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Non–minimal matter couplings have recently been considered in the context of massive gravity
and multi–gravity. These couplings are free of the Boulware–Deser ghost in the decoupling limit
and can thus be considered within an Effective Field Theory setup. Beyond the decoupling limit
the ghost was shown to reemerge in the metric formulation of the theory. Recently it was argued
that this pathology is absent when formulated in terms of unconstrained vielbeins. We investigate
this possibility and show that the Boulware–Deser ghost is always present beyond the decoupling
limit in any dimension larger than two. We also show that the metric and vielbein formulations
have an identical ghost–free decoupling limit. Finally we extend these arguments to more generic
multi–gravity theories and argue that for any dimension larger than two a ghost is also present in
the vielbein formulation whenever the symmetric vielbein condition is spoiled and the equivalence
with the metric formulation is lost.

Introduction .— With the successful development of
ghost–free massive gravity [1, 2], bi–gravity [3] and
multi–gravity [4] theories (see Refs. [5, 6] for reviews),
the question has naturally arisen of whether there are
more general consistent ghost–free couplings to matter.
Unlike GR, non–minimal couplings to both metrics are
not forbidden by any symmetry, and will inevitably arise
in any low energy effective field theory of massive gravity
or multi–gravity. A number of possible phenomenological
couplings to matter have been explored in the literature
[7–19] and their theoretical consistency was explored in
[20–27].
As is well known, all multi–gravity theories have a

low strong coupling scale Λ which lies parametrically
between the graviton mass and the Planck mass. For
massive gravity theories with a fixed reference metric,

in D dimensions the scale is Λ = (m2M
(D−2)/2
Pl )2/(D+2).

For multi–gravity it is a generalization which is typically
dominated by the lowest non–zero graviton mass and the
lowest Planck scale [28, 29]. If these theories are viewed
in terms of an effective field theory (EFT), then Λ may
be taken to be the cutoff of the EFT. In which case, we
only require for consistency of the theory, the absence
of ghosts below the cutoff scale Λ. In particular any
non–minimal matter coupling which remains ghost–free
in the decoupling limit (DL) MPl → ∞ keeping Λ fixed
is considered acceptable from an EFT point of view. In
a recent work precisely such a coupling was proposed in
the metric formulation of massive gravity and bi–metric
theories, and amounts to an effective ‘composite’ metric
geff in [21],

geffµν = gµν + 2αgµα

(

√

g−1f
)α

ν
+ α2fµν , (1)

where gµν and fµν are two metrics (in bi–gravity they
are the two dynamical metrics, while in massive grav-
ity gµν can represent the dynamical metric and fµν the
Minkowski reference metric).
In terms of the effective metric (1), the coupling to

matter then takes the standard form,

Lmatter = Lg (g, ∂ψg, ψg) + Lf (f, ∂ψf , ψf )

+ Leff (geff , ∂χ, χ) , (2)

where ψg, ψf and χ symbolize different matter sectors.
The generalization of the coupling to the effective met-
ric (1) was also considered for multi–gravity in [8]. In
the vielbein formalism the effective vielbein takes the re-
markable simple form

eeff =

N
∑

I=1

αIe
(I) , (3)

where e(I) is the vielbein for the metric g
(I)
µν , and the αI

are arbitrary dimensionless coefficients.

Vainshtein .— As we have emphasized, from an EFT
point of view the absence of ghosts below Λ is a suffi-
cient criterion. Nevertheless, it has been traditional to
ask for a tighter restriction in massive gravity theories.
If the additional interactions were ghost–free nonlinearly,
then the Vainshtein mechanism allows us to make sense
of the theory above the scale Λ, by redressing the cut-
off scale around certain backgrounds. Thus in order to
address the viability of the Vainshtein mechanism, it is
natural to ask whether there exist any non–minimal cou-
plings to matter which are ghost–free nonlinearly. In the
case of the composite metric proposal of [21] this was
definitively shown to be ghostly [23, 24]. More recently,
it has been argued that the unconstrained vielbein ver-
sion of this interaction was ghost–free [26]. A priori this
is not a contradiction since the vielbein and metric for-
mulations are not equivalent. This is because integrating
out Lorentz transformations that encode the extra vari-
ables in the vielbein no longer imposes the symmetric
vielbein (or Deser–van Nieuwenhuizen) condition [30, 31],
but a non–trivial condition which depends on the matter
content. As such the metric formulation of the uncon-
strained vielbein formulation would contain highly non–



2

trivial non–minimal matter couplings and would differ
from a effective coupling to (1).

