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We give a new, intrinsic, mass definition for spacetimes asymptotic to the Randall-Sundrum
braneworld models, RS1 and RS2. For this mass, we prove a first law for static black holes, including
variations of the bulk cosmological constant, brane tensions, and RS1 interbrane distance. Our
first law defines a thermodynamic volume and a gravitational tension that are braneworld analogs
of the corresponding quantities in asymptotically AdS black hole spacetimes and asymptotically
flat compactifications, respectively. We also prove the following related variational principle for
asymptotically RS black holes: instantaneously static initial data that extremizes the mass yields a
static black hole, for variations at fixed apparent horizon area, AdS curvature length, cosmological
constant, brane tensions, and RS brane warp factors. This variational principle is valid with either
two branes (RS1) or one brane (RS2), and is applicable to variational trial solutions.

PACS numbers: 04.50.Gh, 04.70.Bw, 04.20.Fy

I. INTRODUCTION

Static and stationary black holes should obey four clas-
sical laws [1]. The first law expresses conservation of en-
ergy, and has been proven in spacetimes with four dimen-
sions [1, 2] and higher dimensions [3-5], including a com-
pact extra dimension [6], but not in spacetimes asymp-
totic to the Randall-Sundrum (RS) braneworld models
[7, 8]. In this paper, we close this gap by proving a general
first law for static asymptotically RS black holes. The
first law relates the variations of mass and other physical
quantities. For this purpose, we provide a new, intrinsic,
mass definition. Our first law defines a thermodynamic
volume and a gravitational tension that are braneworld
analogs of thermodynamic volume in asymptotically AdS
black hole spacetimes [4, 5] and gravitational tension in
asymptotically flat compactifications [6].

The RS models are phenomenologically interesting,
and have holographic interpretations [9] in the AdS/CFT
correspondence. In the RS models, our observed uni-
verse is a brane surrounded by an AdS bulk. The bulk
is warped by a negative cosmological constant. The RS1
model [7] has two branes of opposite tension, with our
universe on the negative-tension brane. Tuning the in-
terbrane distance appropriately predicts the production
of small black holes at TeV-scale collider energies [10],
and LHC experiments [11] continue to test this hypoth-
esis. In the RS2 model [8], our universe resides on the
positive-tension brane, with the negative-tension brane
removed to infinite distance. Perturbations of RS2 repro-
duce Newtonian gravity at large distance on the brane,
while in RS1 this requires a mechanism to stabilize the
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interbrane distance [12]. In RS2, solutions for static black
holes on the brane have been found numerically, for both
small black holes [13] and large black holes [14], compared
to the AdS curvature length. The only known exact an-
alytic black hole solutions are the static and stationary
solutions [15] in a lower-dimensional version of RS2.

In general, the first law for a static or stationary black
hole takes the form 6M = (k/87G)0A+ >, p; 6Q;. This
relates the variations of mass M, horizon area A, and
other physical quantities @);. Thus, if a black hole is static
or stationary, it extremizes M under variations that hold
constant the remaining variables (A, @;). The converse
of this statement motivates a variational principle: If a
black hole’s exterior spatial geometry is initially static (or
initially stationary) and extremizes the mass with other
physical variables held fized, then the black hole is static
(or stationary). In this variational principle, the specific
variables to hold fixed depend on the form of the first
law. The appropriate area to hold fixed is that of the
black hole apparent horizon, which is determined by the
spatial geometry alone (unlike the event horizon, which
is a global spacetime property). The apparent horizon
generally lies inside the event horizon, and coincides with
it for a static or stationary black hole spacetime.

For asymptotically flat black holes in four spacetime di-
mensions, a version of the above variational principle was
proved by Hawking for stationary black holes [16], and
was extended to Einstein-Yang-Mills theory by Sudarsky
and Wald [2, 17]. In this paper, we prove a version of the
above variational principle for static asymptotically RS
black holes. The quantities held fixed in our variational
principle are the AdS curvature length, cosmological con-
stant, brane tensions, and RS values (at spatial infinity)
of warp factors on each brane. The variations of these
quantities appear in the general first law that we prove
in this paper.



This paper is organized as follows. After reviewing the
RS spacetimes in section II, we define the mass for an
asymptotically RS spacetime in section III, and evaluate
the mass for a static asymptotic solution in section IV.
We prove the first law for static black holes in section V.
We prove the variational principle in section VI, including
an explicit application using a trial solution. We conclude
in section VII.

Throughout this paper, we use two branes, so our re-
sults apply to either RS1 or RS2 in the appropriate limit.
We work on the orbifold region (between the branes)
and use D spacetime dimensions. A timelike surface
has metric 743, extrinsic curvature Ky, = 7,°Venp, and
outward unit normal ny. A spatial hypersurface ¥ has
unit normal u,, metric hyp, and covariant derivative D,,.
Each boundary B of ¥ has metric o4, extrinsic curva-
ture ko = heDcny, and outward unit normal ny. The
boundaries B of ¥ are illustrated in Fig. 1. These bound-
aries are: spatial infinity Boo, the branes (Bj, Bs), and
the black hole apparent horizon Bp. If the black hole
is static, then By coincides with the black hole event
horizon in X.
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FIG. 1. Illustration of a spatial hypersurface ¥, for a black
hole with apparent horizon By not intersecting the branes, B
and B>. Spatial infinity B is a single boundary, transverse
to both branes. Each boundary B has outward normal n.

