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No-hair like relations between the multipole moments of the exterior gravitational field of neutron
stars have recently been found to be approximately independent of the star’s internal structure. This
approximate, equation-of-state universality arises after one adimensionalizes the multipole moments
appropriately, which then begs the question of whether there are better ways to adimensionalize
the moments to obtain stronger universality. We here investigate this question in detail by consid-
ering slowly-rotating neutron stars to quartic-order in spin, an approximation that is valid for spin
frequencies roughly below 500 Hz, both in the non-relativistic limit and in full General Relativity.
We find that there exist normalizations that lead to stronger equation-of-state universality in the
relations among the moment of inertia and the quadrupole, octopole and hexadecapole moments
of neutron stars. We determine the optimal normalization that minimizes the equation-of-state de-
pendence in these relations. The results found here may have applications in the modeling of X-ray
pulses and atomic line profiles from millisecond pulsars with NICER and LOFT.

PACS numbers: 04.25.Nx,97.60.Jd

I. INTRODUCTION

One of the most interesting physical results that one
may derive from neutron star (NS) observations is a bet-
ter understanding of the supra-nuclear equation of state
(EoS), i.e. the relation between internal density and pres-
sure at densities beyond nuclear [1-3]. Imagine, for ex-
ample, that one were to observe the NS mass and its ra-
dius independently. Since the relation between the mass
and radius of a NS is highly sensitive to the EoS, such
observations would place strong constraints on the lat-
ter. But the NS radius, in particular, is currently very
hard to measure with sufficient accuracy, which makes
constraints on the EoSs not sufficiently strong [4, 5].

Ignorance of the EoS can have a strong impact on the
amount of information that can be extracted from astro-
physical observations. When the EoS is unknown, more
model parameters are typically needed to fit and inter-
pret the data. For example, in gravitational wave (GW)
astrophysics, waveform models are constructed to match-
filter the data. Such models are characterized by a set of
physical parameters that describe the system that gen-
erated the GWs, e.g. for NS binaries, these include the
masses, the spin angular momenta, the quadrupole mo-
ments and the tidal deformabilities. If the EoS is known,
one does not need to fit for the quadrupole moments
and the tidal deformabilities, since these are functions of
the masses and spins only. Lacking precise knowledge of
the EoS, these quantities must be included in the model
parameter list and fitted for, which then dilutes the ac-
curacy to which other parameters can be measured.

The aforementioned problem can be alleviated if EoS-
independent relations between the moment of inertia (1),
the tidal Love number and the quadrupole moment (Ma
or Q) of NSs can be found. The I-Love-Q relations [6, 7]
are not exactly EoS-independent, but they are approxi-
mately so, with variations only at the percent level. After
their initial discovery, the I-Love-Q relations were con-

firmed using different EoSs [8], using binary systems [9],
using magnetized NSs [10] and proto-NSs [11], allowing
for rapid rotation [12-16], through a post-Minkowskian
expansion [17], using NSs with anisotropic pressure [18]
and in alternative theories of gravity [6, 7, 19-22]. An
important extension of the I-Love-Q relations was also
recently found that relates all of the multipole moments
of the exterior gravitational field of NSs to just the
first three in an approximately EoS independent fash-
ion [14, 23].

The I-Q relations may help in the independent deter-
mination of the NS mass and radius [24-28] from obser-
vations of the X-ray pulse profiles of millisecond pulsars
with NICER [29] and LOFT [30, 31]. In principle, the X-
ray profile depends on the independent parameters (M,
R, I, My, £, 1), where M is the mass, R is the radius, f is
the spin frequency and ¢ is the inclination angle. The I-Q
relation can be used to eliminate Ms in favor of I, and for
stars with compactnesses C = M/R € (0.1,0.4), the I-C
relation is also approximately EoS independent. Such a
reduction in the model parameter space may allow one
to extract the mass and radius independently from X-ray
observations with perhaps a 5% accuracy [24, 26].

Given these accuracy requirements, one must ensure
that systematic errors are under control. One such source
of error is in the EoS variability of the I-Q relations at
the percent level. Another is in the effect of higher-order
multipole moments, like the octopole moment S5 and the
hexadecapole moment M,. These moments do not need
to be included as new parameters in the pulse profile
model because of the S3-Ms and the My-Ms relations
discovered in [14, 23], which are also approximately EoS
universal. The EoS universality in the latter, however,
is weaker than in the I-Q relations, with EoS variability
at the 15% level, which may introduce systematic errors
that could contaminate the extraction of the mass and
radius [14].