Boulware–Deser ghost .— Before moving to the core
of the argument, we first clarify what we mean by the
Boulware–Deser ghost as first discovered in [32]. The
Boulware–Deser (BD) ghost is usually associated with
the loss of the primary constraint generated by the lapse
N . However one can always push the problem to the
level of the secondary constraints by introducing auxil-
iary variables. For instance one may consider the Hamil-
tonianH = NR0+N

2Q, where R0 andQ are functions of
the dynamical phase space variables. In this formulation
it is clear that N does not generate a primary constraint.
For this example, we can restore that primary constraint
at the price of spoiling the secondary constraints by in-
troducing an auxiliary variable σ and conjugate momen-
tum pσ, with H = N(R0 + σQ) − 1

4σ
2Q + λpσ, where

λ is a Lagrange multiplier that ensures that pσ = 0. In
that formulation, the primary constraint associated with
the lapse N survives C1,I = R0 + σQ ≈ 0. In addi-
tion, there we have another primary constraint namely
C2,I = pσ ≈ 0. The problem manifests itself at the level
of the secondary constraints, where the one associated
with C2,I now involves the lapse:

C2,II = {C2,I , H} = −∂H
∂σ

= Q

(

N − 1

2
σ

)

≈ 0 , (4)

and this equation can be solved for the lapse N rather
than one of the dynamical variables and so is no longer
a true constraint. Similarly the secondary constraint
associated with C1,I can now be solved for the Lagrange
multiplier λ and we thus loose two secondary constraints.

In the formulation of [26] the primary constraint asso-
ciated with N exists in all dimensions, but the existence
of secondary constraints needed to ensure the correct
number of degrees of freedom in D > 2 dimensions
are not guaranteed1. In that case the analogue of the
auxiliary variable σ are the Lorentz rotations (to be
defined below) and the number of secondary constraints
associated with them increases with the number of
dimensions. In this language we may thus wonder if
the number of ghost would increase with the number
of dimensions. The answer is no. The reason for that
is while all the 1

2 (D − 2)(D − 1) secondary constraints
associated with the rotations involve the lapse, it is
always possible to reformulate them in a way where
only one of these equations depend on the lapse and
the others are free of the lapse and therefore genuinely
generate 1

2 (D−2)(D−1)−1 secondary constraints. The

1 We thank K. Hinterbichler and R. Rosen for discussions on this
point.

second secondary constraint which is lost is the same
one as that associated with C1,I which can be solved
for one the Lagrange multipliers λ and so a total of
two secondary constraints are lost. So even though the
number of auxiliary variables increases with the number
of dimensions, the number of ghosts does not. In this
sense the ghost found here can be attributed to the BD
ghost as opposed to the ghosts found in [33] and in [34]
which do increase with the number of dimensions.

In this manuscript we shall diagnoze the problem di-
rectly at the level of the primary constraint by integrat-
ing out the auxiliary variables (namely the rotations). In
this language it is more manifest that we are still dealing
with the BD ghost, i.e. a failure of the Hamiltonian to
be linear in N .

