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Abstract

We consider world-sheet theories for non-Abelian strings assuming compactification on a
cylinder with a finite circumference L and periodic boundary conditions. The dynamics of
the orientational modes is described by two-dimensional CP(N−1) model. We analyze both
non-supersymmetric (bosonic) model and N = (2, 2) supersymmetric CP(N − 1) emerging
in the case of 1/2-BPS saturated strings in N = 2 supersymmetric QCD with Nf = N .
The non-supersymmetric case was studied previously; technically our results agree with
those obtained previously, although our interpretation is totally different. In the large-
N limit we detect a phase transition at L ∼ Λ−1

CP (which is expected to become a rapid
crossover at finite N). If at large L the CP(N − 1) model develops a mass gap and is in
the Coulomb/confinement phase, with exponentially suppressed finite-L effects, at small L
it is in the deconfinement phase, and the orientational modes contribute to the Lüsher term.
The latter becomes dependent on the rank of the bulk gauge group.

In the supersymmetric CP(N−1) models at finite L we find a large-N solution which was
not known previously. We observe a single phase independently of the value of LΛCP. For
any value of this parameter a mass gap develops and supersymmetry remains unbroken. So
does the SU(N) symmetry of the target space. The mass gap turns out to be independent
of the string length. The Lüscher term is absent due to supersymmetry.



1 Introduction

Recently there was a considerable progress in studies of long confining strings, see [1]. The
energy of the Abrikosov-Nielsen-Olesen (ANO) closed string [2] in the Abelian-Higgs model
as a function of the string length L (in the large-L limit) can be written as

E(L) = TL− γ

L
+

c3
TL3

+ · · · , (1.1)

where T is the string tension and ellipses stand for terms of the higher order in 1/L. This
1/L expansion is determined by the low-energy effective two-dimensional theory on the string
world-sheet. For the ANO string the world-sheet theory is given by the Nambu-Goto action
plus higher derivative corrections. It is plausible to assume that a a similar structure applies
to QCD confining strings. Recently a significant progress occurred in measuring the spectrum
of long confining QCD strings in lattice simulations, see, for example, [3].

The 1/L term in (1.1) is referred to as the Lüscher term [4]. The coefficient γ is uni-
versal. Its value is determined by the number of massless (light) degrees of freedom on the
string world-sheet. The Abelian strings possess only two massless excitations due to two
translational zero modes; the Lüscher term is, correspondingly, γ = π/3.

In this paper we will study the energy of a finite-L closed non-Abelian string assuming
that L is much larger than the string transverse size.

The main feature of the non-Abelian strings is the occurrence of extra (quasi)moduli:
orienational zero modes associated with their color flux rotation in the internal space. Dy-
namics of these orientational moduli is described by two-dimensional CP(N − 1) model on
the string world-sheet. If the bulk theory supporting such string vortices is supersymmetric,1

the world-sheet CP(N − 1) model will have various degrees of supersymmetry. Non-Abelian
strings were first found in N = 2 supersymmetric gauge theories [5, 6, 7, 8]. Later this
construction was generalized to a wide class of non-Abelian gauge theories, both supersym-
metric and non-supersymmetric, see [9, 10, 11, 12]. The Lüsher term for non-supersymmetric
non-Abelian strings was previously discussed in [13].

Our current task is broader: we want to study the L dependence of E(L) for all values of
L, large and small (see below), taking account of the orientational moduli that are described
by two-dimensional CP(N−1) model. The latter is asymptotically free and develops its own
dynamical scale ΛCP. This modifies the expansion in (1.1). Assuming that

ΛCP ≪
√
T (1.2)

we can write

E(L) = TL+
f(ΛCPL)

L
+O

(

1

TL3

)

. (1.3)

Below we will present a detailed calculation of the string energy for strings with

L≫ 1/
√
T . (1.4)

1In the simplest version non-Abelian vortex strings are supported in gauge theories with the U(N) gauge
group and Nf = N flavors of quarks.
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For these values of L higher derivative corrections to the effective world-sheet theory can be
ignored, and we use CP(N − 1)-based description to calculate the function f(ΛCPL) (which
is already known [13] in the limits L≫ Λ−1

CP and L≪ Λ−1
CP). To solve the CP(N − 1) model

we use the large-N approximation [14]. Given the constraint (1.4) which is also assumed,
we call the string “large” if L≫ Λ−1

CP , and “small” otherwise.
Now, when we have two free parameters in the problem under consideration, N and L,

and both can be large, the ordering of taking limits is of paramount importance and a source
of a number of paradoxes. We will always take first the limit N → ∞. In this limit the
number of dynamical degrees of freedom is infinite (even in the quantum-mechanical limit
L→ 0) and, moreover, all interactions die off. This makes possible phase transitions.

For non-supersymmetric case we find a phase transition in the CP(N − 1) model on the
string world-sheet. Its origin is intuitively clear: at large L the theory is strongly coupled
while at small L it is weakly coupled and its behavior should be close to that given by
perturbation theory. Correspondingly, at large string length this theory develops a mass gap
and is in the Coulomb/confinement phase. Finite-length effects coming from orientational
moduli are exponentially suppressed. We find that at L≫ ΛCP

f(ΛCPL) = −
π

3
−N

√

2

π

√

ΛCPLe−ΛCPL + · · · , (1.5)

where the first term is the conventional Lüscher term coming from the translational moduli.
At small length the CP(N − 1) model is in the deconfinement phase. Massless orienta-

tional moduli contribute to the Lüscher term which becomes dependent on the rank of the
bulk gauge group. At

√
T ≪ L≪ ΛCP we find that

f(ΛCPL) = −N
π

3
. (1.6)

The asymptotic values of the Lüscher coefficient γ associated with the limits of large and
small L in (1.5) and (1.6), respectively, were reported earlier in [13] for the open string. Here
we confirm these results and derive f(ΛCPL) for the closed sting. In other words, we impose
periodic boundary conditions (on the boson and fermion fields in the case of supersymmetric
model, see below).

If N is large but finite we expect that the phase transition becomes a rapid crossover.
We do not expect strictly massless states to appear in the small-L domain at finite N .

Next, we study supersymmetric case considering BPS-saturated non-Abelian string in
four-dimensional N = 2 SQCD. In this case the world-sheet theory for orientational modes
is N = (2, 2) supersymmetric CP(N − 1) model. Solving this theory in the large-N limit we
find a single phase with unbroken supersymmetry and a mass gap. The mass gap turns out
to be independent of the string length. The chiral Z2N symmetry is broken down to Z2, in
much the same way as for infinitely long string. The photon field acquires a mass term, and
no Coulomb/confining potential is generated. Instead, the theory has N degenerate vacua
representing N elementary strings. The Lüscher term vanishes due to the boson-fermion
cancellation.
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Thus, the dynamical L-behavior of non-Abelian strings, with or without supersymmetry,
is drastically different in the large-N solution.

As was mentioned, in both cases we impose periodic boundary conditions on the spacial
interval of length L. In the non-supersymmetric case this is equivalent to endowing the
string under consideration with temperature β−1,

β = L . (1.7)

Such strings were considered previously, see e.g. [15, 16, 17]. Our results differ from
those of [15, 16, 17] partly in interpretation and partly in essence.

The paper is organized as follows. In Sections 2 and 3 we briefly review non-supersymmetric
bulk theory supporting non-Abelian strings and the large-N solution of the CP(N−1) model
at L → ∞ [14], respectively. In Sec. 4 we use the large-N method to study non-Abelian
strings of finite length and, in particular, describe the Coulomb/confinement phase. Section
5 is devoted to deconfinement phase. In Secs. 6 and 7, central in our analysis, we deal with
supersymmetric N = (2, 2) string. In Sec. 8 we calculate the photon mass on the world-sheet
of the supersymmetric string under consideration as a function of L. Sec. 9 summarizes our
conclusions. Appendices contain details of our calculations.

2 Non-supersymmetric non-Abelian strings

In this section we briefly review the simplest four-dimensional non-supersymmetric model
supporting non-Abelian strings [18], give a topological argument for their stability and out-
line the effective low-energy theory on the world-sheet.

