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I. INTRODUCTION

Three dimensional Euclidean abelian gauge theory coupled to a two component massless fermion by

D/ (A) = σk (∂k + iAk) , (1)

can induce a parity breaking mass term for the gauge field in the form of a Chern-Simons action [1–3]

S =
iκ

4π

∫
d3xAkFk where Fk = ǫkij∂iAj . (2)

The mass term is gauge invariant in infinite volume provided the fields are assumed to vanish at infinity. This result
has been shown in perturbation theory using the gauge invariant Pauli-Villars regularization [4].
Theories with 2N flavors of massless fermions can have a real and positive determinant with proper pairing of

fermions. Vacuum energy arguments show that the O(2N) symmetry breaks down to O(N) × O(N) symmetry [5]
and it has been shown that dynamical masses are generated for fermions that do not break parity [6] in the large N
limit. Recent calculations along the same lines using Schwinger-Dyson equations [7] attempt to identify the phase
structure that separates one where dynamical masses are generated from others that do not. Numerical studies using
staggered fermions [8–10] have been performed and condensates have been computed for theories that do not break
parity, again with the aim of exploring the phase structure.
The gauge theory with one flavor of two component Dirac fermion can be regularized in a gauge invariant manner

using the Wilson-Dirac operator [11–13]

Dw(U,M) = D/ n(U) −B(U) +M ; D/ †
n(U) = −D/ n(U); B†(U) = B(U), (3)

where U is the U(1) valued lattice link variable; D/ n(U) is the näıve lattice fermion operator; B(U) is the Wilson
term that provides a mass of the order of cut-off for the doublers; and 0 ≤ M < 1 is the mass in lattice units for
the fermion. Perturbation theory computations [13] using Eq. (3) in infinite volume show that the coefficient of the
induced Chern-Simons term in Eq. (2) is κ = −1 if M > 0, and κ = − 1

2 if one takes the massless limit after taking
the continuum limit. For negative fermion masses, we would use

Dw(U,−M) = −D†
w(U,M) = D/ n(U) +B(U)−M for 0 ≤M < 1, (4)

so that the induced parity breaking term as one approaches the massless limit from the positive and negative side are
opposite in sign.
A theory with 2N flavors with N flavors obeying Eq. (3) and the other N flavors obeying Eq. (4) can be used for a

numerical investigation of condensates that do not break parity. We can also consider theories with non-degenerate
fermions and arbitrary number of flavors, and study the effect of parity breaking mass terms in the limit of large
number of flavors.
Consider the continuum limit in a lattice simulation where we take the number of lattice points denoted by L →

∞. The continuum limit needs to be taken keeping the physical spatial extent l, the fermion mass mphys and the
temperature T constant as L → ∞. In a lattice calculation, it is natural to instead consider the dimensionless
temperature t = lT and the dimensionless mass m = lmphys, measured in units of the spatial extent, to be the
parameters of the theory and keep them constant as L→ ∞. Since we study fermions on fixed gauge field backgrounds,
the coupling constant g2 does not play a role in the present calculations. The induced gauge action in a fixed gauge
field background will be gauge invariant and it is of interest to study this outside perturbation theory before embarking
on a full lattice simulation. Of particular interest is the phase of fermion determinant which contains parity violating
terms. Consider, for example [14], a gauge field background that has a non-zero magnetic flux,

∫
F3dxdy = 2πq3, (5)

for integer q3, along with a non-zero Polyakov loop, ei
∫
A3dτ = ei2πh3 . The associated Chern-Simons action is

S(h3, q3) = iκπh3q3, (6)

and it has to remain invariant under the gauge transformation h3 → (h3 + 1). This implies κ has to be an even
integer [15–17] for this particular gauge field background in a regularization that preserves gauge invariance under
such “large” gauge transformations [18–20]. This does not match with κ = −1 or κ = − 1

2 obtained in [13]. Effect
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of non-vanishing gauge fields at infinity on spontaneous and anomalous breaking of parity have also been addressed
in [21]. In addition to the parity violating contributions to the phase of the fermion determinant,

eiΓ(t,m,A) = lim
L→∞

detDw(U,M)

|detDw(U,M)|
, (7)

in the continuum limit, there are also parity preserving contributions of the form eiπh(A) where h(A) are integers
associated with zero crossings of the Wilson-Dirac operator [22–24].
As a precursor to studying the three dimensional theory, consider the regularized result using Wilson-Dirac fermions

in one dimension in comparison to the results obtained in [14, 18–20, 25]. The Wilson-Dirac fermion operator in one
dimension is

Dw(U,M) = −1 +M + T, (8)

where the translation operator T is (Tψ)(k) = U(k)ψ(k) in terms of the one dimensional link variable, U(k). The
only physical degree of freedom is the Polyakov loop,

W = lim
L→∞

L∏

k=1

U(k) = ei2πh, (9)

and the fermion determinant in the continuum, assuming L to be even, is

lim
L→∞

detDw

(
U,
m

L

)
=






ei2πh − e−m =

{
ei2πh m = ∞

2 sin(πh)eiπh+i
π
2 m = 0+

e−i2πh − e−m =

{
2 sin(πh)e−iπh−i

π
2 m = 0−

e−i2πh m = −∞.

(10)

The result matches with the one obtained in [19] using zeta function regularization and has the main features discussed
before. It is invariant under the “large” gauge transformation h → (h + 1) for all values of m. The part of phase
proportional to h in the massless limit is half of its value in the infinite mass limit. As for the vacuum structure is
concerned, the partition function for a two flavor theory with masses m1 and m2 is

Z(m1,m2) =

{
e−(m1+m2) m1,m2 > 0

e−(m1−m2) + 1 m1 > 0; m2 < 0,
(11)

showing that the theory with m1 > 0 and m2 < 0 is preferred over m1,m2 > 0.
The aim of this paper is to study the phase Γ(t,m,A) in the continuum U(1) gauge field background on a three

dimensional l × l × 1
t torus given by

A1 =
2πq2t

l
τ +

2πh1
l

+Ap1; A2 =
2πq3
l2

x+
2πh2
l

+Ap2; A3 =
2πq1t

l
y + 2πh3t+Ap3, (12)

where qi are integers and they denote non-zero flux in the x, y and τ -directions; hi ∈ [0, 1] denotes torons generating
non-trivial Polyakov loops; and Api are perturbative fields that obey periodic boundary conditions. The associated
periodic boundary conditions on fermions are

ψ(l, y, τ) = e−i
2πq3y

l ψ(0, y, τ); ψ(x, l, τ) = e−i2πq1τtψ(x, 0, τ); ψ(x, y,
1

t
) = e−i

2πq2x

l ψ(x, y, 0). (13)

We refer to q3 as magnetic flux, and q1 and q2 as electric flux. The naming is not relevant if only one of the three is
non-zero, but we also consider cases with q1 6= 0, q2 6= 0 and q3 = 0 in this paper and extract some results without
completely resorting to numerical means. In addition, we numerically study the most general case with non-zero flux
in all three directions. The phase splits into a parity even and odd part

Γ = Γeven + Γodd, (14)

with the parity even part being

Γeven = π(q1 + q2 + q3) + π(q1q2 + q3q1 + q2q3). (15)
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The first term can be absorbed by changing the boundary conditions of fermions but not both the first and second
terms. In general, the parity odd part is complicated, but it has a simple form in the case of zero temperature when
we consider a τ -dependent perturbation on a static and spatially uniform magnetic field:

Γodd = −2πh3q3 −

∫
dτdτ ′Ap1(τ)A

p
2(τ

′)G(τ − τ ′), (16)

where the form factor G(τ) is an odd function of τ that depends on the fermion mass m and spatial torons. Our
formulation on the lattice enables us to study G(τ) without making prior assumptions concerning the local or non-
local nature of the induced gauge action. We study how the form factor becomes local in the limit of m → ∞ and
m→ 0.
The organization of the paper is as follows. We describe lattice gauge fields on a torus in Section II. In Section III,

we derive an expression for the Wilson-Dirac fermion determinant in the lattice axial gauge allowing for non-trivial
Polyakov loops using the canonical formalism [26]. In Section IV, we use the canonical formalism to study cases
with uniform electric and magnetic fields, organized into subsections. Here, we explain the origin of the parity even
phase in Eq. (15). First, we present a conventional way to understand the parity breaking when there is only a
non-zero magnetic flux. The zero crossings of the eigenvalues of the two dimensional Dirac operator are responsible
for the parity breaking terms and the formula for the fermion determinant using lattice regularization matches the one
from zeta function regularization [18, 19]. We then consider the case where we have non-zero electric fluxes but zero
magnetic flux. We show that the relevant quantity to obtain the parity even part of the phase is associated with the
propagation of a free fermion with continuously changing momentum along a closed loop in the torus in momentum
space in a direction defined by (q2,−q1). Finally, we turn on perturbations over static magnetic field backgrounds.
For this, we develop second order perturbation theory with in the canonical formalism in Section V and use it to
study the parity odd part of the induced effective action. The results of the perturbative analysis and the numerical
extraction of the form factor G are presented in Section VA and Section VB.

II. GAUGE FIELD ON A TORUS

We work on an L2 × β lattice for the sake of simplicity, which can be easily generalized to a spatially anisotropic
lattice as well. We only consider lattices where both L and β are even; while the continuum physics is independent of
this choice, it helps to simplify our calculations. The spatial volume of the lattice is defined as V ≡ L2. The spatial
lattice points are labelled by x = (x1, x2) with 1 ≤ xi ≤ L, and the temporal lattice points by k with 1 ≤ k ≤ β. The
dimensionless temperature in the continuum limit is

t = lim
L→∞

L

β
. (17)

The continuum space and Euclidean time variables are

(x, y) = lim
L→∞

(x1
L
,
x2
L

)
and τ = lim

L→∞

k

L
, (18)

with x, y ∈ [0, 1] and τ ∈
[
0, 1t
]
.

On this lattice, we introduce U(1) gauge fields using the gauge-links Uµ(x, k). In this work, we fix the gauge such
that the temporal gauge-links from k = 1 to k = β − 1 are set to identity. Non-trivial Polyakov loop variables in the
τ -direction are taken care of by the presence of U3(x, β) = U3(x). This partial gauge fixing enables us to develop the
canonical formalism in Section III. We still have a remnant time independent gauge symmetry, g(x), under which

Ui(x, k) → g†(x)Ui(x, k)g(x + î) and U3(x) → g†(x)U3(x)g(x). (19)

In this work, we consider only the gauge fields of the form in Eq. (12). An analogous Hodge-decomposition is strictly
true for any gauge-fields in two dimensions. In three dimensions, one should consider these as specific background
gauge fields used in order to probe the dependence of the fermion determinant on perturbative and non-perturbative
aspects of the gauge-field. The gauge fields in Eq. (12) are periodic only up to a gauge transformation with non-trivial
winding. Since we do not require smoothness of the link variables on the lattice, such gauge fields along with fermions,
which satisfy the boundary conditions in Eq. (13), can be incorporated using gauge links and fermions that are strictly
periodic. For our gauge choice, the lattice gauge field background corresponding to Eq. (12) is

U1(x, k) =

{
ei

2πq2
Lβ

kei
2πh1

L
+iAq

1 if x1 < L

ei
2πq2
Lβ

k−i
2πq3

L
x2ei

2πh1
L

+iAq
1 if x1 = L,
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U2(x, k) = ei
2πq3

L2 x1−i
2πq1
βL

kei
2πh2

L
+iAq

2 ,

U3(x) = e−i
2πq2

L
x1+i

2πq1
L

x2ei2πh3 . (20)

The various background gauge fields we study in this paper are instances of the above equation.

III. CANONICAL FORMALISM

The partial gauge fixing defined in Section II naturally allows for the development of the Hamiltonian or the
canonical formalism [26]. Let Ti(k) be the parallel transporters along spatial directions at a fixed Euclidean time, k:

[Tj(k)ψ] (x) ≡ Uj(x, k)ψ(x+ ĵ), (21)

and let T3 defined as

[T3ψ] (x) ≡ U3(x)ψ(x), (22)

be the parallel transporter that connects k = β and k = 1. In this gauge field background, the Wilson-Dirac fermion
operator is

Dkk′ (M) =

[
−3 +M +

1

2

2∑

i=1

[
(σi + 1)Ti(k)− (σi − 1)T †

i (k)
]]
δk

′,k

+
1

2






[
(σ3 + 1) δk

′,2 − (σ3 − 1)T †
3 δ
k′,β
]

if k = 1[
(σ3 + 1) δk

′,k+1 − (σ3 − 1) δk
′,k−1

]
if 1 < k < β[

(σ3 + 1)T3δ
k′,1 − (σ3 − 1) δk

′,β−1
]

if k = β,

(23)

where the second term takes care of the periodicity in the temporal direction. In this way, we have managed to write
the Dirac operator using operators defined on two-dimensional time-slices. The Wilson mass M is such that |M | < 1.
It is related to the physical mass m in the units of box length as

m ≡ML. (24)

By using the following set of Pauli matrices,

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
, (25)

the Wilson-Dirac operator D can be written in the matrix form as

D(M) =




−B1 C1 1 0 · · · · · · 0 0

−C†
1 −B1 0 0 · · · · · · 0 T †

3

0 0 −B2 C2 · · · · · · 0 0

0 1 −C†
2 −B2 · · · · · · 0 0

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
...

T3 0 0 0 · · · · · · −Bβ Cβ
0 0 0 0 · · · · · · −C†

β −Bβ




, (26)

where

Bk ≡ 3−M −
1

2

2∑

j=1

(
Tj(k) + T †

j (k)
)
,

Ck ≡
1

2

(
T1(k)− T †

1 (k)
)
−
i

2

(
T2(k)− T †

2 (k)
)
. (27)
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Note that Bk is a positive definite operator for |M | < 1. We closely follow [27] in order to obtain an expression for
the determinant of D. We first cyclically permute the columns to the left. This gives a matrix

D′(M) =




α1 0 0 · · · · · · 0 γ1Y
γ2 α2 0 · · · · · · 0 0
0 γ3 α3 · · · · · · 0 0
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...
0 0 0 · · · · · · αβ−1 0
0 0 0 · · · · · · γβ αβX




, (28)

where

αk ≡

(
Ck 1
−Bk 0

)
; γk ≡

(
0 −Bk
1 −C†

k

)
; X ≡

(
1 0
0 T3

)
; Y ≡

(
T †
3 0
0 1

)
. (29)

Using the formula for the determinant of the above matrix from [27], we arrive at

detD(M) =




β∏

j=1

detαj


det


X −




1∏

k=β

Tk


Y


 , (30)

where the hermitean transfer matrix Tk associated with propagating the fermion across the k-th slice is