Counting .— To understand the loss of the BD con-
straint, let us first consider the massive gravity limit.
Since massive gravity arises as a consistent decoupling
limit of multi–gravity theories, the existence of a ghost
in the massive gravity limit implies a ghost in any multi–
gravity extension by the usual reasoning.
In what follows we use the notation that greek in-

dices represent space–time indices µ, ν = 0, · · · , D − 1,
i, j = 1, · · · , D−1 run over space dimensions, A,B, · · · =
0, · · · , D − 1 run over all the Lorentz directions while
a, b, · · · = 1, · · · , D − 1 run over only the space Lorentz
directions.
We begin with the vielbein formulation of massive

gravity with the usual EH kinetic term and with mat-
ter coupling to the composite vielbein e + αf . Working
in unitary gauge f A

µ = δ A
µ , we may decompose the dy-

namical vielbein ea into a Lorentz boost/rotation of an
upper–triangular vielbein which contains the same num-
ber of variables as the metric [4]

e A
µ = ΛA

BE
B

µ (5)

where EA is upper–triangular along the time–direction
and symmetric in the space–space directions. Specifically
it takes the form

E0 = Ndt (6)

Ea = N iE a
i dt+ E a

i dxi , (7)

where E a
i = E i

a. The spatial 3–metric is gij =
E a

i E
b

j δab. In general we may factorize the Lorentz
transformations into

ΛA
B = ΛA

C(boost)Λ
C
B(rotations) , (8)

where the rotations act only in the space–space direc-
tions.
For instance in D = 3 dimensions, we express the nine

components of the vielbein in terms of a lapse N , two
shift N i, two boosts va, one rotation r and the three
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components of a symmetric spatial vielbein E a
i = E i

a

e A
µ =





Nγ +N ie a
i va Nva +N ie b

i

(

δab + 1
γ+1vbv

a
)

e a
i va e b

i

(

δab + 1
γ+1vbv

a
)



 ,

where γ is given by γ =
√
1 + v2 and e a

i is the rotated
version of E a

i ,

e a
i = (Λr)

a
bE

b
i =

(

γr r
−r γr

)(

E 1
1 E 2

1

E 2
1 E 2

2

)

, (9)

with γr =
√
1− r2. In arbitrary dimensions, this decom-

position may be summarized as

D2 (vielbein) = (D − 1) (boosts) (10)

+
1

2
(D − 2)(D − 1) (rotations)

+ D (lapse and shift)

+
1

2
D(D − 1) (spatial metric) ,

where the spatial metric is given uniquely in terms of
the spatial symmetric vielbein E a

i .

Now the crucial property is that as long as we choose
the EH kinetic term, the (D − 1) boosts and the 1

2 (D −
2)(D − 1) rotations drop out of the kinetic term, mean-
ing that in unitary gauge they are non–dynamical vari-
ables which do not enter the phase space symplectic form.
In addition, the lapse and shift N , N i are also non–
dynamical, leading to a total of 1

2D(D + 1) auxiliary
variables. The 1

2D(D − 1) E a
i are dynamical and after

integrating out the spin–connection all receive a kinetic
term. If none of the auxiliary variable played the role of
a Lagrange multiplier, the total dimension of the phase
space would be

Phase space dimension = 2×
(

1

2
D(D − 1)

)

. (11)

On the other hand the number of degrees of freedom of
a massive graviton in D dimensions, is that of a massless
one in D + 1 dimensions, namely 1

2D(D − 1) − 1.
As a result we would obtain in any dimension one
additional degree of freedom which is the BD ghost. We
thus require for the absence of the BD ghost that one
combination of the auxiliary variables acts as a Lagrange
multiplier.

In [26] the existence of this additional constraint was
argued as follows. Since the Hamiltonian is clearly lin-
ear in the shift N i, we may use the shift constraint to
solve for the D − 1 Lorentz boosts in a manner which
preserves linearity in N . This then ensures that N im-
poses a constraint, and so naively the BD ghost must be
absent. This argument is correct in D = 2 since their are

no rotations. However in all dimensions D > 2, it is nec-
essary to further check that it is possible to integrate out
the rotations in a manner which preserves the linearity
in N . Equivalently we may use the fact that since the
rotations do not have a kinetic term, we can introduce
a momentum conjugate for them and an additional pri-
mary constraint that they have vanishing momenta. For
the counting to work out, these must lead to secondary
constraints. The secondary constraints associated with
the vanishing of the momentum conjugate for the rota-
tions are none other than the space-space part of the
symmetric vielbein condition and the requirement that
these are truly constraints is equivalent to asking that
the rotations can be integrated out in a manner which
preserves linearity in N . The arguments of [26] assumed
the secondary constraints which fix the rotations would
arise and this is what we find not to be the case.

