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Besides their astrophysical interest, compact stars also provide an arena for understanding the
properties of theories of gravity that differ from Einstein’s general relativity. Numerous studies have
shown that different modified theories of gravity can modify the bulk properties (such as mass and
radius) of neutron stars for given assumptions on the microphysics. What is not usually stressed
though is the strong degeneracy in the predictions of these theories for the stellar mass and radius.
Motivated by this observation, in this paper we take an alternative route and construct a stellar
structure formalism which, without adhering to any particular theory of gravity, describes in a
simple parametrized form the departure from compact stars in general relativity. This “post-TOV”
formalism for spherical static stars is inspired by the well-known parametrized post-Newtonian
theory, extended to second post-Newtonian order by adding suitable correction terms to the fully
relativistic Tolman-Oppenheimer-Volkoff (TOV) equations. We show how neutron star properties
are modified within our formalism, paying special attention to the effect of each correction term. We
also show that the formalism is equivalent to general relativity with an “effective” (gravity-modified)
equation of state.

PACS numbers: 04.40.Dg, 04.50.Kd, 04.80.Cc, 04.25.Nx, 97.60.Jd

I. INTRODUCTION

Neutron stars play a special role among astrophysical
objects, because they are excellent laboratories for mat-
ter under extreme conditions (unlike black holes) and
also excellent laboratories to probe strong gravity (un-
like ordinary stars or white dwarfs) [1]. For these rea-
sons neutron stars are among the main targets of future
observatories such as the SKA [2], NICER [3], LOFT [4]
and AXTAR [5]. These experiments have the potential to
measure neutron star masses and radii to unprecedented
levels [6–8]. If general relativity (GR) is assumed to be
the correct theory of gravity, the observed mass-radius
relation will constrain the equation of state (EOS) of
matter at supranuclear densities, which is unaccessible
to laboratory experiments [9–14]. A procedure to re-
construct the EOS from observations of the mass-radius
relation (working within GR) was developed in a series
of papers by Lindblom and collaborators [15–17]; see [18]
for a review.
Besides their interest for nuclear physics, neutron

stars are also unique probes of strong-field gravitational
physics. For any given EOS, theories that modify the
strong-field dynamics of GR generally predict bulk ob-
servable properties (neutron star mass, radius, moment
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of inertia and higher multipole moments) that are differ-
ent from those in Einstein’s theory. However, a survey
of the literature on neutron stars in modified theories of
gravity (see e.g. Table 3 of [1]) reveals a high degree of
degeneracy in the salient properties of relativistic stars.
As we show in Fig. 1, if we assume a nuclear-physics mo-
tivated EOS (specifically, EOS APR [19] in the figure),
modifications in the gravity sector are usually equiva-
lent to systematic shifts of the GR mass-radius curves
towards either higher masses and larger radii (as in the
case of scalar-tensor theories [22, 24]), lower masses and
smaller radii (as in the case of Einstein-dilaton-Gauss-
Bonnet [20, 25] and Lorentz-violating theories [21, 26]) or
both, as in Eddington-inspired-Born-Infeld gravity with
different signs of the coupling parameter [23, 27].
Systematic shifts in the mass-radius relation could be

attributed either to the poorly known physics controlling
the high-density EOS, or to modifications in the theory
of gravity itself. This EOS/gravity degeneracy is intrin-
sic in all attempts to constrain strong gravity through
astrophysical observations of neutron stars: chapter 4
of [1] reviews various proposals to solve this problem,
e.g. through the recently discovered universal relations
between the bulk properties of neutron stars [28–31].

In any case, different gravitational theories span (at
least qualitatively) the same parameter space in terms of
their predictions for relativistic stellar models. Gravity-
induced modifications usually look like smooth deforma-
tions of the general relativistic predictions. A notable
exception are cases where nonperturbative effects induce
phase transitions, as in the “spontaneous scalarization”
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FIG. 1. The gravity-theory degeneracy problem. The mass-
radius relations in different modified theories of gravity for
EOS APR [19]. Masses are measured in solar masses, and
radii in kilometers. The theory parameters used for this
plot are: α = 20M2

⊙ and β2 = 1 (Einstein-dilaton-Gauss-
Bonnet [20]); c14 = 0.3 (Einstein-Aether [21]); β = −4.5
(scalar-tensor theory [22]) and κ = ±0.005 (Eddington-
inspired-Born-Infeld gravity [23]). Even if the high-density
EOS were known, it would be hard to distinguish the effects
of competing theories of gravity on the bulk properties of neu-
tron stars.

scenario first proposed in [32], where modifications only
occur in a specific range for the central density.
With the possible exception of nonperturbative phase

transitions, these considerations suggest that the broad
features of a large class of modified gravity theories can
be reproduced, at least for small deviations from GR, by
a perturbative expansion around a background solution
given by the standard TOV equations, which determine
the structure of relativistic stellar models in GR [33, 34].
Instead of committing to one particular pet theory,

in this paper we formulate a parametrized “post-TOV”
framework for relativistic stars based on the well-known
parametrized post-Newtonian (PPN) theory developed
by Nordtvedt and Will [35, 36]; see e.g. [34, 37] for in-
troductions to the formalism. The foundations of post-
Newtonian (PN) theory for fluid configurations in GR
were laid in classic work by Chandrasekhar and collabo-
rators [38, 39]. Various authors studied stellar structure
using the PN approximation, both in GR [40–43] and in
modified theories of gravity, such as scalar-tensor theory
[44, 45]. To our knowledge, after some early work that
will be discussed below [46–48], the investigation of com-
pact stars within the PPN approximation has remained
dormant for more than thirty years. In the intervening
time the PPN parameters have been extremely well con-
strained by Solar System and binary pulsar observations

at 1PN order (see [49] for a review of current bounds).
In this paper we build a phenomenological post-TOV

framework by considering 1PN and 2PN order correc-
tions to the TOV equations. Our strategy is, at heart,
quite simple: from a suitable set of PPN hydrostatic equi-
librium equations we isolate the purely non-GR pieces.
These PPN terms are subsequently added “by hand” to
the full general relativistic TOV equations, hence produc-
ing a set of parametrized post-TOV equations (cf. [50]
for a similar “post-Einsteinian” parametrization in the
context of gravitational radiation from binary systems).
The formalism introduces a new set of 2PN parameters
that are presently unconstrained by weak-field experi-
ments, and that encompass the dominant corrections to
the bulk properties of neutron stars in GR in a wide class
of modified gravity theories.

A. Executive summary

Since this paper is rather technical, we summarize our
main conclusions here. The core of our proposal is to
use the following set of “post-TOV” equations of struc-
ture for spherically symmetric stars (from now on we use
geometrical units G = c = 1):

dp

dr
=

(
dp

dr

)

GR

−
ρm

r2
(P1 + P2 ) , (1a)

dm

dr
=

(
dm

dr

)

GR

+ 4πr2ρ (M1 +M2) , (1b)

where

P1 ≡ δ1
m

r
+ 4πδ2

r3p

m
, (2a)

M1 ≡ δ3
m

r
+ δ4Π, (2b)

P2 ≡ π1
m3

r5ρ
+ π2

m2

r2
+ π3r

2p+ π4
Πp

ρ
, (2c)

M2 ≡ µ1
m3

r5ρ
+ µ2

m2

r2
+ µ3r

2p+ µ4
Πp

ρ
+ µ5Π

3 r

m
.

(2d)

Here r is the circumferential radius, m is the mass func-
tion, p is the fluid pressure, ρ is the baryonic rest mass
density, ǫ is the total energy density, and Π ≡ (ǫ − ρ)/ρ
is the internal energy per unit baryonic mass. A “GR”
subscript denotes the standard TOV equations in GR
[cf. Eq. (7) below, where we appended a subscript “T”
to the mass function for reasons that will become appar-
ent later]; δi, πi (i = 1, . . . , 4) and µi (i = 1, . . . , 5) are
phenomenological post-TOV parameters. The GR limit
of the formalism corresponds to setting all of these pa-
rameters to zero, i.e. δi, πi, µi → 0.
The dimensionless combinations P1,M1 and P2,M2

represent a parametrized departure from the GR stellar
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FIG. 2. 2PN-order post-TOV corrections on the mass-radius curves. We show the modification induced by different families of
post-TOV terms on the general relativistic mass-radius curve, assuming the APR EOS. Left to right and top to bottom, the
different panels show the effect of the pressure terms, proportional to πi (i = 1, . . . , 4), and of the mass terms, proportional to
µi (i = 1, . . . , 5).

structure and are linear combinations of 1PN- and 2PN-
order terms, respectively. In particular, the coefficients
δi attached to the 1PN terms are simple algebraic combi-
nations of the traditional PPN parameters: see Eqs. (35)
and (36) below. As such, they are constrained to be very
close to zero by existing Solar System and binary pulsar
observations1: |δi| ≪ 1. This result translates to negli-
gibly small 1PN terms in Eq. (1): P1,M1 ≪ 1. On the

1 Using the latest constraints on the PPN parameters [49] we
obtain the following upper limits: |δ1| . 6 × 10−4, |δ2| .
7× 10−3, |δ3| . 7× 10−3, |δ4| . 10−8.

other hand, πi and µi are presently unconstrained, and
consequently P2,M2 should be viewed as describing the
dominant (significant) departure from GR.

Each of the two combinations P2 and M2 involves no
more than five dimensionless 2PN terms, but as we show
in Section III B these terms are representative of five
distinct “families” consisting of a large number of 2PN
terms. Each family is defined by the property that all of
its members lead to approximately self-similar changes in
the stellar mass-radius curves when included in P2,M2.
In other words, as we verified by numerical calculations,
we can account for several terms belonging to the same
family by taking just one term from that family (either
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the dominant one or, when convenient, a much simpler
subdominant one) and varying the corresponding post-
TOV coefficient πi or µi.
The qualitative effect of each of the 2PN-order post-

TOV terms on the mass-radius relation is illustrated in
Fig. 2. The values of the πi and µi coefficients in each
panel of this figure were chosen with purely illustrative
purposes, i.e., we chose these coefficients to be large
enough that they can produce visible deviations on the
scale of the plot. A first noteworthy feature is that pres-
sure terms typically induce corrections that are about an
order of magnitude smaller than mass terms2. This can
be seen by the larger range of πi’s needed to produce visi-
ble changes in the mass-radius curve (|π2| ≤ 4, |π3| ≤ 100
and |π4| ≤ 10) when compared to the corresponding cor-
rections in the mass-function equation (|µ2| ≤ 1, |µ3| ≤ 1
and |µ4| ≤ 1.5, respectively). Some terms (such as those
proportional to π2, π3, π4, µ3 and µ5) induce smooth
rigid shifts of the mass-radius curve, similar to those
that would be produced by a softening or stiffening of
the nuclear EOS. Other terms (like those proportional to
µ1, µ2 and µ4) produce more peculiar features that are
more or less localized in a finite range of central densi-
ties. This is interesting, because (for example) it is plau-
sible to conjecture that some combination of the µ1 and
µ2 corrections may reproduce the qualitative features of
a highly non-perturbative phenomenon such as sponta-
neous scalarization, despite the intrinsically perturbative
nature of our formalism.
The punchline here is that each post-TOV correction

is qualitatively different, so we can use the post-TOV for-
malism as a toolbox to reproduce the mass-radius curves
shown in Fig. 1 for various modified theories of grav-
ity. More ambitiously, it would be interesting to address
the inverse problem, i.e. to find out how the post-TOV
parameters are related to the dominant corrections in-
duced by each different theory. These issues are beyond
the scope of this paper, but they are obviously crucial
to relate our formalism to experiments, and we plan to
address them in future work.
The second main result of this paper has to do with

the “completeness” of our post-TOV formalism, in the
sense that the stellar structure Eqs. (1) – if we neglect
the small terms P1,M1 – can be formally derived by a
covariantly conserved perfect fluid stress energy tensor.
That is:

∇νT
µν = 0, T µν = (ǫeff + p)uµuν + pgµν , (3)

where the effective, gravity-modified energy density is

ǫeff = ǫ+ ρM2, (4)

and the covariant derivative is compatible with the effec-
tive post-TOV metric

gµν = diag[ eν(r), (1− 2m(r)/r)−1, r2, r2 sin2 θ ], (5)

2 A notable exception to this rule is the π1 term, for reasons that
will be explained in Section IV below.

with

dν

dr
=

2

r2

[

(1−M2)
m+ 4πr3p

1− 2m/r
+mP2

]

. (6)

Our phenomenological post-TOV formalism is expected
to encompass a large number of alternative theories of
gravity, but it is not completely general, and future ex-
tensions may be possible or even desirable. As we stated
earlier, theories which produce non-perturbative phase
transitions in their stellar structure equations may not
be accurately modelled. The formalism is also limited by
the choice of acceptable 2PN terms out of all dimension-
ally possible combinations, based on criteria that have
bearing on the structure of the gravitational field equa-
tions (see Section III B below).

B. Plan of the paper

The plan of the paper is as follows. In Section II we in-
troduce the PPN formalism and review previous applica-
tions to relativistic stars (in particular work by Wagoner
and Malone [46] as well as Ciufolini and Ruffini [47]). In
Section III we develop the post-TOV formalism to 1PN
order (where all parameters are already constrained to
be very close to their GR values by Solar System and
binary pulsar experiments), and then to 2PN order. We
also show the equivalence between the 2PN post-TOV
equations and GR with a gravity-modified EOS under
a minimal set of reasonable assumptions. In Section IV
we present some numerical results illustrating the rela-
tive importance of the different post-TOV corrections.
Some technical material is collected in three appendices.
Appendix A gives details of the dimensional analysis ar-
guments used to select the relevant set of 2PN post-TOV
coefficients. In Appendix B we present a brief summary
of the relativistic Lane-Emden theory, which plays an
auxiliary role in the construction of our formalism. Fi-
nally, Appendix C shows that certain integral potentials
appearing at 1PN order in the stellar structure equations
(namely, the gravitational potential U , the internal en-
ergy E and the gravitational potential energy Ω) can be
approximated by linear combinations of non-integral po-
tentials, so these integral potentials are “redundant” and
can be discarded when building our post-TOV expansion.

II. SETTING THE STAGE: STELLAR

STRUCTURE WITHIN PPN THEORY

A. The TOV equations

A convenient starting point for our analysis are the
standard general relativistic TOV equations, describ-
ing hydrostatic equilibrium in spherical symmetry [34].
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These are given by the familiar formulae:

(
dp

dr

)

GR

= −
(ǫ+ p)

r2
(mT + 4πr3p)

(1− 2mT/r)
, (7a)

(
dmT

dr

)

GR

= 4πr2ǫ, (7b)

where p and ǫ are the fluid’s pressure and energy den-
sity, respectively, and mT is the mass function (the sub-
script is used to distinguish this mass function from sim-
ilar quantities appearing in PPN theory, see below).
For later convenience we also write down the 1PN-

order expansion of these equations (for simplicity the
subscript “GR” is omitted):

dp

dr
= −

mTρ

r2

(

1 + Π+
p

ρ
+

2mT

r
+ 4π

r3p

mT

)

+O(2PN),

(8a)

dmT

dr
= 4πr2ρ(1 + Π). (8b)

where we have introduced the baryonic rest-mass density
ρ and the dimensionless internal energy per unit mass,
Π ≡ (ǫ − ρ)/ρ. It can be noticed that the mass function
equation only contains 1PN corrections to the Newtonian
equations of hydrostatic equilibrium, while higher-order
corrections appear in the pressure equation.

B. The PPN stellar structure equations

The PPN formalism [35, 36] was first employed for
building static, spherically symmetric models of compact
stars by Wagoner & Malone [46], and subsequently by
Ciufolini & Ruffini [47]. This early work is briefly re-
viewed here since it will provide the stepping stone to-
wards formulating our post-TOV equations.
A convenient starting point is the set of stellar struc-

ture equations derived in [47] from the original Will-
Nordtvedt PPN theory [35, 36]. These are [cf. Eqs. (14)
of [47]]:

dp

dr
= −

ǫm̄

r2

[

1 + (5 + 3γ − 6β + ζ2)
m̄

r
+

p

ǫ
+ ζ3

E

m̄

+(γ + ζ4)
4πr3p

m̄
+

1

2
(11 + γ − 12β + ζ2 − 2ζ4)

Ω

m̄

]

,

(9a)

dm̄

dr
= 4πr2ǫ, (9b)

where we have adopted the standard notation for the
nine PPN parameters, {β, γ, ζ1, ζ2, ζ3, ζ4, α1, α2, α3}. In
the GR limit β = γ = 1 and ζi = αi = 0 (i = 1, ..., 4)
[49].
It should be pointed out that the basic parameters p, m̄

(as well as the radial coordinate r) entering Eqs. (9) may
not be the same as the corresponding ones in the TOV

equations. This is a reflection of the “gauge” freedom in
defining these parameters in a number of equivalent ways.
Indeed, below we are going to exploit this freedom and
obtain an “improved” set of PPN equations by a suitable
redefinition of the mass function. On the other hand, fol-
lowing [47], we will stick to the same p and r throughout
this analysis, implicitly assuming that they are the same

variables as the ones in the TOV equations (7).
The potentials Ω and E appearing in Eq. (9a) obey

dΩ

dr
= −4πrρm̄,

dE

dr
= 4πr2ρΠ. (10)

The more familiar Newtonian gravitational potential U ,
solution of ∇2U = −4πρ, is not featured in Eqs. (9) as a
result of a change of radial coordinate and a redefinition
of the mass function m̄ with respect to the original PPN
theory parameters (see [47] for details).
The stellar structure equations can be manipulated

further by switching to a new mass function:

m(r) = m̄+AE +BΩ+ C
m̄2

r
+D(4πr3p), (11)

where A, B, C, and D are free constants. As evident, m̄
and m differ at 1PN level. The constants A and B can
be chosen so that the terms proportional to E and Ω in
Eq. (9a) are eliminated. This is achieved for

A = ζ3, B =
1

2
(11 + γ − 12β + ζ2 − 2ζ4). (12)

The resulting “new” set of PPN stellar structure equa-
tions is

dp

dr
= −

ρm

r2

[

1 + Π+
p

ρ
+ (5 + 3γ − 6β + ζ2 − C)

m

r

+ (γ + ζ4 −D) 4π
r3p

m

]

, (13a)

dm

dr
= 4πr2ρ

[

1 + (1 + ζ3)Π + 3D
p

ρ
−

C

4π

m2

ρr4

−
1

2
(11 + γ − 12β + ζ2 − 2ζ4 − 4C + 2D)

m

r

]

.

(13b)

These expressions still contain the gauge freedom as-
sociated with the definition of the mass function m in
the form of the yet unspecified constants C and D. In
particular, the Wagoner-Malone hydrostatic equilibrium
equations [46] represent a special case of these expres-
sions, and it is straightforward to see that they can be
recovered for

D = γ + ζ4, C =
1

2
(7 + 3γ − 8β + ζ2) . (14)

Making this choice for the constants on the right-hand
side of Eq. (11) leads to a new mass function, say m̃,
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and to the following structure equations, which match
Eqs. (6) and (7) of [46]:

dp

dr
= −

ρm̃

r2

(

1 + Π +
p

ρ
+ a

m̃

r

)

, (15a)

dm̃

dr
= 4πr2ρ

[

1 + (1 + ζ3)Π + a
m̃

r
+ 3(γ + ζ4)

p

ρ

−
b

4π

m̃2

ρr4

]

, (15b)

where a ≡ (3+3γ− 4β+ ζ2)/2 and the constant b in the
notation of [46] is our C, i.e. b = (7 + 3γ − 8β + ζ2) /2.

A comparison between the two sets of PPN equations
(9) and (15) discussed in this section reveals that the
Wagoner-Malone equations are simpler, in the sense that
they do not depend on the auxiliary potentials Ω and
E. This advantage, however, is partially offset by the
more complicated expression for the mass function equa-
tion. If we compare the GR limit of Wagoner-Malone
equations (15) against the 1PN expansion of the TOV
equations, Eqs (8), we find that the two sets coincide
provided we identify m̄ = mT, i.e.

m̃ = mT +
m2

T

r
+ 4πr3p , (16)

where the last equation follows by taking the GR limit of
Eq. (11) in combination with Eqs. (12) and (14). Clearly,
the fact that m̃ 6= mT in the GR limit is an unsatisfactory
property of the Wagoner-Malone equations.

It would be desirable to have a set of structure equa-
tions that – unlike the set (9) – does not involve integral
potentials, and such that – unlike the set (15) – the mass
function is compatible with the GR limit. Fortunately, it
is not too difficult to find a new set of PPN equations for
which m = mT. In the following section we will propose
an improved set of PPN stellar structure equations that
satisfies these requirements.

C. An improved set of PPN equations

We can exploit the degree of freedom associated with
the constants C,D in Eqs. (13) and produce a new set of
PPN equations that exactly match the 1PN TOV equa-
tions in the GR limit with m = mT. It is easy to see that
this can be achieved by making the trivial choice

C = D = 0. (17)

Note that the constants A and B are still given by
Eqs. (12). The resulting PPN equations are

dp

dr
= −

ρm

r2

[

1 + Π +
p

ρ
+ (5 + 3γ − 6β + ζ2)

m

r

+ (γ + ζ4)4π
r3p

m

]

, (18a)

dm

dr
= 4πr2ρ [ 1 + (1 + ζ3)Π

−
1

2
(11 + γ − 12β + ζ2 − 2ζ4)

m

r

]

. (18b)

As advertised, in the GR limit these equations reduce to
Eqs. (8) with m = mT. The same equations will be used
in Section III below in the construction of the desired
post-TOV equations.

