halo. In order to condense into a galaxy
at the center of the halo, the baryons must first shed their
thermal energy. Cooling can occur by bremsstrahlung
at temperatures large enough to ionize hydrogen, or by
atomic and molecular line cooling at the lower tempera-
tures attained in smaller halos.

Analytically, one can estimate the time it takes baryons
to cool, tcool. The cooling time grows with the mass
of the halo (for large masses), and with the time of its
formation. It is also easy to compute the gravitational
timescale of the halo, tgrav, which is somewhat shorter
than the time of its formation.

A good match to observation is obtained by the follow-
ing criterion. If tcool < tgrav, then cooling is efficient. A
significant fraction of baryons (up to 10%) is converted
into stars. This process occurs rapidly, on a timescale
that can be treated as instantaneous compared to the
age of the universe when the halo formed.

On the other hand, if tcool > tgrav, then star forma-
tion is limited by the cooling time. In this regime, one
would still expect a certain amount of rapid star forma-
tion at the dense core of the halo, but this is not seen in
observations. (This is known as the cooling flow prob-
lem.) Observations do not constrain the possibility that
a significant portion of baryons will form stars in the dis-
tant future, on a timescale much greater than the age of
the universe. This time would greatly exceed tΛ. Since
the causal patch is of a fixed physical size of order the
de Sitter horizon scale, there will be exponentially few
halos left in it at late times. Thus, star formation at
very late times does not contribute to the probability
of a particular universe. (This sensitivity to the mat-
ter content inside the cosmological horizon is a key fea-
ture distinguishing the causal patch from other interest-
ing measures, such as the fat geodesic or scale factor time
cutoff [82], and it is responsible for several of the chief
successes of the causal patch, e.g. [47, 57, 68, 83–87].)
Thus, we may take tcool < tgrav as a robust condition for
galaxy formation to occur in a newly formed halo.

The cooling function that determines the rate of heat
dissipation has a complicated form in the relevant halo
mass range (see [88] and references therein). Appendix C
describes two different approximations to tcool and tgrav
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that capture different cooling regimes that halos in our
analysis might explore. One finds in either regime that
at late times, cooling is inefficient for halo masses above
the scale of the Milky Way halo:

Mvir > 1012M� , tvir & O(Gyr) =⇒ No Galaxy (26)

Importantly, the boundary is consistent with the obser-
vation that in our universe, there are no galaxies much
larger than the Milky Way.

It would be interesting to implement a more precise
version of the above boundary as a cutoff on the time
until galaxy formation is efficient, at any value of mν .
Massive neutrinos delay structure formation more dra-
matically than they suppress it (Fig. 7), so such a cut-
off would exclude an appreciable fraction of halos from
contributing to galaxy formation even at rather small
mν . Thus it would lead to a greater suppression of in-
termediate neutrino masses between 1 and 10 eV, and
thus would favor the anthropic approach. Instead, we
will argue more conservatively for a cooling cutoff on mν

around 10 eV. We will now identify a change of regime
for mν & 10 eV. As we shall see, this transition places
the dominant halo population so far into the regime of
inefficient cooling, that the above rough estimate suffices
to conclude that galaxy formation is highly suppressed.

For mν . 8 − 10 eV, recall that the dimensionless
matter power spectrum k3Pcc(k) increases monotonically
with k (see Fig. 1a), and the integral for the smoothed
density contrast σR in Eq. (24) is dominated by the power
at the small galactic scale R. In this range, the power
spectrum preserves the standard hierarchical structure
formation we see in our universe, where low mass halos
generally form earlier than more massive ones. Thus, it
is not likely for a 1012M� halo to be nested inside a more
massive overdensity that collapses at the same time.

Above mν ≈ 8− 10 eV, neutrinos suppress small scale
power so much that the dimensionless power spectrum
k3Pcc(k) develops a maximum near the scale associated
with free streaming knr (Fig. 1a). This corresponds to a
mass of order 5 − 100 times the scale of the Milky Way
halo, roughly the scale of galaxy clusters.12 It implies
that the smoothed density contrast on small scales such
as 1012M� is no longer dominated by the power at the
corresponding wavenumber k. Instead, the integral in
Eq. (24) is dominated by the maximum of the integrand,
near knr.