Symmetric Vielbein Condition .— In the case of mas-
sive gravity with minimal coupling to matter the sec-
ondary constraint exists and this can be understood as
follows: As is well known, in the case of minimal cou-
pling to matter, varying the action with respect to the
boosts and rotations reproduces the symmetric vielbein
condition2

e A
µ f B

ν ηAB = e A
ν f B

µ ηAB . (12)

If we consider only the space–space part of this equa-
tion, e A

i f B
j ηAB = e A

j f B
i ηAB then those constitute

1
2 (D − 2)(D − 1) equations. It is precisely these space-
space parts that arise as the secondary constraints
associated with the vanishing of the momentum conju-
gate to the rotations.

Crucially since e A
i is independent of the lapse and

shift, then these 1
2 (D − 2)(D − 1) equations may be

solved algebraically to determine the 1
2 (D − 2)(D − 1)

Lorentz rotations in terms of E a
i and the boosts va,

and these solutions are independent of N and N i. In
other words these are truly constraints on the system
which can be used to fix the rotations. Substituting
back into the action, the Hamiltonian remains linear in
N i and the associated N i constraints may be used to
solve for va. This leaves behind the N which imposes
the final primary constraint which removes the BD ghost.

In the case of the non–minimal matter coupling, the
symmetric vielbein condition is lost and gets sourced in-
stead by the stress–energy tensor of the non–minimally
coupled matter fields. Since this stress–energy depends

2 There generically exist other branches of solutions of these
equations in which the symmetric vielbein condition does not
hold (see for example [35, 36]), however these are disconnected
branches in which ghosts are present.
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on the shift and lapse, it follows that these 1
2 (D−2)(D−1)

equations can be solved to determine the 1
2 (D−2)(D−1)

Lorentz rotations in terms of not only E a
i and the boosts

va, but also N and N i. This dependence on the La-
grange multipliers means that these are not true con-
straints any more (or at least not all of these equations
are constraints). Plugging these expressions back in the
Hamiltonian, the latter will no longer be linear in the
shift and the lapse, hence spoiling the usual constraint
that removes the BD ghost. This argument works in all
dimensions D > 2 and for arbitrary matter fields. For
concreteness, we focus in D = 3 dimensions, with the
understanding that adding dimensions to the theory will
not alleviate the problem (quite the opposite).

Integrating out the auxiliary variables in massive

gravity .— In order to better compare with the case of
the non–minimal coupling, we start by looking at the
mass term explicitly. To simplify the discussion, we con-
sider the following mass term

Hmass =MPl
m2

2
ǫABC eA ∧ fB ∧ fC . (13)

Expressed in terms of the dynamical and auxiliary vari-
ables, the Hamiltonian for this mass term takes the form

HmGR = N0R+N iRi

+MPlm
2

[

Nγ + e a
i

(

δia +
viva
1 + γ

)

+N ie a
i va

]

.(14)

We can now integrate out the auxiliary variables as fol-
lows: We first solve the equation of motion for the shift
in terms of the boost vi which will then be expressed in
terms of the dynamical variables E a

i and the rotations,

MPlm
2e a

i va = −Ri . (15)

Even though vj depends on the rotations, the rotation
matrix Λr defined in (9) drops out of the inner product
v2. As a result the Lorentz factor γ is independent of

the rotation which only enter in e a
i

(

δia +
viva
1+γ

)

. Since

the lapse does not enter that expression, we can easily
integrate out the rotation without involving the lapse.
As a result the Hamiltonian remains linear in the lapse
after integration of the auxiliary variables.

Non–minimal coupling .— This result only holds
for a minimal matter coupling which does not include
the Lorentz Stückelberg fields. When matter is chosen
to couple to the composite vielbein, eeff = e + αf ,
this coupling breaks local Lorentz invariance, then the
matter Lagrangian contains explicit dependence on the
Lorentz boosts and rotations. Varying the action with
respect to these Lorentz boosts/rotations gives now a
modification of the symmetric vielbein condition which
includes a contribution from the matter Lagrangian.
However generically this condition depends explicitly on

N and N i. We may continue to solve the space–space
component of this equation for the Lorentz rotations,
but the solution will now depend on N . Substituting
back in the action, this will generate non–linearities in
N not present for minimal couplings. These destroy the
existence of the BD constraint as we shall see explicitly
below. Rather than re–deriving the modification of
the symmetric vielbein condition, we follow the same
procedure as previously and first solve the shift equation
for the boosts and then integrate out the rotation.