D. The physical interpretation of the mass function

Within the framework of PPN theory, inertial mass
and active/passive gravitational mass are, in general, dis-
tinct notions. In the context of compact stars, expres-
sions for all three kinds of mass are given in [47]:

Min = m̄(R̄) +

(
17

2
+

3

2
γ − 10β +

5

2
ζ2

)

Ω(R̄), (19)

Ma = Min +

(

4β − γ − 3−
1

2
α3 −

1

3
ζ1 − 2ζ2

)

Ω(R̄)

+ ζ3E(R̄)−

(
3

2
α3 − 3ζ4 + ζ1

)

P , (20)

Mp = Min +

(

4β − γ − 3− α1 +
2

3
α2 −

2

3
ζ1 −

1

3
ζ2

)

× Ω(R̄), (21)

where R̄ is the stellar radius associated with the mass
function m̄(r) – i.e. with the set of equations (9) – and

P = 4π

∫ R̄

0

dr r2p. (22)

is the volume-integrated pressure.
In GR the three masses are of course identical, Min =

Ma = Mp. As argued in [47], any theory conserving the
four-momentum of an isolated system should incorporate
the equality of the two gravitational masses, i.e. Ma =
Mp. If adopted, this equality leads to following three
algebraic relations for the PPN parameters:

ζ3 = 0, (23)

ζ1 − 3ζ4 +
3

2
α3 = 0, (24)

ζ1 + 3α1 − 2α2 − 5ζ2 −
3

2
α3 = 0. (25)

We can subsequently write for the common gravitational
mass:

Mg = Ma = Mp = m̄(R̄) + FΩ(R̄), (26)
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with

F =
1

2

(

11 + γ − 12β − α3 + ζ2 −
2

3
ζ1

)

. (27)

For our new PPN equations with C = D = 0 the mass
equality Ma = Mp implies

m(r) = m̄(r) +
1

2
(11 + γ − 12β + ζ2 − 2ζ4) Ω(r). (28)

Then with the help of Eq. (24) it is easy to see that

Mg = m(R̄) +

(

ζ4 −
1

2
α3 −

1

3
ζ1

)

Ω(R̄) = m(R̄). (29)

If R is the stellar radius associated with our PPN equa-
tions (18), the difference δR = R − R̄ is a 1PN-order
quantity. We can then approximately write

m(R̄) ≈ m(R)−
dm

dr
(R)δR . (30)

However, Eq. (18b) implies that dm/dr(R) = 0 if ρ(R) =
0 at the stellar surface. This is indeed the case for a
realistic EOS. Therefore, we have shown that at 1PN
precision the mass of the system is given by

Mg = m(R). (31)

This elegant result is one more attractive property of the
new PPN equations.

III. THE POST-TOV FORMALISM

The logic underpinning the formalism we are seeking
is that of parametrizing the deviation of the stellar struc-
ture equations from their GR counterparts, thus produc-
ing a set of post-TOV equations. As already pointed out
in the introduction, the post-TOV formalism is merely a
useful parametrized framework rather than the product
of a specific, self-consistent modified gravity theory (in
the spirit of PPN theory). In this sense our formalism is
akin to the existing “quasi-Kerr” or “bumpy” Kerr met-
rics, designed to study deviations from the Kerr space-
time in GR (see e.g. [51–53]).

By design the post-TOV formalism should be a more
powerful tool for building relativistic stars than the PPN
framework; after all, the latter is based on a PN approxi-
mation of strong gravity. However, and as it will become
clear from the analysis of this section, our formalism has
its own limitations, the most important one being the fact
that the deviations from GR are introduced in the form
of PN corrections. This could mean that the structure of
compact stars with a high degree of departure from GR
may not be accurately captured by the formalism.

A. Post-TOV equations: 1PN order

The recipe for formulating leading-order post-TOV
equations is rather simple: from a suitable set of PPN
hydrostatic equilibrium equations we isolate the purely
non-GR pieces. These 1PN terms are subsequently added
“by hand” to the full general relativistic TOV equations,
hence producing a set of parametrized post-Einsteinian
equations. It should be pointed out that this proce-
dure can only be applied at the level of 1PN correc-
tions. Higher-order corrections should by sought by other
means, such as dimensional analysis (see Section III B).
In principle, either set of equations, (9) [47] or (15)

[46], could have been used. However, our improved PPN
equations (18) seem to be best suited for this task.
Considering Eqs. (18), we first isolate the terms that

represent a genuine deviation from GR. These are the
terms on the second line in the following equations:

dp

dr
= −

ρm

r2

(

1 + Π+
p

ρ
+

2m

r
+ 4π

r3p

m

)

−
ρm

r2

[

(3 + 3γ − 6β + ζ2)
m

r
+ (γ − 1 + ζ4)4π

r3p

m

]

,

(32a)

dm

dr
= 4πr2ρ (1 + Π)

+ 4πr2ρ

[

ζ3Π−
1

2
(11 + γ − 12β + ζ2 − 2ζ4)

m

r

]

.(32b)

The second step consists of adding the non-GR terms to
the TOV equations (7). We obtain (recall that m = mT)

dp

dr
= −

(ǫ+ p)

r2

(
m+ 4πr3p

1− 2m/r

)

−
ρm

r2

(

δ1
m

r
+ δ24π

r3p

m

)

,

(33)

dm

dr
= 4πr2

[

ǫ + ρ
(

δ3
m

r
+ δ4Π

)]

, (34)

where we have introduced the constant post-TOV pa-
rameters:

δ1 ≡ 3(1 + γ)− 6β + ζ2, δ2 ≡ γ − 1 + ζ4, (35)

δ3 ≡ −
1

2
(11 + γ − 12β + ζ2 − 2ζ4) , δ4 ≡ ζ3. (36)

As expected, δi = 0 in the limit of GR.
The above equations can be written in a more compact

form:

dp

dr
=

(
dp

dr

)

GR

−
ρm

r2

(

δ1
m

r
+ δ24π

r3p

m

)

, (37a)

dm

dr
=

(
dm

dr

)

GR

+ 4πr2ρ
(

δ3
m

r
+ δ4Π

)

. (37b)

These expressions represent our main result for
the leading-order post-TOV stellar structure equations.
They describe the 1PN-level corrections produced by an
arbitrary deviation from GR that is compatible with
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PPN theory. In other words, Eqs. (37) encapsulate the
stellar structure physics (at this order) for any member
of the PPN family of gravity theories.

We could in principle introduce other 1PN order terms,
in the spirit of the general parametrized framework of de-
viating from GR that we have described in the beginning
of this section. But the introduction of such terms would
correspond to either redefinitions of coordinates and/or
the mass function at 1PN level, as we have already seen,
or deviations from special relativity, which we would pre-
fer not to include.

Unfortunately, it turns out that Eqs. (37) are of lim-
ited practical value. As discussed in the executive sum-
mary, the modern limits on the PPN parameters suggest
that these corrections are very close to their GR values,
because β, γ ≈ 1 and αi, ζi ≪ 1, making all the δi param-
eters very small. We should not therefore expect any no-
table deviation from GR at the level of the leading-order
post-TOV equations. We verified this claim by explicit
calculations of neutron star stellar models with different
EOSs.

Any significant deviations from compact stars in GR
have to be sought at 2PN order and beyond, where the
existing observational limits leave much room for the
practitioner of alternative theories of gravity. This calls
for the formulation of a higher-order set of post-TOV
equations, a task to which we now turn.

B. Post-TOV equations: 2PN order

In this section we shall formulate post-TOV equations
with 2PN-accurate correction terms. Unlike the calcu-
lation of the preceding section, we now have to build
these equations “from scratch”, given that the general
PPN theory has not yet been extended to 2PN order.
Inevitably, the procedure for building the various 2PN
terms will turn out to be somewhat more complicated
than the one of the preceding section, heavily relying on
dimensional analysis for constructing these terms out of
the available fluid parameters. Moreover, at 2PN order
we also need to consider terms that involve the integral
potentials U , E and Ω (recall that these were eliminated
at 1PN order by a suitable redefinition of the mass func-
tion). However, as shown numerically and via analytical
arguments in Appendix C, the integral potentials can be
approximated to a high precision, and for a variety of
EOSs, by simple linear combinations of the non-integral
PN terms. As a result, they do not have to be considered
separately in the post-TOV expansion.

To begin with, we can get an idea of the form of some
of the 2PN terms we are looking for by expanding the
TOV equations (7) to that order. Let us first consider

the pressure equation (7a):

dp

dr
= −

ρm

r2

[(

1 + Π +
p

ρ

)(

1 +
2m

r
+ 4π

r3p

m

)

+
4m2

r2
+ 8πr2p

]

+O(3PN). (38)

As anticipated, all 1PN terms appearing here are also
present in our PPN equation (18a). The produced 2PN
corrections are proportional to the following combina-
tions:

m2

r2
, Π

m

r
, r2p,

mp

rρ
, Π

r3p

m
,
r3p2

ρm
. (39)

Additional 2PN terms that do not appear in the TOV
equations can be constructed by forming products of the
available 1PN terms. The largest set of 1PN terms can
be found in the general PPN equations (13):

1PN : Π,
p

ρ
,
m

r
,
r3p

m
,
m2

ρr4
. (40)

We can observe that all terms, except the last one, also
appear in our final PPN equations (18). From these we
can reproduce the set (39) as well as the additional 2PN
terms:

r6p2

m2
, Π

m2

ρr4
,
m3

ρr5
, Π2, Π

p

ρ
,

p2

ρ2
,

m4

ρ2r8
,
m2p

ρ2r4
︸ ︷︷ ︸

. (41)

We have set apart the last three (underbraced) terms of
this set because, as a result of their ∼ 1/ρ2 scaling, these
terms will be discarded. In fact, the same fate will be
shared by any term ∼ ρβ with β ≤ −2.
There are various reasons why we believe that this se-

lection rule should be imposed. In our opinion these rea-
sons are quite convincing, but they fall short from consti-
tuting a watertight argument: in all fairness, if we had a
single truly compelling reason, we would not need more
than one.
The first line of reasoning to exclude the presence of

negative powers of ρ (and of the other fluid parameters)
in the PN terms is based on the regularity of these terms
at the stellar surface, where p, ρ,Π → 0 for any realistic
EOS. A PN term like the second one in the underbraced
group of the set (41) will lead to a term diverging as
∼ 1/ρ at the stellar surface in the stellar structure equa-
tions, and therefore it is not an acceptable PN correction.
Although this surface regularity argument is powerful, it
obviously works only for terms that do not scale with
positive powers of p or Π.
The second – heuristic – argument applies to gravity

theories with the following (symbolic) structure:

{geometry} = 8πT µν, (42)

∇νT
µν = 0 →

dp

dr
= (ǫ + p){geometry}, (43)
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where “geometry” stands for combinations of the met-
ric and its derivatives, and the last equation assumes a
perfect fluid stress-energy tensor. The stress-energy ten-
sor and the right-hand side of Eq. (43) feature ǫ + p =
ρ(1+Π+p/ρ) and p linearly. It can then be argued that
the solution of the field equations for the metric and its
derivatives will display a