The EoS variability of the I-Q relations and the rela-



tions between higher multipole moments depends sensi-
tively on how they are adimensionalized. This is related
to the point made by [12] and [13], who discovered that
the I-Q relations are approximately universal for rapidly
rotating NSs provided one fixes a dimensionless spin pa-
rameter as one explores a sequence of NSs. If one fixes the
dimensional spin frequency, the EoS variability greatly
increases, as discovered in [32]. This, of course, does not
mean that the EoS universality is lost, but rather that an
inappropriate spin parameter was fixed in the sequence
of stars. Such findings provide clear evidence that the
EoS variability is sensitive to the parameters chosen to
construct the relations.

Can one then find a better set of normalization con-
stants that further reduces the EoS variability in the I-Q,
My-Ms and S3-Ms relations so that they can be used in
the modeling of the X-ray pulse profile? The answer to
this question is yes and it is the main topic of this pa-
per. When the I-Love-Q relations were discovered [7], the
moment of inertia was adimensionalized via I = I/M?3,
the quadrupole moment via My = — M, /(M3x?), the oc-
topole moment via Sz = —S3/(M*x?) and the hexade-
capole moment via My = M, /(M®x*), where y = S /M?
is a dimensionless spin-parameter, S; = I} is the spin
angular momentum, and € is the spin angular frequency.
With such choices, the I-Q, My-Ms and S3-Ms rela-
tions have an EoS variability of 2%, 15% and 8% re-
spectively [14] for slowly- or rapidly-rotating NSs and
realistic EoSs [33—41]. If instead of this choice, one nor-
malizes the multipole moments via 1"V = I/(M3C*'2),
M = —My/(M3X2C), S5e% = S3/(M*x*C%") and
MY = My/(M5x*C%%), then the maximum EoS vari-
ability in the new I-Q, M,-M, and Ss3-M, decreases by
a factor of 2 or 3, down to ~ 1%, ~ 6%, and ~ 2%
respectively, for slowly-rotating NSs with the same EoSs.

The above choices of normalization are not unique, and
in fact, there is an entire family of normalizations that
minimizes the degree of EoS variability. To find this fam-
ily, we divide our study in two parts: (i) an analytic, non-
relativistic treatment, where we consider polytropic EoS
with index n € (0,1); and (ii) a numerical, fully relativis-
tic analysis where we consider realistic EoS [33-41]. In
both cases, we focus on slowly-rotating stars with masses
M € (1,2.5)Mg in the Hartle-Thorne formalism [42, 43]
and without magnetic fields, as this is appropriate for
recycled pulsars, even with millisecond spin periods. We
compute the multipole moments for these stars and then
adimensionalize them in the same way as originally dis-
covered in [7] and explained above, but with an extra
factor of C%», where the power a,, is different for each mo-
ment. Each of the I-Q, My-Ms and S3-M> relations then
depends on two free parameters, (ar, an2), (@nr4,anr,2)
and (ag3,an2). We discretize this space and compute
the maximum EoS variability at each point to find the
set that minimizes it. In both cases, this set can be de-
scribed by a straight line in (ar, anr2), (anr 4, an 2) and
(as,3,an,2) space, as shown in Fig. 1. The slope and
y-intercept of this line is slightly different in the non-

relativistic and in the relativistic calculations. Observe
that the best normalization does not always agree with
that originally chosen in [7]. Similar results are found for
the S3-Ms relation.

The remainder of this paper deals with the details of
the results discussed above and it is organized as follows.
In Sec. II, we review the original I-Q and three-hair re-
lations for NSs, as derived in [15]. In Sec. III, we re-
formulate the equations in the non-relativistic limit with
a generic normalization to study how the EoS universal-
ity depends on this. In Sec. IV, we repeat this analysis
but in full General Relativity. In Sec. V we conclude
and highlight possible directions for future research. All
throughout, we use geometric units in which G =1 =c.