The model suggested in [18] is a bosonic part of N = 2 supersymmetric QCD, see [11]
for a review. The gauge group of the theory is SU(N) × U(1). The matter sector of the
model consists of Nf = N flavors of complex scalar fields (squarks) charged with respect to
U(1), each in the fundamental representation of SU(N). The action of the model is

S =

∫

d4x
[

− 1

4g22

(

F a
µν

)2 − 1

4g21
(Fµν)

2

+ |∇µϕA|2 + g22
2

(

ϕ̄AT
aϕA

)2
+

g21
8

(

|ϕA|2 −Nξ
)2
]

, (2.1)

where T a are the generators of SU(N), the covariant derivative is defined as

∇µ = ∂µ −
i

2
Aµ − iT aAa

µ ,

Aµ and Aa
µ denote the U(1) and SU(N) gauge fields respectively, and the corresponding

coupling constants are g1 and g2. The scalar fields ϕkA have the color index k = 1, ..., N
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and the flavor index A = 1, ..., N . Thus, ϕkA can be viewed as an N ×N matrix. The U(1)
charges of ϕkA are 1/2.

Let us examine the potential of the theory (2.1) in more detail. It consists of two non-
negative terms and consequently the minimum of the potential is reached when both terms
vanish. The last term proportional to g21 forces ϕA to develop a vacuum expectation value.
One can choose ϕkA to be proportional to the unit matrix, namely,

ϕvac =
√

ξ diag (1, 1, ..., 1), (2.2)

where we use N × N matrix notation for ϕkA. Then the last but one term vanishes auto-
matically.

The above vacuum field spontaneously breaks both the gauge and flavor SU(N) groups.
However, it is invariant under the action of combined color-flavor global SU(N)C+F . There-
fore, symmetry breaking pattern is

U(N)gauge × SU(N)flavor → SU(N)C+F .

This setup was suggested in [19] and became known later as the color-flavor locking.
The topological stability of non-Abelian strings in this model is due to the fact that

π1(SU(N) × U(1)/ZN) 6= 0. One combines the ZN center of SU(N) with elements e2πik/N

of U(1) to get windings in both groups simultaneously.
The string solution [18] breaks the global symmetry of the vacuum as follows:

SU(N)C+F → SU(N − 1)× U(1) . (2.3)

As a result the orientational zero modes appear, making the vortex non-Abelian. As is
clear from the symmetry breaking pattern of Eq. (2.3) the orientational moduli belong to
the quotient

SU(N)

SU(N − 1)× U(1)
= CP (N − 1) . (2.4)

Thus, the low-energy effective theory on the string world-sheet is described by the CP (N−1)
model. The action of the model was derived in [18]; it can be written as

S(1+1) =

∫

d2x

[

Tcl

2
(∂kz

i)2 + r |∇k n
l|2
]

, (2.5)

where
Tcl = 2πξ (2.6)

is the classical tension of the string, zi are two translational moduli in the perpendicular
plane, nl, l = 1, ..., N are N complex fields subject to the constraint

|nl|2 = 1 , (2.7)

and r is defined below.
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The covariant derivative is
∇k = ∂k − iAk (2.8)

and k = (1, 2) labels the world-sheet coordinates. The relation between two-dimensional
coupling r and a four dimensional coupling g2 at the scale

√
ξ is given by

r =
4π

g22
. (2.9)

The field Ak enters without kinetic term and is auxiliary. It can be eliminated by virtue
of equations of motion and is introduced to make the U(1) gauge invariance of the model
explicit.

Let us count the number of degrees of freedom. The complex scalar fields give 2N real
degrees of freedom, of which one is eliminated due to the constraint (2.7) and another one
due to U(1) gauge invariance. Thus, the total number of degrees of freedom is 2(N − 1)
which is precisely the number of degrees of freedom in the CP (N − 1) model.

To conclude this section we note that formation of non-Abelian strings leads to confine-
ment of monopoles in the bulk theory. In fact, in the U(N) gauge theories strings are stable
and cannot be broken. Therefore, confined monopoles are presented by junctions of two
degenerate non-Abelian strings of different kinds, see review [11] for details. In the effective
world-sheet theory on the string these confined monopoles are seen as CP(N − 1) kinks
interpolating between distinct vacua.

3 CP (N − 1) model at zero temperature

At large N the model was solved [14] in the 1/N approximation. Let us outline how this is
done. The Lagrangian L of the CP (N−1) model in the gauged formulation in the Euclidean
space-time can be written as

L = |∇kn
l|+ ω

(

|nl|2 − r
)

, (3.1)

where we rescale the nl fields. In addition, we introduce a parameter ω to enforce the
constraint. Moreover, we replace the coupling r with the ’t Hooft coupling constant λ,

λ =
N

r
; (3.2)

λ does not scale with N .
Since the nl fields appear quadratically in the action (3.1) we can perform the Gaussian

integration over them resulting in the equation for the effective potential V ,

e−T̂ V =

∫

dω dAk det
−N
(

−(∂k − iAk)
2 + ω

)

exp

(

N

λ

∫

d2xω

)

, (3.3)

where T̂ stands for the (asymptotically infinite) Euclidean time.
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Since integration over ω and Ak cannot be done exactly we use a stationary phase ap-
proximation. Due to the Lorentz invariance we search for a point such that Ak = 0 and
ω =const. To find this stationary point we vary the Eq. (3.3) with respect to ω. The
resulting equation is

λ

∫

d2k

(2π)2
1

k2 + ω
= 1 . (3.4)

Rewriting the bare coupling constant λ in terms of the scale ΛCP of the CP(N − 1) model

4π

λ
= ln

M2
uv

Λ2
CP

, (3.5)

where Muv is the ultra-violet cutoff, we finally find that

ω = Λ2
CP . (3.6)

Thus, the vacuum value of ω does not vanish. Looking at Eq. (3.1) one can see that a
positive value of ω means that a mass for the fields nl is dynamically generated.

To determine the spectrum of the theory one has to expand the effective action Eq.
(3.1) around the saddle point and consider field fluctuations in the quadratic approximation.
Linear terms vanish. Terms that are cubic and higher are suppressed by powers of 1/

√
N .

Two Feynman diagrams in Fig. 1 give rise to the kinetic term for the U(1) gauge field.

Figure 1: Feynman diagrams contributing to kinetic term of photon field

Gauge invariance requires the answer to be

Πµν = Π(p2)
(

p2gµν − pµpν
)

. (3.7)

The meaning of Eq. (3.7) is simple. It represents the kinetic energy of the gauge field written
in momentum space. Thus, what was introduced as an auxiliary field becomes a propagating
field. Calculation in Appendix B reproduces Witten’s result [14], Π(0) = N/12πΛ2

CP , which
is interpreted as the inverse of the U(1) charge squared of the nl fields.

Massless photon in two dimensions produces the Coulomb potential between two charges
at separation R,

V (R) =
12πΛ2

N
R , (3.8)
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Figure 2: Configuration of the string with two particles on it. Zero and one represent the true
vacuum and the first quasivacuum respectively.

leading to a linear confinement of the n̄n pairs. Thus, the spectrum of the theory contains
n̄n “mesons” rather than free n’s.

It is instructive to present an alternative interpretation of this result. In [14] it was shown
that nl fields can be interpreted as kinks interpolating between different vacua. The vacuum
structure of the CP (N − 1) model was studied in [24]. According to this work the genuine
vacuum is unique. There are, however, of the order N quasivacua, which become stable in
the limit N → ∞ , since the energy split between the neighboring quasivacua is O(1/N).
Thus, one can imagine the n̄ field interpolating between the true vacuum and the first
quasivacuum and the n field returning to the true vacuum as in Fig. 2. The linear confining
potential between the kink and antikink is associated with the excess in the quasivacuum
energy density compared to that in the genuine vacuum.