{geometry} ∼ (ǫ+ τp)n ∼ ρn
(

1 + Π + τ
p

ρ

)n

(44)

dependence with respect to the fluid variables (where τ
and n are O(1) numbers). Such a solution should lead to
pressure-dependent PN terms of the form:

PN term ∼ (r2ρ)n−1

(
p

ρ

)k

, k = n, n− 1, . . . (45)

where one ρ factor has been removed and absorbed in the
Newtonian prefactor of the structure equations, while at
the same time the r2 factor has been added in order to
produce a dimensionless quantity. A key observation is
that the form (45) assumes a theory that does not de-
pend on dimensional coupling constants. Now, accord-
ing to (45) the highest negative power of ρ corresponds
to k = n, which means that the scaling with respect to
the density should be:

PN term ∼ ρβ , β ≥ −1 (46)

Based on these arguments, we deem acceptable those PN
terms which scale with ρ as in (46). This choice is also
consistent with the previous PPN formulae, see Eqs. (13).
A similar argument can be used to exclude terms with
negative powers of p and Π3.
Equation (39) and the top row of Eq. (41) represent

a large set of 2PN terms emerging from the expansion
of the TOV equation and from products of the various
known 1PN terms. This set is large but not necessar-
ily complete. Inevitably, a systematic approach to the
problem of “guessing” 2PN terms should involve dimen-
sional analysis. To improve readability we relegate our
dimensional analysis considerations to Appendix A, and
here we only quote the main result. The most general

form for 2PN order terms is given by the dimensionless
combination:

Λ2 ∼ Πθ(r2p)α(r2ρ)β
(m

r

)2−2α−β−θ

, (47)

3 A related argument for excluding high powers of 1/ρ is the fol-
lowing. By virtue of the field equations, the Ricci scalar is usu-
ally proportional to the energy density of matter (at least in
the Newtonian limit, if the modified theory reproduces GR in
the weak field regime): R ∼ ρ. If inverse powers of ρ are pro-
duced by gravity modifications, they should therefore originate
from terms ∼ 1/Rn in the action of the theory. These terms are
usually associated with ghosts or instabilities [54], and therefore
their presence is problematic.

where α, β, θ are integers with

β ≥ −1, (48)

while different bounds on θ and α apply to the two hy-
drostatic equilibrium equations:

dp

dr
: 0 ≤ θ ≤ 2, 0 ≤ α ≤ 2− θ, (49)

dm

dr
: 0 ≤ θ ≤ 3, 0 ≤ α ≤ 3− θ. (50)

The lower bounds on the three parameters α, β, θ
are dictated by the same considerations discussed below
Eq. (41), namely, regularity at the surface and consis-
tency with the fact that gravitational field equations of
the general form (43) are unlikely to generate negative
powers higher than 1/ρ. The upper bounds on α and
θ are imposed by the regularity at r = 0 of the stellar
structure terms arising from Λ2 (see Appendix A).
From the general expression (47) we can reproduce all

previous 1PN and 2PN terms and generate an infinite
number of new ones. This possibility could have been
a fatal blow to our post-TOV programme. Fortunately,
the day is saved by the fact that the magnitude of Λ2

decays rapidly throughout the star as β increases. This
trend is clearly visible in the numerical results shown in
Fig. 3 (see discussion below).
For all practical purposes these results imply that the

first few members of the β = −1, 0, 1, ... sequence are
sufficient to construct accurate post-TOV expansions. A
sample set of such dominant 2PN terms is:

2PN :
m3

r5ρ
,
m2

r2
, rρm,

mp

rρ
, r2p,

r3p2

ρm
,
r6p2

m2
,

r7p3

ρm3

r10p3

m4
, Π

m2

r4ρ
, Π

m

r
, Πr2ρ, Π

p

ρ
,

Π
r3p

m
,Π

r4p2

ρm2
,Π

r7p2

m3
, Π2 m

ρr3
, Π2, Π2 rp

mρ
,

Π2 r
4p

m2
,

Π3

r2ρ
, Π3 r

m
. (51)

This set is markedly larger than the previous sets (39)
and (41) (whose acceptable terms form a subset of the
new set), but a complete post-TOV formalism would have
to include all (or almost all) of these terms, with twice
the number of free coefficient in the dp/dr and dm/dr
equations. Fortunately, as it turns out, the same job
can be done with a much smaller subset of 2PN terms.
This is possible because the various 2PN terms can be
divided into five “families”, each family comprising terms
with similar profiles. When incorporated in the post-
TOV equations, terms belonging to a given family lead
to self-similar modifications in the mass-radius curves for
a given EOS.
Insight into the behavior of the Λ2(α, β, θ) terms can

be gained by direct numerical calculations of their radial
profiles in relativistic stars. We carried out such calcula-
tions for a variety of realistic EOSs as well as relativistic
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FIG. 3. The radial profile of the Λ2-function. We exhibit the behavior of ρ̄Λ2, where ρ̄ = ρ/ρc and Λ2 is given in Eq. (47),
for a stellar model using the APR EOS, with ǫc/c

2 = 0.86 × 1015 g/cm3, M = 1.51M⊙ and R = 12.3 km. The curves are
labelled according to the respective values of (α, β, θ). From the top row to the bottom row the index θ takes on the values
(0, 1, 2, 3), respectively. Despite the multitude of possible dimensionally correct 2PN terms, their self-similarity – which is clear
when we compare terms along the bottom-left to top-right diagonals in this “grid” of plots – allows us to group them into a
relatively small number of families (see text for details). The contributions plotted in three panels at the bottom right of the
grid (marked as “Excluded”) would lead to divergences in the hydrostatic equilibrium equations, and therefore they can be
discarded as unphysical.

polytropes, and for different choices of central density,
verifying that all cases lead to very similar results, as
discussed below. More specifically, we considered EOS
A [55], FPS [56], SLy4 [57, 58] and N [59] in increasing
order of stiffness, as well as relativistic polytropes with
indices n = 0.4, 0.6, and 1.0: see Appendix B, and in
particular Eq. (B7). Note that the polytropic models are
parametrized by λ = pc/ǫc instead of ǫc alone (the sub-
script “c” indicates a quantity evaluated at the center),
but this is equivalent to the central density parametriza-

tion. The polytropic models are also invariant with re-
spect to the scale factor Kn/2; this can be adjusted to
generate polytropic models of (say) the same mass (for a
given λ) as that of a specific tabulated-EOS model.

Rather than computing Λ2 itself, from a phenomeno-
logical point of view it makes more sense to consider
the combination ρΛ2. The reason is that this combi-
nation appears in both the pressure and mass equa-
tions, and furthermore it has the desirable feature of
being regular at the surface for β = −1. More specif-
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FIG. 4. The family-representative 2PN terms. Here we show the selected representative terms from each of the families depicted
in Fig. 3, as listed in Eq. (54), for three different EOSs: FPS (left panel), APR (middle panel) and an n = 0.6 polytrope (right
panel). Each term illustrates the qualitative behavior of each family of possible 2PN contributions to the structure equations.
The high degree of invariance of the Λ2-profiles with respect to the EOS is evident in this figure. The GR background stellar
models utilized in the figure have the following bulk properties: ǫc = 0.861 × 1015 g/cm3 (λ ≡ pc/ǫc = 0.165), M = 1.51M⊙

and R = 12.3 km (left panel); ǫc = 1.450 × 1015 g/cm3 (λ = 0.198), M = 1.50M⊙ and R = 10.7 km (center panel); λ = 0.165,
M = 1.50M⊙ and R = 11.75 km (right panel).

ically, in Fig. 3 we plot the dimensionless combination
ρ̄Λ2(α, β, θ), where ρ̄ = ρ/ρc. Our sample neutron star
model was built using the APR EOS with central energy
density ǫc/c

2 = 0.86×1015 g/cm3, corresponding to mass
M = 1.51M⊙ and radius R = 12.3 km, but we have veri-
fied that our qualitative conclusions remain the same for
different models and different EOSs.
Figure 3 reveals two key trends: (i) the clear β-ordering

of the ρΛ2 profiles, with β = −1 always associated with
the dominant term for fixed α and θ, and (ii) the re-
markable similarity in the shape of the profiles of terms
with dissimilar (α, β, θ) triads along the bottom-left to
top-right diagonals in the “grid” of Fig. 3. This prop-
erty defines distinct families of 2PN terms and implies
that the terms of each family cause self-similar changes
in the mass-radius curves of the various post-TOV stellar
models.
We have identified five 2PN families (labeled

“F1”,...,“F5” in the various panels of Fig. 3, and de-
scribed in more detail in Table I):
(i) F1: This is a single-member family comprising only

the ρΛ2(0,−1, 0) term in the top-left panel, which is zero
at r = 0 but finite at r = R.
(ii) F2: The members of this family vanish at r = 0

and r = R, and have a peak near the surface. These are
the ρΛ2(0, β, 0) terms with β ≥ 0 in the top-left panel.
(iii) F3: These terms also vanish at both r = 0 and

r = R, but display an approximately flat profile inside
the star. They correspond to ρΛ2(1, β, 0) (top-middle
panel) and ρΛ2(0, β, 1) (top-right panel) for β ≥ −1.
(iv) F4: This family comprises terms that are fi-

nite at r = 0 but zero at r = R. These are the
ρΛ2(2, β, 0) (bottom-left panel) and ρΛ2(1, β, 1) (bottom-
middle panel) terms with β ≥ −1.
(v) F5: These terms by themselves diverge at r = 0

and vanish at r = R, but they become well-behaved when
inserted in the stellar mass-function equation, where

they are multiplied by the factor r2: cf. Eq. (A24).
These terms correspond to ρΛ2(2, β, 1), and from the con-
straints (49) and (50) we conclude that the members of

this family can only appear in the mass equation.
There is an intuitive way to explain the existence of

the above families. As an example we consider F3, where
the seemingly unrelated terms Λ2(1, β, 0) and Λ2(0, β, 1)
yield similar profiles. Consider

Λ2(0, β, 1) ∼ r−1+3β Πρβ

mβ−1
. (52)

By means of the approximations m ∼ ρr3, Π ∼ p/ρ (the
latter approximation is motivated by the exact thermo-
dynamical relation Π = np/ρ for relativistic polytropes
with index n, see Appendix B) we find

Λ2(0, β, 1) ∼ r2+3βp
( ρ

m

)β

∼ Λ2(1, β, 0). (53)