II. ORIGINAL THREE-HAIR RELATIONS

In this section, we briefly review the three-hair rela-
tions for NSs derived in [15]. The exterior gravitational
field of an isolated and stationary mass distribution can
be written in terms of a multipole moment decomposi-
tion [44]. In the non-relativistic limit (i.e. in the per-
turbative weak field, when we expand all expressions to
leading order in powers of compactness) and in a slow
rotation expansion (i.e. an expansion in powers of the
product of the mass and the spin angular frequency), the
leading-order expressions for the mass and mass-current
multipole moments are [45]

R..(6)
M, = 27r/ / p(r,0)Py(cos 0) sin 0dO r*+2 dr |
0
(1)

and
47 Q) E.(9) dPg(cosﬁ) 3 043
Sy = £+1/ / Jcosd sin® 0df r° dr
(2)

where p(r,0) is the density, R.(f) is the stellar surface
profile, Q is the spin angular velocity and Py(cos@) are
the Legendre polynomials of order £. These moments are
distinct but algebraically related to the Geroch-Hansen
moments [46-48] and the Thorne moments [49] in the
non-relativistic limit [12, 50].

In the non-relativistic limit, slowly-rotating NSs can
be well modeled in the elliptical isodensity approxima-
tion of [51]. In this scheme, one assumes that isodensity
surfaces are self-similar ellipsoids and that the density
profile is the same as that of a non-rotating star of the
same volume as the rotating star. Within this approxi-
mation, and in a suitable coordinate system, the angular
and radial integrals of Egs. (1) and (2) can be separated
in terms of certain angular integrals I, ;s and certain ra-
dial integrals Ry, namely

My =2rl, 3R, , (3)
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FIG. 1. (Color Online) EoS variability in the I-Q (left) and M4-M> relations (right) for different values of the normalization
constants (ar,an,2) (left) and (a4, an,2) (right). The moment of inertia is normalized via I = I/(M3C®T), the quadrupole
moment via My = —Ma/(M3*x*C*M:2), and the hexadecapole moment via My = My/(M®x*C*M:1). For a given choice of
normalization, the contours show the maximum percent EoS variability in the I-Q and My4-M; relations computed with variety
of realistic EoSs [33-41], relative to a representative realistic EoS [36]. For comparison, we also present the set of (ar, anr,2) and
(am,a,an,2) that leads to the least EoS variability in a non-relativistic analysis (solid yellow line) for polytropic EoSs, as well
as the original normalizations chosen in [6, 7, 14] (white solid circle). Observe that even in the fully relativistic calculation,
the set of (ar,an,2) and (aa,4,an,2) that minimizes the EoS variability is a straight line in this space, where the slope and
y-intercepts are different from that obtained with a Newtonian analysis. Observe also that there are choices of normalization
that lead to less EoS variability than the original normalization of [6, 7, 14]. The orange line is the fit with the least EoS
variation in GR (see Eq. (35)).

and to the equatorial stellar radius at 7 = a;. The reduced
At radial integral is defined as
™

BETEN

Se Qp—15 — Ley1,3)Regr - (4)

31
Roe= [ O ®)
The angular integrals can be calculated in closed form 0

2
and are [52] where ¥ = (p/p.)"/™ is the Lane-Emden function and n is

the polytropic index. Observe that all of the EoS depen-

Lo = (<12 2Tt (5)
and

12220+ 1) _
I —1T — (—)E-D/220 22 T ) /] e2ef L
£—1,5 r41,3 = (=1) 00+ 2) ee )
(6)

where e = (1 — a2/a?)'/? is the eccentricity of the star,
assumed to be an ellipsoid with semi-major axis a; and
semi-minor axis a3. The radial integrals can be rewritten
using the Lane-Emden function [53] as

NG
Ry = pe (—) Ry (7)
&
where p. is the central density and £ = (£1/a1)7 is a

dimensionless radial coordinate, such that & corresponds

dence is here encoded in the (e) function and the radial
integrals Ry. Notice also that all the results reviewed
above assume a single polytropic EoS, i.e. an EoS of the
form p = Kp't1/" but they can be easily extended to
piecewise polytropes [16], which accurately approximate
realistic EoSs [2, 54].