This two-dimensional confinement of kinks can be interpreted in terms of strings and
monopoles of the bulk theory, see [18]. The fine structure of the CP(N − 1) vacua on the
non-Abelian string means that N elementary strings are split by quantum effects and have
slightly different tensions. Therefore, the monopoles, in addition to the four dimensional
confinement, (which ensures that they are attached to the string) acquire a two-dimensional
confinement along the string. The monopole and antimonopole connected by a string with
larger tension form a mesonic bound state.

Consider a monopole-antimonopole pair interpolating between strings 0 and 1, see Fig. 2.
The energy of the excited part of the string (labeled as 1) is proportional to the distance as
in Eq. (3.8). When it exceeds the mass of two monopoles (which is of order of ΛCP) then
the second monopole-antimonopole pair appear breaking the excited part of the string. This
gives an estimate for the typical length of the excited part of the string, R ∼ N/ΛCP.

The above condition guarantees that there is enough energy in the “wrong string” to
produce a pair of kinks. However, the probability of this process, string breaking, (which
can be inferred from the false vacuum decay theory) is proportional to exp(−N), i.e. dies
off exponentially at large N .

4 The Coulomb/confinement phase

In order to consider closed non-Abelian strings of length L we compactify the space dimen-
sion; in other words, we study CP(N − 1) model (3.1) on a strip of the finite length L with
periodic boundary conditions.
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In Euclidean formulation considering a model at finite length is equivalent to considering
the model at finite temperature. The correspondence between the length of the string and
the temperature is given by

L = β , (4.1)

where β is the inverse temperature. Thus, the limit of infinite length is the same as the limit
of zero temperature.

To solve the CP(N − 1) model on a finite strip we use large-N approximation. The
CP (N − 1) model at finite temperature in the large-N approximation was solved previously
by Affleck [15], see also [16] and [17] for reviews. Although we use a different regularization,
our results match those obtained in [15]. There are two important differences, however. The
first one is related to the interpretation of the photon mass. In [15] the emergence of the
photon mass is interpreted as a phase transition into the deconfinement phase already at
L = ∞. We give a different interpretation of the photon mass (see Sec. 4.2); we do not
detect any phase transition at L = ∞. We interpret the large L phase (L > 1/ΛCP) as a
Coulomb/confinement phase, much in the same way as at infinite L [14].

The second difference with Ref. [15] is that we find a phase transition at L ∼ 1/ΛCP into
a deconfinement phase in the limit N → ∞, see Sec. 5. This is a weak coupling phase. In
this phase the global SU(N) is broken and the CP(N − 1) model does not develop a mass
gap. The gauge field remains auxiliary and no Coulomb/confining potential is generated.

At large but finite N we expect the phase transition to become a rapid crossover. The
spontaneous breaking of the global SU(N) symmetry is in a contradiction with the Coleman
theorem [23], stating that there can be no massless non-sterile particles in 1+ 1 dimensions.
Therefore we expect that the “would be Goldstone” states of the broken phase acquire small
masses suppressed in the large-N limit.

To solve the CP(N − 1) model we use the mode expansion with the periodic boundary
conditions. The open string setup involves the Dirichlet boundary conditions. For example,
for open string the expansion (1.1) is modified. It acquires L-independent terms coming
from the energy associated with boundaries. We limit ourselves to a closed string in this
paper.

4.1 Large-N solution

Our starting point is Eq. (3.1). Integrating out nl fields, one arrives at the same Eq. (3.3)
as in the infinite L case. However, now we take into account the gauge holonomy around
the compact dimension. Following [15] we choose the gauge

A1 = 0

and look for minima of the potential with A0 = const and ω = const. The mode expansion
in (3.3) gives for the orientational part of the string energy in (1.3)

Eorient(L) =
N

2π

∞
∑

k=−∞

∫

∞

−∞

dq1 ln

{

q21 +

(

2πk

L
+ A0

)2

+ ω

}

. (4.2)
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To calculate (4.2) we follow [26] and use the zeta function regularization. Details of our
calculation are presented in Appendix A. Here we give the final result for the string vacuum
energy,

Eorient(L) =
NLω

4π

[

1− ln
ω

Λ2
CP

− 8

∞
∑

k=1

K1(kL
√
ω)

kL
√
ω

cos kLA0

]

, (4.3)

where K1 is the modified Bessel function of the second kind (also known as the Macdonald
function). An important feature of this expression is the appearance of a non-trivial potential
for the photon field. We will dwell on this issue in the next subsection.

To find the saddle point we extremize the expression (4.3) with respect to ω and A0,
which results in the following equations:

∂Eorient

∂A0

=
2NL

√
ω

π

∞
∑

k=1

K1(Lk
√
ω) sinLkA0 = 0 , (4.4)

log
ω

Λ2
CP

= 4

∞
∑

k=1

K0(Lk
√
ω) cosLkA0 , (4.5)

where the logarithmic term in the left-hand side of Eq. (4.5) is the renormalized inverse
coupling 1/λ. The logarithmic integral over momentum is regularized in the infrared by ω.

Equation (4.4) yields the solution of the form LA0 = π l, where l ∈ Z. However, from the
Eq. (4.3) it is clear that the solution with LA0 = 2π l lies lower in energy than the solution
with LA0 = (2l − 1)π and is, thus, physical. We take A0 = 0 as a solution of (4.4). Our
result for the orientational string energy is shown in Fig. 3, where Ṽ = Eorient/L.

2 3 4 5 6 L

-1.0

-0.5

0.5

1.0

1.5

2.0

4 Π V
�

Figure 3: Effective potential (in units of Λ2
CP) as a function of length.

Equation (4.5) yields a nonvanishing value of ω which we interpret – as in the case of
zero temperature – as mass generation for the nl fields. The dependence of the mass on the
string length L is shown in Fig. 4 where we put

√
ω ≡ m. (4.6)
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1 2 3 4 5 6 L

1.0

1.1

1.2

1.3

1.4

1.5

1.6

m

Figure 4: Mass (in the units of Λ) of fields nl as a function of L.

One can see that the nl field mass increases with decreasing L.
In the limit L≫ 1/ΛCP the modified Bessel functions in (4.3) exhibit exponential fall-off

at large L. To determine the leading non-trivial correction to the string energy we can use
the “zeroth-order” solution ω ≈ Λ2

CP of the equation (4.5) for the vacuum expectation value
(VEV) of ω. Clearly this “zeroth-order” solution coincides with the VEV of ω in the infinite
volume, see (3.6). For the total string energy we obtain

E(L) =

(

2πξ +
N

4π
Λ2

CP

)

L− π

3

1

L
−N

√

2

π

√

ΛCP

L
e−ΛCPL + · · · . (4.7)

In Eq. (4.7) we included the classical string tension 2πξL, its renormalization due to vacuum
fluctuations in CP (N − 1) (i.e. (N/4π) Λ2

CP L), and the contribution of the translational
modes which give the standard Lüscher term. This result was quoted in Sec. 1, see Eq. (1.5).

We see that the quantum fluctuations of the orientational moduli contribute both to the
renormalization of the string tension (the linear in L term in (4.7)) and to the function
f(ΛCPL) in (1.3). As was expected, in the theory with a mass gap the contribution of
orientational moduli to the L-dependent part of the string energy is exponentially suppressed
at large L.

Let us note, that the case of an open non-Abelian string was previously considered
in [27]. The results of [27] show the presence of long range 1/L effects coming from the
orientational sector even at large L where the theory has a mass gap. We disagree with these
results and believe that orientational long range forces in the large-L phase are spurious and
are associated with the boundary energy somehow induced [27] by the Dirichlet boundary
conditions rather than with the string itself.

4.2 The photon mass

The A0-dependence in the potential (4.3) ensures that the gauge field acquires a mass [15].
It is quite natural to expect that the photon becomes massive at non-zero temperature.
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Physically this means the Debye screening.
Expanding (4.3) at large L we can write down an effective action for the U(1) gauge field,

Sgauge =

∫

d2x

{

1

4e2
F 2
kl −N

√

2

π

√

ΛCP

L3
e−ΛCPL cosA0L+ · · ·

}

. (4.8)

The kinetic term for the gauge field at non-zero temperature is calculated in Appendix
B. To calculate the photon mass to the leading order in exp (−ΛCPL) we need the expression
for the gauge coupling e2 in the limit L→∞, namely,

1

e2
≈ N

12πΛ2
CP

, (4.9)

see Sec. 3. Expanding (4.8) to the quadratic order in A0 we arrive at

m2
A ≈ 12Λ2

CP

√

2πΛCPL e−ΛCPL . (4.10)

for the photon mass. Note, that the non-zero photon mass at finite temperature does not
break gauge invariance since Lorentz symmetry is explicitly broken, see [15].