Tk ≡ −α−1
k γk =

(
B−1
k −B−1

k C†
k

−CkB
−1
k CkB

−1
k C†

k +Bk

)
. (31)

The final expression for the fermion determinant is

detD(M) =




β∏

j=1

detBj



det T3 detH where H ≡ 1−




1∏

k=β

Tk



T †
3 . (32)

This is the main formula that we use repeatedly in order to understand the phase of the determinant, Γ, in this paper.
Since Bj is positive definite, the phase becomes

exp (iΓ) =
detD(M)

| detD(M)|
= detT3

detH

|detH|
. (33)

If ξi are the 2V eigenvalues of
∏1
k=β TkT

†
3 , then

exp (iΓ) = detT3

2V∏

i=1

1− ξi
|1− ξi|

. (34)

The positivity of the hermitean transfer matrices Tk follow from the positivity of Bk since

(
u† v†

)
Tk

(
u
v

)
= (u− C†

kv)
†B−1

k (u− C†
kv) + v†Bkv > 0. (35)

In addition, they satisfy the unitarity property det Tk = 1.

A. Free field theory

In this subsection, we find the eigenvalues and eigenvectors of T (we can drop the subscript k) for free field theory,
where all the gauge-links are set to identity. The momenta p1 and p2 in the xy-plane are

pi =
2πni
L

where ni = 0, 1, . . . L− 1. (36)
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When expressed in this momentum basis, both B and C are the numbers

b = 1−M + 2
2∑

j=1

sin2
pj
2

and c = i sin p1 + sin p2, (37)

respectively. Thus T becomes

T (n1, n2) =

(
1
b − c∗

b

− c
b b+ |c|2

b

)
. (38)

The eigenvalues of T (n1, n2) are e
±λp with

λp = cosh−1 1 + b2 + |c|2

2b
. (39)

The corresponding normalized eigenvectors for the zero mode (0, 0) and the doubler modes (π, 0), (0, π) and (π, π) are

|p+〉 =

(
1
0

)
and |p−〉 =

(
0
1

)
when b < 1; (40)

if b > 1, the above |p+〉 and |p−〉 get interchanged. For other generic modes

|p±〉 =
1√

|c|2 + (1− e±λpb)2

(
c∗

1− e±λpb

)
. (41)

It is straightforward to extend the free theory results to a case where uniform spatial torons h1 and h2 are present.
For this, one replaces T (n1, n2) by T (n1 + h1, n2 + h2).

IV. GAUGE FIELD BACKGROUNDS WITH UNIFORM ELECTRIC AND MAGNETIC FIELDS

This section is devoted to gauge-field backgrounds with constant and uniform electric as well as magnetic fields; non-
zero q1, q2 and q3. We first consider the case when q1 = q2 = 0 and assume that h3 6= 0. This is a standard example
to understand the role of large gauge transformation in the parity odd part of the induced action [14, 18, 19, 25]
and we will show that the results using the lattice formulation are consistent with zeta function regularization. Next,
we consider the case of static electric fields (q1 6= 0, q2 6= 0 and q3 = 0) by reducing the problem to a free fermion
propagation with continuously changing momentum along a closed loop in a two-dimensional momentum torus. Apart
from providing a different perspective to the constant magnetic field case, this also leads to an understanding of a
parity even phase πq1q2. The last subsection deals with a numerical study of the general case where both the electric
and magnetic fields are present.

A. Uniform and static magnetic field

Let us consider a gauge-field background with only a uniform magnetic field q3 and the toron h3. In this case, the
matrices Tk = T are time independent. The eigenvalues of T can be written as e±λi due to its positivity. The matrix
H for this static case becomes

Hst ≡ 1− T βe−i2πh3 , (42)

and its eigenvalues 1− ξ±i are given by

ξ±i = e±βλ
±

i
−i2πh3 . (43)

It is known [28] that q3 eigenvalues of T cross unity as a function of mass when a non-zero topological charge q3 is

present; when m > 0, there are V + q3 eigenvalues eλ
+

, and V − q3 eigenvalues e−λ
−

with λ± > 0. The determinant
of Hst expressed in terms of these eigenvalues is

detHst =

V+q3∏

i=1

(
1− e−i2πh3+

L
t
λ+

i

) V−q3∏

j=1

(
1− e−i2πh3−

L
t
λ−

j

)
. (44)
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FIG. 1. The continuum limit of mζ (refer Eq. (46)) at various h3 is shown for m = 0.7 and t = 1. The spatial lattice extent
L is specified on top of each curve. The continuum limit of mζ obtained by 1/L extrapolation is shown by the topmost black
line. This continuum limit matches with m = 0.7 at all h3.

Using Eq. (32), the phase of the determinant is

Γ = πq3 − 2πh3q3 +

V+q3∑

i=1

Im log
(
1− ei2πh3−

L
t
λ+

i

)
+

V−q3∑

j=1

Im log
(
1− e−i2πh3−

L
t
λ−

j

)
. (45)

The first term πq3 is parity even, and it could be absorbed by changing h3 → h3+
1
2 . This formula is explicitly gauge

invariant under a large gauge transformation h3 → h3+1 and is a consequence of the gauge invariant regularization. At
any finite fermion mass, all the Lλ±i have non-zero finite continuum limits. At zero temperature, all the exponentials
vanish leaving only the first two terms which do not depend on the fermion mass.
In order to check consistency with the results from zeta function regularization in [18, 19], we computed Γ for

several values of m = ML and several values of t = L
β . For the different Γ that we computed at finite L, the mass

term used in the zeta function regularization would correspond to

mζ(L)

t
= ln

tanΓ

cos 2πh3 tanΓ− sin 2πh3
. (46)

We extracted the continuum limit of mζ by fitting the results for L = 20, 22, · · · , 48, 50 using a polynomial in 1
L . We

verified that the extracted value for mζ matches with m quite well. Our checks were made in the range m ∈ [0.2, 1.0]
and t ∈ [0.1, 3]. We show an example of the L-dependence of mζ in Figure 1 using m = 0.7 and t = 1. The continuum
limit of mζ is seen to match with the m used in our lattice calculation.

B. Uniform and static electric fields

At any finite non-zero temperature and finite volume, it is possible to have spatially uniform and static electric
fields, i.e., non-zero q1 and q2 which are integers. Also, q1 and q2 need not have the same value. In this subsection,
we consider this case of non-zero electric fields, but with no magnetic field. The lattice gauge field background in Eq.
(20) reduces to

U1(x, k) = ei
2πq2
Lβ

k,

U2(x, k) = e−i
2πq1
βL

k,

U3(x) = e−i
2πq2

L
x1+i

2πq1
L

x2 . (47)

We focus on the parity even phase arising from this configuration. At any time-slice, the above U1 and U2 act like
time-dependent torons h1 and h2 whose effect is to offset the momentum. Switching to momentum basis and using
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the replacement ni → ni + hi, the two dimensional transfer matrix becomes

T n,s
k = T

(
n1 + q2

k

β
, n2 − q1

k

β

)
δn1,s1δn2,s2 , (48)

where T is given by Eq. (38) for the case with torons. The n and s are the momentum indices. The product of these
matrices is diagonal in momentum space and it is denoted as tn1,n2




1∏

k=β

Tk



n,s

≡ δn1,s1δn2,s2tn1,n2
. (49)

Since T3 is already in a definite momentum (−q2, q1), it becomes 1δn1,s1−q2δn2,s2+q1 . Thus,




1∏

k=β

TkT3



n,s

= tn1,n2
δn1−q2,s1δn2+q1,s2 . (50)

We block-diagonalize the above matrix in the following way. Starting from an arbitrary momentum (n1, n2), we create
a cycle C by moving to (n1 − q2, n2 + q1), then to (n1 − 2q2, n2 + 2q1) and so on till we are back at (n1, n2). This
will occur after P steps when both Pq2 and Pq1 become multiples of L. We refer to P as the cycle length and this is
fixed given q1, q2 and L. The cycle C corresponds to a P × P block, and it has the following structure




1∏

k=β

TkT3





C

=




0 tn1,n2
0 0 . . . 0

0 0 tn1+q2,n1−q1 0 . . . 0
0 0 0 tn1+2q2,n1−2q1 . . . 0
...