II. THE RANDALL-SUNDRUM SPACETIMES

The RS spacetimes [7, 8] are portions of an anti-de
Sitter (AdS) spacetime, with metric

dstg = QUZ)* (=dt* + dp* + p*dw},_5 +dZ%) . (1)

Here dw?_, denotes the unit (D — 3)-sphere. The warp
factor is Q(Z) = ¢/Z, with values €; on each brane. Here
¢ is the AdS curvature length, related to the bulk cosmo-
logical constant A < 0 given below. The RS1 model [7]
contains two branes, which are the surfaces Z = Z; with

brane tensions \;, where ¢ = 1,2. The brane tensions \;
and bulk cosmological constant A are

20-2) , __(D-1)(D-2)

A=Az = StGpl 202

(2)
The dimension Z is compactified on the orbifold St /Zsy
and the branes have orbifold mirror symmetry: in the
covering space, symmetric points across a brane are iden-
tified. There is a discontinuity in the extrinsic curvature
K1, across each brane given by the Israel condition [18].
Using orbifold symmetry, the Israel condition requires
the extrinsic curvature at each brane to satisfy

87GpA 8TGpA
2Kab = ( & )'Yab s 2kab = ( & ) Oab - (3)
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Using (2), this can also be written as

€ €
2Kab = Z’Yab P 2kab = zoab P (4-)
where ¢ = 41 is the sign of each brane tension. The
RS2 spacetime [8] is obtained from RS1 by removing the
negative-tension brane (now a regulator) to infinite dis-
tance (Zs — o) and the orbifold region has Z > Z;.

III. MASS DEFINITION

For an asymptotically RS spacetime, we will define the
mass M using a counterterm method [19]. This is an in-
trinsic approach, which is well suited to the variations we
will perform in section V to prove the first law, and is also
useful for spacetimes with nontrivial topology. By com-
parison, other definitions, such as the Brown-York mass
[20], use an auxiliary reference spacetime, which may be
awkward when the topology is nontrivial. A reference
spacetime approach is also implicit when the asymptotic
geometry serves this purpose, as in the Abbott-Deser
mass [21] and its counterpart with an asymptotically flat
compact dimension, the Deser-Soldate mass [22]. For an
asymptotically RS spacetime, it is straightforward to ver-
ify that evaluating our mass definition, as in (16) below,
reduces to the same result as the Abbott-Deser mass for-
mula [21].

In the counterterm approach [19], for a spacetime with
metric gqp, one first evaluates the bare action S. If this
diverges, one constructs an action counterterm S,; to ren-

der the sum S = S + S finite, as follows. Let the metric

Jap asymptote to g((l?))

whose bare action §0 also diverges.
We express Sy in terms of its intrinsic boundary invari-
ants, and define the action counterterm S.; = —S where
S is the same functional of its boundary geometry that
S is of its boundary geometry. This gives Sy = 0 for
g((l?)) and a finite action S for gup.

To define the mass M, one proceeds from the action
to the Hamiltonian (defined on an arbitrary initial value

spatial hypersurface ), which is given by a bulk term



involving initial value constraints, and surface terms. For
a solution to the constraints, the bulk term vanishes and
the bare mass at spatial infinity is [20]

1 D—2
/Bood eNVGk . (5)

M=-—
87TGD

Here k is the extrinsic curvature of the boundary B, and
for a static spacetime, the lapse function is N = \/—gy.

If M diverges, one constructs a mass counterterm

— 2 5Sct
M. = / dP=22 N\/o ugup [— (6)
oo Vot 6'Yab

such that the mass M is finite, defined by

M =M+ M, . (7)

Following the above procedure, we begin with the RS

spacetime. The bare action Srg consists of a bulk term
Sy and a Gibbons-Hawking term at each boundary,

§R52S2+S1+82+Soo- (8)
Here
1
Sy, = T67Co /dt/EdD’lx\/_—g (R—2A) ,
L 1 D—2 87TGD)\1'
i [ [ ey (-G
1
Soo = P /dt/B APz /K . (9)

For the RS solution (1), the Ricci scalar is R = 2AD/(D—
2) and after integrating Sy, in Z, we find

Sy 4+S1+8,=0. (10)

We now specialize to the case D = 5, for which
~ 1 2
SRrs = Soo = —— [ d*z /=y =— . 11
s o [ dev T

This diverges as p — co. The metric 7,44 on this boundary
is (1) with p = constant. Let 9,4, be the submetric with
Z = constant, and let 645 be the submetric on a 2-sphere
(constant p, Z, t). Their Ricci scalars are

R . 2
R(Y)=R(6) = 753 - (12)
(Qp)?
If we express Sks in terms of R, then an asymptotically
RS spacetime has action counterterm S.; = —S where S

is the same functional of its boundary geometry that §Rs
is of its geometry. Thus

V2
87TG5

All quantities in (13) refer to the boundary geometry of
a general metric gqp, not the RS metric (1). As shown in
Appendix A, the mass counterterm (6) then yields our
mass definition for an asymptotically RS spacetime,

! / d%N\/E(—kJr\/ﬁ). (14)

- 87TG5

Sup = e yAVR . (13)

oo

IV. STATIC ASYMPTOTIC SOLUTION

Here we evaluate our mass definition (14) for a static
asymptotic solution, which we will use in section V below.
We define the branes as the surfaces Z = Z; and Z =
Z5. We consider a static asymptotically RS metric with
functions F), that fall off at large p as follows,

ds* = 02 (—e*Mdt® + e*rdp® + 27 p*dw] + e*7 dZ?)