The photon becoming massive was the reason for the claim [15] that at non-zero temper-
ature the CP(N −1) model is in the deconfinement phase. We give a different interpretation
for this effect.

We treat the quasivacua as the strings of different tension. Kinks and antikinks interpo-
late between true vacuum and the first quasivacuum. The Debye screening due to a finite
photon mass now can be interpreted as a breaking of the confining string between kink and
antikink in the thermal medium (through picking up a kink-antikink pair from the thermal
bath). Note, that unlike pair-production from the vacuum, this process is not suppressed as
exp(−N).

The kink-antikink potential has the form

V (R) = e2Re−mAR , (4.11)

where R is the kink-antikink separation. It is still linear at small R, while the exponential
suppression at large R can be understood as a breaking of the confining string due to creation
of a kink-antikink pair from the thermal bath. Therefore, we still interpret the large L phase
as a Coulomb/confinement phase.

A similar question can be addressed in QCD. Do we have confinement of quarks in
QCD? We believe that the answer is positive. However, the confining string can be broken
by quark-antiquark production. We suggest a similar interpretation for the CP(N−1) model
at non-zero temperature.

If L is very large (very low temperatures) the thermal string breaking can be ignored,
however once L reduces below logN/ΛCP the thermal breaking becomes operative.
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4.3 Small length limit

As was already mentioned, we will show in the next section that once L decreases below
1/ΛCP our CP(N −1) model undergoes a phase transition into the deconfinement phase. To
prove this we calculate the vacuum energy in the deconfinement phase in the next section
and show that it lies below that in the Coulomb/confinement phase.

In order to make this comparison we will examine Eqs. (4.3) and (4.5) in the low-L
limit. These expressions determine the vacuum energy and the ω expectation value in the
Coulomb/confinement phase.

Assuming that L2ω ≪ 1 we can use the following approximation for the sum of the
modified Bessel functions (see Eq. (8.526) in [21])

∞
∑

n=1

K0(ny) ≈
π

2y
+

1

2
ln

y

4π
+

γ

2
+O(y2) , (4.12)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Consequently, we get from (4.5)

ln

√
ω

ΛCP
= 2

[

π

2L
√
ω
+

1

2
ln

L
√
ω

4π
+

γ

2

]

, (4.13)

or approximately

ln
1

ΛCPL
=

π

L
√
ω
. (4.14)

Now the logarithmic integral which determines the renormalized inverse coupling 1/λ is
regularized in the infrared by 1/L rather than by

√
ω (which is the case in the large-L limit).

This gives us the ω expectation value,

√
ω =

π

L

1

ln (1/ΛCPL)
+ · · · . (4.15)

Equation (4.15) justifies our approximation L2ω ≪ 1 at L ≪ 1/ΛCP . Note also that at
L ≪ 1/ΛCP the coupling constant is small – it is frozen at the scale 1/L (the logarithm in
the left-hand side of (4.14) is large), so the theory is at weak coupling.

To find the orientational energy in this limit we need to find an approximate expression
for the sum of the modified Bessel functions that appears in (4.3),

SE =
2L
√
ω

Lπ

∞
∑

k=1

K1(kL
√
ω)

k
. (4.16)

Derivative of the modified Bessel functions satisfies the following relation (see Eq. (9.6.28)
in [20]):

K ′

1(x) = −K0(x)−
K1(x)

x
. (4.17)

12



Let us introduce a notation,

S1(x) =

∞
∑

k=1

K1(kx)

k
. (4.18)

Then

(xS1(x))
′ = −x

∞
∑

k=1

K0(kx)
(4.12)≈ −π

2
− x

2
ln

x

4π
− xγ

2
+O(x3) . (4.19)

Integrating this expression one finds

xS1(x) ≈ −
xπ

2
− x2

4
ln

x

4π
− x2

8
(2γ − 1) + const +O(x4) (4.20)

The behavior of the modified Bessel function at small values of the argument is given by
(see Eq. (9.6.9) in [20])

K1(x) ∼
1

x
. (4.21)

Thus, the sum S1(x) can be approximated as follows:

S1(x) ≈
∞
∑

k=1

1

xk2
=

π2

6x
. (4.22)

Hence the constant appears to be π2/6. Now we are ready to present the approximate
expression we seek for,

SE =
2

Lπ
L
√
ωS1(L

√
ω) ≈ π

3L
−√ω − Lω

2π
ln

L
√
ω

4π
− Lω

4π
(2γ − 1) . (4.23)

With this approximation we arrive at the orientational energy

Eorient(L) = −
π

3

N

L
+N

√
ω − N

2π
ωL ln

1

ΛCPL
+ · · · (4.24)

Substituting here the VEV of ω, see (4.15), we get

Eorient(L) = −
π

3

N

L
+

π

2

N

L

1

ln (1/ΛCPL)
+ · · · . (4.25)

The first term here is the Lüscher term proportional to the number of orientational degrees
of freedom 2(N − 1) ≈ 2N (in the large N limit). It gets corrected by an infinite series of
powers of inverse logarithms ln (1/ΛCPL), if we naively extend the Coulomb/confinement
phase into the region of small L. We will show in the next section that in fact the theory
undergoes a phase transition into a different phase, with a lower energy.
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5 Deconfinement phase

Classically CP(N −1) model has 2(N −1) massless states which can be viewed as Goldstone
states of the broken SU(N) symmetry. Indeed, classically the vector nl satisfies a fixed length
condition, |n|2 = r, see (3.1). Thus classically nl acquires a VEV breaking SU(N) symmetry.

However, as was shown above, in the strong coupling large L domain the spontaneous
symmetry breaking does not occur, in much the same way as in the infinite-L limit, see
[14]. At strong coupling the vector nl is smeared all over the vacuum manifold due to strong
quantum fluctuations. The theory has a mass gap, moreover the number of the massive
n-fields becomes 2N . Effectively the classical constraint |n|2 = r is lifted, see [14].

At small L the theory enters a weak coupling regime so we expect occurrence of the
classical picture in the limitN →∞. To study this possibility we assume that one component
of the field nl, say n0 ≡ n can develop a VEV. Then we integrate over all other components
of nl (l=1,2,...) keeping the fields n and ω as a background. Note, that a similar method
was used in [28] for studying phase transitions in the CP(N −1) model with twisted masses.

Now, instead of (4.24), we get

Eorient(L) = ωL |n|2 − π

3

N

L
− N

2π
ωL ln

1

ΛCPL
+ · · · , (5.1)

where the ellipses stand for higher terms in L2ω. Note, that here we drop the contribution
associated with the integration over the constant n (the second term in (4.24)) because we
introduce n0 as a constant background field (in other words, we drop the term with k = 0
in (4.2)).

Minimizing over ω and n we arrive at the equations

|n|2 =
N

2π
ln

1

ΛCPL
+ . . . , (5.2)

ω n = 0 .

The solution to these equations with nonzero n0 read

|n|2 = N

2π
ln

1

ΛCPL
, ω = 0 . (5.3)

We see that the mass gap ω is not generated. Substituting this in (5.1) we get that the
orientational energy reduces just to the Lüscher term, namely

Eorient(L) = −
π

3

N

L
. (5.4)

This energy is lower than the one in (4.25). Therefore, we conclude that at L ∼ 1/ΛCP

the theory undergoes a phase transition into the phase with the broken SU(N) symmetry.
This ensures the presence of 2(N − 1) Goldstone states nl, l = 1, ...(N − 1). The photon
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remains an auxiliary field, no kinetic term is generated for it. As a result, there is no
Coulomb/confining linear rising potential between the n-states. The phase with the broken
SU(N) is a deconfinemet phase. Since |nl| is positively defined Eq. (5.3) shows that this
phase appears at L < 1/ΛCP.