...
...

... . . .
...

tn1+(P−1)q2,n2−(P−1)q1 0 0 0 . . . 0



. (51)

The full momentum space will be split into several such P × P blocks. If we choose another (n1, n2) that occurs in
the above block as the initial points of the cycle, it will only permute the entries of the block and it will not change
the determinant. Thus the full determinant of H factorizes into cycles with the factor from each cycle being

[detH]C = det

[
1−

P−1∏

r=0

tn1−rq2,n2+rq1

]
, (52)

which after cyclic permutation of the product of matrices becomes

[detH]C = det

[
1−

βP∏

k=0

T

(
n1 − q2

k

β
, n2 + q1

k

β

)]
. (53)

Since products of T have unit determinant, it follows that

[detH]C = (1 − ρ)

(
1−

1

ρ

)
, (54)

where ρ is the complex eigenvalue of the product of T around a cycle. The eigenvalues ξ of the full transfer matrix are
the P -th roots of ρ and 1/ρ in all the cycles. The complex number ρ characterizes the propagation along a cycle. We
will show that there are real cycles where ρ is either real or a complex number with unit magnitude. If the eigenvalue
in the real cycle switches sign as a function of mass, then it will be associated with a non-zero contribution to the
parity even part of Γ.
The product of T taken along a cycle C on the two dimensional momentum torus has the following interpretation.

We start with some point (n1

L ,
n2

L ) on the continuum momentum torus of size 1 × 1. We move continuously along
the direction (−q2, q1) and compute the fermion propagation along a closed loop in this direction. One can formally
convert this into an interpretation in the continuum without worrying about regularization. The integer momenta
(n1, n2) cover the entire range of integers in the continuum. The continuum Hamiltonian in the τ direction at a fixed
(n1, n2) is

H̃/ (τ) = −σ2
2π

l
(n1 − q2τt) + σ1

2π

l
(n2 + q1τt) + σ3m. (55)
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FIG. 2. On the left is the real cycle R0 with coprime steps q1 = q2 = 1 on a 63 lattice. This cycle has a length P = 6. When
q1 = q2 = 3, the cycle R0 splits into 3 cycles each of length P = 2.

We define fermion propagation as

φ̃(τ + dτ) = eH̃/ (τ)dτ φ̃(τ), (56)

in the limit of dτ → 0. Let φ̃±(∞) be the result of propagation from the vector (1, 0)t and (0, 1)t respectively at
τ = −∞. Then,

[detH]C = det
[
1−

(
φ̃+(∞) φ̃−(∞)

)]
. (57)

in the continuum.
In order to classify cycles, consider the momenta (n1, n2) and (L − n1, L − n2). From the expression for T in Eq.

(38),

T

(
L− n1 − q2

k

β
, L− n2 + q1

k

β

)
= σ3T

(
n1 + q2

k

β
, n2 − q1

k

β

)
σ3. (58)

Using this identity, we now show that if ρ is associated with the (n1, n2) cycle, ρ
∗ is associated with the (L−n1, L−n2)

cycle. Inserting σ2
3 between the T ’s in Eq. (53), we have

det

[
1−

βP∏

k=0

T

(
L− n1 − q2

k

β
, L− n2 + q1

k

β

)]
= det

[
1−

βP∏

k=0

T

(
n1 + q2

k

β
, n2 − q1

k

β

)]
. (59)

If we take the complex conjugate of the right hand side, then the product becomes a product of T † with the ordering
reversed. Using the fact that T are hermitean, and after changing the variable k to βP −k so as to recover the original
ordering (modulo L), we obtain

det

[
1−

βP∏

k=0

T

(
L− n1 − q2

k

β
, L− n2 + q1

k

β

)]
=

{
det

[
1−

βP∏

k=0

T

(
n1 − q2

k

β
, n2 + q1

k

β

)]}∗

. (60)

This completes the proof.
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We classify cycles in the following way. The cycles C and C∗ are conjugate if (n1, n2) and (L − n1, L − n2) belong
to C and C∗ respectively. If C and C∗ are the same cycle, then we call it a real cycle and denote it by R. If the cycle
is real then we have

[detH]R = (1− ρ)

(
1−

1

ρ

)
= (1− ρ∗)

(
1−

1

ρ∗

)
. (61)

This implies that either ρ is real or ρ is a complex number with unit magnitude. Since the eigenvalues of conjugate
cycles are related by complex conjugation, they can be paired together to give a positive contribution to detH.
Therefore, only the real cycles contribute to the phase, which can only be ±1. The following cases are possible for
the real cycles.

1. When ρ = eiφ, the factor will be real and positive in the above product.

2. When ρ is real and negative, the contribution will be positive.

3. When ρ is real and positive, the contribution will be negative.

Depending on the number of real cycles in the above categories, the phase could be either +1 or −1. Let us start
by assuming that q1 and q2 are coprimes. All the cycles have the same length, P , which is even for even L. Let us
assume that (n1, n2) belongs to a real cycle. Since (L− n1, L− n2) belongs to the same cycle, it follows that

(L− n1, L− n2) = (n1 − rq2, n2 + rq1) + (k1L, k2L) , (62)

for some integers r, k1 and k2. Since q1 and q2 are coprimes and L is assumed to be even, it follows that r is even and

(
n1 −

r

2
q2, n2 +

r

2
q1

)
=

(
(1 − k1)

L

2
, (1− k2)

L

2

)
. (63)

Therefore, real cycles have to contain (n1, n2) = (0, 0),
(
L
2 , 0
)
,
(
0, L2

)
or
(
L
2 ,

L
2

)
. Let R0 denote the cycle that contains

(n1, n2) = (0, 0). For every (−rq2, rq1) in this cycle there is a partner, (rq2,−rq1), in the cycle. Only (0, 0),
(
L
2 , 0
)
,(

0, L2
)
or
(
L
2 ,

L
2

)
have themselves as their partner. Since each cycle has an even number of points, we conclude that

one of
(
L
2 , 0
)
,
(
0, L2

)
or
(
L
2 ,

L
2

)
also belongs to R0. Since the length P can have only one factor of 2, the number of

cycles, L
2

P has to be even. Since the complex cycles pair up, the two left over from
(
L
2 , 0
)
,
(
0, L2

