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We study the binding of a small black hole to a positive-tension brane in the second Randall-
Sundrum scenario (RS2) with orbifold symmetry. We find that a small black hole on the brane has
substantial binding energy to the brane, and is stable against escaping into the bulk. This result
can be applied in other models with an orbifold-symmetric brane. We also find a novel static black
hole, which is completely localized off the brane and is unstable against translations transverse to
the brane. Our results are obtained analytically by applying a variational principle to black hole
initial data. This paper is the second in a series on asymptotically RS black holes.

PACS numbers: 04.50.Gh, 04.70.Bw

I. INTRODUCTION

There is ongoing interest in the Randall-Sundrum (RS)
models [1, 2], where our observed universe is a brane
surrounded by a higher-dimensional anti-de Sitter (AdS)
bulk. If the higher-dimensional Planck energy is of order
TeV, an exciting prediction in the RS1 model [1] is the
possible production of small black holes at TeV scale col-
lider energies [3], and LHC experiments [4, 5] continue to
test this hypothesis.
In such models, Standard Model particles are confined

to the brane, while gravity (described by spacetime cur-
vature) propagates in the bulk. A black hole is a purely
gravitational object, so a natural question is whether a
black hole on a brane could escape into the bulk. In the
RS models, a brane has orbifold symmetry: mirror points
across the brane are identified. Without orbifold symme-
try, a small black hole can escape [6], possibly pinching off
some of the brane [7]. Orbifold symmetry would appear
to forbid such pinching off, but the question of escape has
generally remained open; in this paper, we will give dif-
ferent arguments against escape than in [8]. For a large
black hole on the brane, AdS/CFT arguments suggest
that the black hole may classically evaporate by emitting
gravitational waves [9] or smaller black holes [10].
The RS1 model [1] has two branes of opposite ten-

sion, with our universe on the negative-tension brane. In
the RS2 model [2], our universe resides on the positive-
tension brane, with the negative-tension brane removed
to infinite distance. Perturbations of RS2 reproduce
Newtonian gravity at large distance on the brane, while
in RS1 this requires a mechanism to stabilize the inter-
brane distance [11]. In RS2, solutions for static black
holes on the brane have been found numerically, for both
small black holes [12, 13] and large black holes [14], com-
pared to the AdS curvature length. The only known an-
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alytic black hole solutions are the static and stationary
solutions [15, 16] in a lower-dimensional version of RS2.
In this paper, we examine the binding of small black

holes to a positive-tension brane with orbifold symme-
try in RS2. No exact solutions are known for these
black holes, and numerical methods have been essential
to study them. Here, we take a different approach using
our variational principle [17] for black holes in RS2:

Initially static initial data that extremizes the mass

is initial data for a static black hole, for variations
at fixed apparent horizon area A, AdS curvature

length ℓ, cosmological constant Λ, brane tension λ
and asymptotic warp factor ψ0 on the brane. (1)

Our approach is analytical. There has also been some nu-
merical work [18] using extrema in a detuned RS2 setup.
This paper is organized as follows. We derive a gen-

eral binding energy result in section II, and review the
RS models in section III. We formulate our initial data in
section IV, and solve the resulting boundary value prob-
lem in the following two different regimes. In section V,
for small black holes on or near the brane, our variational
principle reproduces the well known static braneworld
black hole, which we show is translationally stable and
has large binding energy to the brane. In section VI, for
small black holes farther from the brane, our variational
principle locates a new static black hole, which is transla-
tionally unstable. In section VII, we examine the energy
and length scales for which our results are valid, and the
related phenomenology. We conclude in section VIII.
We work primarily on the orbifold (one side of the

brane) in D = 5 spacetime dimensions. Spatial geome-
try has metric hab and covariant derivative Da. A spa-
tial boundary has metric σab, extrinsic curvature kab =
ha

cDcnb, and outward unit normal na. We often use ≃
for approximations at leading order, and often refer to
the black hole rest mass MA, defined by horizon area A
and area ωD−2 of the (D − 2)-dimensional unit sphere,

MA =
(D − 2)ωD−2

16πGD

(
A

ωD−2

)(D−3)/(D−2)

. (2)
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II. BINDING ENERGY: GENERAL RESULTS

Even if a brane has zero tension, it can still profoundly
affect physics in the ambient spacetime, if there is an orb-
ifold symmetry at the brane. Imposition of an orbifold
symmetry decimates the degrees of freedom, and thus
places great restrictions on the classical and quantum
dynamics of spacetime, and of fields on spacetime. The
case of interest in this paper is the Z2 orbifold symme-
try of a RS2 braneworld in spacetime dimension D = 5.
However, the issue is quite general, and also applies to
D > 5, as long as orbifold symmetries hold. In this sec-
tion, we give strong arguments that a small black hole
has a large gravitational binding energy to such a brane.

If an asymptotically RS black hole is sufficiently small
compared to the AdS curvature length ℓ, the values of
brane tension and bulk cosmological constant can be ne-
glected, since they are proportional to 1/ℓ and 1/ℓ2, re-
spectively (see section III below). By neglecting the ten-
sion and cosmological constant, we will derive below a
simple result for the binding energy EB of a black hole
to a tensionless brane with ZN orbifold symmetry in an
effectively asymptotically flat spacetime. Our derivation
will assume that mass is normalized with respect to an
observer on the brane. Our result (7) will give accurate
results for the asymptotically RS2 geometry in this pa-
per, and it can also be applied to an asymptotically RS1
geometry; we therefore regard (7) as a general result,
valid for the specific case of sufficiently small black holes
in the vicinity of the brane. In section VII, we will ob-
tain upper bounds for the mass M and black hole area
A, compared to the AdS length scale, for which the small
black hole approximation is valid.

Let V (the bulk spacetime) be a Riemannian manifold
with a submanifold W (the brane). Let ZN be a discrete
symmetry of V that leaves W fixed. All of physics is to
be invariant under ZN . Thus, all classical solutions are
symmetric under ZN , and all quantum states are invari-
ant under ZN . We can construct classical solutions of the
field equations in two ways: (a) on a manifold V contain-
ing N identical copies of the solution (before imposition
of the orbifold symmetry); or (b) on a manifold-with-
boundary or manifold-with-conical-singularity V/ZN (af-
ter imposition of the orbifold symmetry).