a(Z) | b(Z2)  w(Z) 4
F, = + + +0(1 . 15
5 = = (1/p%) (15)
For these asymptotics, the mass (14) evaluates to
I
M:—/ dz O3 (a,,+a—z) . (16)
5Jz, 2

The value of M also appears in the solution to (15). To
see this, we find it is necessary to solve the Einstein equa-
tions through third order. The first order solutions a, are

a(Z) = ap(Z) + o (17a)
0(2) = ap(Z) +pn | (17b)
az(Z)=—-Za, . (17¢)

Here pg and pq are integration constants and ' = d/dZ.
The constant p; can be removed by a gauge transforma-
tion p — p+ p1/2. Two identities we will need are

Z3
/ dZ O (ay +a, +az) =0, (18a)
Zy
Z2 22
/ dZ Q" (na, +az) = —£(Q"a,) (18b)
Z1 Z1

The identity (18b) also holds with a, replaced by a; or
ay,. Using (18b), the mass can be written as

L
2G5

Za

M= — (Q2CLP)

. 19
. (19)
The third order solutions ¢, involve an integration con-
stant go. The Israel condition provide one equation at
each brane, which can be solved for pg and g as

Za
po (2% — 0?) = =2 (Q%a,) i (20)
1
-2 —2 Z2
qo (25" — Q%) = 2a, z (21)

Here §; = ¢/Z; the warp factor at each brane. We see
from (18b) and (20) that M is proportional to po,
Cpo 2 2
M=——(Q°-0Q . 22
4G (2 ) (22)
We see from (21) that gg is proportional to a quantity Q
parametrizing the interbrane distance near p — oo,

Ebranes =L+ % + O(l/p2) ) (23)



where the distance L at infinity and the constant Q are

Ql Z2
L=/In (Q_2> , Q= —la, W (24)

We will refer to L and Q in the next section. We will
also use the fact that M and Q appear in the values of
a, at each brane, which we find by solving (19) and (24),

2G5 M — Q;2Q .
ap(Zi) = m s JF- (25)
In the RS1 case, M and Q have lower-dimensional in-
terpretations on each brane. This follows since there is
an effective Brans-Dicke gravity on each brane [23], and
Brans-Dicke gravity contains two asymptotic quantities,
a tensor mass and a scalar mass [24]. On each brane, one
can verify that M and Q are proportional to the effective
tensor mass and scalar mass, respectively.

V. FIRST LAW FOR STATIC BLACK HOLES
A. Preliminary form

For a static or stationary black hole, the first law re-
lates the variations of mass, black hole horizon area, and
other physical quantities. We will include variations of
the bulk cosmological constant A and brane tensions \;
that preserve the RS conditions (2),

50 M G A
2D VD T (26)

We will also include the variation 6L of the interbrane
separation. From (24),

B 0, 5 8
6L—5éln(92>+é 0l (27)

Our setup is general: it applies to a black hole local-
ized on a brane, or isolated in the bulk (away from either
brane), and also applies to the asymptotically RS black
string [25]. Our method is based on the Hamiltonian ap-
proach of [2], with the additional variations (26)—(27).
The full Hamiltonian contains a bulk term and bound-
ary terms. The bulk term Hy is defined on a spatial
hypersurface X,

Hy, :/delx (NCy + N°C,) . (28)
b

Here N and N® are the lapse and shift in the standard
decomposition of the spacetime metric. Our focus is the
initial data (hqp, p®°) on X, where h,p is the spatial metric
and p? is its canonically conjugate momentum,

167G p p™ = VALK —Kh® | Kap = ha®Veus . (29)

Initial data must satisfy constraints, Co = 0 and C, = 0,
which we henceforth assume, where

NG 167Gp p?
= 2A — — = p®pup —
Co= Tgrg, AR+ — 7 (p Pab D—Q) ’

Co = —2Dypa" . (30)

Here R and D, are the Ricci scalar and covariant deriva-
tive associated with hg,. We now consider the change
dHys, under variations (8hgp, 6p“b). One finds 6Cy and
8C, involve derivatives (D.0hqy, D.0p®®). Integrating by
parts to remove these derivatives yields surface terms I,

§Hy, = / dP 1 [P Shay + Hab 6]
b))
oA D-1
d° 'z NVh + > Ip. (31)
x B

+
87TGD
The sum in (31) is over all of the boundaries B illustrated
in Fig. 1. The quantities Py, and H4p appear in the time
evolution equations,

hab = Hab )

where the overdot denotes the Lie derivative along the
time evolution vector field t* = Nu® + N with u® the
unit normal to ¥. We will not need the most general
forms of Pup, Hap, and Ig. Will give their simplified
forms below, after implementing some of our key assump-
tions.

We now assume our variations take one solution of the
constraints to another solution of the constraints, so we
take 0Cy = 0 and 6C, = 0. Then the variation of (28)
immediately gives

pab — _Pab , (32)

§Hy, =0 . (33)

We henceforth assume the initial data is instantaneously

static, for which p® = §p® = 0 and we take N® = 0.

One then explicitly finds Hqp = 0, so (31) and (33) give
oA

_ D—1 ab
0_/Ed :c[P éhab+—8ﬁGDN\/ﬁ} +XB:IB. (34)

This result will be the primary equation for proving our
variational principle in section VI. Here P? is given by

WV
T 167Gp

We now assume a static black hole with timelike Killing
field £€* and choose t* = £%. For a static solution, P = 0
by (32). Then (34) gives

0= A /dD—lxN\/E + > Is. (36
= B

«Pab

(R® + h**D.D* — D*D*) N . (35)

- 87TGD

This equation is our preliminary form of the first law.