)
and

(
L
2 ,

L
2

)
have

to pair up and belong to another real cycle, which we call Rπ. If q1 and q2 have a common factor, then we will
assume that we choose a set of L that all have this factor while taking the continuum limit. Under such a choice, the
common factor of q1, q2 and L can be pulled out resulting in multiples of cycles traced using coprime steps q1 and
q2 on a smaller spatial lattice. For the sake of clarity, we demonstrate the above statement in Figure 2, for the case
q1 = q2 = 3 on a 63 lattice.
We now numerically show that the phase for R0 is 0 and Rπ is π for all values of q1 and q2 that are coprime. This

enables us to write the continuum formula for the phase for this case as

Γeven = π(q1 + q2 + q1q2), (64)

in accordance with Eq. (15). In order to maintain numerical stability in the computation of the product of transfer
matrices in Eq. (53), we found it useful to normalize each row separately as we multiply and cumulate the normalization
factors in a single diagonal matrix. Using this procedure we were able to work with large L and β, thereby essentially
seeing the behavior of cycles in the continuum limit. The top left panel in Figure 3 shows the flow of the phase from
each cycle as a function of mass when the background electric flux is q1 = 2 and q2 = 3. The flow is close to what one
would see in the continuum since the computations are on a 1603 lattice. The phase from the real cycle R0 changes
from being π for m < mc(L) to 0 for m > mc(L) for some positive mc(L), which becomes zero in the continuum limit
as shown in the top right panel of Figure 3. The real cycle Rπ has a phase of π for all masses. The rest of the cycles
are complex and come in pairs as is evident from the plot. The combined phase is only due to the real cycles and is
π for all masses above mc(L). This is consistent with Eq. (64).
It is interesting to focus on the crossing that occurs in the R0 cycle. In order to zoom in on the crossing, it is better

to work on a coarse lattice and we picked q1 = 1 and q2 = 0 on a 43 lattice and considered m ∈ [0.188138, 0.188144].

We look at the eigenvalue pair
(
ρ, 1ρ

)
as the mass is changed in this very small range. The flow of eigenvalues on the

complex plane is shown on the bottom panel of Figure 3. The eigenvalue pair starts out being positive on the low
end of the mass region and approach unity at some mc which lies within the range. For a range of m above mc, ρ
and 1

ρ trace a |ρ| = 1 locus on the complex plane. Finally, the ρ becomes real and less than zero. The background
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FIG. 3. The flow of phase from each cycle as a function of mass for a background with fixed electric flux. Top left panel:

The flow for all cycles with q1 = 2, q2 = 3 on 1603 lattice is shown as red lines. The real cycle R0 is shown by the solid blue
line. In addition the plot shows the overall phase as a black dotted line. It is obvious through a visual inspection that the
eigenvalues occur as complex conjugate pairs. The phase of the real cycle, and hence the overall phase, jump at an mc (the
points are only connected to aid the eye). Top right panel: The lattice spacing dependence of mc is shown for various values
of q1 and q2. In the continuum limit, L → ∞, the mc vanishes. Bottom panel: Flow of eigenvalues of the real cycle seen on
the complex plane, in the region of crossing around mc. The plot corresponds to flux q1 = 1, q2 = 0 on 43 lattice in the region

0.188138 < m < 0.188144. The pair of eigenvalues
(

ρ, 1

ρ

)

flow from real negative values for m > mc to a complex pair of unit

magnitude, and finally to real positive values.

with q1 = 1 and the one with q3 = 1 are related by a rotation. Thus, the zero crossing of an eigenvalue λ+ in the
latter case, can now be equivalently understood as the flip in the sign of ρ of the cycle containing the zero mode. The
range of m where this behavior occurs shrinks dramatically as one approaches the continuum and the value of mc

gets closer to zero.

As explained, when q1 and q2 are not coprimes, the cycles split into N cycles each, (N = 3 in the example shown
in Figure 2) depending on the values of q1 and q2. Thus, all the N cycles originating from R0 result in a phase that
switches from π to zero as m crosses mc from below. The other N cycles originating from Rπ always have a phase of
π. Thus, the total phase becomes

Γ = π(Nmod 2). (65)

Only when both q1 and q2 are even, N can be even. Thus the expression for the phase remains as Eq. (64) even when
q1 and q2 are not coprime.

Now we proceed to add h1 and h2 to the gauge field background in Eq. (47). The effect is to replace ni by ni + hi
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FIG. 4. The flow of phase from all the cycles (red lines) as a function of mass on a background with fixed electric fluxes and
torons. The left panel shows this flow for a background with flux q1 = 1, q2 = 0 and torons h1 = 0.23, h2 = 0 on 1603 lattice.
Similarly, the right panel is for a background with flux q1 = 2, q2 = 3 and torons h1 = 0.37, h2 = 0.23. The cycle that would
have been the real cycle R0 when torons are absent, is specially shown by the solid blue line. The overall parity odd part of
the phase as black dashed line. The arrows indicate the expectations from Eq. (68) for the infinite mass limit.

in Eq. (53):

[detH]C = det

[
1−

βP∏

k=0

T

(
n1 + h1 − q2

k

β
, n2 + h2 + q1

k

β

)]
. (66)

The full determinant still factorizes into cycles but the real cycles now become complex and the previous complex
cycles that were complex conjugate pairs are no longer paired. If h1 and h2 are multiples of q2/β and q1/β respectively,

then it is possible to find an integer k′ = k − βh1

q2
, such that the determinant becomes

[detH]C = det

[
1−

βP∏

k′=0

T

(
n1 − q2

k′

β
, n2 +

h1q1 + h2q2
q2

+ q1
k′

β

)]
. (67)

This means that at any fermion mass and temperature, the phase can only be a function of h1q1 + h2q2. In the
continuum limit, the fact that we chose a rational h1 and h2 should not matter. We proceed to compute the phase
per cycle and the total parity odd part of the phase of the determinant numerically in order to understand the term
in the phase that couples hi with qi. Two sample cases studied are plotted in Figure 4. Consider the case of q1 = 1
and q2 = 0 with h1 = 0.23 and h2 = 0 shown on the left panel of Figure 4. This is just a rotated version of the
case with constant magnetic flux and a temporal toron. After removing a factor of −1 from the determinant due to
the parity even part of the phase, the parity odd part of the phase at the largest mass is consistent with −2πh1q1 as
expected from Eq. (45). Next, we consider the more interesting case of q1 = 2, q2 = 3 with h1 = 0.37 and h2 = 0.23
shown on the right panel of Figure 4. The parity even part of the phase is again π as in the previous case. The parity
odd part of the phase at the largest mass is consistent with

Γ = −2π(h1q1 + h2q2), (68)

which is indicated by arrows in the plots.