Similarly we can show that Λ2(2, β, 0) ∼ Λ2(1, β, 1) for
the F4 family. The argument can be generalized to show
that terms along the diagonals of Fig. 3 are equivalent.
Table I summarizes the taxonomy of the most impor-

tant terms of each family according to the above criteria.
The impact of each of these terms as a post-TOV correc-
tion has been tested for a variety of EOSs. The results
reveal that the members of a given family lead to self-
similar modifications to the stellar mass-radius curves.
A sample of these numerical results is shown in Fig. 2,
which is further discussed in Section IV below.
This remarkable self-similarity property means that we

can simply select one term from each family and emulate
the effect of all significant 2PN terms of the same family
by simply varying the post-TOV coefficient associated
with the selected term.
In doing so, it is reasonable to choose the simplest

terms as family representatives. For families F2 and F4
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FIG. 5. The family-representative terms in the structure equations. This figure illustrates the behavior of each of the family-
representative 2PN terms [see Eq. (54)] multiplied by the Newtonian prefactors in the post-TOV equations. The stellar
parameters are identical to the ones used in Fig. 4. Left panel: the combination (ρm/r2) Λ2(α, β, θ) appearing in the pressure
equation. Right panel: the combination ρr2Λ2(α, β, θ) appearing in the mass equation. The top panels correspond to EOS
APR; the bottom panels correspond to a relativistic polytrope with polytropic index n = 0.6. The divergence at the origin of
the F5 term justifies its exclusion from the pressure equation.

the simplest terms also happen to be the dominant ones
(i.e., the ones with the largest ρΛ2), while for F3 and
F5 they are the first subdominant ones. The case of the
single-member family F1 is trivial. The five terms we
select based on this reasoning are:

F-representatives :
m3

r5ρ
,
m2

r2
, r2p, Π

p

ρ
, Π3 r

m
. (54)

The phenomenologically relevant radial profiles of
ρ̄Λ2(α, β, θ) produced by these terms are shown in Fig. 4
for three choices of EOS: FPS, APR and an n = 0.6 poly-
trope. The most striking feature of this figure is the close
resemblance of the Λ2 profiles of identical (α, β, θ) tri-
ads for different EOSs, which lends support to the EOS-
independence of our selection of post-TOV terms.
The family-representative terms (54) are again shown

in Fig. 5, where we plot the combinations that appear
in the dp/dr and dm/dr equations, i.e. mρΛ2/r

2 and
r2ρΛ2, respectively (in the latter term we have omitted a

trivial prefactor of 4π). We consider two different EOSs:
APR and an n = 0.6 polytrope. All terms displayed are
regular at both r = 0 and r = R with the exception of
the F5 term in the dp/dr equation, which is divergent at
r = 0 and must be excluded. Once again, the variations
in the radial profiles due to considering different EOSs
are extremely mild.

We have thus obtained a minimum set of representa-
tive 2PN terms, listed in Eq. (54), which in reality en-
compasses a much larger set, like the one obtained from
the combination of Eqs. (41) and (51), as well as terms
that involve the integral potentials.

After this admittedly tedious procedure we can fi-
nally assemble our 2PN-order post-TOV equations for
the pressure and the mass. These are (omitting the neg-
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Family 2PN term (α, β, θ) Dominant /

Chosen?

F1 m3/(r5ρ) (0,−1, 0) D/C

F2 (m/r)2 (0, 0, 0) D/C

F2 rmρ (0, 1, 0) −

F3 mp/(rρ) (1,−1, 0) −

F3 r2p (1, 0, 0) −

F3 Πm2/(r4ρ) (0,−1, 1) D/C

F3 Πm/r (0, 0, 1) −

F3 r2Πρ (0, 1, 1) −

F4 r3p2/(ρm) (2,−1, 0) −

F4 r6p2/(m2) (2, 0, 0) −

F4 Πp/ρ (1,−1, 1) C

F4 Πr3p/m (1, 0, 1) −

F4 Π2m/(r3ρ) (0,−1, 2) D

F4 Π2 (0, 0, 2) −

F5 Πr4p2/(ρm2) (2,−1, 1) −

F5 Πr7p2/m3 (2, 0, 1) −

F5 Π2rp/mρ (1,−1, 2) −

F5 Π2r4p/m2 (1, 0, 2) −

F5 Π3/(r2ρ) (0,−1, 3) D

F5 Π3r/m (0, 0, 3) C

TABLE I. Taxonomy of the dominant 2PN terms. The self-
similarity between the radial profiles of the various 2PN terms
listed in Eq. (51) (and illustrated in Fig. 3) allows us to group
them into five distinct families. This table spells out the ex-
plicit form of the various terms, and indicates which term in
each family is dominant (D) according to our numerical cal-
culations, and which one was chosen (C) as representative of
each family.

ligibly small 1PN corrections):

dp

dr
=

(
dp

dr

)

GR

−
ρm

r2

(

π1
m3

r5ρ
+ π2

m2

r2

+ π3r
2p+ π4Π

p

ρ

)

, (55a)

dm

dr
=

(
dm

dr

)

GR

+ 4πr2ρ

(

µ1
m3

r5ρ
+ µ2

m2

r2

+ µ3r
2p+ µ4Π

p

ρ
+ µ5Π

3 r

m

)

. (55b)

where, as anticipated in the executive summary, πi (i =
1, . . . , 4) and µi (i = 1, . . . , 5) are free parameters con-
trolling the size of the corresponding departure from GR.

C. Completing the formalism: the post-TOV

metric and stress-energy tensor

So far, our post-TOV formalism comprises no more
than a pair of stellar structure equations, Eqs. (55a) and
(55b), which can be used for the description of static and
spherically symmetric compact stars. In this section we
show that there is more to the formalism than meets the
eye: to a high precision it is a “complete” toolkit, in the
sense that (i) it can be reformulated in terms of a spher-
ically symmetric metric gµν and a perfect fluid stress-
energy tensor T µν , and (ii) these two structures are re-
lated through the covariant conservation law ∇νT

µν = 0
(where∇ν is the metric-compatible covariant derivative),
hence respecting the equivalence principle. Remarkably,
it also turns out that the metric and matter degrees of
freedom can be related as in GR, which implies that the
post-TOV formalism is equivalent to stellar structure in
GR with a gravity-modified EOS for matter and an effec-

tive spacetime geometry.
In order to establish the above statements we begin

with the following general result. Assume the static
spherically symmetric metric

ds2 = gµνdx
µdxν

= −eν(r)dt2 +

(

1−
2M(r)

r

)−1

dr2 + r2dΩ2 (56)

and a perfect-fluid stress-energy tensor (with energy den-
sity E and pressure P)

T µν = (E + P)uµuν + Pgµν . (57)

For a static spherical fluid ball, the energy-momentum
conservation equation

∇νT
µν = 0 (58)

leads to

dP

dr
= −(E + P)Γt

rt = −
1

2
(E + P)

dν

dr
. (59)

As long as we consider theories respecting (58) with a
metric-compatible covariant derivative, this result is in-
dependent of the gravitational field equations.
For the mass function M(r) we can always write a

relation of the form

dM

dr
= 4πr2E [1 + Z(r)] , (60)

where Z(r) is a theory-dependent function. Einstein’s
theory is recovered by setting Z = 0, as required by the
field equations of GR.
To establish the properties described at the beginning

of this section we will show that we can successfully map
our post-TOV equations onto Eqs. (59) and (60) (with
Z = 0).
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The full post-TOV equations, Eqs. (55), can be written
in the form:

dp

dr
= −

(ǫ+ p)

r2
Γ(r)−

ρm

r2

[(

1 + Π +
p

ρ

)

P1 + P̃2

]

,

(61)

dm

dr
= 4πr2ǫ+ 4πr2ρ [M1 +M2 ] , (62)

where P1,P2 have been defined in Eqs. (2),

P̃2 ≡ P2 −

(

Π+
p

ρ

)

P1 (63)

is a 2PN-order term, and Γ(r) ≡ (m+4πr3p)/(1−2m/r).
Based on these expressions, we can define the effective

energy density

ǫeff ≡ ǫ+ ρ(M1 +M2), (64)

which implies

dm

dr
= 4πr2ǫeff . (65)

Using (64) in the pressure equation we have

dp

dr
= − [ǫeff + p− ρ(M1 +M2)]

Γ

r2

−
m

r2

[

(ǫ + p)P1 + (ǫeff + p)P̃2

]

, (66)

where we have used the fact that in any 2PN term we can
replace the factor ρ by ǫeff + p, at the cost of introducing
3PN terms. Using (64) once more in the last term, and
after some rearrangement, we obtain,

dp

dr
= −

(ǫeff + p)

r2

[

(1−M2)Γ +m(P1 + P̃2 −M1P1)
]

+
ρ

r2
M1Γ. (67)

Given that M1 ≪ 1, the last term can be safely omitted
and we are left with

dp

dr
≈ −

(ǫeff + p)

r2

[

(1−M2)Γ +m(P1 + P̃2 −M1P1)
]

(68)

≈ −
(ǫeff + p)

r2
[(1 −M2)Γ +mP2] , (69)

which is of the form (59). Note that in this and the follow-
ing expressions the small M1,P1 terms can be omitted.
The resulting mapping is:

P = p, M = m, E = ǫeff . (70)

It follows that the effective post-TOV metric is

gµν = diag[ eν(r), (1 − 2m(r)/r)−1, r2, r2 sin2 θ ], (71)

with

dν

dr
≈

2

r2

[

(1 −M2)Γ +m(P1 + P̃2 −M1P1)
]

(72)

≈
2

r2
[ (1−M2)Γ +mP2 ] . (73)

From this result we can see that r represents the circum-
ferential radius of the r = constant spheres and therefore
the post-TOV radius R (where p(R) = 0) coincides with
the circumferential radius of the star.
Finally, the effective post-TOV stress-energy tensor is

T µν = (ǫeff + p)uµuν + pgµν , (74)

and it is covariantly conserved with respect to the metric
(71).
These expressions clearly demonstrate that our post-

TOV formalism is completely equivalent to GR with an
effective EOS:

p(ǫ) → p(ǫeff), (75)

ǫeff ≈ ǫ+ ρM2. (76)

As is evident from this last expression, ǫeff represents a
gravity-shifted parameter with respect to the physical en-
ergy density ǫ. This result highlights a key characteristic
of compact relativistic stars when studied in the context
of alternative theories of gravity, namely, the intrinsic de-
generacy between the physics of the matter and gravity
sectors.
Whether the above effective description (and in par-

ticular its effective geometry part) can give observables
that have a correspondence to observables of an underly-
ing theory or not depends on the nature of that theory.
As long as the underlying theory admits a PN expansion,
the physical description that arises from the effective for-
malism should match that of the physical theory. This
non-trivial issue will be further discussed elsewhere [60].