Global charges in V must be divided by N , when mea-
sured in the orbifolded spacetime V/ZN . This is clear in
the manifold-with-boundary view. In the orbifold view,
it follows because our representation of physics is N -fold
redundant. For instance, an electromagnetic charge Q in
V , away from W , must have N copies in all; but Gauss’s
law should give Q, not NQ, for the total charge. If the
charge lies on W , its N copies coincide; but we must re-
gard the total charge as Q, notNQ. Thus, in the orbifold
view, the rule is to calculate charges by flux laws on large
surfaces in V , but then divide by N ; this gives the same
answer as from a large ZN invariant surface in V/ZN .

As measured in V , a small nonrotating, uncharged,

black hole has mass M0 and area A0 related by (2),

A0 = cDM
(D−2)/(D−3)
0 , (3)

with cD a constant. To construct a braneworld black hole
centered on the brane, we apply a ZN symmetry, under
which the black hole is invariant, as viewed in V . As
measured in V/ZN , the black hole has massM1 =M0/N
and area A1 = A0/N .
To construct a black hole far from the brane, it must

appear in N copies, so as to be invariant under ZN . We
cannot construct a static solution for this situation, since
the black hole will be attracted by its image black holes
under ZN . However, we can construct initially static
initial data by the well known method of images [19, 20].
If the black hole is sufficiently far from the brane, the
solution in a neighborhood of the black hole will be close
to the solution for a single static black hole, so the black
hole has mass M2 and area A2 related by (2),

A2 = cDM
(D−2)/(D−3)
2 . (4)

A black hole on the brane has mass M1 =M0/N and

A1 =
A0

N
= cDM

(D−2)/(D−3)
1 N1/(D−3) . (5)

If the black hole could leave the brane in a reversible
process, the area would remain constant, A2 = A1. Thus,
for a reversible process,

M2 =M1N
1/(D−2) . (6)

If the process were irreversible, then A2 > A1, hence
M2 > M1N

1/(D−2). In either case, M2 > M1, so energy
would be required to drive the process. The minimum
binding energy EB of the black hole to the brane is thus

EB =M2 −M1 =
[
N1/(D−2) − 1

]
M1 . (7)

Note that EB is of orderM1, and hence substantial. One
can interpret this result in terms of an effective binding
force: if a black hole is off the brane, it experiences at-
tractive image forces from its copies in the orbifold view.
The results (6) and (7) will be borne out explicitly in the
initial data that we will construct in section V.

III. THE RANDALL-SUNDRUM MODELS

The Randall-Sundrum spacetimes [1, 2] are portions of
an AdS spacetime, with metric

ds2RS = ψ2
0

(
−dt2 + dρ2 + ρ2dω2

D−3 + dz2
)
. (8)

Here dω2
D−3 denotes the unit (D − 3)-sphere. The warp

factor is ψ0 = ℓ/(ℓ + z), where z is the extra dimension
and ℓ is the AdS curvature length, related to the bulk
cosmological constant Λ given below. The RS1 model [1]
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contains two branes, the surfaces z = 0 and z = zc. The
bulk cosmological constant Λ and brane tensions λi are

Λ = − (D − 1)(D − 2)

2ℓ2
, λ1 = −λ2 =

2(D − 2)

8πGDℓ
. (9)

The dimension z is compactified on an orbifold (S1/Z2)
and the branes have orbifold mirror symmetry: in the
covering space, symmetric points across a brane are iden-
tified. There is a discontinuity in the extrinsic curvature
kab across each brane given by the Israel condition [21].
Using orbifold symmetry, the Israel condition requires
the extrinsic curvature kab at each brane to satisfy

2kab =

(
8πGDλ

D − 2

)
σab . (10)

The RS2 spacetime is obtained from RS1 by remov-
ing negative-tension brane (now a regulator) to infinite
distance (zc → ∞) and the orbifold region has z ≥ 0.

IV. FORMULATION OF THE INITIAL DATA

Here we formulate the initial data for small initially
static black holes in RS2. As described in [22], this
amounts to solving the constraint R = 2Λ, where R
is the Ricci scalar of the spatial metric hab. The spa-
tial geometry can be visualized as a conventional embed-
ding diagram [19, 20] with two asymptotically RS2 re-
gions (instead of asymptotically flat regions), connected
by a bridge. The bridge’s minimal surface is the appar-
ent horizon, which is the best approximation to the event
horizon within the spatial geometry. If the black hole is
sufficiently far from the brane, we refer to the apparent
horizon as the throat. If the black hole is sufficiently
close to the brane, the apparent horizon is the outermost
extremal surface surrounding the throat. Figure 1 illus-
trates the setup in convenient coordinates.

FIG. 1. The brane and black hole throat. The brane (at left)
is the plane z = 0. The black hole throat (the circle) has
radius r = a in coordinates (r, θ) centered at z = z1.

We use a conformally flat metric,

ds2 = ψ4/(D−3)dx2 , x = (~ρ, z) . (11)

Here x = (~ρ, z) are Cartesian coordinates, with Laplacian
∇2. The constraint is then

∇2ψ =
(D − 1)(D − 3)

4ℓ2
ψ(D+1)/(D−3) . (12)

This is invariant under inversion J through a sphere of
radius a and center C. J acts on x and functions f as

Jx = C+
a2

|x−C|2 (x−C) , (13a)

J [f ](x) =
aD−3

|x−C|D−3
f (Jx) . (13b)

Note that J2 is the identity, and

d(Jx)2 =
a4

|x−C|4 dx
2 , (14a)

∇2J [f ] =
a4

|x−C|4 J
[
∇2f

]
. (14b)

From (14b), if ψ is a solution of (12), then so is J [ψ]. If
the inversion is an isometry of the metric (11), then

ds2 = [ψ(Jx)]4/(D−3)d(Jx)2 . (15)