It simply remains to express (36) in terms of physical

quantities. Each surface term I can be written [26]
5(Vok) Vo

_ D—2 _ VY .ab _
IB_‘/Bd $N|:787TGD B S 6Uab:| JB, (37)



where
87Gp s = k™ + [k +n°(D.N)/N] o , (38)
167GpJp = Y / dP3x NVan! 0% onb . (39)
B'+#B BNB’

Here 6 denotes the metric on BN B’. In what follows,
we will have Jg = 0. This is due to N = 0 on By, and
due to orthogonality (n/n® = 0) at the other boundaries
B.

We now evaluate the boundary terms (37) for D = 5.
The results at the horizon By and the branes B; are

_ K
B 87TG5

IBH oA ) IBi = %/ dS(E N\/E ) (40)
B;
with A the black hole horizon area. These results are
straightforward to derive. At the black hole horizon By,
we have N = 0 and D,N = —kn, where k is the con-
stant surface gravity [2]. This gives 87G5Ns® = —k g
and the result in (40) follows. At each brane B;, we use
n®(D.N)/N = K — k, which is a general result [20] valid
when u%n, = 0. Using (3) gives 5% = ()\;/2)c? which
yields the result in (40). In Appendix B, we show the
boundary term Ip_ is
o8 004

Ip. = —6M + Fuo U2, 41
B. = —0M + F, 5€+Z/{191 Uy (41)

where the boundary quantity Fo, at infinity is

1 (7
- ALY 2 42
Fo=-sgm | 2R @) @)

and the coefficients U; are

0,2 30 0,202
=M —— - ————— ] . (43
U (912—922) 2G5 (912—922 (43)
Here Q parametrizes the asymptotic interbrane separa-

tion (24). We also define F by the following sum,
dA

TGs

Fol=

/ d*z NVh + Ip, + Ip, + Fouol . (44)
b))

Here the two brane terms Ip, render the volume integral
finite, as one can verify. The term F,, renders F gauge
invariant, as shown in Appendix C. We also define V by
4
=—=)F —VoP=F§L 45
v=(5p)7 . -V W)
where P = —A/(87G5) is the pressure due to the cosmo-

logical constant. We have now evaluated all the terms
needed to rewrite the preliminary first law (36).

B. The first law

We will give four versions of the first law, correspond-
ing to different choices of variations. Substituting (40),

(41), and (45) into (36) gives the first law in the form

A 30 30
il —VOP U~ (46)
1

oM = o,

87T5

The area term is standard. The last two terms are
changes in mass due to changes in the branes’ gravi-
tational field, since 0€2; are variations of gravitational
redshift factors on each brane. The last term is ab-
sent in RS2, which removes the negative-tension brane
to Zs — o0, for which Qo — 0 and Us/Q2 — 0 by (43).

For discussion purposes, we will take ¥V > 0. This
is easily verified for the static asymptotically RS black
string [25], which is the only known exact solution for an
asymptotically RS black object in 5-dimensional space-
time. We will also see in (47) below that V > 0 if and
only if a gravitational tension Ty is positive.

The coefficient of 6 P defines a thermodynamic volume
Vegr in a black hole first law [4, 5, 27]. For a static asymp-
totically AdS black hole, it was found in [4] that Veg > 0
is the volume removed by the black hole (the volume of
pure AdS space minus the volume outside the black hole).
In our first law, Veg = —V < 0 suggests that net volume
is added outside the black hole (compared to the case
with no black hole). Added volume makes sense physi-
cally: in RS2 the black hole repels the positive-tension
brane, and in RS1 we would expect a version of the black
hole Archimedes effect [28, 29], where the black hole in-
creases the size of the compact dimension (here the inter-
brane distance). We also note that Veg < 0 occurs, with
a natural interpretation as an added volume, in AdS-
Taub-NUT-AdS spacetime [30].

In RS1, there are three ways the variation §L of the
interbrane distance can be introduced into the first law,
using (27). In each case, the coefficient of 4L defines a
gravitational tension T that depends on which quantities
are held fixed. The three gravitational tensions we refer
to below are

2PV i _ U
Using (27) in (46) to change variables from ¢ to L gives
KOA 58
OM = G + ool + 3 i(ui—ﬁ)é) q o (49)

i=1,2

Here + is the sign of each brane tension \; and 7j is a
gravitational tension at fixed values of (4, Q1, Q2). Using
(27) in (46) to eliminate §€2; or 6Qs gives the first law as

_ KOA T L 50
oM = e +T1 6L+ <—V+ W) 5P+MQ—2 (49)
and

_ KOA T L 5
6M_87TG5+T26L+< v+ 2P)5P+M o (50)

Each term 7L in (48)—(50) is the work needed to vary
the RS1 interbrane distance (with different quantities



held fixed), analogous to the work terms in the first law
in the case of a compact dimension without branes [6].
Our gravitational tensions (47) are easily verified to be
positive for the asymptotically RS1 black string [25]. We
would also expect our gravitational tensions to be posi-
tive due the black hole’s attraction to its images in the
covering space, which has been shown [29, 31, 32] in the
case of a compact dimension without branes.