For definiteness we consider a scalar field χ. Its po-
tential goes as

√−geff V (χ) and can always be absorbed
in a redefinition of the mass terms and is thus ignored
here. Moreover to go straight to the point, we focus on
the ultra–local limit. This is justified since the gradient
terms for matter cannot possibly compensate the contri-
butions from the kinetic term. In other words, if a con-
straint is lost in the ultra–local limit then it is lost in the
whole theory. Then in terms of the momentum conjugate
pχ associated with the scalar field χ, the contribution to
the Hamiltonian from the non–minimal matter coupling
is

Hmatter =
1

2

Neff
√

det geffij

p2χ , (16)

where Neff is the effective lapse of the composite vielbein
geffij is the effective spatial metric. These effective quan-
tities can be expressed in terms of the shift, lapse, boost,
rotation and spatial symmetric vielbein of the dynamical
vielbein (see for instance Eq. (7) of Ref. [26]). As men-
tioned in Ref. [26], the effective lapse Neff is linear in the
shift and lapse N i and N and geffij is independent of the

shift and lapse. Notice however that both Neff and geffij
depend non–trivially on the rotations.
The exact expression of the effective quantities in terms

of the dynamical metric is complicated but for the pur-
pose of this discussion, it is sufficient to perform an ex-
pansion in α (recalling that α = 0 corresponds to the
minimal matter coupling). Once again for concreteness
we also work in D = 3 dimensions, although the results
are generalizable to any D > 2 dimensions.
In terms of the lapse, shift, boost and spatial vielbein,

the non–minimal matter Hamiltonian (16) takes the form
to second order in the parameter α

Hmatter =
1

2

N√
g
p2χ +

αp2χ√
g

[

(N ivi + γ)− N

2
√
g
G(e, vi)

]

+
α2p2χ
2g

[

(1− 2γ2)e i
i + (1 + 2γ)e a

i

viva
1 + γ

+ N ivjekℓ

(

δki δ
ℓ
j − 2γδijδ

kℓ + 2δij
vkvℓ

1 + γ

)

+ NQ(e, vi)

]

+O
(

α3
)

, (17)
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where g denotes the determinant of the spatial metric,
g = det gij and is invariant under rotations. In D = 3
dimensions, g = (ǫijǫabe

a
i e

b
j )2 = (ǫijǫabE

a
i E

b
j )2. G and

Q are functions of the boost and the rotation given by

G = ǫijǫab

(

δai +
viv

a

1 + γ

)

e b
j , (18)

and

Q = eijekℓ

[

− (1 + γ)(8− 3γ − 6γ2 + 2γ3)δijδkℓ

+ (12 + 7γ − 4γ2)δijvkvℓ + (1 + γ)(−3 + γ)δikvjvℓ

− (1 + γ)δiℓδkj − (2 + γ)δiℓvkvj − vivjvkvℓ

]

. (19)

Integrating out the auxiliary variables.— We may
now integrate out the auxiliary variables as we did in the
case of massive gravity. The shift equation leads to the
equation for the boosts:

MPlm
2e a

i va + α
p2χ√
g
vi (20)

+α2
p2χ
2g
vjekℓ

(

δki δ
ℓ
j − 2γδijδ

kℓ + 2δij
vkvℓ

1 + γ

)

= −Ri ,

which can be easily solved perturbatively in α to obtain
an expression for the boosts in terms of the symmetric
vielbein Eij and the rotation. Next we derive the equa-
tion of motion for the rotation. To simplify this deriva-
tion, we perform a perturbation in Ri. To quadratic order
in Ri, the rotation r defined in (9) satisfies

r =
ǫijRiE

k
j Rk

8M2
Plm

4[E]
√
g

[

1 +
αp2χ

4MPlm2g
(4N − [E]) (21)