By (14a), this requires J [ψ] = ψ, which we will impose
across the throat. In the covering space, we also impose
orbifold reflection isometry about the brane. Since the
conformal isometries of flat space are limited to reflec-
tions and inversions, we take the brane as the coordinate
plane z = 0 and the throat as a coordinate sphere of ra-
dius a and center C = (~0, z1) in Cartesian coordinates
(~ρ, z). For cylindrical coordinates (ρ, z, ϕi) and spherical
coordinates (r, θ, ϕi) centered at C,

|~ρ| = ρ = r sin θ , z = z1 + r cos θ . (16)

In the spherical coordinates (r, θ, ϕi), the inversion isom-
etry condition ψ = J [ψ] is

ψ(r, θ, ϕi) =
(a
r

)D−3

ψ(r′, θ, ϕi) , r′ =
a2

r
. (17)

Our two isometries are then

J [ψ] = ψ , ψ(~ρ,−z) = ψ(~ρ, z) . (18)

The boundary conditions are, with q = (D− 1)/(D− 3),

[2ℓ∂zψ + (D − 3)ψq]
∣∣∣
z=0

= 0 (19a)

[2r∂rψ + (D − 3)ψ]
∣∣∣
r=a

= 0 (19b)

ψ −→
|x|→∞

ψ0 . (19c)

The result (19a) follows from the Israel condition (10),
and (19b) follows from differentiating (17).
Thus, to construct an initially static geometry for a

small black hole (a ≪ ℓ), we must solve the boundary
value problem consisting of (12), (18), and (19). We will
solve this outside of the throat. Inversion could then be
used to extend the solution inside the throat, if desired.
Although (12) and (19a) are nonlinear, this system

should be solvable, since ψ should interpolate between
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two known solutions: far from the apparent horizon, ψ
approaches the RS solution (8), while near the appar-
ent horizon, the AdS curvature has little effect and ψ
approaches the D-dimensional Schwarzschild solution.
We will solve the above boundary value problem in the

next two sections, in two different regimes: in section V,
the black hole is on or near the brane, and in section VI,
the black hole is farther from the brane.

V. BLACK HOLES NEAR THE BRANE

Here we solve the boundary value problem of section
IV, for small black holes (a≪ ℓ) on or near the brane. We
obtain the solution using a linear approximation and gen-
eralizing Misner’s method of images [19, 20] to higher di-
mensions. We then compute the relevant physical quanti-
ties. Lastly, we apply our variational principle (1). From
this, we find a static black hole on the brane, and we
determine its stability and binding energy.

A. Solution from method of images

The boundary value problem consists of (12), (18), and
(19). For a small black hole sufficiently close to the brane
(|x| ≪ ℓ), the brane tension and cosmological constant
can be neglected, so we approximate ℓ → ∞. This re-
duces (12) and (19) to an effective linear problem in an
asymptotically flat space,

∇2ψ = 0 , ∂zψ
∣∣∣
z=0

= 0 , ψ −→
|x|→∞

1 . (20)

We implement the isometries (18) by using two symmet-
ric throats (j = 1, 2) on either side of the brane (z = 0)
and requiring inversion isometry across each throat,

Jj [ψ] = ψ , C1 = −C2 = (~0, z1) . (21)

To construct the metric outside the throats, we now gen-
eralize Misner’s method of images [19, 20] to higher di-
mensions D. The procedure is illustrated in Fig. 2.

FIG. 2. The method of images. The black hole throat (right)
and its orbifold mirror copy (left) are equidistant from the
brane (z = 0). The throat coordinate radius is a = c cschµ0.
Image points at ±zn and coordinates (R, Θ) are also shown.

From (13b), we first note that Jj [1] is a pole at Cj of
strength aD−3, and the action of Jj on a pole (at y of

strength q) is a pole at Jjy of strength

q′ = q
aD−3

|y −Cj|D−3
. (22)

We solve (20)–(21) by an infinite series ψ = S[1], where

S = 1 +

∞∑

n=1

[
(J1J2J1 · · · Jin) + (J2J1J2 · · ·Ji′

n

)
]
. (23)

We can easily verify that Jj [S] = S, which guarantees
that ψ satisfies the inversion isometry in (21). Since each
term in parentheses yields a pole,

ψ = 1 +

∞∑

n=1

qn

(
1

|x− xn|D−3
+

1

|x+ xn|D−3

)
, (24)

where the poles at ±xn = (~0,±zn) lie inside the throats,
and x1 = C1. By reflection symmetry, poles at ±xn have
equal coefficients and ∂zψ = 0 at the brane. Since xn =
J1(−xn−1) we have from (13a) and (22), respectively,

zn = z1 −
a2

z1 + zn−1
,

qn
qn−1

=

(
a

z1 + zn−1

)D−3

,

(25)
with solutions (easily proved by induction)

zn = c cothnµ0 , qn = (c cschnµ0)
D−3 . (26)

Here a = c cschµ0, where µ0 is a dimensionless measure
of the throat-brane separation, and c is a scale parameter.
As in [20], bispherical coordinates (µ, η) are defined by

tanhµ =
2cz

ρ2 + z2 + c2
, tan η =

2cρ

ρ2 + z2 − c2
. (27)

In these coordinates, the throats are the surfaces µ =
±µ0, and the brane is the surface µ = 0. Also, the line
joining the foci (~ρ, z) = (~0,±c) is η = π. In bispherical
coordinates, the metric is

ds2 = Φ4/(D−3)c2
(
dµ2 + dη2 + sin2 η dω2

D−3

)
, (28)

where, with ν = (D − 3)/2,

Φ =

∞∑

n=−∞

[cosh(µ+ 2nµ0)− cos η]−ν , (29)

This can be expanded in Gegenbauer polynomials Cν
j ,

Φ =
∞∑

n=0

∞∑

j=0

2(D−1)/2

eµ(2n+1)(j+ν)
Cν

j (cos η) . (30)

Another useful coordinate system is provided by spherical
coordinates centered at x = 0,

ds2 = ψ4/(D−3)
[
dR2 +R2

(
dΘ2 + sin2 Θ dω2

D−3

)]
,
(31)

where for R > zn we have the multipole expansion

ψ = 1 +

∞∑

n=1

2qn
RD−3

[
1 +

∞∑

k=1

(zn
R

)2k

Cν
2k(cosΘ)

]
. (32)