Since each version of the first law reparametrizes the
geometry, in (49) and (50) each thermodynamic volume
Veg = =V + T;L/P differs from —V. For —V < 0, this
indicates that positive gravitational tension 7; opposes
the black hole Archimedes effect, and the sign of Vg
depends on their relative strengths.

Reparametrizing the geometry also transforms the
brane terms in the first law, but with the interesting
property that the coefficients of §€;/Q; always add to
M, in each version of the first law. A brane term in (46)
or (48) shifts into both Veg 6 P and T; L in (49) and (50),
and this shift incorporates the brane’s orbifold symmetry
into the gravitational tension, since 7; is due to the black
hole’s attraction to its orbifold mirror images.

VI. VARIATIONAL PRINCIPLE

The first law we proved in section V includes the varia-
tions of the AdS curvature length, cosmological constant,
brane tensions, and RS brane warp factors. This moti-
vates the following variational principle, which we prove
in this section.

Variational principle for asymptotically RS
black holes: Instantaneously static initial data that ex-
tremizes the mass M is initial data for a static black hole,
for variations that leave fixed the apparent horizon area
A, the AdS curvature length £, cosmological constant A,
brane tensions X\;, and RS values (at spatial infinity) of
the warp factors ; on each brane.

A. Main proof

Our proof of the variational principle proceeds in two
steps. Here we perform the main step, which reduces the
proof to two auxiliary boundary value problems. These
boundary value problems are the topics of section VIB.
Our setup is general: it applies to a black hole localized
on a brane, or isolated in the bulk (away from either
brane), and also applies to the asymptotically RS black
string [25].

Our key assumptions will be the following. We assume
our initial data hgp is instantaneously static. We also
assume the variations dh,p, extremize the mass (6M = 0),
while holding fixed the apparent horizon area A and the
remaining quantities (¢, A, A;, Q;).

Our proof closely follows the proof of the first law in
section V. The initial steps are the same, as we indicated
after the result (34). Thus, for an instantaneously static

geometry hgp, we proceed exactly as in section V through
(34). Now taking JA = 0 in (34) gives

/ AP~ e P5h,y, + ZIB =0. (51)
z B

In what follows, (51) will be our primary equation, where

«Pab o \/E
T 167Gp

(R + h*D.D*— D*D°) N . (52)

For instantaneously static initial data, the constraint
Co = 0in (30) simplifies to R = 2A and 6C, vanishes iden-
tically. The remaining linearized constraint (6Co = 0)
simplifies to

(R + h** DD, — D“D") 6hay =0 . (53)

We now evaluate the boundary terms Ip in (51). The
boundaries B are illustrated in Fig. 1. In section V, we
evaluated Ip, (at each brane) and Ip_ (at spatial infin-
ity), including the variations of quantities (¢, A, A;, ;)
held constant here by assumption. In this case, (40) and
(41) reduce to

Ip, =0, Ip.=—6M. (54)

oo

Additionally, we have §M = 0, by our assumption of a
mass extremum, so Ip_ = 0. At the apparent horizon
By, we use an alternate form to that given in (37),

I, — / P20 /5 AP [(DyN)Sheq — N Dybhed] |

(55)
where

167G p A" = n, (R*hbd — pabped) (56)

The boundary condition on the lapse is N = 0, whence
DN = —fn,, where f2 = (D*N)(DyN). Then (55) is

1
N 87TGD

I, / dP=2z f6\/o | (57)
using oy = hap — nanp and 04/o = /o0%504,/2. For
convenience, we now choose to set Ip,, = 0 using the
following gauge transformation,

00ap — 00qp + 2D(a§b) , Uab(SO'ab —0, (58)

where D, is the covariant derivative associated with ogp.
If we let &, = D, F, then 0% d0,;, — 0 requires

/o DD,F = 6\/5 . (59)

Note the apparent horizon is a closed surface (this is most
clearly seen in the covering space, if the apparent horizon
intersects a brane). A solution F to (59) on a closed
surface is well known to exist if and only if the surface
integral of the right-hand side of (59) vanishes. This
integral is simply 0 A, which indeed vanishes since we hold



A constant. Thus a solution &, exists to achieve (58), and
we henceforth set Ig,, = 0. Since Ip, = Ip,, = 0 and we
set Ig,, = 0, our primary equation (51) simplifies to

/ dP 1z P®Shy, =0 . (60)
>

Our goal is to conclude that the initial geometry hgp
evolves to a static spacetime. The well known condition
for this is that P*® = 0 on ¥. We cannot, however, imme-
diately conclude that P = 0 from (60), because not all
of the variations dhgp are arbitrary: the linearized con-
straint (53) removes one degree of freedom, which can
be taken as h%8h,, or as the variation dh of the deter-
minant h. These are related by h®6hg, = Oh/h. As an
identity, we may decompose dh, into a trace-free (T'F)
part and a part proportional to dh:

1 oh
Ohap = (5hab)TF + D_1 (7) hap - (61)

Using (61), our primary equation (60) then becomes

Poh
D-1 ab\TF TF _
[ [y s+ 2R <0, 62)
where
Pap = (P b)TF + —P Rab (63)
a a D _ 1 al b)
P = hay P . (64)

The arbitrary variations are (5hqp)T T, subject to smooth-
ness at the apparent horizon, (6he)"" — 0 at By, and
boundary conditions at the branes that we will specify in
the next section. As a completeness check, the arbitrary
variations (dh.p)TE alone should determine the depen-
dent quantity dh, which we verify below by showing the
linearized constraint (53) is a well posed boundary value
problem for dh.