−
α2p2χ

2MPlm2g2

{

√
g

(

1

2
[E2]− 3

2
[E]2 + 6N [E]

)

−
p2χ

8MPlm2

(

1

2
[E2] +

1

2
[E]2 − 8[E]N + 4N2

)

}]

+ O
(

R3
i /M

3
Plm

6, α3
)

,

where we used the notation [E] = E i
i and [E2] = E j

i E
i

j .
We now see explicitly that the rotation depends on the
lapse N and so integrating out the rotation spoils the
linearity of the Hamiltonian in the lapse. To leading or-
der in α, the rotation is ‘only’ linear in the lapse but to
second order in α the non–linear dependence in the lapse
becomes fatal. Integrating out the rotation, we find the

Hamiltonian now carries a piece non–linear in the lapse3,

Htotal = H0 +H1N (22)

+
α2p4χ

64M5
Plm

10[E]g3
(

ǫijRiE
k

j Rk

)2
N2

+ O
(

R5
i /M

5
Plm

10, α3
)

.

As a result the Hamiltonian is actually genuinely non–
linear in the lapse as soon as the non–minimal coupling
is considered and the BD constraint is lost in the full
theory.

Extension to bi–gravity and multi–gravity .—
These arguments may easily be extended to multi–
gravity theories. For instance in the case of bi–gravity,
we must add to the set of auxiliary variables, the lapse
and shift of the f metric, M,M i. The full set of auxil-
iary variables are then the 1

2D(D + 3) variables {µI} =
{Nµ,Mµ,Λ a

b }. Since bi–gravity caries one copy of dif-
feomorphisms, we are guaranteed the existence of D first
class constraints. This means that to ensure the absence
of a BD ghost, we require that the Hamiltonian remains
linear in the two lapses N0 andM0 and the shifts M i af-
ter integrating out all the Lorentz Stückelberg Λ a

b . That
this is not the case in the presence of matter coupled to
the composite vielbein follows either by direct calculation
or by recognizing that since massive gravity arises in the
decoupling limit Mf → 0, and in this limit Mµ decou-
ples. Since this is a smooth limit, if the Hamiltonian was
linear in the lapse N in bi–gravity then it would be so
in the massive gravity limit which is a contradiction. In
other words a BD ghost cannot reappear from a consis-
tent decoupling limit. The same argument rules out all
the multi–gravity extensions.

Decoupling Limit .— Although as we have emphasized,
the unconstrained vielbein formulation is fundamentally
different than the metric formulation, both have the same
Λ decoupling limit. The vielbein derivation of the decou-
pling limit including the vector degrees of freedom was
given for massive gravity in [37, 38], bi–gravity in [39]
and more recently in multi–gravity in [29]. To take this
limit, we move out of unitary gauge and work with the
reference vielbein in the form

fa = (eλ)abdφ
b , (23)

where λab are the Lorentz Stückelberg fields and φa the
diffeomorphism Stückelberg fields. We may for conve-

3 Even though we have only solved the rotation to quadratic order
in Ri it is sufficient to derive the Hamiltonian to quartic order
in Ri because the Hamiltonian does not carry any piece in the
rotation which is not also multiplied by R2

i
. In other words, if we

set Ri → ǫRi and the rotation r → ǫ2r, then the Hamiltonian
goes symbolically as H = 1 + ǫ2R2

i
+ ǫ4(R4

i
+ rR2

i
), so we only

need to solve the rotation to quadratic order in Ri to know the
Hamiltonian to quartic order in Ri.
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nience choose ea to respect the symmetric vielbein con-
dition. We are allowed to do this because on introducing
the Lorentz Stückelberg fields, we recover a local Lorentz
symmetry which may then be used to set this condition
on the vielbeins. With this condition, ea then encode the
usual variables of the metric. Then the scalings which
determine the decoupling limit, which as usual are deter-
mined by canonically normalizing the quadratic fluctua-
tions, are in general dimensions,

ea = 1a +
1

M
(D−2)/2
Pl

va , (24)