Also, by (27), the throat surface Rt(Θ) is the solution to

R2
t − (2c cothµ0 cosΘ)Rt + c2 = 0 . (33)
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B. Physical properties and binding energy

We now compute the physical quantities needed to ap-
ply our variational principle (1) and calculate the binding
energy. The throat-brane separation is

L = c

∫ µ0

0

dµ [Φ(µ, π)]2/(D−3) . (34)

For D = 5, we find from (29)

L = c

∞∑

n=−∞

[
tanh(n+ 1

2 )µ0 − tanh(n− 1
2 )µ0

]
. (35)

Evaluating the sum using limN→∞

∑N
−N yields simply

L = c . (36)

From the monopole term in (32), the mass is

M =
(D − 2)ωD−2

4πGD

∞∑

n=1

qn , (37)

with ωD−2 the area of the unit (D−2)-sphere. One finds
LD−3/(GDM) is an increasing function of µ0, so µ0 is
a dimensionless measure of the throat-brane separation,
as stated earlier. For sufficiently large L, the apparent
horizon is the throat, whose area At is

At = cD−2ωD−3

∫ π

0

dη (sin η)D−3Φ(µ0, η)
p , (38)

where p = 2(D−2)/(D−3). For sufficiently small L, the
apparent horizonR(Θ) is the outermost extremal surface,
surrounding the throat (33) and intersecting the brane.
The area functional is

A = ωD−3

∫ π

0

dΘ (sinΘ)D−3RD−3
√
R2 + Ṙ2 ψp , (39)

where Ṙ ≡ dR/dΘ. Extremizing this area A gives

R+ R̈

1 + Ṙ2/R2
= −Ṙ

[
(D − 3) cotΘ + p

∂Θψ

ψ

]

+R

[
(D − 1) + p

R∂Rψ

ψ

]
. (40)

At Θ = 0, this becomes (by L’Hôpital’s rule)

2R̈ = (D − 2)R+ pR2∂Rψ

ψ
. (41)

To find extremal surfaces surrounding the throat, we
numerically integrate (40), with the initial conditions

R(0) > Rt(0) and Ṙ = 0. If Ṙ = 0 at Θ = π/2, then
R(Θ) is one of two extremal surfaces, as also occurs in
Brill-Lindquist initial data [23]. The outermost extremal
surface is the apparent horizon, with area Ao given by
(39). We numerically find that such extremal surfaces

surround the throat for µ0 ≤ µ̄0, where µ̄0 ≃ 1.36, 0.75,
0.51 for D = 4, 5, 6, respectively.
To apply our variational principle (1), we extremize

the mass M while holding the apparent horizon area A
constant. Since c is a scale parameter, A = cD−2â, where
â is dimensionless. For a constant value A, we thus set

c(µ0) =

[
A

â(µ0)

]1/(D−2)

, â =

{
âo if µ0 < µ̄0

ât if µ0 > µ̄0
(42)

Here âo is found numerically as described above, and

ât(µ0) = ωD−3

∫ π

0

dη (sin η)D−3Φ(µ0, η)
p . (43)

The mass M at fixed area is then given by (37), using c
in (42) to evaluate the coefficients qn in (26). For D =
5, we have L = c(µ0) by (36). For large throat-brane
separation (µ0 ≫ 1),

G5M

6πc2
≃ e−2µ0 + 3e−4µ0 ,

ât
128π2

≃ e−3µ0 + 6e−5µ0 .

(44)
Combining these gives, for large throat-brane separation,

M ≃MA − G5M
2
A

6πL2
. (45)

This has the physically expected form: the first term is
the rest mass (2), and the second term is the interaction
energy of the black hole with its orbifold image.
The mass M as a function of L at fixed apparent hori-

zon area is plotted in Fig. 3 forD = 5. By our variational
principle (1), the extremum at L → 0 is a static black
hole. This black hole on the brane is well known nu-
merically [12]. Our results show that this black hole is a
local mass minimum, which indicates it is stable against
translations transverse to the brane.

0.0 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.00

L �A1�3

M

MA

FIG. 3. Mass M at fixed area A, for D = 5. Solid line:
the black hole is on the brane (A is the area of the outermost
extremal surface). Dashed line: the black hole is off the brane
(A is the throat area).

The black hole’s stability is also indicated by its large
binding energy. At L→ 0, the valueM →M1 in Fig. 3 is
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the value (6) we found previously in deriving our binding
energy result (7). For Z2 orbifold symmetry, this value
is M1 = 2−1/3MA ≃ 0.79MA, where the mass far from
the brane is M2 ≃MA by (45). From our binding energy
result (7), the minimum binding energy is

EB =
(
21/3 − 1

)
M1 . (46)

This binding energy is of order M1, and hence substan-
tial. Since brane tension and cosmological constant have
been neglected here, this result explicitly demonstrates
the significant role of the orbifold symmetry in binding
the black hole to the brane, as discussed in section II.

VI. BLACK HOLES FAR FROM THE BRANE

In this section, we solve the boundary value problem
of section IV, for a small black hole (a ≪ ℓ, a ≪ z1)
farther from the brane than in section V. The setup is
illustrated in Fig. 4. ForD = 5, we will first construct the
asymptotically RS2 solution for ψ using a field expansion,

ψ = ψ0 + ψ2
0 φ1 + ψ2

0

∑

i≥2

φi . (47)

The field φ1 provides all of our physical results. After
computing the relevant physical quantities, we then apply
our variational principle (1) to find a static black hole off
the brane. We also find small corrections to the binding
energy (46). Lastly, we examine the perturbations φi (i ≥
2) to ensure that the expansion (47) is well controlled.

FIG. 4. A black hole farther from the brane than in section
V. The coordinates (ρ, z) and (r, θ) are the same as in Fig. 1.
The source point at z′1 is used in the solution for the field φ1.

A. Perturbation series

The boundary value problem for the field ψ consists of
(12), (18), and (19). To solve this, we define a related
field φ and two operators (H, D) by

ψ = ψ0 + ψ2
0φ

Hf = ψ2
0

(
∇2 − 4ψ0

ℓ
∂z

)
f

Df = −
[
r∂r +

ℓ+ z1 − r cos θ

ℓ+ z1 + r cos θ

]
f . (48)

The constraint (12) is then

Hφ =
2

ℓ2
ψ5
0

(
3φ2 + ψ0φ

3
)

(49)

and the boundary conditions (19) are

(
∂zφ+

φ2

ℓ

)∣∣∣
z=0

= 0 , Dφ
∣∣∣
r=a

=
1

ψ0(z1)
, φ −→

|x|→∞
0 .