C. Uniform and static electric and magnetic fields

Now we consider the gauge field background where electric as well as magnetic fields are present i.e., q1, q2 and q3
terms are all present in Eq. (20) with no torons. We are unable to study this case analytically. Therefore, we study
this general case by directly evaluating Eq. (32). We check for any loss of precision by comparing the determinant of
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q1 q2 q3 Γ/π

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

TABLE I. Phase Γ for various combinations of q1, q2 and q3. The “0” represents even integers and “1” represents odd integers.

the product of Tk to 1. Doing so, we were able to use up to 123 lattices. We find that detD is real for any q1, q2 and
q3. Thus, the phase can only be ±1 and its expression must be of the form

Γ = η1π (q1 + q2 + q3) + η2π (q1q2 + q2q3 + q3q1) + η3πq1q2q3, (69)

where ηi = 0 or 1. Rotational symmetry guarantees that each ηi are the same for all directions. From the last section,
we know that η1 = η2 = 1. We do not have any analytical argument about η3. In Table I, we collect our observations
about the dependence of phase on q1, q2 and q3. The results of the table are robust and found to be the same on
L =4, 6, 8, 10 and 12 lattices, and for various even and odd values for the q’s. The entries with q3 = 0 reiterate our
observations of the last subsection. The entry with even q1 and q2 includes the case q1 = q2 = 0, which we understand
as due to the mismatch between the number of positive and negative eigenvalues of a two dimensional Dirac operator.
The other cases do not offer a simple analytical explanation. The important entry is the last one where all q’s are
odd. Since the phase is even, it implies that η3 = 0. Thus, detD has a parity even phase given by

Γ = π (q1 + q2 + q3) + π (q1q2 + q2q3 + q3q1) . (70)

V. PERTURBATION THEORY: PARITY ODD CONTRIBUTIONS

In this section, we return to the case of uniform and static magnetic field in the presence of a uniform toron in the
Euclidean time direction that was studied in Section IVA and consider perturbations Ap1 and Ap2 on this background.
We expand the determinant for H in Eq. (32) in powers of Api while considering the constant flux background and
the toron to be non-perturbative. The transfer matrix, Tk, can be expanded to second order in Api as

Tk = T + Fk + Sk. (71)

The detailed expressions for Fk and Sk are given in Appendix A. We write

1∏

k=β

Tk = T β [1 + P ] , (72)

where

P =

β−1∑

k=0

T −k−1Fk+1T
k +

β−1∑

k=0

T −k−1Sk+1T
k +

β−1∑

k=1

k−1∑

l=0

T −k−1Fk+1T
k−l−1Fl+1T

l. (73)

From Eq. (32), we have

log detH = log detHst + log det
[
1 +H−1

st PT
†
3

]
. (74)

Using standard perturbation theory in the eigenbasis of the unperturbed T , we arrive at

log det
[
1 +H−1

st PT
†
3

]
=
∑

i±

β−1∑

k=0

e±(β−1)λ±

i
−i2πh3

1 + e±βλ
±

i −i2πh3

F i±,i±
k+1 +

∑

i±

β−1∑

k=0

e±(β−1)λ±

i
−i2πh3

1 + e±βλ
±

i −i2πh3

Si±,i±k+1
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−
1

2

∑

i±

∑

j±

β−1∑

k=0

e±(β−1)λ±

i
±(β−1)λ±

j
−i4πh3

(
1 + e±βλ

±

i
−i2πh3

)(
1 + e±βλ

±

j
−i2πh3

)F i±,j±
k+1 F j±,i±

k+1

+
∑

i±

∑

j±

β−1∑

k=1

k−1∑

l=0

e±(β−k+l−1)λ±

i
±(k−l−1)λ±

j
−i2πh3

(
1 + e±βλ

±

i
−i2πh3

)(
1 + e±βλ

±

j
−i2πh3

)F i±,j±
k+1 F j±,i±

l+1 +O(A3), (75)

where it is implicit that the summation over i+ runs up to V + q3, while that of i− up to V − q3. We use this general
second order perturbative expression to study two cases of interest.

A. Zero temperature

We assume that we are working away from the massless limit and therefore limL→∞ Lλ±i are strictly greater than
zero for all i. Since β = L

t , we see that in the limit t → 0, the first three terms in Eq. (75) are real and do not
contribute to the phase. The last term can be simplified as follows. Let

∣∣∣F i±,j±
k+1 F j±,i±

l+1

∣∣∣ < X i±,j±, (76)

where the upper-bound X i±,j± is independent of β. Then, the sum is bounded above by

Yi±,j±(β) =
e±(β−1)λ±

i
−i2πh3

1 + e±βλ
±

i
−i2πh3

1

1 + e±βλ
±

j
−i2πh3

β
(
1− e±λ

±

j
∓λ±

i

)
+
(
1− eβ(±λ

±

j
∓λ±

i )
)

2
(
cosh

(
±λ±j ± λ±i

)
− 1
) X i±,j±. (77)

Explicitly, Yi+,+ and Yi−,j− vanish in the β → ∞ limit. Therefore, we need to consider only the products of F i+,j−
k+1

and F i−,j+
l+1 terms. The phase is

Γ = πq3 − 2πh3q3 + lim
β→∞

V+q3∑

i=1

V−q3∑

j=1

e(λ
−

j
−λ+

i )
β−1∑

k=1

k−1∑

l=0

(
e(l−k)(λ

+

i
+λ−

j ) − e(k−l−β)(λ
+

i
+λ−

j
)
)

Im F i+,j−
k+1 F j−,i+

l+1 . (78)

The second term does not depend on h3 and therefore the contribution from the toron h3 and the perturbative part
are independent of each other at this order. If we assume k−l

L is kept finite in the infinite L limit, then we can ignore
the second factor in the parenthesis of the second term. The term 2πq3h3 is independent ofm and changes in multiples
of 2π under large gauge-transformation h3 → h3 + 1. Even at zero temperature, the induced gauge action is not of
the type in Eq. (2) if we include fields that do not vanish at infinity.

B. Finite temperature and h3 = 0

Our aim in this subsection is to study the purely perturbative contribution to the phase in a possibly non-
perturbative background at finite temperature. Since we are focusing on terms of the type, Ap1A

p
2, we set h3 = 0. In

addition we only consider Ap1(k) and A
p
2(k) that depend only on time. When h3 = 0, the first three terms in Eq. (75)

are real even at finite β. The phase becomes

Γ =
∑

i±

∑

j±

β−1∑

k=1

k−1∑

l=0

e±(β−k+l−1)λ±

i
±(k−l−1)λ±

j

(
1 + e±βλ

±

i

)(
1 + e±βλ

±

j

) ImF i±,j±
k+1 F j±,i±

l+1 . (79)

After writing

F i±,j±
k =

2∑

µ=1

F̃ i±,j±
µ Apµ(k), (80)

we arrive at an expression for the phase, which is written concisely as

Γ = −

β−1∑

k=1

k−1∑

l=0

G(k − l) [Ap1(k)A
p
2(l)−Ap2(k)A

p
1(l)] . (81)
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FIG. 5. Left panel: The form factor G(τ ) at fermion mass m = 10−3 is shown at a temperature t = 0.25 for the free q3 = 0
background gauge-field with no torons. The different symbols correspond to different L. At all L, G(τ ) shows a τ−3 behaviour
at small values of τ . The best fit for this power-law τ−3 using the L = 3200 data are shown as the black straight line. When
the continuum is approached by increasing L, the power-law behaviour shifts to the left on the log-log plot such that G(τ )
approaches Gr(τ ) (refer Eq. (87)) at all τ . This continuum limit Gr(τ ) is shown as the magenta curve. Right panel: The
approach to continuum of the scaled variable τ 3 [G(τ )−Gr(τ )] is shown at various τ . At all τ , it approaches 0 with a dominant
1

L
scaling. For very small τ , there is data collapse suggesting a perfect τ−3 scaling. At larger τ , there are corrections to this

scaling. However, it is the most singular τ−3/L behaviour of G(τ ) that is important to the phase of detD.