The results of numerical calculations are in agreement with our conclusions. The relation
between orientational energies in both phases is shown in Fig. (5). One can see that the
Lüscher term energy is lower and is thus physical.

0.2 0.4 0.6 0.8 1.0L

-150

-100

-50

0

V
�

Figure 5: Comparison of orientational energies in both phases. The Lüscher term always lies lower.
We set ΛCP = 1.

The phase with the broken symmetry in two dimensions can occur only in the limit
N →∞. As was already explained, if N is large but finite this would contradict the Coleman
theorem [23]. Therefore, we expect that at large but finite N the phase transition becomes
a rapid crossover. In particular, we expect that the nl fields are not strictly massless. They
have small masses suppressed by 1/N .

To conclude this section let us note that the CP (N−1) model compactified on a cylinder
with the so-called twisted boundary conditions was studied in [29]. No phase transition was
found; moreover, it was shown that the theory has a mass gap which shows no L-dependence
and is determined entirely by ΛCP. We believe that our results are not in contradiction with
those obtained in [29], because at finite L the boundary conditions matter: they can be
crucial. In particular, the twisted boundary conditions can be viewed as a gauging of the
global SU(N) group with a constant gauge potential. Then the global SU(N) is explicitly
broken. This model should be considered as distinct as compared to the CP(N − 1) model
with the periodic boundary conditions studied in this paper.
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6 Supersymmetric CP(N−1) model with no compact-

ification

Non-Abelian strings were first found in N = 2 supersymmetric QCD with the U(N) gauge
group and Nf = N quark hypermultiplets [5, 6, 7, 8], see [9, 10, 11, 12] for reviews. In much
the same way as for non-supersymmetric case the internal dynamics of orientational zero
modes of non-Abelian string is described by two-dimensional CP(N −1) model living on the
string world-sheet. The string solution is 1/2-BPS saturated; therefore the two-dimensional
model under consideration is N = (2, 2) supersymmetric. In this section we briefly review
the large-N solution of N = (2, 2) CP(N−1) model in infinite space [14]. In the next section
we will present the large-N solution of the model on a strip of a finite length L (cylindrical
compactification).

The bosoinc part of the action of the CP(N − 1) model is given by

Sbos =

∫

d2x
[

|∇in
l|2 + 1

4e2
F 2
ij +

1

e2
|∂iσ|2 +

1

2e2
D2

+ 2|σ|2|nl|2 + iD(|nl|2 − r0)
]

, (6.1)

where the covariant derivative is defined as ∇i = ∂i− iAi and σ is a complex scalar field, the
scalar superpartner of Ai. Moreover, r0 is the bare coupling constant. In the limit e2 →∞
the gauge field Ai and σ become auxiliary fields. D stands for the D component of the gauge
multiplet. The factor i is due to the passage to the Euclidean notation.

The fermionic part of the action takes the form

Sferm =

∫

d2x
[

ξ̄lRi(∇0 − i∇3)ξ
l
R + ξ̄lLi(∇0 + i∇3)ξ

l
L

+
1

e2
λ̄Ri(∇0 − i∇3)λR +

1

e2
λ̄Li(∇0 + i∇3)λL

+
(

i
√
2σξ̄lRξ

l
L + i

√
2n̄l(λRξ

l
L − λLξ

l
R) + H.c.

) ]

, (6.2)

where the fields ξlL,R are the fermion superpartners of nl and λL,R belong to the gauge
multiplet. In the limit e2 →∞ they enforce the following constraints:

n̄lξlL = 0 , n̄lξlR = 0 . (6.3)

The field σ is auxiliary and can be eliminated, namely,

σ = − i√
2r0

ξ̄lLξ
l
R . (6.4)
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6.1 Large-N solution

The N = (2, 2) supersymmetric CP(N −1) model was solved in the large-N limit by Witten
[14], see also [22]. In this section we briefly review this solution.

Since both fields nl and ξl appear quadratically we can integrate them out. This produces
two determinants,

det−N
(

−∂2
i + iD + 2|σ|2

)

detN
(

−∂2
i + 2|σ|2

)

(6.5)

The first determinant comes from the boson nl fields, while the second comes from the
fermion ξl fields. Note that if D = 0 the two contributions obviously cancel each other, and
supersymmetry is unbroken. As before, the non-zero values of iD + 2|σ|2 and 2|σ|2 can be
interpreted as non-zero values of the mass of nl and ξl fields, and we put Ak = 0.

The final expression for the effective potential is given by (see, for example, [22])

Veff =

∫

d2x
N

4π

[

−(iD + 2|σ|2) ln iD + 2|σ|2
Λ2

CP

+ iD + 2|σ|2 ln 2|σ|2
Λ2

CP

]

, (6.6)

where the logarithmic ultraviolet divergence of the coupling constant is traded for the scale
ΛCP.

To find a saddle point we minimize the potential with respect to D and σ, which yields
the following set of equations:

ln
iD + 2|σ|2

Λ2
CP

= 0 ,

ln
iD + 2|σ|2

2|σ|2 = 0 , (6.7)

The solution to these equations is
D = 0, (6.8)

which shows that supersymmetry is not broken. The VEV of σ is
√
2σ = ΛCP e

2πk
N

i, k = 0, ..., (N − 1). (6.9)

We see that σ develops a VEV giving masses to the nl fields and their fermion superpartners
ξl. The phase factor in the right-hand side of (6.9) does not follow from (6.7). It comes from
the broken chiral U(1) symmetry. The axial anomaly breaks it down to Z2N . The field σ has
the chiral charge 2. This explains the phase factor in (6.9). Once |σ| has a nonzero VEV the
anomalous symmetry breaking ensures that the theory has N vacuum states. Clearly this
fine structure cannot be seen in the large N approximation since the phase factor is a 1/N
effect.

In full accord with the Witten index, the solution above has N vacua, each with the
vanishing energy.

Consider now the vector multiplet. In much the same way as in the non-supersymmetric
case, photon becomes a propagating field. To find the renormalized gauge coupling one needs
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Figure 6: Feynman diagrams contributing to the kinetic term of the photon

to evaluate two Feynman diagrams shown in the Fig.6. Details of the appropriate calculation
are given in Appendix C. The result is

1

e2
=

N

4π

1

Λ2
CP

. (6.10)

Through the coupling to the Im σ (due to the chiral anomaly) now the photon acquires
a mass. Moreover, the fermion fields λL,R also become propagating, with the same mass as
that of the photon, as required by supersymmetry. The masses of the fields of the vector
multiplet are as follows [14, 22]:

mph = mλL,R
= mRe σ = mIm σ = 2ΛCP . (6.11)

Since the photon became massive there is no linear rising Coulomb potential between
the charged states. There is no confinement in supersymmetric CP(N − 1) model even in
the infinite volume limit. It has N degenerate vacua which are interpreted as N degenerate
elementary non-Abelian strings in the four-dimensional bulk theory. In contrast to the non-
supersymmetric case, the confined monopoles of the bulk theory, which are seen as kinks
interpolating between the CP(N − 1) vacua, are free to move along the string, see [11] for
further details.

7 Supersymmetric CP(N − 1) on a cylinder

Now we compactify one space dimension and impose periodic boundary conditions, both
for bosons and fermions, in order to preserve N = (2, 2) supersymmetry. We stress that
this compactification cannot be considered as thermal. Non-zero temperature requires anti-
periodic boundary conditions for fermions, which would break supersymmetry explicitly.