(50)
We now write φ as a perturbation series,

φ = φ1 +
∑

i≥2

φi . (51)

All of our physical results will be due to the primary
field φ1. The fields φi with i ≥ 2 are perturbations. We
substitute (51) into (49)–(50), and collect terms of or-
der i. We also introduce parameters αi for the throat
boundary condition, obeying

∑
i αi = 1, and we let

aAi = αi/ψ0(z1). This results in the following bound-
ary value problem to solve at each order i,

Hφi = Fi , ∂zφi

∣∣∣
z=0

= −Bi

∣∣∣
z=0

, Dφi
∣∣∣
r=a

= aAi

(52)
and φi → 0 as |x| → ∞. The sources Fi and Bi involve
only fields φj with j < i. For the primary field φ1,

F1 = 0 , B1 = 0 . (53)

At second order,

F2 =
6

ℓ2
ψ5
0φ

2
1 , B2 =

1

ℓ
ψ2
0φ

2
1 . (54)

At third order,

F3 =
2

ℓ2
ψ5
0

(
ψ0φ

3
1 + 6φ1φ2

)
, B3 =

2

ℓ
ψ2
0φ1φ2 , (55)

and this process continues to higher orders.

B. Green function GN and primary field φ1

For the operator H, the Neumann Green function GN

can be regarded as the field of a point source, defined by

HGN (x,x′) = −δ(x− x′) , ∂zGN

∣∣∣
z=0

= 0 . (56)

GN vanishes as |x| → ∞, with no throat boundary con-
dition. This can be solved with a Fourier method: we set
δ(x− x′) = δ(~ρ− ~ρ ′)δ(z − z′) and

δ(~ρ− ~ρ ′) =
1

(2π)3

∫ ∞

−∞

d3k ei
~k·(~ρ−~ρ ′) , (57a)

GN (x,x′) =
1

(2π)3

∫ ∞

−∞

d3k ei
~k·(~ρ−~ρ ′)F , (57b)
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where F (~k, z, z′) is to be determined. Substituting (57)
into (56) yields a differential equation for F , whose so-
lution involves modified Bessel functions, I5/2 and K5/2.
Performing the integral (57b) then yields the result

4π2GN (x,x′) =
ψ0(z)

−2

|x− x′|2 +
ψ0(z)

−2

|x− x̃′|2

+c1 ln
|x− x′|
|x− x̃′| + ψ0(z

′)2J . (58)

The first two terms are expected: a source at x′ = (~ρ ′, z′)
and a source at the orbifold image point x̃′ = (~ρ ′,−z′).
The additional terms are

J =
6 tan−1[R/(z + z′)]

ℓR
+
3zz′

ℓ4
+c2 Re

[
ieξΓ(0, ξ)

]
(59)

where

R = |~ρ− ~ρ ′| , ξ = (z + z′ + iR)/ℓ (60)

and

c1 = ψ0(z
′)2

3

2ℓ4
[
R2 + (ℓ + z)2 + (ℓ+ z′)2

]
,

c2 = − 2

ℓ5R
(ℓ2 − ℓz + z2)(ℓ2 − ℓz′ + z′

2
) . (61)

For x near x′, the first term in (58) dominates, giving the
1/|x−x′|2 behavior of 5-dimensional gravity. At large R,
the first term in (59) dominates, giving the 1/R behavior
of 4-dimensional gravity, which is the RS2 phenomenon
of localized gravity. At large R and large z, respectively,

GN ≃ 3ψ0(z
′)2

4πℓR
, GN ≃ 4ψ0(z

′)2

π2ℓz
. (62)

We may construct the field φ1 from GN by taking x′

inside the throat and forming a multipole expansion

φ1(x) =

∞∑

n=0

fn (∂z′)
n GN (x,x′)

∣∣∣
x
′=x

′

1

. (63)

We approximate this sum as an off-center point source,

φ1 ≃ f0 GN (x,x′
1) , x′

1 = (~0, z′1) , z′1 = z1 − d . (64)

We determine f0 and d by the throat boundary condition.
For z1 ≪ ℓ, we use the first two terms in (58) with

φ1 ≃ f0
4π2ψ2

0

1∑

k=0

C1
k(cos θ)

(−1)k

[
dk

r2+k
+

rk

w2+k

]
, (65)

where ψ0 = ℓ/(ℓ + z1 + r cos θ) and w = 2z1 − d ≃ 2z1.
For z1 ≫ ℓ, it suffices to use the first and third terms in
(58), with

φ1 ≃ f0
4π2ψ2

0

1∑

k=0

C1
k(cos θ)

(−1)k
dk

r2+k

+
3f0
4π2ℓ2

(
1 +

r cos θ + d

ℓ+ z1

)
ln

(
r

2z1

)
. (66)

Linearizing the throat boundary condition in cos θ gives

f0 ≃ α14π
2a2ψ0(z1) (1 + ε) . (67)

For z1 ≪ ℓ, we find

ε =

(
a

2z1

)2

, d ≃ aψ0(z1)

(
a

2ℓ
+

a3

8z31

)
. (68)

For z1 ≫ ℓ, we find

ε = 3
[
ψ0(z1)

a

ℓ

]2
ln

(
a

2z1

)
, d ≃ a2ψ0(z1)

2ℓ

(
1− ε

2

)
.