Our proof then reduces to showing P = 0, which al-
lows us to conclude from (62) that (P**)TF = 0, since
(6hap)TE are arbitrary variations. It then follows from
(63) that P2 = 0, which is the desired result. The state-
ment P = 0 is a boundary value problem for N that we
demonstrate is solvable in the following section, which
completes our proof of the variational principle.

B. Auxiliary boundary value problems

The boundary value problem for N is

. D1
DN — > Iv —o0, (65a)
a € _
(n DoN KN) , =0 (65b)
N‘ —0, 65
. (65¢)
N’ -0 (65d)

Here, © is the warp factor of the asymptotic RS solution
(1) and € = +£1 is the sign of each brane tension. The
result (65a) follows from setting P = hy, P = 0, using
(52) and R = 2A. The boundary conditions (65¢) and
(65d) are straightforward. Our main concern is the brane
boundary condition (65b), which results from using

2Kab = ncac’Yab + ’Yacabnc + Vbcaanc . (66)

Now Yit = —N2 and Yta = 0 gives 2Ktt = ncﬁc(—NQ),
and the Israel condition K = (¢/€)7y: then gives (65b).
As shown in [33], the following approach can put a
Robin boundary condition (65b) in a standard form while
keeping its associated elliptic equation (65a) in a di-
vergence form. Let w, be any vector field and define
WeN = (Dg — wg)N. Then (65a) and (65b) become

(D—1)
02

D WoN + w*DyN + [Daw“ - } N=0 (67)

and

[n“WaN + (n“wa — %) N}

L =0 (68)

As in [33], we now choose w, so (n®w, —¢/€) > 0 at
B;, which is the usual prerequisite for applying an exis-
tence theorem to a boundary value problem of the form
(67)—(68). For example, we choose w, = —n,/¢, where
ng is any vector field, pointing from B; to Bs, that in-
terpolates from the inward unit normal (—n,) of B; to
the outward unit normal n, of By. Then n®n, = —¢ at
each brane B;, and w, = —n4/¢ gives (n®w, —e/f) =0
n (68). With the brane boundary conditions in standard
form, and the remaining standard (Dirichlet) boundary
conditions, (65c) and (65d), we then readily infer that
the boundary value problem (65) for N is solvable.

We now turn to the boundary value problem for dh,
which we will state in terms of a scalar quantity (6h/h),

(D-1)

D*Da(6h/h) — = (6h/h) = f ,  (692)
[naDa(ah/h) - % (6h/h)] ‘Bi — fi,  (69b)
n*Da(Oh/h)| = fu . (69¢)

(6h/h) ]B 0. (69d)

oo

As above, ¢ = £1 is the sign of each brane tension. The
result (69a) follows from substituting (61) into the lin-
earized constraint (53) with R = 2A. We will give the
source terms and derive the boundary conditions below.

The key point is that (69) is a well posed bound-
ary value problem. The elliptic equation (69a) and the
boundary conditions (69b) are similar in form to (65a)
and (65b) in the previous boundary value problem (65).
The remaining boundary conditions, (69¢) and (69d), are
well known types: Neumann and Dirichlet, respectively.



In the remainder of this section, we provide the details
of the source terms and the boundary conditions in (69).
The source terms in (69) are

D-1 a b TF ab TF
fE = m [D D ((Shab) - R ((Shab) } 5

D— D
_fi = ) Uab’rLCDc(éhab)TF + %nanb(éhab)TF )

1
o =53 (2K (6hap)"F — 0™ n°De(6hap) "] .
The boundary conditions on dh are given by varying
those on hgp, which at the apparent horizon and the
branes involve the extrinsic curvature kqp, = 0,°D:np,

= om. (70)

k‘ —0, ky
bBi 4

Bu

By varying these, we obtain

5k’ —0, ok
By

=0 s 6kab
B;

- %5% . (71)

k3

To evaluate these, we use the general results

25kab = (ncnd5hcd) kab — UacUbdancdf y (72&)
—26k = 2k®S0q, — knn’0hay + 0°nCJape , (72D)
Jabe = DgOhpe + Dydhge — Dobhgy - (72C)

The boundary conditions at the branes (69b) and the
apparent horizon (69c) result from evaluating 6k = 0
using (61), (70), and (72b). The last relation in (71)
expresses brane boundary conditions for (6hap)TF, since
it reduces to a form independent of §h after substituting
(3), (61), (69b), and (72a).

C. An application of the variational principle

Here we demonstrate the utility of the variational prin-
ciple, by applying it to a trial solution and reproducing
the static asymptotically RS black string [25], which is
the only known exact solution for an asymptotically RS
black object in 5-dimensional spacetime. We first spec-
ify a trial geometry for an initially static a black string.
After evaluating the apparent horizon area A and mass
M, we then apply the variational principle.

A black string is a set of lower dimensional black holes
stacked in an extra dimension Z, which is how we will
construct the trial geometry. We take

ds®> = Q(2)? [V(x, Z) dx* + dZ?] | (73)

where Q = ¢/Z and the branes are the surfaces Z = 73
and Z = Zy. We will take

\1/_1+p°( L ! ) (74)

2 |x +x0|  |x —x0]

Here pg > 0 is a constant and x¢ = (0,0, d), using Carte-
sian coordinates x = (z,y,z) with origin at x = 0.