12 The peak (the free streaming scale) moves to smaller scales as
mν is increased. Eventually it crosses the galaxy scale: for mν &
100 eV neutrinos act as cold dark matter. But this does not
yield an anthropically allowed region, because the dark matter to
baryon density ratio ζ will be too large. This may be detrimental
to disk fragmentation [48, 53]. If the causal patch is used, ζ � 1
is robustly suppressed independently of any effects on galaxy and
star formation, because the total mass of baryons (and thus of
observers) in the patch scales like (1 + ζ)−1 [47].

This implies that 1012M� overdensities become grav-
itationally bound at the same time as overdensities on
larger scales: a top-down scenario. The virial temper-
ature and cooling time will be set by the largest scale
that the 1012M� overdensity is embedded in, Mvir �
1012M�. Moreover, for such large halos virialization will
occur quite late (see Fig. 7), tvir � 5.3 Gyr. Hence,
for mν & 8 − 10 eV, the cooling condition in Eq. (26)
becomes violated, by a substantial margin.

Note that this conclusion is insensitive to the halo mass
scale we associate with observers. Whether we require
1010M� or 1012M� halos: if the power spectrum peaks at
larger scales, the putative galactic halos will be embedded
in and virialize together with perturbations on a mass
scale well above 1012M�, leading to a cooling problem.

Let us summarize these considerations and formulate
our cooling cutoff on the neutrino mass. If there ex-
ists some large scale k∗ < kgal such that k3

∗Pcc(k∗) >
k3

galPcc(kgal), we interpret this as indicating top-down
structure formation. Let mmax

ν be the greatest neutrino
mass sum for which this criterion is not met, i.e., the
largest neutrino mass compatible with bottom-up struc-
ture formation. From Boltzmann codes we find mmax

ν =
7.7 eV for the normal hierarchy and mmax

ν = 10.8 eV for
the degenerate hierarchy. We have argued that cooling
fails substantially in the top-down regime, because the
first virialized halos are large and form late. Hence, we
treat mmax

ν as a sharp catastrophic boundary. We ap-
proximate GR as a step function that vanishes past this
critical mass:

GR(mν , t) =

{
1 , mν < mmax

ν

0 , mν ≥ mmax
ν .

(27)

We evaluate the integral in Eq. (19) numerically using
Mathematica. The integration is started before structure
begins to form, at redshift z = 12, when FR is negligible.
The integration is terminated deep in the vacuum era
when rpatch becomes exponentially small. Our final result
is described in Sec. I; see Figures 3 and 4.
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Appendix A: Cosmological Constant and the Causal
Patch

The cosmological constant offers a nice example of the
predictive power of a large landscape, and it also illus-
trates the advantages of the causal patch measure over
competing proposals. In this appendix we review Wein-
berg’s 1987 prediction of a positive cosmological con-
stant [2], which has since been confirmed by observa-
tion [63, 64]. We then turn to the more recent success of
the causal patch measure in improving the quantitative
agreement with the observed magnitude of Λ > 0 (par-
ticularly in settings where the primordial density con-
trast is also allowed to vary), while eliminating specific
anthropic assumptions. The goal is to make contact be-
tween an example many readers will be familiar with,
and the more general formalism for making predictions
in the landscape described in Sec. II.

1. Weinberg’s Prediction: Λ ∼ t−2
vir

Because Λ = 0 is not a special value from the point
of view of particle physics, the prior distribution over
the cosmological constant Λ should have no sharp feature
near Λ = 0; hence to leading order in a Taylor expansion,
dNvac/dΛ ≈ const. for |Λ| � 1.13 Hence we have

Pvac(Λ) ∝ Λ = exp(log Λ) : (A1)

the prior favors large magnitude of the cosmological con-
stant. So far, this is just a restatement of the cosmo-
logical constant problem in a landscape setting: among
many (nonsupersymmetric) vacua, most will tend to have
large Λ, since precise cancellations between the positive
and negative contributions to Λ are unlikely.