The large-N method in the case of N = (2, 2) CP(N − 1) model works similar to that in
the non-supersymmetric case. We compactify now the spatial coordinate x1 and start from
a slightly modified expression for the determinants in Eq. (6.5). Choosing the A0 = 0 gauge
and assuming that A1 is non-zero we write

det−N
(

−∂2
0 − (∂1 − iA1)

2 +m2
b

)

detN
(

−∂2
0 − (∂1 − iA1)

2 +m2
f

)

, (7.1)
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where we introduced the following notation:

m2
b = iD + 2|σ|2, m2

f = 2|σ|2. (7.2)

The evaluation of each of the determinants is no different from that in the non-supersymmetric
case. Again we use the zeta-function method. Using expressions in Appendix C we can derive
the effective potential,

E =
LN

4π

[

− (iD + 2|σ|2) ln iD + 2|σ|2
Λ2

CP

+ iD + 2|σ|2 ln 2|σ|2
Λ2

CP

− 8m2
b

∞
∑

k=1

K1(Lmbk)

Lmbk
cos (LA1k)

+ 8m2
f

∞
∑

k=1

K1(Lmfk)

Lmfk
cos (LA1k)

]

, (7.3)

Here the first line is just the effective potential at L = ∞, while the second and third lines
are the finite-L corrections due to bosons and fermions, respectively.

To find a stationary point we vary the above expression with respect to A1, D and σ.
The resulting equations are as follows:

mb

∞
∑

k=1

K1(Lmbk) sin (LA1k)−mf

∞
∑

k=1

K1(Lmfk) sin (LA1k) = 0 ,

2σ

[

− ln
m2

b

m2
f

+ 4
∞
∑

k=1

K0(Lmbk) cos (LA1k)− 4
∞
∑

k=1

K0(Lmfk) cos (LA1k)

]

= 0 ,

− ln
m2

b

Λ2
CP

+ 4
∞
∑

k=1

K0(Lmbk) cos (LA1k) = 0 . (7.4)

Calculation of the gauge coupling constant at finite L is also modified (see Appendix C).
As a result, we arrive at

1

Ne2
=

1

4πm2
b

+
L

2πmb

∞
∑

k=1

K1(Lmbk)k , (7.5)

which reduces to 1/4πΛ2
CP in the limit L→∞.

Consider now the large L limit, L≫ 1/ΛCP. Assuming that mb ∼ mf ∼ ΛCP (we confirm
this below) we expand the string energy (7.3) keeping the first exponentially small term

E =
LN

4π

{

−m2
b ln

m2
f

Λ2
CP

+ iD +m2
f ln

m2
f

Λ2
CP

}

− N

√

2

π

[
√

mb

L
e−mbL −

√

mf

L
e−mfL

]

cosA1L+ · · · . (7.6)
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Taking derivatives with respect to D,
√
2σ̄ and A1 we obtain

−N

4π
log

m2
b

Λ2
CP

2

+N
1√
2π

exp (−mbL)√
mbL

cosA1L+ · · · = 0,

√
2σ

{

N

4π
log

m2
f

m2
b

+N
1√
2π

[

exp (−mbL)√
mbL

− exp (−mfL)
√

mfL

]

cosA1L+ · · ·
}

= 0,

{

exp (−mbL)√
mbL

− exp (−mfL)
√

mfL

}

sinA1L+ · · · = 0 , (7.7)

where the ellipses denote next-to-leading corrections in 1/Lmb and 1/Lmf .
The solution of these equations is as follows. The second and third equations are satisfied

at
D = 0, (7.8)

which shows that supersymmetry is not broken. A1 remains undetermined.
With D = 0 the first equation determines the σ expectation value, namely,

N

4π
log

2|σ|2
Λ2

CP

= N
1√
2π

exp
(

−
√
2|σ|L

)

√√
2|σ|L

cosA1L+ · · · . (7.9)

This equation seems to present a puzzle. It shows that the VEV of σ depends on the
parameter A1, which is arbitrary. If this were the case the theory would have a branch of
vacua parametrized by the Polyakov line

e
∫
dx1A1 = eiA1L, (7.10)

which measures the holonomy around the compact dimension. More exactly, the theory
would have N branches of vacua, because Z2N symmetry ensures that the overall phase of σ
takes N values 2πk/N , k = 0, ..., (N−1). This would contradict the Witten index argument
which ensures that the number of vacua is equal to N for N = (2, 2) supersymmetric
CP(N − 1) model.

The resolution of this puzzle is that we should quantize the phase variable A1L (note
that

∫

dx1A1 depends only on time) as a function of the non-compact time. In the emerging
quantum mechanics the phase A1L is not fixed; instead, it is smeared all over the circle (in
the ground state). As a result, the cos (A1L) in (7.9) is averaged to zero and the σ VEVs
are given by √

2σ = ΛCP e
2πk
N

i, k = 0, ..., (N − 1). (7.11)

This is exactly the same result as for L =∞. All cosine functions of A1L in the last equation
in (7.4) are averaged to zero, therefore the result in (7.11) is exact and does not depend on
L.
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This result also can be understood by studying the exact twisted superpotential of N =
(2, 2) CP(N − 1) model. In the infinite volume it is given by [30, 31, 32]

W (σ) =
N

4π

{

√
2σ log

√
2σ

ΛCP

−
√
2σ

}

. (7.12)

This superpotential has correct transformation properties with respect to the chiral U(1)
symmetry. Namely, integrated over half of the superspace it is invariant under chiral sym-
metry up to a term which precisely reproduces the chiral anomaly. Now at finite length this
superpotential in principle could have corrections proportional to powers of

exp
(

−
√
2σL

)

. (7.13)

However these corrections would spoil the transformation properties of the superpotential
with respect to the chiral symmetry. Therefore they are forbidden. As a result at finite L the
exact superpotential of the theory is still given by (7.12). Critical points of this superpotential
are given by (7.11) and do not depend on L. This matches our result obtained from large-N
approximation.

In particular, at small L the theory is at weak coupling and can be studied in the
quasiclassical approximation. As we already mentioned CP(N − 1) model compactified on
a cylinder with twisted boundary conditions was studied in [29]. It is shown in [29] that
the mass gap at weak coupling is produced by fractional instantons and does not depend on
L both in supersymmetric and non-supersymmetric cases. For our case (periodic boundary
conditions) the mass gap shows L-dependence in non-supersymmetric case, while in the
supersymmetric case it is L-independent. The quasiclassical origin of this behavior needs to
be understood in the weak coupling domain of small L. This is left to a future work.

To conclude, in N = (2, 2) supersymmetric CP(N − 1) model we have a single phase
with the unbroken supersymmetry and N vacua. Each vacuum has vanishing energy and
parametrized by the VEV of σ in Eq. (7.11). Unlike non-supersymmetric problem, this VEV
is independent of L.

8 The photon mass

In this section we outline the photon mass calculation.
The effective action for the gauge field can be written as [22]

Sgauge =

∫

d2x

{

1

4e2
F 2
kl −

N

4π
log

σ

σ̄
F ∗

}

, (8.1)

where the photon mixing with σ is due to the chiral anomaly and

F ∗ =
1

2
ǫijF

ij (8.2)
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is the dual gauge field strength. In the case of infinitely long string the the gauge coupling
and the photon mass were found [22],

1

e2
=

N

4π

1

Λ2
CP

, (8.3)

and
mph = 2ΛCP , (8.4)

respectively. In Sec. 7 we derived the expression for the gauge coupling in the case of finite
length, see (7.5). The corresponding expression for the photon mass in the limit of ΛCPL≫ 1
is

m2
ph ≈ (2ΛCP)

2
(

1−
√

2πΛCPL e−ΛCPL
)

(8.5)

where we used the asymptotic expansion of the modified Bessel functions (see Eq. (9.7.2) in
[20]),

K1(x) ∼
√

π

2x
e−x . (8.6)

Since K ′

0(x) = −K1(x) we can also determine the photon mass in the opposite limit of
ΛCPL≪ 1,

∞
∑

k=1

K1(kx)k = −
(

∞
∑

k=1

K0(kx)

)

′

≈ π

2x2
− 1

2x
,

m2
ph ≈

ΛCPL

π
(2ΛCP)

2 ≪ (2ΛCP)
2 . (8.7)

9 Conclusions

We studied two-dimensional CP(N − 1) model (both nonsupersymmetric and N = (2, 2))
compactified on a cylinder with circumference L (periodic boundary conditions). We found
the large-N solution for any value of L and discussed in detail the large-L and small-L limits.