(69)

C. Physical properties and binding energy

We now compute the physical quantities needed to ap-
ply our variational principle (1) and calculate the bind-
ing energy. The relevant quantities are the throat-brane
separation L, the throat area A, and the mass M . In
this section, we are neglecting the perturbation fields φi
(i ≥ 2), so α1 = 1 is the only throat boundary condition
parameter needed here. The throat-brane separation is

L =

∫ z1−a

0

dz ψ ≃
∫ z1

0

dz ψ0(z) = −ℓ ln [ψ0(z1)] . (70)

We now evaluate the throat area A. Near the throat,

ψ ≃ ψ0(z1) +
f0

4π2a2
(1 + ε) ≃ 2ψ0(z1)(1 + ε) . (71)

This gives the throat area A = 2π2a3ψ3. It will be con-
venient to use the related rest mass MA, which by (2) is
given by G5MA = (3π/8)a2ψ2. Solving this for a gives

a2 ≃ 2G5MA

3πψ0(z1)2
(1− ε′) , (72)

where for z1 ≪ ℓ and z1 ≫ ℓ, respectively,

ε′ =
G5MA

3πz21ψ0(z1)2
, ε′ =

2G5MA

πℓ2
ln

[
G5MA

6πz21ψ0(z1)2

]
.

(73)
We defined the mass M for an asymptotically RS geom-
etry in [17], which for the large ρ asymptotics (62) yields

M =
3

8πG5
ψ0(z

′
1)

2f0 . (74)

Using (67) and (72), this can be rewritten as

M ≃ ψ0(z1)MA − ψ0(z1)MA
ε′

2
. (75)

The first term is the redshifted rest mass, and the second
term is the interaction energy of the black hole with its
orbifold image. The redshift factor ψ0(z1) indicates the
repelling gravitational field of the positive-tension brane.
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FIG. 5. Solid line: Mass M at fixed throat area A = 10−12ℓ3.
The dot denotes the mass extremum. Dashed line: the asymp-
totically flat approximation of Fig. 3.

In Fig. 5, we plot the mass M at fixed area A. It
agrees well with the asymptotically flat approximation
of Fig. 3 in the regime where the Newtonian form (45)
is valid. There is a mass extremum (represented by the
dot in Fig. 5), where the black hole’s repulsion from the
brane is balanced by its attraction to its orbifold image.
Taking z1 ≪ ℓ in (75) gives

M ≃MA

(
1− z1

ℓ

)
− G5M

2
A

6πz21
. (76)

At fixed MA and ℓ, the mass extremum (dM/dz1 = 0)
occurs at the location z1 given by

(z1)ext =

(
G5MAℓ

3π

)1/3

, Lext ≃ (z1)ext . (77)

By our variational principle (1), this mass extremum rep-
resents a static black hole. It is a local maximum, hence
this black hole is unstable against translations transverse
to the brane. The binding energy EB = Mext −M1 of a
small black hole on the brane is

EB ≃
[
21/3 − 1− 3

2

(
2G5MA

3πℓ2

)1/3
]
M1 . (78)

This is smaller than our previous estimate (46), consis-
tent with the brane’s repelling gravitational field. For
large separation L from the brane, the brane’s repulsion
dominates, and the mass at fixed area is M ≃ e−L/ℓMA,
as shown in Fig. 6.

D. Perturbations

As indicated earlier, the perturbations φi (i ≥ 2) are
not needed for our main physical results, but we consider
them here to ensure that our field expansion for φ is well

0.1 1 10 102 103 104 105
0.0

0.2

0.4

0.6

0.8

1.0

L �A1�3

M

MA

FIG. 6. Combination of Fig. 3 and Fig. 5. Leftmost solid line:
the black hole is on the brane. Dashed line: the black hole
is off the brane (asymptotically flat approximation). The dot
denotes the mass extremum of Fig. 5. Rightmost solid line:
extension of the RS2 mass function of Fig. 5.

controlled. The perturbations φi (i ≥ 2) may be found
by first constructing a new Green function G that satisfies
the same relations (56) as the Neumann Green function
GN , and additionally DG = 0 at the throat. We take
G(x,x′) = GN (x,x′) + FN(x,x′) where

FN(x,x′) =
∞∑

n=0

(n+1)2∑

m=1

fnmΓnm , (79)

and

Γnm = DnmGN (x,v)
∣∣∣
v=v0

,

Dnm =
∑

i,j,k,l

Sijk
nm ∂iv1∂

j
v2∂

k
v3∂

l
v4 . (80)

Here v lies inside the throat, soHFN = 0. The quantities
Sijkl
nm are constants and Dnm is the order n derivative

operator that generates the spherical harmonics Ynm,

Dnm

(
1

4π2|x− v|2
) ∣∣∣

v=v0

=
Ynm

|x− v0|n+2
. (81)

Here 1 ≤ m ≤ (n+ 1)2 which motivates the sum in (79).
Letting v0 denote the throat center, it follows that

an+2ψ2
0Γnm

∣∣∣
r=a

=
∑

n′,m′

(δnmn′m′ +∆nmn′m′)Yn′m′ (82)

with ∆nmn′m′ small quantities. This equation should be
invertible, so Γnm are a complete set of functions on the
throat, and the coefficients fnm can be determined by
the throat boundary condition.
The formal solution to (52) for the perturbation φi is

then

ψ0(z)
2φi(x) = −

∫
d4x̄

√
h̄G ψ2

0Fi +

∫
d3x̄

√
σ̄ G ψ4

0Bi

+

∫
d3x̄

√
σ̄ G ψ4

0Ai . (83)
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In these integrals, h̄ and σ̄ denote flat metrics, and only
G(x̄,x) depends on x. At large ρ̄, the bulk and brane
sources (Fi, Bi) contain terms which fall off as 1/ρ̄2 or
1/ρ̄3. In (83), terms with 1/ρ̄2 falloff produce divergent
bulk and brane integrals, and terms with 1/ρ̄3 falloff pro-
duce divergent contributions to the mass M . However,
these are only apparent divergences, not true divergences,
since we can reformulate the perturbations so that no di-

vergences occur, by setting φi = φ̃i+Φi with Φi a suitably

chosen regulator. The regulated perturbation φ̃i is then

ψ0(z)
2φ̃i(x) = −

∫
d4x̄

√
h̄G ψ2

0F̃i +

∫
d3x̄

√
σ̄ G ψ4

0B̃i

+

∫
d3x̄

√
σ̄ G ψ4

0Ãi , (84)

where the regulated sources are

F̃i = Fi −HΦi , B̃i = Bi + ∂zΦi , aÃi = aAi −DΦi

(85)
and each regulator Φi must ensure the large ρ falloff of

F̃i and B̃i is 1/ρ
n where n ≥ 4. Suitable examples are

Φ2 = ψ0(z)
(2G5m1)

2

ℓ2(ρ2 + b21)
,

Φ3 = ψ0(z)
8G2

5m1m2

ℓ2(ρ2 + b22)
+ ψ0(z)

2 (2G5m1)
3

ℓ3(ρ3 + b33)
, (86)

with bj constants. Here mi is the mass contribution at
order i to the total mass M =

∑
imi. One can continue

choosing regulators at higher orders, although no regu-
lators are needed at fourth order or higher, if one tunes
mi = 0 at second order and higher, which can be achieved
by tuning the throat boundary condition parameters αi.