We choose a function d(Z) as follows. The constraint,
R = —12/¢2, after linearizing in d and its derivatives,
has the solution d(Z) = do + coZ*, where ¢y and dy are
constants. For the case ¢y = 0, (74) is an exact solution
and the RS1 limit (Qg — 0) is easily taken. We will work
in RS2 and take ¢y as a small nonzero parameter.

On each slice Z=constant, we now transform to spher-
ical coordinates centered at x = 0, with z = pcos#f, and
expand VU in Legendre polynomials Py (cos @) for p > d,

00 d 27
Wzl—l—@—i—@z (—) Py;(cosb) . (75)
PP p

j=1

On each slice Z=constant, we will take pg > d,
which describes a 3-dimensional black hole [34], and d
parametrizes the 2-dimensional apparent horizon’s dis-
tortion from the sphere p = po. The full 3-dimensional
apparent horizon (the union of the 2-dimensional appar-
ent horizons) therefore describes a distorted black string.

On each slice Z=constant, as in [34], the surface p(6) of
the 2-dimensional apparent horizon can be found as the
sum of Legendre polynomials that minimizes the area As,

T 2
Ay = 27r/ doTpy[p? + (@) . (76)
0 \/ do

To lowest order in (d/pp) < 1, we find the apparent
horizon on each slice Z=constant is

9 =
P() Po 2

13 (4) pemo| . )

This agrees with the numerical results of [34], and gives,
to lowest order in (d/po),

As(Z) = 64mp} ll —% (i>4] : (78)

Po

Integrating in Z gives the 3-dimensional area of the full
apparent horizon in the black string geometry,

Za
A= dZ Q3 Ay = 327w (pg - ﬂ) , (79)

Z 03
where, with €2; the warp factor at each brane,

800 dg €4

w=10(02-02%) , —_—
( ! 2) Q1Q2(21 + Q)

Q=dy+ (80)

We defined the mass M in (14), which for (75) gives
G5M = wpo - (81)

To lowest order in @, combining (79)—(81) gives

(GZJM)QZ (32iw> +? (32;1%)@. (82)




We now apply our variational principle: we extremize M
in (82) at fixed A, ¢, and ;. This yields the conditions
co = 0 and dy = 0, which we conclude describes a static
black string. We can verify this directly, since d = 0 in
(75) gives ¥ = 1+ po/p and the apparent horizon (77) is
located at p = pg. This is indeed the initial geometry of
the static black string [25] in isotropic coordinates.

We can also deduce that the evolution of the distorted
black string, with d # 0, will not be static, since each
slice Z=constant is the initial geometry for an attracting
two-body problem [34], and the 2-dimensional apparent
horizon considered above describes a black hole formed
by, and surrounding, two closely separated smaller black
holes (with a small minimal surface surrounding each
point x = +xp). From the perspective in each slice
Z=constant, as in [34], the two small interior black holes
will coalesce as the initial data evolves, due to mutual
gravitational attraction. This results in a time-dependent
geometry on each slice Z=constant, and results in a time-
dependent black string geometry in the bulk perspective.

VII. CONCLUSION

We have derived the first law for a static asymptot-
ically RS black hole, whose mass M is defined in (14)
and (16). Four versions of this law are given in (46)—(50)
for different choices of variations. In both RS1 and RS2,
the general first law contains brane terms and a thermo-
dynamic volume. In RS1, we can define both a thermo-
dynamic volume and a gravitational tension, due to the
presence of both a cosmological constant and a compact
interbrane distance. This differs from the first law in
previously studied spacetimes (with either a cosmologi-
cal constant or a compact dimension), where the analogs
of our thermodynamic volume and gravitational tension
are isolated from each other, appearing in the separate
first laws of separate spacetimes.

The variational principle we developed in this paper
states that for an asymptotically RS black hole initially
at rest, initial data that extremizes the mass yields a
static black hole, for variations at fixed values of the ap-
parent horizon area and the remaining physical variables
in the first law (L, ;, £, A, \;). It would be interesting
to investigate the consequences of holding fewer variables
fixed. An example of this in four-dimensional spacetime
is Hawking’s proof [16] that the static (Schwarzschild)
black hole is an extremum of mass at fixed apparent hori-
zon area but arbitrary angular momentum.

Our example application of the variational principle to
a trial solution serves as a prelude to the approach we will
take in a sequel paper [35]. In [35], we will conclude that
solutions exist for small static black holes in RS2, both
on and off the brane, as special members of a general
family of initially static black holes. This family of black
hole initial data will also indicate that a small black hole
on an orbifold-symmetric brane in RS2 is stable against
leaving the brane, which generalizes to other models with

an orbifold-symmetric brane. If we inhabit such a brane,
then small black holes, if produced in high energy collider
experiments on the brane, could be studied directly (in-
stead of leaving behind a signature of missing energy),
which is an important result for future experiments at
the LHC.
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Appendix A: Mass counterterm M.,

In this appendix, we derive the mass counterterm M,
from (6) and (13), and thereby prove the mass formula
(14). We begin with the variation of (13),

d%ﬁ <\/E'y“b5”yab+ 5—\%) . (A1)

The standard variation of the Ricci scalar is

5Sct = -

SR = —R®664p + dav® (A2)

where v¢ = 250124 00 and cza is the covariant derivative
associated with 645. This gives

55., — / B2 Sy, — (8v27Gs)I,  (A3)

where S? is given below and, with J = 4/ —Wthz/’/%,
1= /dtdZ /d%\/g [da(Jua) —U“JQJ} .