The form factor G is

G(k) =
∑

(i±,j±)

e∓λ
±

i
∓λ±

j

sinh
[(

β
2 − k

)
(±λ±i ∓ λ±j )

]

4 cosh
βλ±

i

2 cosh
βλ±

j

2

Im
[(

F̃ i±,j±
1

)∗
F̃ i±,j±

2

]
. (82)

It satisfies the anti-symmetric property

G(β − k) = −G(k). (83)

This expression is valid for all q3, h1 and h2. For the free case q3 = 0 that we discussed in Section IIIA, the form
factor simplifies to

G(k) =
∑

p

sinh [(β − 2k)λp]

2 cosh2
βλp

2

Im
[(

F̃p+,p−
1

)∗
F̃p+,p−

2

]
. (84)

We derive the expressions for Fp+,p−
µ in Appendix B.

The behavior of this form factor G is shown as a function of time τ = k
L in Figure 5. The observations about the

long and short distance behaviour of G(τ) seen in the two panels of the figure can be summarized in the following
way. The G(τ) has a leading 1

L lattice correction. However, the coefficient of 1
L shows a singular τ−3 behaviour. That

is, the approach to the continuum limit is given by

G(τL) = Gr(τ) +
1

L
Gs(τ) +O

(
1

L2

)
, (85)

where Gr(τ) is the continuum limit, while the singular coefficient of the dominant 1
L correction is given by

Gs(τ) =
f(m, t)

τ3
+O

(
τ−2

)
, (86)

for some mass and temperature dependent function f . The continuum limit, Gr(τ), seems to be well described by
the regulator independent limit obtained by replacing λpL by its p ≈ 0 limit, Λp i.e.,

Gr(τ) =
∑

n

m

Λn

sinh
[(

1
t − 2τ

)
Λn
]

2 cosh2
[
Λn

2t

] , (87)
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making use of

Λn ≡ lim
L→∞

Lλp =
√
m2 + 4π2(n2

1 + n2
2) and lim

L→∞
Im
[(

F̃p+,p−
1

)∗
F̃p+,p−

2

]
=

m

Λn
, (88)

for all momenta even though they only hold true for pi ≈ 0. The above observations about G are seen at all mass
and temperature.
Let us consider the following perturbative fields chosen such that there is a non-zero Chern-Simons action:

Ap1(k) =
c

L
sin

(
2πn3k

β

)
and Ap2(k) =

c

L
cos

(
2πn3k

β

)
. (89)

The phase becomes

−
Γ

c2
= lim
L→∞

1

L2

β−1∑

k=1

(β − k)G(k) sin

(
2πn3k

β

)
= lim
L→∞

β

L2

β
2∑

k=1

G(k) sin

(
2πn3k

β

)
, (90)

where we have made a change of variable from k and l to k − l, and used the antisymmetry property of G(k) in Eq.
(83). Inserting Eq. (85) for G(k), we obtain

−
Γ

c2
= lim
L→∞

β

L2

β−1∑

k=1

Gr(k) sin

(
2πn3k

β

)
+ lim
L→∞

β

β
2∑

k=1

f(m, t)

k3
sin

(
2πn3k

β

)
. (91)

The first term arising from the continuum part of G(τ) can be converted to an integral. The second term that arises
from the singular part contributes in the continuum due to the τ−3 behavior. The two terms can be expressed as

−
Γ

c2
=

1

t

∫ 1
2t

0

Gr(τ) sin (2πn3τt) dτ + 2πn3f(m, t)ζ(2). (92)

The second term is proportional to the momentum n3 and hence it is indeed the local Chern-Simons term. It
contributes both in the infinite mass and massless limit showing that the parity odd contribution is regulator depen-
dent [4, 13]. At very low but non-zero temperatures, the contribution from the first term behaves as

Γreg

c2
≈ −

πn3

2

∞∑

n1,n2=0

m
(
1− e−

2Λñ
t

)

Λñ
[
Λ2
ñ + n2

3π
2t2
] where ñi = ni + hi, (93)

after integration over τ . This right away makes it explicit the dependence of the phase on the torons h1 and h2 in
the q3 = 0 background. When the torons are absent, this infinite sum suffers from an infra-red divergence when
t→ 0 limit is taken before the m→ 0 limit. But the sum becomes zero when the two limits are interchanged. In the
m → ∞ limit, the infinite sum always vanishes. Thus, the phase from the regular term is zero in both the infinite
and zero mass limits and only the singular part contributes to the parity odd phase in these two limits. At any finite
and non-zero mass the contribution from the regular term is not local since it is not linear in n3.
The above discussion shows where the parity breaking phase arises at different masses. We now present results on

the phase directly calculated using Eq. (81). On the left panel of Figure 6, we show the behaviour of the phase as a
function of fermion mass, for the perturbation in Eq. (89) on a q3 = 0 background. We show the behavior at various
values of h1 = h2 = h, and at a temperature t = 0.1. We did the numerical calculation using lattices with L = 60,
80, 100, 120, 140 and 160. With these, we did a continuum extrapolation for Γ using a fourth order polynomial in
1
L . Changing the order of the polynomial to 3 or 5 made little difference to the results. In the figure, we show these

continuum extrapolated values. When m → ∞, the phase becomes − c2

2 which is consistent with a Chern-Simons
coefficient κ = −1. Using the values of phase for m < 0.1, we extrapolated the results to m = 0 using a fourth order

polynomial in m. These extrapolations are shown by the solid lines. The extrapolated curves smoothly approach − c2

4

as m → 0, independent of h. This corresponds to a Chern-Simons coefficient κ = − 1
2 , which is consistent with [13].

At other intermediate values of m, we find a strong dependence on h1 and h2, which is expected from the above
discussions for the q3 = 0 case. From the right panel of Figure 6, it is clear that the toron dependence of the phase
indeed comes from Gr(τ). As t becomes smaller, the peak gets higher and shifts to smaller values of m according to
Eq. (93).
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FIG. 6. The cross-over of phase from the m → 0 limit (which is Γ = −
c2

4
) to the m → ∞ limit (Γ = −

c2

2
) when q3 = 0. On the

left panel, the mass dependence of Γ is shown for various values of h1 = h2 = h specified by different symbols. For large values

of mass (m & 10), the phase is − c2

2
. For small values of mass, the phase approaches − c2

4
as seen by extrapolation (solid lines)

using data points with m < 0.1. On the right panel, the phase Γ (red squares) and the phase calculated only using Gr(τ ) (blue
line) are compared when h = 0.
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FIG. 7. The mass dependence of phase Γ with a flux q3 = 1 in the xy-plane. The different symbols correspond to various
temperatures t which ranges from 1 to 1

8
. The solid lines show the polynomial extrapolation of the phase from small m < 0.1

to m = 0. It is seen that the phase approaches −
1

2
at large mass and the extrapolation shows that the phase approaches −

1

4

when m → 0.

In Figure 7, we show a similar plot for a q3 = 1 background. We do not find any dependence on the spatial torons.
Therefore, we show only the result with h1 = h2 = 0. The different symbols are the continuum extrapolated results

at four different temperatures. Using a similar procedure as in the q3 = 0 case, we find the phase to be − c2

2 and − c2

4
in the infinite and zero mass limits respectively. At finite values of m, there is a smooth cross-over between the two
limits. At smaller t, this cross-over occurs at smaller values of m, well described by an m

t dependence of the phase.

The above mass dependence is clearly h1, h2 and q3 dependent. Although implicit, one could consider them as
hi−Api and q3 −Api terms in the induced gauge action, that originates from the infra-red and would not be predicted
by a pure Chern-Simons term.