With all this information at hand, the mass and mass-
current moments can be written as

1,2042 772
(_1)€+ e £+ M €+3Rn72€+2

Mopio = T 9)
(20+3) (1—e2) T 204 oo |9i(gy)|
and
S%Jrl _ (_1)4 2 Q(e) 624 M2€+3Rn,2@+2

(20+3) (1—e2) 5 g2+t 22 ()|
(10)



where C' = M/R is the stellar compactness and M (=
M) is the stellar mass of the non-rotating configuration.
In the elliptical isodensity approximation, the angular
frequency is simply [51]

31,9/ 1/2
o) = 3¢ | o] @
where f(e) = [-6e72(1 — €?) 4+ 2e73(1 — *)1/2(3 —

2¢?) arcsin(e)]/2.
Let us now derive the three-hair relations. First, we

adimensionalize Egs. (9) and (10) via

_ M, _ —1 S

M, = (_1)6/2MTfX€ , Se= (‘UTMTZng , (12)
where y = S;/M? is the dimensionless spin parameter.
Then, we set £ = 0 in the adimensionalized My, equa-
tion to solve for compactness C as a function of M. And
finally, we substitute this expression back both into the
adimensionalized version of Eq. (9) and Eq. (10) to obtain
Mgy and Sopy 1 as functions of M,. These expressions

can then be expressed via the single equation

M25+2 + i§25+1 = Bn’gMQZ(MQ + Zgl) s (13)
where
—0
N T ) I
TN (@)Ig

This is the so-called three-hair relation for NSs in the
non-relativistic limit, which is approximately EoS inde-
pendent. Indeed, all of the EoS dependence is encoded
in the B,, s coefficients, which were shown to vary weakly
with n for any given ¢ [15]. Similar expressions hold in
the relativistic regime for rapidly rotating stars [12-14].

The I-Q relations can be derived from the expressions
presented above. Setting ¢ = 0 in Eqgs. (9)—(11), we then
obtain

My =25 (15)

This equation, however, is not yet the I-Q relation we
want, because the right-hand side still depends on e and
x- We can solve for y as a function of e by setting ¢ = 0
in Eq. (10), solving for compactness and using the result
in the definition of y = S;/M?. Doing so, we find

NGT 71/4
X = 5 5@, (16)
- eal;

and substituting this into Eq. (15) we obtain the I-Q
relation. Expanding this in the slow-rotation limit, we
can write the I-Q relation as

My =VTAn,, (17)

B 25(5—n)2} 2T R} 2 ’
A"’()_{{ 2 R e Y

=

III. TOWARD EXACT UNIVERSALITY:
ANALYTICAL RESULTS IN THE
NON-RELATIVISTIC LIMIT

Can the approximate EoS universality of the NS no-
hair relations be improved by modifying the normaliza-
tion of the multipole moments? Let us then re-define the
dimensionless multipole moments as

M(GM,21€+2) _ (_1)€+1M2€+2 (19)
2042 - M22+3X2f+20a1\4,2[+2
and
4
clas2er1) (_1) 52€+1
5224‘1 - M2€+2X2f+10a5,2(+1 ’ (20)

where apr 2042 and ag 2¢+1 are real constants that provide
flexibility in the adimensionalization. Notice that to re-
cover the original normalization, one must set ays 2042 =
0 and ag2¢41 = 0.

The approximate no-hair relations can now be ob-
tained with the new normalization. First, we eliminate
the compactness from the dimensionless multipole mo-
ments by solving Eq. (19) with ¢ = 0 for C in terms

of MéaM’z). Substituting this back into Eq. (19) and
Eq. (20), we find

2a
cr(anr2e42) 4 —a+l+1 MQ . 2\—a/3
Maeid™ =573 0 ( o) =)
x [ (&) ﬁf“_m) Rf{fge—l R, 2042
7(0/1\/1 ) a+l+1
x (ag) , (21)
28
S(as,215+1) _ 4 g3—A++1 MQ (1- 62)—5/3
2041 2€+ 3 e
< [9(€0)] 7 G RIS s
_ B+L
X (MQ(“M’2)) , (22)

where « and 8 are new constants defined by

L+ Dan2 — anr2e+2

o= , 23
—ap2 + 2 (23)
lapro + —as 2041
— 2o, ; 24
b —ap + 2 (24)

Unlike in the original no-hair relations, summarized in
Sec. II, this time the multipole moments depend on the
spin angular frequency €2 and the eccentricity e. One can
eliminate this dependence by choosing aps2¢12 = (€ +
ans,2 and agoe+1 = fans,2, which leads to a = 0 = 3,
and thus to

32+1 |19/(§1)|Z %E M§+1 Rn,2€+2

v (GM,2£+2)
M = 25
and
S:(as,2e+1) _ 30+t w/(flﬂe 5%2 MQE Rn,2€+2 (26)




These two expressions are similar to Egs. (10) and (11)
of [15], but here, they are obtained for a larger class of
normalizations, that in particular, includes the original
normalization of [15].