We conclude that I = 0, as follows. The first term is
a total divergence, but the 2-sphere has no boundary.
Also, d,J = 0 since we take J independent of the angular
coordinates. Then (A3) gives

(A4)

0Set
St = . A5
5'7(117 ( )
In (A1) we now use
Y50, = Y 5vet + 670060y + 07 %5022 (A6)
which gives
0Set 1 P
= — R , AT7a
5'71515 8\/§7TG5 Rt ( )

650 1 (.. R
ot _ ok (er =) 0 am
S5 8V2mGs V| <J R) (AT)
550 R el
—_ - - R .
svarGs V7

50’ZZ

(A7c)



The mass counterterm from (6) and (A7a) is then

V2 [ [
87Cs d’x\/ —7R .

Combining this with (5) now gives the mass formula (14).

Mct =

(A8)

Appendix B: Boundary term Ig at infinity

Here we evaluate the term Ip__ given by (37) at the
boundary p — oco. Throughout this appendix, ~ denotes
evaluating at leading order and neglecting terms of higher
order in 1/p. We will relate Ip__ to the mass variation
0M and additional terms. The mass is a sum of two
terms, M = M + M_;, whose individual variations are

~ 1
SM = — e /oo d*z [N§ (Vo k) ++okéN] (B1)
and
SMey = / dr [ Mt 5o+ V2R N (B2)
B.. 00 b 871G

Note Mt /d0ap = —0Set/d0qp since [ dt My = —Se by
(A8) and (13). From (A7b) and (A7c), we find

6Mct
6Uab

N
- ?ﬁsab = Xxab (B3)

at large p, where the quantities X are given below.
Using (B1)-(B3), we rewrite the boundary term (37) as

Ip.. = —6M + / 3z X604

oo

1/d3x\/5(k—\/ﬁ)5zv. (B4)

- 87TG5 o
For the metric asymptotics (15), the quantities X are
Qsin
167Gy XXX ~ 2 X (at+ap,+az), (Bba)
I
16mG5 X9 ~ iy (at +a,+az) , (B5b)
167G5 X %7 ~ Qsin x (a; + 2a,) . (B5c¢)

Here x is the polar angle on the 2-sphere with radius p.
We now proceed to evaluate (B4). We begin with three
convenient variables (¢, Z1, Z2) and then express results
in terms of three physical variables (£, 1, Q3). We first
consider the variation 0¢ at fixed (Z1, Z2). At large p,
we have dgqp =~ 2(6€/€)gap. Then

/ B XS0, = Foodl (B6)
Boo
where
1 [ 5
= dzZ 2a,) . B
f 2G5£ /Z1 (at+ ap) ( 7)

10

This is entirely due to dozz since the integral contribu-
tions from doyg and doy, vanish by the identity (18a).
This identity can also be used to rewrite F in the form
given in (42). The last line in (B4) yields M §¢/¢. Hence
(B4) yields, at fixed (Z1, Z2),

M
(U.)z, 72, = —0M + (]:oo + 7) ol . (B8)

We now consider variations (671, 6Z2) at fixed £. We
then perform a coordinate transformation

Z—Z=01-Z—-( (B9)

such that the branes again reside at Z = Z;. The required
transformation is

0Zy — 07 Z96Z1 — Z16Z
_Jez2 704 , ek Rt Bt S (B10)
Z2 — Zl Z2 - Zl
At large p, the resulting metric perturbation is
Sgap ~ 202 |€ (55(5;}2 — nab) — anab , (B11)

14

where 7,3 is the 5-dimensional Minkowski metric. Then
(B4) becomes, at fixed £,

(Ip.)y=—0M—eM —-(T, (B12)
where the integral 7 is
3 M
I=—— dz Q) 2 . B13

For the case when all three quantities (¢, Z;, Zs2) are
varied, we combine (B8) and (B12) to obtain

Ip. = —0M + <]-'oo + %) §0—eM—CT. (Bl4)

We can evaluate the integral Z using (17a) and the iden-
tity (18b). We then express the result in terms of M and
Q using (22) and (25). This gives
0% — 03 39 012052
W=M|———)—-—F|=———= ) - (BI5
(le‘ —0?) 265 \o2—qp) - (B

We also express € and ( in terms of three physical vari-
ables (¢, Q1, ) using

57; = 2 <5e—£mi) . (B16)

Q Q;

Using (B15) and (B16) in (B14) then yields the result for
Ip_ given in (41).



Appendix C: Gauge invariance

It is important to confirm that our quantities (M, O,
V, L, To, T;, U;) are gauge invariant at infinity. As one
can verify, these quantities are invariant under the follow-
ing metric transformation that leaves the branes fixed,

QI
@y = ay — Gw = 7w, w(Zy) =w(Zy) =0, (Cl)
with’ = d/dZ. This is generated by the coordinate trans-
formation z* — x® + &%, where to leading order in 1/p,

Z

e :% : L w=W. (C2)

In particular, we consider the quantity F, and write

F=Fs+Fuo (C3)

11

where Fy; is the sum of bulk and brane terms in (44),

oA
87TG5

Fx ol

/ d*cNVh + Ig, + Ip, . (C4)
b))

We note that F is gauge invariant, but neither Fyx nor
Foo is separately invariant, since they transform as

]:E—>]:E_SD ’ -7:00_)‘/—:004_907 (05)
where
3 Z2 A
= — dz Q) . C6
¥ 2G5€2/Zl w (C6)
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