For Λ > 0, structure formation would be severely di-
minished if Λ was large enough to dominate over the mat-
ter density of the universe before the time tgal when den-
sity perturbations on the scale of galactic haloes would
otherwise become nonlinear. (For negative Λ of sufficient
magnitude, the universe recollapses too soon.) Crudely,
the weighting factor w(x) may be approximated as van-
ishing for Λ > ρNL and constant for Λ < ρNL, where
ρvir ∼ t−2

gal is the energy density at that time [2]. A re-

finement [46] models w(x) as the fraction of baryons that
enter structure of a specified minimum mass.

13 In this Appendix we work in Planck units, G = ~ = 1.

Thus, the resulting distribution P(log Λ) = wf peaks
around x ∼ −2 log tgal. P is suppressed at larger val-
ues of x due to the anthropic factor w, and at smaller
values of x because the prior probability f is low. The
model, proposed by Weinberg in 1987, thus predicted
a nonzero cosmological constant not much smaller than
ρNL. Just such a value has since been discovered [63, 64].
The model could have been ruled out at any level of con-
fidence if, instead of a detection, the observational up-
per bound on Λ had continued to improve, moving ever
deeper into the region suppressed by the prior.

Weinberg’s argument had a few shortcomings, which
we list here. First, the approach actually favors a some-
what larger value of Λ; the observed value is small at
2−3σ depending on the assumptions made about the size
of galaxies required by observers. More concerningly, the
approach would not appear to be robust against varia-
tions of the initial density contrast Q. It strongly favors
vacua in which both Q and Λ are larger than the observed
values, unless the prior for Q favors a small magnitude,
or unless there is a catastrophic boundary very close to
the observed values of Q. Neither of these arguments are
easy to make.

2. Causal Patch Prediction: Λ ∼ t−2
obs

In much of the older literature, the divergences of eter-
nal inflation were regulated by computing the number of
observers per baryon. (See the beginning of Sec. II C for a
brief discussion of the measure problem, and Ref. [89] for
a review.) This was a reasonable first guess, particularly
in the context of a landscape where only the cosmological
constant varies. However, it is no longer viable in light
of more recent insights [65, 66].

The ratio is not well-defined in a landscape where
some vacua may not contain any baryons. Worse, it
does not actually regulate all infinities, since a long-lived
metastable vacuum with positive cosmological constant
(such as ours) will have infinite four-volume in any co-
moving volume; hence, an infinite number of observers
“per baryon” will be produced by thermal fluctuations
at late times. The number of measures that are well-
defined and not clearly ruled out is surprisingly small,
and the causal patch measure has had the greatest quan-
titative success so far (at least [71] when we are interested
in relative probabilities for events in vacua with positive
cosmological constant, as we are here). Here we give two
examples.

First let us recompute the probability distribution over
the cosmological constant, dP/d log Λ with Λ > 0 using
the causal patch. We consider a class of observers that
live at the (arbitrary but fixed) time tobs; for comparing
with out observations, we will choose tobs = 13.8 Gyr.
But the causal patch at late times coincides with the
interior of the cosmological horizon. Because of the ex-
ponential expansion, the average density decreases like
e−3t/tΛ . If tobs � tΛ ∼ Λ−1/2 ∼ O(10) Gyr, no ob-
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servers will be present in the patch, no matter whether
or not galaxies form. This is a much more stringent cutoff
than the suppression of galaxy formation which only sets
in for a larger value of Λ, such that tgal � tΛ. It agrees
very well with the observed value of Λ, resolving the mild
(2−3σ) tension with Weinberg’s estimate. It is unaffected
by any increase in the primordial density contrast, since
tobs contains Gyr time scales that are not shortened by
hastening structure formation. It solves the “Why Now”
problem directly. And it does all this without making
any specific assumptions about the nature of observers,
except that they are made of stuff that redshifts faster
than vacuum energy. (However, in the present paper we
do assume that observers require galaxies.)

The causal patch can also explain why dark and bary-
onic matter have comparable abundances: the “Why
Comparable” coincidence. One makes the qualitative as-
sumption that the dark-to-baryonic density ratio ζ favors
large values. But when ζ � 1, the causal patch sup-
presses baryonic observers by a factor 1/(1 − ζ), which
counteracts the prior distribution, leading to the predic-
tion that ζ ∼ O(1) [47].