VII. BOUNDS FOR SMALL BLACK HOLES

AND RELATED PHENOMENOLOGY

Below, we will obtain upper bounds, M . M∗ and
A . A∗, for the black hole mass M and area A, for
which our results of sections V and VI for small black
holes in RS2 are expected to be valid. We consider black
holes on the brane and off the brane, respectively, in
sections VIIA and VII B. In each case, we relate our
bounds to phenomenology, including an application in
section VII C to RS1 and searches for small black holes
produced at colliders. We denote the reduced Planck
masses in five and four dimensions as M5 = (8πG5)

−1/3

and MPl = (8πG4)
−1/2 = 2.4 × 1018 GeV in standard

units.

A. Small black holes on the brane in RS2

In RS2, we first obtain upper bounds (M∗, A∗) on
black hole mass and area, and then consider the related

phenomenology. A small black hole on the brane is nearly
spherical, with bulk area A and mass M related by (5),

A = 21/(D−3) cD (GDM)(D−2)/(D−3) . (87)

Here and below, the numerical coefficients cn are

cn =

[
1

ωn−2

(
16π

n− 2

)n−2
]1/(n−3)

, (88)

with ωn−2 the area of the (n−2)-dimensional unit sphere.
The small black hole behavior (87) ceases to be valid at
mass and length scales that can be estimated from the
properties of larger black holes, which we now consider.
In RS2, a very large static black hole on the brane has

a flattened (pancake) shape [15, 24], for which the area
A in the bulk and circumference B on the brane are [15]

A =
ℓB
D − 3

, B = cD−1 (GD−1M)
(D−3)/(D−4)

. (89)

On the brane, B is a (D − 3)-dimensional area and the
Newton gravitational constant is GD−1 = (D − 3)GD/ℓ.
Combining this with (89) shows that a large black hole
on the brane has bulk area A and mass M related by

A = cD−1(D − 3)1/(D−4)

[
(GDM)D−3

ℓ

]1/(D−4)

. (90)

We now find an upper bound on the mass M∗ and area
A∗ for which the small black hole relation (87) is valid, by
equating the two areas in (87) and (90). These intersect
at the value M∗ determined by the AdS length ℓ,

GDM∗ =
2D−4

(D − 3)D−3

(
cD
cD−1

)(D−3)(D−4)

ℓD−3 , (91)

with A∗ given by (87) with M = M∗. The result (91)
shows that a black hole with M .M∗ is small compared
to the AdS curvature length scale, GDM ≪ ℓD−3. This
is illustrated in Fig. 7 for D = 5, for which G5M∗ =
(4/27)ℓ2 ≃ 0.05 ℓ2 and A∗ ≃ 0.2 ℓ3.
The bound M . M∗ is consistent with the assump-

tion a ≪ ℓ on the throat coordinate radius a used in
this paper. To see this, recall from section V that for
small throat-brane separation (µ0 ≪ 1), the black hole
apparent horizon is the outermost extremal surface. As
µ0 → 0, this surface is a sphere, R = R0, which can be
found analytically by taking R ≫ zn in (32), for which
the monopole term in ψ dominates. Solving (40) yields

RD−3
0 = 2

∞∑

n=1

qn = 2 ζ(D − 3) aD−3 , (92)

where ζ is the Riemann zeta function. The last equality
in (92) follows from using qn in (26) with c = a/cschµ0

and (cschnµ0)/(cschµ0) = 1/n+O(µ2
0) as µ0 → 0. The

resulting area A of the surface R = R0 is

A =
1

2
[8 ζ(D − 3)](D−2)/(D−3) ωD−2a

D−2 . (93)
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FIG. 7. Relation between area A and mass M for asymptoti-
cally RS2 black holes on the brane, in D = 5, for small black
holes (solid line, M . M∗) and large black holes (dashed line).
These intersect at G5M∗ ≃ 0.05 ℓ2. Each axis is logarithmic.

The corresponding upper bound a . a∗ on the radius a
is given by using the area A∗ in (93). For D = 5, the
value A∗ ≃ 0.2 ℓ3 found above and ζ(2) = π2/6 gives
a∗ ≃ 0.08 ℓ. This is an upper bound on a for the validity
of the condition a≪ ℓ used in section V.
The phenomenology of the RS2 model is currently

based on experiments that probe corrections to the in-
verse square law of Newtonian gravity. If our observed
universe is indeed a brane in the RS2 model, torsion pen-
dulum experiments [25] yield the bound ℓ < 0.014 mm
on the AdS curvature length ℓ. The AdS length ℓ relates
the effective Planck masses in five and four dimensions in
RS2 by [2] M5 = (8πM2

Pl/ℓ)
1/3, which for ℓ < 0.014 mm

yields the lower bound M5 > 1.3× 106 TeV. This energy
scale, which is relevant for the production of small black
holes in particle collisions on the brane, is beyond the
reach of current particle colliders, although it was sug-
gested in [26] that high energy signatures of RS2 might
be accessible by ultra high energy cosmic rays. Some
progress was made in this direction in [26], by mapping
out the different forms of the cross section for producing
small black holes in high energy scattering experiments
on the brane, for different ranges of the center of mass
energy and impact parameter, compared to scales set by
ℓ and MPl. Since the high energy collider phenomenol-
ogy of the RS1 model is much more developed than that
of RS2, in section VII C below, we will consider the phe-
nomenology of RS1 and the energy range for which our
general binding energy result (7) is applicable.