A drastic difference is detected in passing from the nonsupersymmetric to N = (2, 2)
supersymmetric case. In the former case in the large-N limit we observe a phase transition
at L ∼ Λ−1

CP (which is expected to become a rapid crossover at finite N). At large L the
CP(N − 1) model develops a mass gap and is in the Coulomb/confinement phase, with
exponentially suppressed finite-L effects. At small L it is in the deconfinement phase; the
orientational modes contribute to the Lüsher term. The latter becomes dependent on the
rank of the bulk gauge group.

In the supersymmetric CP(N−1) model we have a different picture. Our large-N solution
exhibits a single phase independently of the value of LΛCP. For any value of this parameter
a mass gap develops and supersymmetry remains unbroken. So does the SU(N) symmetry
of the target space (i.e. it is restored). The mass gap turns out to be independent of the
string length. The Lüscher term is absent due to supersymmetry.
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Appendix A:

Calculation of Zeta function

We define the zeta function of an operator Ω as follows:

ζ(s) = Tr Ω−s . (A.1)

The operator of interest is given in Eq. (3.3),

Ω = −(∂k − iAk)
2 +m2 , (A.2)

where instead of ω we write m2. In the A1 = 0 gauge the expression for the zeta function
takes the form

ζ(s) =
T̂

2π

∞
∑

k=−∞

∫

∞

−∞

dq1

(

q21 +

(

2πk

L
+ A0

)2

+m2

)

−s

. (A.3)

Gauge invariance requires invariance under transformation A0 → A0 + 2πk0/L, where k0 is
integer. This is manifest in (A.3) since the shift can be absorbed in the sum. We always can
look for a solution for A0 in the interval |A0| < π/L, say A0 = 0.

To evaluate the expression in (A.3) we will need the following identities

Γ(Z) =

∫

∞

0

dt tz−1 e−t , (A.4)

∫

∞

0

dx(x2)(α−1)/2(x2 + A2)β−1 =
1

2
(A2)β−1+α/2B(α/2, 1− β − α/2) ,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (A.5)

The definition of the modified Bessel functions of second kind is
∫

∞

0

dx xν−1 exp
(

−a

x
− bx

)

= 2
(a

b

)ν/2

Kν

(

2
√
ab
)

. (A.6)
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The definition of the theta function (see Chapter 21 of [25]) is

Θ3(x, τ) =

∞
∑

k=−∞

qk
2

e2πix = 1 + 2

∞
∑

k=1

qk
2

cos 2kx , q = eπiτ , (A.7)

Its Jacobi transformation is

Θ3(x, τ) = (−iτ)−1/2 exp

(

x2

iπτ

)

Θ3(x/τ,−1/τ) . (A.8)

The evaluation of the zeta function, Eq. (A.3), proceeds as follows:

ζ(s)
(A.5)
=

T̂

2π

Γ(1
2
)Γ(s− 1

2
)

Γ(s)

∞
∑

k=−∞

[

(

2πk

L
+ A0

)2

+m2

]1/2−s

=
T̂

2π

Γ(1
2
)Γ(s− 1

2
)

Γ(s)

(

2π

L

)1−2s ∞
∑

k=−∞

[

(

k +
LA0

2π

)2

+ ǫ2

]1/2−s

(A.4)
=

T̂

2π

Γ(1
2
)Γ(s− 1

2
)

Γ(s)

(

2π

L

)1−2s
1

Γ(z)

×
∫

∞

0

dt tz−1e−tα2

∞
∑

k=−∞

e−k2t−kβ2t

(A.7)
=

T̂

2π

Γ(1
2
)Γ(s− 1

2
)

Γ(s)

(

2π

L

)1−2s
1

Γ(z)

×
∫

∞

0

dt tz−1e−tα2

Θ3

(

iβ2t

2
,
it

π

)

(A.8),(A.7)
= F

√
π

Γ(z)

∫

∞

0

dt tz−3/2e−tα2+β4t/4

(

1 + 2
∞
∑

k=1

e−
k2π2

t cosπkβ2

)

(A.6)
= F

√
π

Γ(z)

(

1

G2

)z− 1

2
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×
(

Γ(z − 1

2
) + 4

∞
∑

k=1

(πkG)z−
1

2Kz− 1

2

(2πkG) cosπkβ2

)

(A.6)
=

T̂L

4π

1

m2s−2

[

1

s− 1

+
4

Γ(s)

∞
∑

k=1

(

Lmk

2

)s−1

Ks−1(Lmk) cosLA0k

]

, (A.9)

where we introduced intermediate notations

ǫ =
Lm

2π
, z = s− 1

2
, F =

T̂

2π

Γ(1
2
)Γ(s− 1

2
)

Γ(s)

(

2π

L

)1−2s

, (A.10)

and

α2 =

(

LA0

2π

)2

+

(

Lm

2π

)2

, β2 =
LA0

π
, G2 = α2 − β4/4 . (A.11)

To find the derivative of the zeta function we will make use of the following properties of
Euler’s Γ function:

Γ(z + 1) = zΓ(z) , Γ(0) =∞ . (A.12)

The derivative is evaluated as follows:

ζ ′(s) =
T̂L

4π

[

− 1

m2s−2

1

(s− 1)2
− 2 lnm

m2s−2(s− 1)

− 4Γ′(s)

Γ2(s)m2s−2

∞
∑

n=1

(

Lmk

2

)s−1

Ks−1(Lmk) cosLA0k

]
∣

∣

∣

∣

∣

s=0

=
T̂Lm2

4π

[

−1 + lnm2 + 8
∞
∑

k=1

K1(kLm)

kLm
cosLA0k

]

(A.13)

Following [26] we can write the generating functional,

lnZ =
1

2
ζ ′(0) +

1

2
lnµ2ζ(0) , (A.14)

where a normalization constant µ has dimension of mass. Renormalizability requires

µ = Muv .

Thus, in terms of the zeta function and its derivative the expression for the effective potential
becomes

V = −N
T̂

(

ζ ′(0) + ζ(0) lnM2
uv

)

− N

4π
Lm2 ln

M2
uv

Λ2
. (A.15)
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Substituting the expressions for the zeta function and its derivative we obtain

V =
NLω

4π

[

1− ln
ω

Λ2
CP

− 8

∞
∑

k=1

K1(kL
√
ω)

kL
√
ω

cos kLA0

]

, (A.16)

where we replaced m2 by ω.

Appendix B:

Kinetic term in case of bosonic theory

To find the U(1) charge of the nl fields one has to consider only the second diagram in Fig.
(1). The first diagram is needed only for renormalization. The relevant part of the action
written in the Minkowski spacetime takes the form

iSM
B = i

∫

d2x
[

∇µn̄l∇µnl −m2|n|2
]

= i

∫

d2x
[

∂µn̄l∂
µnl −m2|n|2 + iAµ(n̄l

←→
∂ µn

l) + A2|n|2
]

, (B.1)

where
←→
∂ µ =

−→
∂ µ −

←−
∂ µ . We then pass to Euclidean space,

t = −iτ , A0 = iÂ0 , Ai = Âi .

The action in Euclidean space is

SE
B =

∫

d2x̂
[

∂kn̄l∂knl +m2|n|2 + iÂk(n̄l

←→
∂ kn

l) + Â2|n|2
]

. (B.2)

Now we can determine the Feynman rules. The results are shown in Fig. (7). Thus for the
kinetic term (in the case of an infinitely long string) one can write

Πij = N

∫

d2q

(2π)2
(pi + 2qi)(pj + 2qj)

(m2 + q2)(m2 + (p+ q)2)
. (B.3)

Introducing the Feynman parameter to combine the denominators

1

α(α + β)
=

∫ 1

0

dx
1

(xβ + α)2
, (B.4)

and substituting l = q + px in Eq. (B.3) we arrive at

Πij = N

∫

d2l dx

(2π)2
[pipj(1− 2x)2 − 2x(pilj + pjli) + 4lilj]

(l2 +m2 + p2x(1− x))2
. (B.5)
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Figure 7: Feynman rules: vertex and the propagator of nl field.