Appendix B: Structure Formation with Neutrinos

Our calculation was done almost entirely using Boltz-
mann codes, not analytic approximations. However, for
completeness we summarize here the physical origin of
the effects of neutrinos on structure formation. In the
final subsection B 2, we explain the semi-analytic extrap-
olation formula we have used to extend the code output
to negative redshifts. For excellent in-depth treatments
of neutrino cosmology, see Refs. [44, 45].

1. Neutrino Cosmology

Around a second after the big bang at the time of
decoupling, neutrinos are frozen out with a Fermi-Dirac
distribution whose temperature is set by the primordial
plasma. Due to e± annihilations that heat up the plasma
soon after neutrino decoupling, this temperature differs
from the temperature of the CMB, which decouples from
the plasma much later: Tν,0 = (4/11)1/3 TCMB = 1.95 K.

The energy density and pressure of a single neutrino
with mass m at a fixed time since decoupling is thus
approximately given by

ρν = 2

∫
d3p

(2π)3

√
p2 +m2

ep/Tν(z) + 1
, (B1)

Pν = 2

∫
d3p

(2π)3

p2

3
√
p2 +m2

1

ep/Tν(z) + 1
, (B2)

where Tν(z) = Tν,0(1 + z) is the neutrino temperature as
it redshifts from the value set at decoupling.

At early times, neutrinos contribute as radiation and
add to the total radiation density as

ρR =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ , (B3)

where

ργ =
π2

15
T 4

CMB , (B4)

and where Neff = 3.046 is the effective number of neu-
trino species, with a slight deviation from 3 due to non-
thermal spectral distortions from the e± annihilations.

Similarly, the number density of neutrinos per species
is set by the CMB number density:

nν =
3

11
nγ , (B5)

where

nγ =
2ζ(3)

π2
T 3

CMB . (B6)

Neutrinos become approximately non-relativistic once
their thermal energy drops below the relativistic kinetic
energy, 3Tν(z) < mν , which occurs at a redshift znr of14

1 + znr = 1991
( mν

1 eV

)
. (B7)

Well after this transition, the density of non-relativistic
neutrinos asymptotes to

ρν = mνnν , (B8)

where mν is the sum of masses of all non-relativistic neu-
trino species. In terms of this, the neutrino density pa-
rameter counting only massive neutrinos is

Ων =
ρν
ρ∗

, (B9)

where ρ∗ is the critical density defined by H2 = 8πGρ∗/3,
which gives

Ωνh
2 =

( mν

94.5 eV

)
. (B10)

The neutrino free streaming scale is set by the typical
distance neutrinos travel thermally up to a given time.
Roughly, it is given by the horizon scale at early times
and stops growing soon after the neutrinos become non-
relativistic; hence it can be crudely approximated by the
horizon scale at the nonrelativistic transition, knr.

14 The non-relativistic transition is far from sudden. The neutrino
pressure Eq. (B2) has a non-negligible tail long after the redshift
Eq. (B7), which smears out the transition. We thank J. Lesgour-
gues for explaining this point to us.
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FIG. 8: The growth factor Eq. (B14) (solid line), which

behaves like x1/3 (dashed line) during the matter era, and
asymptotes to a constant value well above x(tΛ) = 1.

On small scales, there are two effects by which neutri-
nos suppress structure. The most obvious is that density
perturbations will be washed out. Thus, free stream-
ing eliminates the contribution of neutrinos to structure,
and thus suppresses the total matter power by a factor
∼ (1− fν)2, where

fν =
Ων
Ωm

. (B11)

defines the massive neutrino fraction. Conversely, on
larger scales neutrinos will remain confined to the over-
dense regions and will behave like cold dark matter.

A secondary but more important effect is that the den-
sity of massive neutrinos contribute via the Friedmann
equation to the Hubble parameter, which controls the
friction term in the growth of matter perturbations. But
on short scales, they do not contribute to the source term
(the density contrast). Therefore, CDM perturbations
grow more slowly in the presence of a nonclustering mat-
ter component on short scales [90]:

δc ∝ a , k . knr ,

δc ∝ ap , k > knr , (B12)

where

p =
−1 +

√
1 + 24(1− fν)

4
≈ 1− 3

5
fν < 1 , (B13)

with the last approximation valid in the limit of small
neutrino masses.