With these general expressions at hand, let us now in-
vestigate a few examples of universality, beginning with
the I-Q relations. Generalizing Eq. (22) of [15], we adi-
mensionalize the moment of inertia via
I S1

Jlen) — - =1
Car  QM3Caer ’

(27)
where ay is a new normalization constant. Proceeding in
the exact same way as in the previous section, the ex-
pression for y, still defined via x = S;/M?, as a function
of eccentricity is

1 x = g—x
V3(1 —e?)7575 (Ie)37" (5 —p)=8+2e

X = fle)
2—%+615§—2zA;(%)+29”

(28)

where z = ;&'ﬁf—)and A, is still given by Eq. (18).

Clearly, we recover Eq. (16) when a;y = 0, and thus x =
5/12. Solving for compactness from the ¢ = 0 version of
Eq. (21), and using Eq. (28), we get the I-Q relation in
the slow rotation limit:

_ (a ) 2 % , ay—2apn o _2((11_2:2]\/1’2)
M,2 ~ T %ar+4 a
M, - (5) (&) et & !
a172aMy2 _aM,2+1
Rm;”“ Apo I 172 . (29)

Notice that the new I-Q relation depends only on the
set (apr2,ar). Clearly, we recover Eq. (17) when aps o =
ay/2, which includes the original normalization of [15].
Given the new I-Q relation in Eq. (29), we can now
address whether there are particular sets of parameters
(anr,2,ar) for which the EoS universality is improved,
i.e. for which the variability of the I-Q relation with dif-
ferent EoSs is decreased. One way to assess this variabil-
ity is to compute the relative fractional difference in the
I-Q relation between an n = 0 and an n = 1 polytropic
EoS. This is analytically tractable because exact solu-
tions to the equations of stellar structure exist for such
polytropic EoSs. This fractional difference reduces to

NP sy = My
MQ(GM,z) |n=0

aM,2+1

) . (30)

and setting it to zero, we can determine the parameters
(anr,2,ar) that lead to exact universality between these
two EoSs.

Figure 2 presents contours of the relative fractional
difference, including the zero contour, in the (a2, ar)
plane. Observe that there exists a one-parameter family
of (aps,2, ar) for which the relative fractional difference is

1_4,5_ ar+2 ar+2
! o 2 —6

apg2tar+3 2(aM,2+1) ( 3

50

FIG. 2. (Color Online) Relative fractional difference in the
Newtonian I-Q relations for different (aar,2,ar) normaliza-
tions. The fractional difference is here calculated by com-
puting the I-Q relations with a polytropic EoS with index
n = 1 relative to a polytropic EoS with index n = 0 (see
Eq. (30)). The set of (aa,2,ar) in the violet region leads to
the most EoS independence in the I-Q relations, while the
set in the red region leads to a variation of the relations with
EoS of ~ 50%. The green line shows the choices of (a2, ar)
for which the relative fractional difference is not well-defined.
The white regions lead to EoS variability in the I-Q relations
that exceeds 50%. The yellow line shows the one-parameter
family of (a2, ar) that leads to zero relative fractional differ-
ence in the I-Q relations. The original normalization of [6, 7]
is shown with a white circle. Observe that this normalization
lies very close to the optimal one-parameter family.

exactly zero. Observe also that the original normalization
is very close to this one-parameter family!. A third inter-
esting point is that the universality deteriorates rapidly
for values of the normalization constants away from the
one-parameter family. Finally, observe that there are val-
ues of (aa,2,ar) for which Eq. (30) diverges, e.g. if you
take the limit as a;y — —2 from the left, Eq. (30) diverges
to positive infinity. This is because in such a limit, S;
does not depend on C, which in turn means that one
cannot solve C for I(=2), which is crucial in deriving the
I-Q relations.