IV. NUMERICAL RESULTS

In this section we provide a more detailed discussion
of our numerical techniques and results, focusing on the
mass-radius curves produced by the integration of the
post-TOV equations (55) [or equivalently Eqs. (1)].
First, let us briefly summarize the integration proce-

dure we have followed in this paper. We have carried
out two kinds of computations: (i) “background” models
– these involve the integration of the general relativistic
TOV equations – with the purpose of studying the ra-
dial profiles of the post-TOV correction terms, (ii) the
integration of the full post-TOV equations, typically in-
cluding the representative term of a single 2PN family.
The post-TOV structure equations (1a) and (1b) are

integrated simultaneously starting at the origin r = 0, for
fixed values of the coefficients πi, µi, and for a range of
central energy density values. The chosen central energy
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FIG. 6. Self-similarity in mass-radius curves - I. Numerical integrations show that 2PN terms belonging to the same family
result in self-similar deviations from GR in the mass-radius relation. This figure illustrates this remarkable property for pressure
terms (top row) and mass terms (bottom row) belonging to families F2, F3 and F4 (from left to right). In each panel, the
solid line corresponds to GR; the long-dashed (online: blue) line to a positive-sign correction due to the chosen term in each
family; the short-dashed (online: red) line to a negative-sign correction due to the chosen term in each family. The various
symbols show that nearly identical corrections can be produced using different terms belonging to the same family, as long as
we appropriately rescale their post-TOV coefficients.
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FIG. 7. Self-similarity in mass-radius curves - II. Same as in
Fig. 6, but for the F5 family, which only admits post-TOV
corrections with µ5 < 0 (see text).

density ǫc fixes the central pressure pc = p(ǫc), the cen-
tral mass density ρc = mbnb(ǫc) and the central internal
energy Πc = (ǫc − ρc)/ρc, where mb = 1.66× 10−24 g is
the baryonic mass and nb is the baryon number density.
In general, p(ǫ) and nb(ǫ) are computed using tabulated

EOS data. Once the initial conditions have been speci-
fied, Eqs. (1a) and (1b) are integrated outward up to the
stellar radius R, where p(R) = 0. The gravitational mass
is obtained as M = m(R).

The integration procedure for realistic EOS back-
ground models is virtually the same as the one just de-
scribed. We have also employed a number of polytropic
background models; for these the integration procedure
is slightly different (see Appendix B for details), and it
is based on the simpler Lane-Emden formulation, where
the pressure is replaced by the density ρ in the structure
equations and the stellar model is parameterized by the
ratio λ = pc/ǫc rather than ǫc alone (this formulation is
of course equivalent to the one using tabulated EOSs).
The added advantage of this approach is its scale invari-
ance with respect to the polytropic constant K. This
means that K can be freely adjusted to generate a model
with (say) a specific massM . This scaling procedure also
fixes the radius R.

The main installment of our mass-radius results has al-
ready been presented in Fig. 2 of the executive summary
(Section IA). As discussed there, the various post-TOV
correction terms, representing the five 2PN families of
Section III B, cause qualitatively different modifications
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FIG. 8. Fractional deviations induced by the post-TOV parameters on the stellar mass and radius. Here we illustrate the
fractional changes caused by the post-TOV parameters in neutron star masses and radii. For a fixed central energy density
and EOS APR, we plot the relative deviations from GR in mass and radius that result from varying the post-TOV parameters
within the range indicated in the legends. Top row: ǫc/c

2 = 8.61× 1014 g/cm3, MGR = 1.51 M⊙ and RGR = 12.3 km. Bottom
row: ǫc/c

2 = 1.20 × 1015 g/cm3, MGR = 2.04M⊙ and RGR = 11.9 km. Left panels: Effect of the post-TOV terms that enter
in the pressure equation. Right panels: Effect of the post-TOV terms that enter in the mass equation. The circles represent
contours of fixed relative deviation from GR.

to the mass-radius curves.
As a rule of thumb, the corrections to the pressure

equation lead to markedly weaker mass-radius modifica-
tions than the corrections to the mass equation, for the
same magnitude of πi and µi. The effective-metric for-
mulation of the post-TOV formalism suggests a simple
qualitative explanation of this observation. The mass

corrections M2 change both the effective EOS and the
strength of gravity, as measured by ν(r), while the pres-
sure corrections P2 are only associated with a change in
the strength of gravity [cf. Eqs. (73) and (76)], and it
is well known that changes in the EOS outweigh gravity
modifications in terms of their effect on the mass-radius
relation.
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FIG. 9. Directions of the post-TOV induced deviations. This
schematic diagram shows which sign of individual post-TOV
parameters produces smaller or larger masses/radii with re-
spect to GR, cf. Fig. 8.

A notable exception is the single-member family F1,
for which the pressure correction term dominates over
its mass counterpart. In fact, the F1 pressure term leads
to the largest mass-radius changes, as evidenced by the
π1 values used in Fig. 2. It is not too difficult to ex-
plain why this happens: near the stellar surface, where all
three fluid parameters p, ρ,Π are close to zero, the F1 cor-
rection terms remain finite and dominate over all other
terms in the post-TOV equations (this can be clearly seen
in Fig. 5), thus taking control of the pressure and mass
derivatives.

Another noteworthy point is that, when considering
individual post-TOV terms, it is not always possible to
integrate the equations for both positive and negative
values of the corresponding coefficient. This is the case
for family F5 in Fig. 2, where the integration fails for
µ5 < 0. We have found that this is caused by an unphys-
ical negative slope dm/dr near the origin.

The remarkable self-similarity in the radial profiles of
2PN terms belonging to the same family has been il-
lustrated in Fig. 3 (see Section III B). With hindsight,
this property should not come as a total surprise, given
the approximate correlations among the fluid variables:
m ∼ ρr3, Π ∼ p/ρ.

The emergence of the same self-similarity in the mass-
radius curves is something far less anticipated and even
more striking. This property, which has allowed us to
formulate a practical and versatile set of post-TOV equa-
tions, is illustrated in Figs. 6 and 7, where we show mass-
radius results for each 2PN family, considering both the
pressure and the mass equation and for the same APR
EOS stellar model as in Fig. 2. Each panel is devoted to
a particular family, and it shows the mass-radius curves
resulting from the integration of the post-TOV equations

when various terms from Table I are included as correc-
tions (notice that F1 is missing from these plots for the
obvious reason that it consists of only one post-TOV cor-
rection).

In all cases considered, the terms of the same family
are found to cause nearly identical mass-radius changes

by a suitable rescaling of the relevant coefficient πi or µi.
This behavior is most striking for family F4, where dif-
ferent post-TOV corrections in the mass equations lead
to the same characteristic back-bending behavior in the
mass-radius curve. The only notable exception to this re-
markable scaling property is the (0, 0, 1) member of the
F3 family, proportional to Πm/r, which can be rescaled
to agree with other members of the family at high den-
sities but partially fails to capture the behavior of the
mass-radius curve at low densities. This partial symme-
try breaking can be understood by looking at the leftmost
panel on the second row of Fig. 3: the behavior of this
term near the surface is not as smooth as for other mem-
bers of this family. In our opinion this does not warrant
extensions of the formalism to include another family,
but this is definitely a possibility that could be consid-
ered in the future, given the approximate nature of the
self-similarity argument.

Another important aspect of the post-TOV results is
their “directionality” in the mass-radius plane, in the
sense that a given correction term could affect more
the mass than the radius, or vice versa. This kind
of information cannot be easily extracted from a tra-
ditional mass-radius plot such as Fig. 2, but becomes
very visible if we display the same results in terms of the
fractional changes δM/MGR ≡ (M − MGR)/MGR and
δR/RGR ≡ (R−RGR)/RGR from the corresponding GR
values.

“Dart-board” plots of these fractional changes are
shown in Fig. 8. The aforementioned directionality of the
various post-TOV corrections is clearly visible in this fig-
ure. Individual correction terms are seen to drive nearly
linear departures (at least up to a ∼ 10% level) from the
center of the “board.” Moreover, certain terms are mu-
tually (nearly) orthogonal, although not aligned with the
mass or radius axis. In some cases this happens between
the pressure and mass terms of the same family, e.g. fam-
ily F2. In general, the departures from the GR model are
more isotropically scattered when caused by the correc-
tions M2 in the dm/dr equation, whereas the pressure
corrections P2 are clearly more concentrated near the di-
rection of the mass axis. This behavior fits nicely with
the effective-EOS interpretation of how M2 and P2 cor-
rections change the mass-radius diagram. As expected,
M2 corrections affect the stiffness of the effective EOS
with significant effects on the radius, while P2 corrections
change the strength of gravity, and this mostly affects
how much mass a particular model can support.

These trends remain unchanged as the central energy
density (and the stellar mass) increases (see bottom pan-
els of Fig. 8). The pressure correction term associated
with π1 (family F1) provides the exception to the rule:
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FIG. 10. Deviations induced by the post-TOV parameters on the stellar compactness. Here we consider the influence of the
post-TOV parameters on the compactness C = M/R of neutron stars. Deviations from GR are calculated assuming the same
APR EOS models as in the top and bottom rows of Fig. 8. Left panels: Effect of the post-TOV terms appearing in the pressure
equation. Right panels: Effect of the post-TOV terms appearing in the mass equation.

a sequence of π1 > 0 values leads to a non-linear tra-
jectory, with initially just the radius decreasing and then
followed by a comparable fractional decrease in the mass.
Negative values of π1 are not shown because they lead to
unphysical models where in the outer low-density layers
of the star dp/dr becomes nearly zero but never negative,
thus preventing us from finding the exact location of the
surface (as we have pointed out earlier in this section,
this behavior is related to the non-zero value of the F1

term at the surface).

Fig. 9 provides a schematic chart of the correlation be-
tween the sign of the πi, µi coefficients and the sign of
the associated variations δM , δR. Interestingly, the πi

terms are limited to just two of the four possible quad-
rants (note the anti-correlation between the signs of π1

and the other πi). This translates to variations that si-
multaneously make the star bigger (smaller) and heavier
(lighter), i.e. δR > 0, δM > 0 (or δR < 0, δM < 0).
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In contrast, the µi terms occupy all four quadrants, with
the F3, F4, F5 families leading to δR δM > 0 varia-
tions, and F1, F2 giving rise to the opposite arrangement,
δR δM < 0.
The linear patterns of Fig. 8 suggest that the mass and

radius variations, for a given σi = {πi 6= π1, µi}, obey the
empirical relations,

δM

MGR
≈ σiKM ,

δR

RGR
≈ σiKR, (77)

where the structure parameters KM , KR are functions
of the EOS and of ǫc, but independent of σi. Given
the nonlinear character of the post-TOV equations, this
conclusion is clearly nontrivial. We can recast this re-
sult in terms of the variation of the stellar compactness
C ≡ M/R,

δC

CGR
≈ σi (KM −KR) . (78)

This almost linear δC(σi) dependence
4 can indeed be seen

in the numerical results shown in Fig. 10, where we con-
sider the same stellar models as in Fig. 8.
The results presented in this section provide a wealth of

information on the character of the post-TOV corrections
on stellar structure. It is likely that a more systematic
study of the self-similar F-families will reveal additional
layers of information and provide clues as to why the 2PN
terms change the bulk properties of the star the way they
do, as a function of the central density. Such a study is
beyond the scope of this paper but provides an attractive
subject for future work.