19

VI. CONCLUSIONS

We studied the contribution to the phase of the fermion determinant in QED3 using lattice regularization and
Wilson fermions at finite volume and temperature. We considered non-perturbative backgrounds that contain non-
zero magnetic and electric flux. In addition, our backgrounds also contained constant gauge potentials referred to
as torons. In the absence of torons and any perturbation, we studied the parity even contribution to the phase and
our result in Eq. (15) is an extension of the result in [22–24] for the case of just a magnetic flux. In the presence
of toron in the time direction and a non-zero magnetic flux, our result using lattice regularization agrees with one
obtained using zeta function regularization [18, 19]. We extend this result for the case with electric fluxes and torons.
In addition to extending the result, we provide an alternate way of understanding the parity even contribution when
one has a magnetic flux. The connection between two dimensional topology and a parity even phase is translated to a
sign associated with the propagation of a free fermion along a closed loop in two dimensional momentum torus where
the momentum associated with the propagation changes as one goes along the closed loop. The direction associated
with the closed loop in the two dimensional momentum torus is proportional (−q2, q1), the fluxes associated with the
electric field.
The effect of finite temperature on the coefficient of the induced Chern-Simons term discussed in the past [14] is

addressed here. In addition we also address the issue of finite mass. We show that the contribution at zero mass
and infinite mass only comes from the regulator but there is also a contribution from the continuum part at non-zero
finite masses. Whereas the contribution from the regulator is local and of the Chern-Simons type with a coefficient
that is different at zero and infinite mass [13], the contribution at any finite non-zero mass is not local. In addition,
the result depends on the presence of torons in the space directions if there is no magnetic flux. This is associated
with the eigenvalues of the free two dimensional Dirac operator depending on the torons and the eigenvalues of the
two dimensional Dirac operator in the presence of a non-zero magnetic flux being independent of the torons [29].
Our studies in various non-perturbative backgrounds suggest that we can study the following class of theories using

numerical simulation:

Z =

∫
[DU ]

N+∏

j=1

[dψ+
j ][dψ̄

+
j ]

N−∏

k=1

[dψ−
k ][dψ̄

−
k ]e

Sg(U)+
∑

N+

j=1 ψ̄j(D/ n−B+M+

k )ψj

∑
N−

k=1 ψ̄j(D/ n+B−M−

j )ψj , (94)

with 0 < M+
k and M−

j < 1. The simplest one to simulate is the one that does not break parity: Set N+ = N− = N

and M−
k =M+

k =M . This theory with N degenerate flavors is expected to have non-zero values for fermion bilinears
that does not break parity in the massless limit [6]. It would be interesting to perform a large N analysis on the
lattice formalism in addition to performing a numerical simulation at small values of N . Motivated by [30] it would be
interesting to study the theory N− = 0, N+ = N and M+

k =M . In particular, one could attempt to first study this
theory for large N semi-classically using the lattice formalism where the non-perturbative effects modify the induced
parity odd term at finite volume and temperature away from the conventional Chern-Simons term in order to preserve
gauge invariance. A numerical study has to address the sign problem which might be under control for large N . Since
chiral symmetry is not relevant and gauge invariance is maintained on the lattice with Wilson fermions, numerical
studies can be performed with the aim of studying massless fermions without the necessity to use a formalism that
preserves chiral symmetry [25, 31].
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Appendix A: Expressions for F and S

We derive the expressions for perturbative terms F and S in Eq. (71). As explained in Section V, we consider
perturbative fields Api (k) which are only dependent on time k. We expand Bk and Ck to second order in perturbation
theory

Bk ≡ B +

2∑

i=1

Api (k)̃b
1
i +

2∑

i=1

Api (k)A
p
j (k)̃b

2
i ,

≡ B + b1k + b2k. (A1)
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Similarly for Ck:

Ck ≡ C +

2∑

i=1

Api (k)c̃
1
i +

2∑

i=1

Api (k)A
p
j (k)c̃

2
i ,

≡ c1k + c2k. (A2)

Since, only first order terms seem to contribute to the phase, we write down their expressions:

b̃1i =
−i

2

(
Ti − T †

i

)
; c̃11 =

i

2

(
T1 + T †

1

)
; c̃12 =

1

2

(
T2 + T †

2

)
. (A3)

The Ti are the forward shift operators evaluated on a free or constant magnetic field background. Then, B−1 can be
expanded to second order as

B−1
k = B−1 − B−1b1kB

−1 −B−1b2kB
−1 +B−1b1kB

−1b1kB
−1. (A4)

Using the above expressions, one can trace the steps sketched in Eq. (71) to obtain

Tk = T + Fk + Sk;

T =

(
B−1 −B−1C†

−CB−1 CB−1C† +B

)
,

Fk =




−B−1b1kB
−1 −B−1c1k

†
+B−1b1kB

−1C†

−c1kB
−1 + CB−1b1kB

−1
(
b1k + c1kB

−1C†

−CB−1b1kB
−1C† + CB−1c1k

†
)


 ,

Sk =




−B−1b2kB
−1 +B−1b1kB

−1b1kB
−1

(
−B−1c2k

†
+B−1b1kB

−1c1k
†

+B−1b2kB
−1C† −B−1b1kB

−1b1kB
−1C†

)

(
−c2kB

−1 + c1kB
−1b1kB

−1
(
b2k + c2kB

−1C† − c1kB
−1b1kB

−1C†

+CB−1b2kB
−1 − CB−1b1kB

−1b1kB
−1
)

+CB−1b1kB
−1b1kB

−1C† + c1kB
−1c1k

†

−CB−1b1kB
−1c1k

†
+ CB−1c2k

†
)




.

(A5)

It is straight forward to obtain F̃ and S̃ from the above expressions in terms of b̃1i and c̃1i .

Appendix B: Perturbation theory in momentum basis

In this appendix, we derive first order terms obtained in Appendix A in the momentum basis. Using the Fourier
transforms of Eq. (A3), one obtains

F̃i =

(
αi βi
β∗
i γi

)
where,

(
α1 β1
β∗
1 γ1

)
=

(
− sin p1

b2
i cos p1
b + c∗ sin p1

b2

− i cos p1
b + c sin p1

b2 sin p1

(
1− |c|2

b2

)
+ i(c∗−c) cos p1

b

)
,

(
α2 β2
β∗
2 γ2

)
=

(
− sin p2

b2 − cos p2
b + c∗ sin p2

b2

− cos p2
b + c sin p2

b2 sin p2

(
1− |c|2

b2

)
+ (c∗+c) cos p2

b

)
. (B1)

Using the expressions for the eigenvalues and eigenvectors of T (p),

F̃p+,p−
i =

αi|c|
2 + βic

∗
(
1− eλpb

)
+ β∗

i c
(
1− e−λpb

)
+ γi

(
1 + b2 − 2b coshλp

)
√
[|c|2 + (1− eλpb)2] [|c|2 + (1− e−λpb)2]

, (B2)

for any generic mode. For the zero and doubler modes, it is

F̃p+,p−
i =

{
βi if b < 1

β∗
i if b > 1.

(B3)
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When p ≈ 0, using Eq. (88), we can replace λp with Λn/L in Eq. (B2) for F̃1 and F̃2. By expanding Im(F̃∗
1 F̃2) as a

power series in 1/L, we obtain the expression

lim
L→∞

Im
[(

F̃p+,p−
1

)∗
F̃p+,p−

2

]
=

m

Λn
. (B4)
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