φa = xa − 1

mM
(D−2)/2
Pl

Aa − 1

Λ2+(D−2)/2
∂aπ , (25)

λab =
1

mM
(D−2)/2
Pl

λ̂ab , (26)

were Λ(2+(D−2)/2) = m2M
(D−2)/2
Pl . In particular, in this

limit MPl → ∞ for fixed α, the composite vielbein is
given by

eaµ + αfa
µ = ((1 + α)δaµ − αΠa

µ) +O
(

1

mM
(D−2)/2
Pl

)

,(27)

where Πµν = Λ−(2+(D−2)/2)∂µ∂νπ. Following [21] we as-
sume that the matter which couples to this effective met-
ric, represented by χ, does not scale. In which case, in
the limit MPl → ∞, for fixed Λ, the matter Lagrangian
remains finite with the fields χ minimally coupled to the
composite metric

geffµν = ((1 + α)ηµν − αΠµν )
2 , (28)

and crucially Aa and λab drop out of the matter La-
grangian. Hence the Lorentz Stückelberg fields enter into
the DL precisely in the same way as they do in the case of
minimal coupling as given in [37, 38], which means that
they continue to impose the DL version of the symmetric
vielbein condition, i.e. the equation that determines λab
in terms of Aa. The Lorentz Stückelberg fields may then
be integrated out to generate the standard vector inter-
actions [37, 38]. The decoupling limit of the composite
vielbein formulation is then identical the DL of the com-
posite metric formulation [21], and the latter was shown
to be ghost–free in [21]. This ensures that the ghost is
absent below and around the scale Λ. Furthermore it
is consistent to take Vainshtein screened solutions with
Π ∼ 1 without the ghost being a problem.

Breaking the symmetric vielbein condition in

multi–gravity .— Another interesting situation where
the symmetric vielbein condition is broken and the equiv-
alence between the metric and vielbein formulation is
spoiled arises in the context of multi–gravity [4, 40] and
specifically in the presence of ‘cycles of interactions’. The
metric formulation of such theories was conjectured to

exhibit a ghost in [4] and this was proven directly in the
decoupling limit in [40]. The vielbein formulation on the
other hand breaks the symmetric vielbein condition. As
such the equivalence with the metric is broken, leaving
open the possibility that the vielbein formulation could
be better behaved. To better understand the implica-
tions of breaking the symmetric vielbein condition, we
consider a specific example in D = 3 dimensions (see
also [41]),

L = M1LEH[e1] +M2LEH[e2] (29)

+MPlm
2ǫABC

(

c1e
A
1 ∧ eB1 ∧ eC2

+c2e
A
2 ∧ eB2 ∧ fC + c3f

A ∧ fB ∧ eC1
)

,

where for simplicity we consider the “massive gravity”
limit of tri–gravity where one of the vielbein acts as a
reference metric fA. We are dealing with a loop as long
as none of the coefficients ci vanish. If c1c2c3 = 0 we
are then dealing with a line of interaction rather than a
cycle.

Proceeding as before, we can work in unitary gauge
for the reference vielbein fA

µ = δAµ and decompose each
of the two dynamical vielbein e1 and e2 into a Lorentz
transformation of an upper–triangular vielbein as in
Eqns. (5–9). We can now proceed as earlier: one can
use one set of shift equations to solve for one set of
boosts. Then the remaining auxiliary variables, namely
the remaining set of boosts and the two rotations can be
integrated.

In principle these integrations are quite involved but to
go straight to the point we can perform a perturbation in
the momentum constraints Ri. Then all the four boosts
start at first order in Ri. To zeroth order in Ri, the
Hamiltonian only includes the rotations and the lapses
as auxiliary variables,

H = N1R1,0 +N2R2,0 + 2m2MPl

{

c1[e1] + c3
√
g2 (30)

+ N1(c1 + c2ǫ
ijǫabe

a
1,i e

b
2,j) +N2 (c3[e2] + c2

√
g1)
}

+O(Ri) ,

where we use the same notation as before, [eσ] = e i
σ,i,

and
√
gσ = ǫijǫabe

a
σ,i e

b
σ,j, and Nσ=1,2 are the two lapses

(not to be confused with the shifts N i
σ).