V. CONCLUSIONS AND OUTLOOK

This paper is a first step towards establishing a
parametrized perturbative framework that should, at
least in principle, encompass all modifications to the bulk
properties of neutron stars induced by modified theo-
ries of gravity. As in the original formulation of the
PPN formalism, along the way we were forced to make
some reasonable simplifying assumptions in order to re-
duce the complexity (and increase the practicality) of our
parametrization. These reasonable assumptions may well
fail to match the well-known creativity of theorists, and

4 It is interesting to note that the qualitative effect of the post-
TOV terms in the pressure equation can be understood by
analogy with the case of anisotropic stars in GR. The post-
TOV pressure equation takes the form dp/dr = (dp/dr)

GR
−

ρmπifi(r)/r2, with fi(r) > 0, whereas anisotropic stars obey
dpr/dr = (dpr/dr)GR

− 2σ/r, with σ = pr − pq being the dif-
ference between the radial and tangential pressure. These two
expressions can be matched if 2rσ = ρmπifi(r). The compact-
ness of anisotropic stars is known to decrease (increase) when σ
increases (decreases) [61]. This conclusion is in good qualitative
agreement with the results shown in the left panel of Fig. 10.

it will be interesting to see how the formalism can be
extended and improved.

In a follow-up paper we will use our basic post-TOV
equations to recover stellar structure calculations in some
popular theories of gravity, such as those shown in
Fig. 1. It is particularly interesting to compare the for-
malism against theories that violate some of our basic
assumptions, such as scalar-tensor gravity with sponta-
neous scalarization (which introduces intrinsically non-
perturbative effects [32]) or Eddington-inspired-Born-
Infeld gravity, with its lack of a Newtonian limit and
its unorthodox dependence on the stress-energy ten-
sor [27, 62].

We have already obtained some interesting results in
this context: for example, our conclusion that the 2PN
post-TOV equations are equivalent to an effective mod-
ified perfect-fluid EOS (see Section III C) has an inter-
esting parallel with the results by Delsate et al. [62],
who reached a similar conclusion for Eddington-inspired-
Born-Infeld gravity. We are currently extending the “ef-
fective metric” formalism developed in this paper to the
exterior spacetime of compact stars [60]. This is neces-
sary to compute physical observables such as the gravi-
tational redshift of surface atomic lines, the touchdown
luminosity of a radius expansion burst and the appar-
ent surface area of neutron stars [63], and it is possible
that the combination of multiple observables may lift the
EOS/gravity degeneracy.

There are several interesting extensions of our work
that should be addressed in the future. The most obvi-
ous one is to assess whether post-TOV parameters can
indeed reproduce the mass-radius curve in various classes
of alternative theories, and whether the post-TOV pa-
rameters encode specific information on the physical pa-
rameters underlying specific theories. This study will
hopefully lead to a better understanding of the general-
ity of the EOS/gravity-theory degeneracy.

From a data analysis point of view, it is important
to understand whether physical measurements of masses
and radii (or perhaps more realistically, measurements of
masses and surface redshifts/stellar compactnesses) can
lead to constraints on the post-TOV parameters under
specific assumptions on the high-density EOS. The an-
swer to this question obviously depends on the relative
magnitude of modified gravity effects and EOS uncertain-
ties. It will be interesting to quantify what uncertainties
in the EOS are acceptable if we want to experimentally
constrain post-TOV parameters at meaningful levels.

Other obvious extensions are (i) the generalization of
the post-TOV framework to slowly and possibly fast ro-
tating relativistic stars, and (ii) stability investigations
within the post-TOV framework. We hope that our
work will stimulate further activity in this field. Sta-
bility studies in a post-TOV context may reveal that
certain generic features of modified gravity lead to in-
stabilities even for nonrotating stars, possibly excluding
whole classes of modified gravity theories.

Last but not least, we would like to point out that our
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post-TOV toolkit is not (nor was it designed to be) a self-
consistent PN expansion, but rather a phenomenological
parametrization of the leading-order (unconstrained) de-
viations from GR. A systematic and self-consistent PPN
expansion extending the PN stellar structure works cited
in the introduction [40–43] is an interesting but quite dis-
tinct area of investigation that should also be pursued in
the future.
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Appendix A: Dimensional analysis of

post-Newtonian terms

In this appendix we develop an algorithm for con-
structing PN terms using dimensional analysis tech-
niques. Barring PN terms involving the three poten-
tials U , E, Ω, the available parameters for generating
PN terms are {p, ρ,m, r,Π}. From these quantities plus
the gravitational constant G and the speed of light c we
can build the dimensionless combination5:

Λ = pαρβmγrδΠθGκcλ, (A1)

for a suitable choice of integers α, β, γ, δ, κ, λ (these are
not to be confused with the PPN parameters of Sec-
tion II). Since Π is already dimensionless, there is no a
priori dimensional restriction on θ (apart from one com-
ing from the PN order of Λ) and therefore that factor
can be omitted in the dimensional analysis. Using the
scalings

p ∼ G
mρ

r
, m ∼ ρr3, (A2)

we obtain the following form for Λ in terms of mass,
length and time dimensions:

Λ ∼ [M ]α+β+γ−κ[L]−α+δ−3β+λ+3κ[T ]−2α−λ−2κ. (A3)

5 Note that this combination is oblivious to the presence of dimen-
sional coupling constants that might appear in modified theories
of gravity.

Since Λ is required to be dimensionless, we have the three
algebraic relations:

λ = −2(α+ κ), κ = α+ β + γ, (A4)

and

−α+ δ − 3β + λ+ 3κ = 0. (A5)

The first two relations simply express λ and κ in terms
of the other parameters. Using them in (A5) we obtain

γ + δ = 2(α+ β), (A6)

which represents the true dimensional degree of freedom.
It is straightforward (if tedious) to verify that all PN
terms appearing in the PPN equations of Section II are
consistent with (A6).
All α < 0 terms are divergent at the surface and need

not be considered. As we shall shortly see, all terms
with α ≥ 4 are divergent at r = 0 in both structure
equations, and therefore should be discarded. The α =
3 terms are singular in the dp/dr equation and can be
discarded by the same argument; α = 3 terms are regular
in the dm/dr equation, but they are always dominated
in magnitude by the α < 3 terms, and therefore will
not be presented in detail here. Therefore our strategy
hereafter is to focus on the particular cases α = 0 (no
pressure dependence) and α = 1, 2 (linear and quadratic
scaling with the pressure).

1. Terms with α = 0.

Starting with the α = 0 case we have

γ + δ = 2β. (A7)

The resulting form of Λ in geometric units is

Λ ∼ (r2ρ)β
(m

r

)γ

. (A8)

Formally, this combination is of order (m/r)β+γ . There-
fore, we can generate N -PN terms if β + γ = N . These
are of the form

ΛN(β) ∼ (r2ρ)β
(m

r

)N−β

, (A9)

with β = 0,±1,±2, .... For instance, the first few 1PN
and 2PN terms of this series are (we start from β = −1
for reasons explained below):

Λ1(−1) ∼
m2

r4ρ
, Λ1(0) ∼

m

r
, Λ1(1) ∼ r2ρ, (A10)

Λ2(−1) ∼
m3

r5ρ
, Λ2(0) ∼

m2

r2
, Λ2(1) ∼ rρm. (A11)
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2. Terms with α = 1.

The α = 1 group of terms can be obtained with the
same procedure. We have

γ + δ = 2(1 + β), (A12)

and this leads to terms of the form

Λ ∼ r2p(r2ρ)β
(m

r

)γ

. (A13)

Since r2p is a 2PN term, the resulting N -PN combination
should take the form:

ΛN (β) ∼ r2p(r2ρ)β
(m

r

)N−2−β

. (A14)

The first few 1PN and 2PN terms generated from this
expression are:

Λ1(−1) ∼
p

ρ
, Λ1(0) ∼

r3p

m
, Λ1(1) ∼

r6ρp

m2
, (A15)

Λ2(−1) ∼
pm

ρr
, Λ2(0) ∼ r2p, Λ2(1) ∼

r5ρp

m
. (A16)

3. Terms with α = 2.

Finally, we consider the α = 2 terms. The correspond-
ing ΛN combination is,

ΛN (β) = (r2p)2(r2ρ)β
(m

r

)N−4−β

, (A17)

and from this we have:

Λ1(−1) ∼
r4p2

m2ρ
, Λ1(0) ∼

r7p2

m3
, (A18)

Λ2(−1) ∼
r3p2

ρm
, Λ2(0) ∼

r6p2

m2
. (A19)

4. Generic N-PN order terms and constraints.

It is now not too difficult to see that aN -PN order term
with an arbitrary pα scaling and with Π re-introduced is
given by the universal formula,

ΛN(α, β, θ) ∼ Πθ(r2p)α(r2ρ)β
(m

r

)N−2α−β−θ

. (A20)

As discussed in Section III B, different threads of reason-
ing lead to the constraint β ≥ −1 The first one has to
do with avoiding a divergence at the stellar surface (this
already has allowed us to filter out all α < 0 terms). An
inspection of the two stellar structure equations reveals
that terms with α = θ = 0 should scale as

ρΛN (0, β, 0) ∼ ρ1+β , (A21)

in the vicinity of the surface, and therefore we ought to
take β ≥ −1 in order to avoid a surface singularity. This
argument still allows for β < −1 values in the ΛN terms
with α, θ > 0, since these terms have a smoother profile
as a result of the vanishing of p and Π at the surface.
The second thread is no more than a heuristic ar-

gument and has to do with the expectation that for a
broad family of gravity theories the solution for the met-
ric (and its derivatives) should scale as ∼ (ǫ + τp)n =
ρn(1 + Π + τp/ρ)n with the fluid parameters (where τ
and n are O(1) numbers). From this it follows that neg-
ative powers of ρ will come in the form of dimensionless
PN terms ∼ ρn−1(p/ρ)k, where k = n, n − 1, . . . (note
that a factor ρ has been absorbed by the Newtonian pref-
actor in the structure equations). As a consequence, ρ−1

is the only possible negative power in a PN expansion.
Obviously, this argument automatically takes care of the
regularity of any ΛN(α, β, θ) term at the surface.
The exclusion of all α ≥ 4 terms comes about as a

consequence of regularity at the stellar center. Near
the origin (where p, ρ,Π take finite non-zero values) a
ΛN(α, β, θ) term behaves as

ΛN (r → 0) ∼ r2(N−α−θ). (A22)

The corresponding terms in the stellar structure equa-
tions will behave as

dp

dr
∼

ρm

r2
ΛN ∼ r2(N−α−θ)+1, (A23)

dm

dr
∼ r2ρΛN ∼ r2(N−α−θ+1). (A24)

and therefore regularity at the center dictates the follow-
ing limits for each equation:

dp

dr
: 0 ≤ α ≤ N − θ, (A25)

dm

dr
: 0 ≤ α ≤ N + 1− θ. (A26)

We can also see that these conditions entail the following
limits for θ:

dp

dr
: 0 ≤ θ ≤ N,

dm

dr
: 0 ≤ θ ≤ N + 1. (A27)

For the particular case of 2PN order terms we then have:

dp

dr
: 0 ≤ θ ≤ 2, 0 ≤ α ≤ 2− θ, (A28)

dm

dr
: 0 ≤ θ ≤ 3, 0 ≤ α ≤ 3− θ, (A29)

which shows that all α ≥ 4 terms are to be excluded and
that α = 3 terms can only appear in the mass equation.