2. Late-Time Extrapolation of Numerical Results

Available Boltzmann codes do not offer output for neg-
ative redshifts. In order to estimate the smoothed density
contrast σR in this regime, we extrapolate our numerical

results for σR(z) from positive to negative z, i.e., from
a < 1 to a > 1. The most straightforward approach
would be a linear extrapolation in some time variable,
fitting both the value and the derivative of σR at z = 0.
However, there is a physical effect that we must incorpo-
rate analytically: vacuum domination turns off structure
growth on all scales. This effect is not strong enough
at z = 0 to have a significant imprint on the value or
time derivative of σR. However, the effect is also rather
simple, and thus easy to incorporate analytically.

In a universe with negligible neutrino mass, the CDM
density contrast grows as [46, 91]

δ ∝ GΛ(x) ≡ 5

6

√
1 +

1

x

∫ x

0

dy

y1/6(1 + y)3/2
, (B14)

where

x ≡ ρΛ

ρm
=

ΩΛ

Ωm

∣∣∣∣
z=0

(1 + z)−3 . (B15)

As seen in Fig. 8, density perturbations grow like the
scale factor during the matter dominated era; they
asymptote to a constant value at times t > tΛ.

With nonzero neutrino mass, a reasonable approxima-
tion is obtained by combining the analytic result for the
matter era, Eq. (B12), with the mν = 0 transition to the
vacuum dominated era:

δ ∝ GΛ(x) (k < knr) , (B16)

δ ∝ GΛ(x)p (k > knr) . (B17)

Recall that Pcc(k) ∝ δc(k)2 by Eq. (25).

In order to improve on this result, we can incorporate
the information gained from the use of Boltzmann codes.
Instead of computing p and kFS analytically as described
in the previous subsection, we can read off a slope p(k)
from the numerical output near z = 0:

p(k) ≡ 1

2

d logPcc(x)

d logGΛ(x)
. (B18)

We can also fix the constant of proportionality C by
matching the magnitude of Pcc obtained from CAMB at
z = 0. This yields a semi-analytic power spectrum as a
function of time, for any fixed k and fixed neutrino mass:

Pcc(x) = CGΛ(x)2p(k) . (B19)

In practice, it is cumbersome to extrapolate the power
at each wave number only to integrate over scales to ob-
tain the smoothed density contrast. By the late time cor-
responding to z = 0, for any neutrino mass, we expect
that the integral in Eq. (24) is dominated by the power
at some scale k and will remain dominated by the same
scale in the future (z < 0). For small neutrino masses,
this scale will be set by the galaxy scale; for large mν

it will be the scale of the peak of the spectrum k3P (k).
We incorporate this by matching the analytic growth for
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FIG. 9: The parameters Ceff and peff , for normal (orange, top) and degenerate (green, bottom) hierarchies, obtained by fitting
Eq. (B22) to CAMB output for σR and its derivative at z = 0. The resulting fitting function for σR(z) is used to compute the
Press-Schechter factor at negative redshift only. Note that peff ≈ 1 throughout. This may seem surprising, but it is consistent
with our earlier finding that at large neutrino masses, the scales whose power contributes dominantly to σR are precisely the
ones on which free-streaming is not effective. This is closely related to the discrepancy we find with Ref. [53], whose estimate
peff ≈ p(kgal) ≈ 1− 8fν would yield a monotonically decreasing curve in (b).

z < 0 directly to the numerical results for σR(x) at z = 0.
For every mν , we compute

peff ≡
d log σR(x)

d logGΛ(x)

∣∣∣∣
z=0

, (B20)

Ceff ≡
σR

GΛ(x)peff

∣∣∣∣
z=0

(B21)

from the CAMB output for small nonnegative redshifts.
The results are shown in Fig. 9.