Since the boosts vanish to that order in Ri, the three
symmetric vielbein conditions would read

A = E a
1,[1E

b
1,2]δab = 0 and r1 = r2 = 0 . (31)

On the other hand, the equations of motion with respect
to the rotation then leads to the modified symmetric viel-
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bein condition

− c2N1γr1

(

−γr2A+ r2
√

G12

)

(32)

+ r1

(

c1[E1] + c2N1(γr2
√

G12 + r2A)
)

= 0

− c2N1γr2

(

γr1A+ r1
√

G12

)

(33)

+ r2

(

c3N2[E2] + c2N1(γr1
√

G12 − r1A)
)

= 0 ,

with
√
G12 = ǫijǫabE

a
σ,i E

b
σ,j . To that order, the sym-

metric vielbein condition (31) is still a solution of the
equation, but it is not the most general one. More gen-
erally the two equations (32) and (33) can be solved for
r1 and r2 without specifying A. We can see immediately
that if c2 = 0, then the solution is simply r1 = r2 = 0
and we recover at least part of the symmetric vielbein
condition. If c1 = 0 or c3 = 0, one of the rotation still
vanishes while the other one is uniquely determined in
terms of the E a

σ,i without invoking the lapses. Only in
the case where c1c2c3 6= 0 and when A 6= 0, the rotations
depend non–trivially on the lapses. Integrating out the
rotations we find that the Hamiltonian is no longer linear
in the lapses and the theory excites the BD ghost

H = N1R1,0 +N2R2,0 + 2m2MPl

{

c3
√
g2 + c1[E1]

+ N1(c1 + c2
√

G12) +N2(c2
√
g1 + c3[E2])

+
c22N

2
1 (c1[E1] + c3N2[E2])A2

2
(

c1c3N2[E1][E2] + c2
√
G12N1 (c1[E1] + c3N2[E2])

)

+ O
(

A3
)

}

+O (Ri) . (34)

The contributions arising from integrating out the boosts
will all enter at least at first order in the momentum
constraints Ri and cannot change the nature of the result
obtained so far. We can see straight away that if we
break the symmetric vielbein condition and A 6= 0, then
as soon as c1c2c3 6= 0, the second line leads to terms
which are highly non–linear in the lapses and thus spoil
the constraints that should have been there to remove the
BD ghost. The only possible way out is then to solve the
equations of motion by imposing A = E a

1,[1E
b

1,2]δab =
0. However this would overconstrain the system, and
does not follow from any combination of equations of
motion. As a result we confirm that cycles of interactions
in multi–gravity break the symmetric vielbein condition
and also lead to a BD ghost in the unconstrained vielbein
language. This is consistent with the conclusions of [41].

Discussion .— To summarize, the composite vielbein
coupling is a ghost–free matter coupling in the decou-
pling limit, where it is equivalent to the composite
metric coupling considered in [21], however beyond the
decoupling limit it propagates a BD ghost, independently
on whether we consider it in the metric language or in
the unconstrained vielbein one. Although we have not

considered more general composite vielbein couplings
here, any other composite metric or vielbein will lead to
a ghost already in the decoupling limit4.

These results may viewed positively in two ways, on
the one hand there do exist ghost–free matter couplings
in the decoupling limit, and that is a sufficient for
validity of the EFT for energies E ≤ Λ. On the other
hand the absence of any non–minimal matter coupling,
like the absence of non–minimal kinetic terms [42], is
a remarkable testament to the power of field theory
consistency in determining unique interacting theories.

This analysis has also allowed us to study more
general theories where the symmetric vielbein condition
is broken and the vielbein formulation differs from
the metric one. We argue that in that case the BD is
also present in the vielbein formulation of the theory.
Taken together with the results of [34] we are led to
conclude that any consistent interacting theory for
massive spin-two fields must have a natural expression
in the metric language and that the vielbein formalism,
although a very powerful tool from the calculational
point of view and a very convenient formalism, does not
give rise to new interactions.
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