Terms linear in l vanish. To find the U(1) charge we only need to consider the pipj structure.
Thus, the expression for the charge is

1

Ne2
=

∫

d2l dx

(2π)2
(1− 2x)2

(l2 +m2 + p2x(1 − x))2
=

∫ 1

0

dx

4π

(1− 2x)2

m2 + p2x(1 − x)
. (B.6)

Expanding the last expression to the zeroth power in p one finally finds

1

Ne2
=

∫ 1

0

dx

4πm2
(1− 2x)2 =

1

12πm2
. (B.7)

The case of the finite length string is considered along similar lines. We recall (see [15])
that the limit pµ → 0 is understood as first putting p0 = 0 and then letting p1 go continuously
to zero. As a result, only Π00 6= 0. Using the Feynman rules one can derive the following
expression:

Π00 =
N

L

∞
∑

k=−∞

∫

dq

2π

4ω2
k

(m2 + q2 + ω2
k)(m

2 + (p+ q)2 + ω2
k)

, (B.8)

where we defined ωk = 2πk/L. Introducing again the Feynman parameter and making the
same substitution one arrives at

Π00 =

∞
∑

k=−∞

Nω2
k

L

∫ 1

0

dx

(m2 + ω2
k + p2x(1− x))3/2

. (B.9)

We expand this expression and keep only the leading power in p. Then the expression for
the charge becomes

1

Ne2
=

1

4L

[

∞
∑

k=−∞

(m2 + ω2
k)

−3/2 −m2

∞
∑

k=−∞

(m2 + ω2
k)

−5/2

]

=
L2

32π3

[

∞
∑

k=−∞

(k2 + α2)−3/2 − α2
∞
∑

k=−∞

(k2 + α2)−5/2

]

, (B.10)
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where α = Lm/2π. We deal with these sums as follows:

S1(z, α) ≡
∞
∑

k=−∞

(k2 + α2)−z (A.4)
=

1

Γ(z)

∫

∞

0

dt tz−1e−tα2

∞
∑

k=−∞

e−k2t

(A.7)
=

1

Γ(z)

∫

∞

0

dt tz−1e−tα2

Θ3(0, it/π)

(A.8)
=

√
π

Γ(z)

∫

∞

0

dt tz−1e−tα2

Θ3(0,−π/it)

(A.6)
=

√
π

Γ(z)

[

Γ(z − 1
2
)

α2z−1
+ 4

∞
∑

k=1

(

kπ

α

)z− 1

2

Kz− 1

2

(2kπα)

]

. (B.11)

Thus the expression for the charge can be written as

1

Ne2
=

1

4L

(

L

2π

)3
[

S1(3/2, α)− α2S1(5/2, α)
]

=
1

12πm2
+

L

2πm

∞
∑

k=1

K1(kLm) k − L2

6π

∞
∑

k=1

K2(kLm) k2. (B.12)

In the limit Lm≫ 1 the contributions from the modified Bessel functions are exponentially
small and thus the expression for the charge reduces to that for the infinitely long string.

Appendix C:

Kinetic term in the supersymmetric case

In Appendix B we calculated the first diagram (the boson part) in Fig. 6. Now we will
calculate the second diagram (the fermion part). The relevant part of the fermion action in
the Minkowski spacetime is

iSM
F = i

∫

d2x

{

ξ̄ iγµ∇µ ξ − i
√
2σξ̄

(

1− γ5

2

)

ξ

+ i
√
2σ∗ξ̄

(

1 + γ5

2

)

ξ

}

, (C.1)

where ∇µ = ∂µ − iAµ is the covariant derivative, and the γ matrices are defined as

γ0 =

(

0 −i
i 0

)

, γ1 =

(

0 i
i 0

)

, γ5 =

(

1 0
0 −1

)

.
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We pass to Euclidean space,

t = −iτ , A0 = iÂ0 , Ai = Âi , γ̂0 = γ0 , γ̂1 = −iγ1 , γ̂5 = γ5 ,

and, since in Euclidean formulation ξ and ξ̄ are independent, we define

ξ̂ = ξ , ˆ̄ξ = iξ̄ .

Thus, the action in Euclidean space can be presented as follows:

SE
F = −

∫

d2x̂

[

ˆ̄ξ iγ̂k∂̂k ξ̂ +
ˆ̄ξ γ̂kÂk ξ̂

−
√
2σ ˆ̄ξ

(

1− γ̂5

2

)

ξ̂ +
√
2σ∗ ˆ̄ξ

(

1 + γ̂5

2

)

ξ̂

]

. (C.2)

Examining this expression in components one can find that it matches that of (6.2). Since
from now on all calculations will be carried out in Euclidean space we will drop the caret
notation. Using (C.2) we find the Feynman rules that are shown in Fig. (8), where we

Figure 8: Feynman rules: vertex and the propagator of ξl field.

introduced a notation σ = a + ib and the mass is m2 = 2a2 + 2b2.
We begin from the case of the infinitely long string. The fermion contribution to the

kinetic term is

Πij = −
∫

d2q

(2π)2
1

(q2 +m2)[(p+ q)2 +m2]

× Tr
[

γi(/q + i
√
2b+

√
2aγ5)γj(/p+ /q + i

√
2b+

√
2aγ5)

]

. (C.3)

The Clifford algebra is, as usual,
{γiγj} = 2δij . (C.4)
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As a result, the trace identities for the γ matrices become

Tr(γiγj) = 2δij ,

Tr(γiγjγkγl) = 2δijδkl − 2δikδjl + 2δilδjk ,

Tr(odd number of γ’s) = 0 . (C.5)

Thus, the expression for the kinetic term takes the form

Πij = −
∫

d2q

(2π)2
Tr[γi

/qγ
j(/p+ /q)−m2γiγj ]

(q2 +m2)[(p+ q)2 +m2]

= −
∫

d2q

(2π)2
1

(q2 +m2)[(p+ q)2 +m2]

× [2qi(p+ q)j + 2qj(p+ q)i − 2q(̇p+ q)δij − 2m2δij ] . (C.6)

Notice, that generally speaking Tr(γiγjγ5) 6= 0 in two dimensions. However, we find that
both such contributions cancel each other.

We proceed as in the bosonic theory, introducing the Feynman parameter and making
the same substitution. Linear terms drop out, as usual. Furthermore, considering only pipj

structure we obtain

Πij
F = pipj

∫

d2ldx

(2π)2
1− (1− 2x)2

(l2 +m2 + p2x(1− x))2

= pipj
∫ 1

0

dx

4π

1− (1− 2x)2

m2 + p2x(1− x)
. (C.7)

Expanding to zeroth order in p we find fermion contribution to e2 ,

1

Ne2F
=

1

6πm2
. (C.8)

Combining this with the result we obtained in the boson theory, we finally arrive at

1

Ne2
=

1

4πm2
. (C.9)

In the case of the finite length string the starting expression (C.6) is modified

Πij = − 1

L

∞
∑

k=−∞

∫

dq

2π

1

(q2 +m2)[(p+ q)2 +m2]

× [2qi(p+ q)j + 2qj(p+ q)i − 2q(̇p+ q)δij − 2m2δij ] . (C.10)
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Again, just as in the boson theory we consider Π00. After we make the same substitution
and introduce the Feynman parameter we obtain

Π00 =
m2

L

∞
∑

k=−∞

∫ 1

0

dx

(p2x(1− x) +m2 + ω2
k)

3/2
. (C.11)

Then we expand this expression and keep only the first nonvanishing power in p. Thus,
fermionic contribution to the charge is

1

Ne2F
=

m2

4L

∞
∑

k=−∞

(m2 + ω2
k)

−5/2 (C.12)

Summarizing, we obtained a sum identical to that in (B.10). Therefore, their evaluation
is identical too. Combining the result found in this Appendix with that of the boson theory,
we obtain for the charge

1

Ne2
=

1

4πm2
+

L

2πm

∞
∑

k=1

K1(Lmk)k . (C.13)
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