Appendix B: The Newtonian and relativistic

Lane-Emden equations

In this appendix we review the nonrelativistic and rel-
ativistic Lane-Emden equations. The former equation is
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classic textbook material (see e.g. [64]) and therefore is
just sketched here. The somewhat less familiar relativis-
tic extension was developed by Tooper [65, 66] and is
discussed in a bit more detail below. Our definition for
the polytropic EOS, i.e. p = Kρ1+1/n, is the same as
the one adopted in [66] but is different to the one used in
Tooper’s earlier paper [65], i.e. p = Kǫ1+1/n. This sub-
tle difference, combined with the choice between pc/ρc
or pc/ǫc (the “c” index refers to the stellar center) for
the scale of the system, leads to slightly different Lane-
Emden equations.

1. The Newtonian Lane-Emden equation

In Newtonian gravity, one can express the hydrostatic
equilibrium equation for spherical non-rotating stars in
terms of dimensionless parameters for the pressure, the
density and the radial coordinate. If the EOS is poly-
tropic (i.e., according to our definition, p = Kρ1+1/n)
the equations governing the dimensionless quantities are
scale-invariant, depending only on the polytropic index
n. By writing the density and the pressure as

θn ≡
ρ

ρc
, p = Kρ1+1/n

c θn+1, (B1)

and introducing the dimensionless radial coordinate

r = αξ, α ≡

[
(n+ 1)K

4πG
ρ−1+1/n
c

]1/2

, (B2)

the Newtonian stellar structure equations

dp

dr
= −

GmN

r2
ρ, (B3)

dmN

dr
= 4πr2ρ, (B4)

lead to

1

ξ2
d

dξ

(

ξ2
dθ

dξ

)

= −θn. (B5)

This is the famous Lane-Emden equation, and its scale-
invariant solutions describe all possible fluid configura-
tions in terms of the single parameter n.

2. The relativistic Lane-Emden equations

Generalizing the Lane-Emden formalism to GR is a
straightforward task, but this comes at the price of los-
ing the scale-invariance property of the Newtonian treat-
ment. In relativity we can define the polytropic EOS in
the same way as before, where ρ is the baryonic rest mass
density. The polytropic exponent is defined as

Γ = 1 +
1

n
=

ρ

p

dp

dρ
=

ǫ+ p

p

dp

dǫ
. (B6)

Then the energy density ǫ and the internal energy Π are
given by

ǫ = ρ+ np, (B7)

which implies

Π = n
p

ρ
. (B8)

This observation was used in the argument leading to
Eq. (53).
We can now introduce the relativistic version of the

Lane-Emden equations. In analogy with the Newtonian

case we define ρ = ρcθ
n, r = aξ, and p = Kρ

1+1/n
c θn+1.

The ratio between the central pressure and the central
energy density

λ ≡
pc
ǫc

=
Kρ

1+1/n
c

ρc + nKρ
1+1/n
c

, (B9)

is a convenient measure of the importance of relativistic
effects in the system. Note that our definition deviates
from Tooper’s [66], who prefers to use the ratio pc/ρc.
The energy density is then

ǫ = ρcθ
n + nKρ1+1/n

c θn+1

= ǫc [1 + nλ(θ − 1)] θn. (B10)

We now want to derive a dimensionless form of the
TOV equations (7). The definition of the mass function
mT implies

dmT

dξ
= 4πǫca

3[1 + nλ(θ − 1)]θnξ2. (B11)

In terms of the dimensionless mass

m̄ ≡
mT

a3ǫc
, (B12)

this becomes

dm̄

dξ
= 4π[1 + nλ(θ − 1)]θnξ2. (B13)

From the TOV equation for the pressure we similarly
obtain, after some manipulations,

dθ

dξ
= −

m̄

ξ2
(1− nλ)

[

1 + (n+ 1)
λ

1− nλ
θ

]

×

(

1 + λ
4πξ3θn+1

m̄

)[

1− 2(n+ 1)λ
m̄

ξ

]−1

. (B14)

In the present case the characteristic length scale is

a =
[

(n+ 1)Kρ−1+1/n
c (1− nλ)

2
]1/2

. (B15)

At this point we would like to define dimensionless
quantities that come from the relativistic Lane-Emden
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equations. The central baryonic rest-mass density is re-
lated to λ as [see Eq. (B9)]:

ρc = K−nℓn, ℓ ≡
λ

1− nλ
. (B16)

The factor K−n has units of mass density (or inverse
square length in geometrical units), therefore the dimen-
sionless rest-mass density is

ρ̄ ≡ ρKn = ℓnθn. (B17)

Similarly, the length scale a takes the form

a = Kn/2
√

(n+ 1)ℓ1−n (1− nλ) , (B18)

where Kn/2 has dimensions of length. The dimensionless
radius is defined as

r̄ ≡ rK−n/2 =
√

(n+ 1)ℓ1−n (1− nλ) ξ. (B19)

The remaining dimensionless parameters are

ǭ ≡ ǫKn =

(
ℓn

1− nλ

)

[1 + nλ(θ − 1)] θn, (B20)

µ̄ ≡ mTK
−n/2 (B21)

=
[√

(n+ 1)ℓ1−n (1− nλ)
]3

(
ℓn

1− nλ

)

m̄, (B22)

p̄ ≡ pKn = ℓn+1θn+1, (B23)

Π = n
p̄

ρ̄
= n ℓθ. (B24)

All of the above dimensionless profiles are functions of ξ,
n and λ. At variance with the Newtonian treatment, the
relativistic Lane-Emden formalism does not allow for a
simple algebraic mass-radius relation M(R). This is also
related to the fact that the system is not scale-invariant,
due to the presence of λ in the equations.

Appendix C: The PPN Potentials

The goal of this appendix is to study the behavior of
the potentials U , E and Ω appearing in the PPN stel-
lar structure equations (9), first derived by Ciufolini and
Ruffini [47]. By means of a mass function redefinition (see
Section II) these potentials can be eliminated at 1PN or-
der, but they could still appear at 2PN order and higher.
Given the 2PN precision of our calculations we can

write these potentials as:

U(r) = −

∫ r

0

dr′
mN

r′2
+ U(0), (C1a)

E(r) = 4π

∫ r

0

dr′r′2ρΠ, (C1b)

Ω(r) = −4π

∫ r

0

dr′ r′ρmN, (C1c)

−0.20

−0.15

−0.10

−0.05

0.00

U

U from (B3)
1.52[p/ρ−(p/ρ)c]
1.4760Π+2.765r3 p/mN+0.145

0.03

0.04

0.05

0.06

0.07

E
/m

N

E/mN from (B4)

0.2710(p/ρ) +0.0377

0.0 0.2 0.4 0.6 0.8 1.0
r/R

−0.15

−0.10

−0.05

0.00

Ω
/m

N

Ω/mN from (B5)

5.696(r3 p/mN)−0.1130

FIG. 11. Integral PN potentials and 1PN terms. The radial
profiles of the integral potentials U , E/mN and Ω/mN are well
fitted by linear functions of the non-integral potentials p/ρ
and r3p/mN. In all plots, the radial coordinate is normalized
to the stellar radius R.

where all right-hand side quantities are computed in
Newtonian theory. In Eqs. (C1), mN(r) denotes the New-
tonian mass function

mN(r) = 4π

∫ r

0

dr′ ρr′2 = 4πmb

∫ r

0

dr′ nbr
′2, (C2)

where nb is the baryon number density. The integral
quantities U , E and Ω represent the system’s gravita-
tional potential energy, internal energy, and gravitational
potential energy respectively [34]. They appear as dimen-
sionless PN terms in the form of reduced potentials: U ,
E/mN, Ω/mN [see Eqs. (9)].

The radial profiles of the three potentials inside the
star can be determined by first integrating the Newtonian
hydrostatic equilibrium equations, Eqs. (B3) and (B4), to
find mN and p as functions of r. Using realistic EOS data
tables for p(ρ) we can subsequently compute the internal
density per unit mass Π(p) and the mass density ρ(p) =
mbnb(p), and then numerically evaluate the potentials
inside the star by integration.

Some insight into the nature of these potentials can be
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obtained by rewriting Eqs. (C1) in the form

U =
mN

r
+ 4π

∫ R

r

dr′r′ρ, (C3a)

E

mN
= Π−

1

mN

∫ r

0

dr′ mN
dΠ

dr′
, (C3b)

Ω

mN
= −

mN

2r
−

1

2mN

∫ r

0

dr′
(mN

r′

)2

= 4π
r3p

mN
−

12π

mN

∫ r

0

dr′ r′2 p. (C3c)

Note that the integration constant for U has been fixed
by requiring U(R) = M/R at the stellar surface, while
those for E and Ω have been set to zero in order to have
regularity of E/mN and Ω/mN at r = 0. The values of
the potentials at the stellar center are:

U(0) = 4π

∫ R

0

dr rρ,
Ω

mN
(0) = 0,

E

mN
(0) = Πc.

(C4)
From Eqs. (C3) we can see that E/mN and Ω/mN are

(partially) expressed in terms of the non-integral 1PN
terms

mN

r
, Π,

r3p

mN
. (C5)

This suggests the possibility that the behavior of all
three potentials could be captured by linear combina-
tions of non-integral 1PN terms. If true, this would mean
that any 2PN term involving U,E/mN or Ω/mN is effec-
tively accounted for by the presence of the other terms
in the post-TOV formulae. For instance, this idea can
be demonstrated for U and for the special case of a poly-
tropic system. Starting from (C1a) and expressing mN

in terms of dp/dr, after an integration by parts and use
of (B6) we arrive at

U = (n+ 1)

(
p

ρ
−

pc
ρc

)

+ U(0). (C6)

We know that for a polytrope Π = np/ρ, which means
that we can also write

U =
(n+ 1)

n
(Π−Πc) + U(0). (C7)

For a polytropic model, therefore, U can be written ex-
actly as a linear function of p/ρ or Π.

We have verified that U , E/mN and Ω/mN can be
approximated by similar linear functions for the case of
realistic EOSs. As an illustration, in Fig. 11 we con-
sider a stellar model built using the APR EOS with cen-
tral mass density of 0.58× 1015 g/cm3, Newtonian mass
mN = 1.50M⊙ and radius R = 14.8 km. For this model
we plot the radial profiles of U (top panel), E/mN (mid-
dle panel) and Ω/mN (bottom panel). The figure shows
that the profiles of the three potentials can be accurately
reproduced by linear combinations of the 1PN terms in
Eq. (C5), and that U is reasonably well fit by a linear
function of p/ρ, as suggested by (C6). This latter fit
breaks down near the surface, but with a different com-
bination of 1PN terms (namely, Π and r3p/mN) one can
produce a near-perfect fit.

In conclusion, the addition of the integral potentials
U , E/mN and Ω/mN in the 2PN terms is unnecessary
because their behavior can be captured by linear combi-
nations of the non-integral PN terms which are already
included in the post-TOV equations (1).
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