B. Small black holes off the brane in RS2

The phenomenology of RS2, relevant for black holes on
the brane, has already been discussed in section VIIA
above. Here we obtain upper bounds (M∗, A∗) on the
mass and area of small black holes localized off the brane
in RS2. We will use the results of this section when we

consider the RS1 model in section VIIC below.
Since a small black hole is nearly spherical, the relation

between its one-dimensional circumference C and surface
area A is well approximated by

C = 2π

(
A

ωD−2

)1/(D−2)

. (94)

As found in (70), the black hole is located a proper dis-
tance L and coordinate distance z1 from the brane, where

L ≃ −ℓ ln[ψ0(z1)] , ψ0(z1) =
ℓ

ℓ+ z1
≃ e−L/ℓ . (95)

Note that L essentially interpolates between the smaller
of z1 and ℓ. That is, for z1 ≪ ℓ, we have L ≃ z1, while
for ℓ ≪ z1, we have L ≃ ℓ ln(z1/ℓ), which is nearly of
order ℓ since the logarithm is a slowly varying function
of z1.
The condition that the black hole is small and localized

off the brane can be stated geometrically as C ≪ L, hence
C . L provides an upper bound on C for this small black
hole regime to be valid. Expressing this in terms of the
area A using (94) then yields the condition A . A∗,
where the upper bound on the black hole area is

A∗ = ωD−2

(
L

2π

)D−2

. (96)

For D = 5, this upper bound is A∗ = L3/(4π) ≃ 0.08L3.
The corresponding upper bound on the mass, M . M∗,
follows from evaluating M ≃ e−L/ℓMA given in (75),

G5M∗ = e−L/ℓ

[
3π

8

(
A∗

2π2

)2/3
]
≃ 0.03 e−L/ℓL2 . (97)

The corresponding upper bound a . a∗ on the radius a
follows from evaluating (72) with MA ≃M∗e

L/ℓ,

a∗ =
eL/ℓL

4π
≃ 0.08 eL/ℓL . (98)

With L given by (95), the condition a . a∗ thus spec-
ifies a region in the space of parameters (a, z1, ℓ). For
the cases z1 ≪ ℓ and ℓ ≪ z1, we have respectively,
a∗ ≃ 0.08 z1 and a∗ ≃ 0.08 z1 ln(z1/ℓ). These are up-
per bounds on a for which the approach of section VI is
expected to be reliable for describing an initially static
small black hole localized off the brane.

C. Small black holes on the brane in RS1

Although the RS2 model is the main focus of this pa-
per, we here discuss an application to the RS1 model,
which is relevant for the possible production of small
black holes in LHC experiments. Our general binding
energy result (7) indicates there is substantial binding of
a small black hole to a brane with orbifold symmetry.
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We here obtain an upper bound on the mass for which
this strong binding result can be expected to apply in the
RS1 model.

In the RS1 model (see section III), our universe resides
on a negative-tension brane at a proper distance L from
the positive-tension brane. An upper bound on the mass,
M . M∗, for a black hole on the negative-tension brane
to be treated as small can be obtained directly from our
previous result (97) in the RS2 model,

G5M∗ =

(
3

64π

)
e−L/ℓL2 ≃ 0.015 e−L/ℓL2 . (99)

This value is reduced by a factor of 2 compared to (97),
since the black hole resides on the brane, and we are mea-
suring mass on the orbifold region between the branes.

In the RS1 model [1], the higher-dimensional Newton
constant is G5 ≃ ℓ/(8πM2

Pl). The RS1 model [1] can
solve the hierarchy problem if L ≃ 12πℓ, for which (99)
yields

M∗ = 54π2e−12πM2
Plℓ . (100)

If our observed universe resides on the negative-tension
brane in the RS1 model, the current phenomenological
constraints on the AdS length ℓ are [4]

10 < MPlℓ < 100 , (101)

withMPlℓ a dimensionless quantity in the standard units
used here. The lower bound in (101) is due to perturba-
tivity requirements, and the upper bound is set by high
precision electroweak data. Combining (100) and (101)
yields

5.4× 102 TeV < M∗ < 5.4× 103 TeV . (102)

Similar bounds to (102) were found in [27] by considering
ranges of coordinates, instead of the geometric quanti-
ties we examined above. We thus estimate that a black
hole with mass M . 5.4 × (102 − 103) TeV may be reli-
ably treated as small, with a corresponding large orbifold
binding to the negative-tension brane as derived in this
paper. For a black hole produced in a collider experiment
on the brane, the black hole mass is at least of order the
higher-dimensional Planck mass. The precise value of the
black hole mass depends on how much energy is trapped

inside the Schwarzschild radius associated with the cen-
ter of mass energy. Recent LHC collider searches [5] at
center of mass energy 8 TeV exclude evidence for the pro-
duction of black holes with masses below 4.7–5.5 TeV, for
a higher-dimensional Planck energy in the range 2–4 TeV
in the RS1 model. These experimental results are consis-
tent with our mass bound (102), which can be applied to
future experimental searches for black hole production at
higher center of mass energies in the TeV range or higher.

VIII. DISCUSSION

In this paper, we applied our variational principle [22]
to initial data for small asymptotically RS2 black holes,
and found two static black holes. We showed that the
well known static black hole on the brane is stable against
translations transverse to the brane, and has a large bind-
ing energy to the brane due to the brane’s orbifold sym-
metry. This is an explicit example of a simple but gen-
eral binding energy formula, given in (7), which can be
used in other orbifold-symmetric braneworld models. We
also found a new static black hole off the brane, at the
unique location in the bulk where the black hole’s re-
pulsion from the brane is balanced by its attraction to
its orbifold image, with a novel instability to transverse
translations. Although the static black hole on the brane
is classically stable, it would be interesting to consider its
quantum tunneling through the barrier illustrated in Fig.
6. It would also be interesting to study the existence and
properties of these classical solutions at larger black hole
mass; numerical methods would probably be necessary.
Our results show that a small black hole produced on

an orbifold-symmetric brane in RS2 is stable against leav-
ing the brane, and we have indicated how this conclusion
can be applied to models other than RS2, as long as the
brane has an orbifold symmetry. On such a brane, small
black holes produced in high energy experiments could be
studied directly (instead of leaving behind a signature of
missing energy), which is an important result for future
collider experiments.
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