As our semi-analytic approximation entering the Press-
Schechter factor F for z < 0 we use

σR(z) = CeffGΛ(x(z))peff [used for z < 0 only] (B22)

with GΛ given by Eq. (B14). We have checked that the
same formula provides an excellent fit to the numerical
results at z > 0, as one would expect. However, we stress
again that we use the output from the CAMB code in this
regime, not the fitting function. Moreover, the regime
z > 0 dominates in our calculation because the comoving
volume of the causal patch decreases rapidly below z = 2.

Appendix C: Cooling and Galaxy Formation

In this Appendix, we review the basic time scales that
are believed to control cooling flows in dark matter halos.
Our discussion closely follows Ref. [57], where further
details and references can be found.

Baryonic gas will fall into the gravitational well of
newly formed dark matter halos. The baryons are thus
shock-heated to high temperatures. In order for stars
to form, the baryonic gas must cool and condense. The
initial temperature of the baryons is called the virial tem-
perature. By the virial theorem,

GMvirµ

5Rvir
= Tvir , (C1)

where Mvir is the mass of the halo and Rvir is its virial ra-
dius. In the regime of interest for us, Tvir is large enough
to ionize hydrogen. Then one can take the average molec-
ular mass µ to be mp/2, where mp is the mass of the
proton. With Mvir = 4π

3 ρvirR
3
vir one finds

Tvir ∝M2/3
vir ρ

1/3
vir , (C2)

where the “constants” of proportionality depend negligi-
bly on Mvir.

The timescale for cooling by bremsstrahlung is

tbrems ∝
T

1/2
vir

ρvir
∝ M

1/3
vir

ρ
5/6
vir

. (C3)

We will be interested in how this timescale compares to
the age of the universe when the halo virializes,

tvir ∝ ρ−1/2
vir . (C4)

If tbrems . tvir, then galaxy formation can be treated
as instantaneous, i.e., as occurring nearly simultaneously
with halo formation. Keeping track of all constants [57],
one finds that this case corresponds to

Mvirt
2
vir . (1012M�)(2.2Gyr)2 . (C5)

In the opposite case, Mvirt
2
vir � (1012M�)(2.2Gyr)2, we

have tbrems � tvir. In halos with these mass and viri-
alization time combinations, galaxy formation cannot be
treated as instantaneous. Instead, it takes a much greater
time tbrems � tvir to convert a comparable fraction of
baryons into stars. (If feedback or major mergers dis-
rupt the cooling flow, the contrast would be even more
drastic, but we will not assume this here.)

The above analysis assumed cooling of unbound
charged particles by bremsstrahlung. This approxima-
tion is best for virial temperatures above 107 K. At lower
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temperatures the cooling function is quite complicated,
but one can get an estimate by treating it as independent
of Tvir in some range [92]. With this approximation, one
obtains that the cooling condition is satisfied for

M2
vir tvir < (1012M�)2(5.3 Gyr) . (C6)

With either scaling, one finds again that cooling is ineffi-
cient if Mvir > 1012M�, particularly for late virialization
tvir & 10 Gyr.

So far, we have neglected the effects of the cosmological
constant. For halos that form deep in the vacuum domi-
nated era, one should use ρvir ∼ ρΛ instead of Eq. (C4).
But such halos contribute negligibly in the causal patch
because they will be exponentially dilute.

We have also neglected neutrinos. However, Eq. (C5)

is sufficiently general to capture their main effect, which
is to change the relation between Mvir and tvir. In a
universe with mν � 8 eV, tvir grows logarithmically with
Mvir for overdensities of a fixed relative amplitude. For
1012M� halos forming from 1σ (2σ) overdensities, tvir ≈
3.6 Gyr (tvir ≈ 1.3 Gyr) and by Eq. (C5), cooling fails
(succeeds).

In a universe with mν & 8 eV, however, small scale
power is so suppressed that structure formation proceeds
in a top-down manner. (This is shown in detail in the
main text.) Then structure on all scales forms much
later than 2.4 Gyr. Moreover, smaller structure is embed-
ded in larger halos, which set the virial mass that enters
Eq. (C5). Hence, the timescale for a significant fraction of
baryons to form stars is at least tbrems � tvir � O(Gyr).
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