These results suggest that one may find some choices
of normalizations for which the I-Q relations are perfectly
universal with respect to any EoS. To investigate this fur-
ther, let us re-compute the relative fractional difference
with polytropic EoSs of different indices. Given any poly-

1 Although not easily seen in the figure, the original normalization
does not actually lie on the line.



FIG. 3. (Color Online) Values of (a2, ar) that lead to zero
relative fractional difference in the I-Q relations calculated
with polytropic EoSs with n € [0,1] and a reference poly-
tropic EoS with n = 0.643. The quadrupole moment and
the moment of inertia are computed by numerically solv-
ing the Lane-Emden equation. Observe that all lines cluster
around each other. Observe also that the original normaliza-
tion [(anr,2,ar) = (0,0)] used in [6, 7] lies very close to any of
the lines.

tropic index, we numerically solve the Lane-Emden equa-
tion and compute the relative fractional difference of the
I-Q relations with that index and a reference EoS. For the
latter, we choose a polytropic EoS with index n = 0.643,
which is the average index of all of those presented in
Table I of [16]; the latter accurately approximate realis-
tic EoSs [55] that support NSs with masses greater than
2Mg [56]. Figure 3 shows the one-parameter family of
(anm,2,ar) for which this relative fractional difference is
exactly zero. Observe that all the one-parameter fami-
lies are clustered around a single line. This indicates that
there exists an optimal set of (aas,2, ar) for which the I-Q
relation is almost exactly independent of the EoS. Ob-
serve also that this optimal set happens to be very close
to the (apr2,ar) = (0,0) point, which corresponds to the
original normalization of the I-Q) relations [14, 15, 23].

Let us now investigate another example of EoS uni-
versality as a function of the normalization constants,
focusing on higher multipole moments. In particular, let
us focus on the My — My and S5 — M, relations, which
can be rewritten as

MiaMA) —9x 23(61—2)51—61 (5 _ n)2—61

()6 R4 My
Ry

(31)

am,at2

ap,2+17 and

where 61 =

SéaS,B) — 9 X 23(52—1)5—52 (5 _ n)1—52

NV (E)IE R 4N
Ria

(32)

st using Egs. (21) and (22) with ¢ = 1

As before, we compute the relative fractional difference
in these relations between an n = 0 and an n = 1 poly-
tropic EoS, since exact solutions to the stellar structure
equations exist in these cases:

where §, =

27261
625 (n2 — 6)°

MZEGMA)'n:O _ MiaM’4)|n=1
MiaMA”n:O

X {774 (625 x 2% — 336 x 5°1)

— 3x2 (625 x 2201+1) _ 448 % 551+1)

+9 (625 x 22(61+1) _ 896 x 551“) ] (33)
and
Séas,3)|n20 . S§a5,3)|n:1 _ 9—25;
5| 125 (12 — 6)°

x [774 (125 x 2% — 84 x 5%)
+ 72 (336 x 50271 375 x 22<52+1>)

+9 (125 x 2202F1) _ 994 552“) ] . (34)

Just as before, we now find the values of (apr4, aprr2) and
(as,3,an,2) which minimize the degree of EoS variabil-
ity. Figure 4 shows contours of fixed relative fractional
difference in the (anr,4, anr,2) (left panel) and (as 3, ans,2)
(right panel) planes. Observe again that there are one-
parameter families for which the fractional difference is
exactly zero. This time, however, the original normaliza-
tions of [14] are not quite on these one parameter fami-
lies. This is important because it indicates that there are
better choices of normalization that minimize the EoS
variability further. Also as before, observe that the EoS
variability increases as one chooses normalization values
away from these one-parameter families. Moreover, there
is a line in the (aa,4,anm,2) and (ag3,anr2) planes for
which the fractional differences are not well-defined.

As in the I-Q case, one may wonder whether these one-
parameter families change if one computes the relative
fractional differences in the My-Ms and Ss-Ms between
other EoSs. Let us then repeat the study carried out in
the I-Q case with polytropic EoSs. Figure 5 shows the
one-parameter families for which the relative fractional
difference in the My-M, and Ss-M, relations is exactly
zero between a polytropic EoS with index n and a ref-
erence polytropic EoS with n = 0.643. Observe that all
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FIG. 4. (Color Online) Same as Fig. 2 but using the My-M> in the (a2, an,4) plane (left) and Ss-Ms in the (as,3,an,2) plane
(right) relations. Observe that the original normalizations of [6, 7, 14] are close but do not quite coincide with the choices of
normalization constant that minimizes the EoS variability in the relations.

the one-parameter families cluster around single curves.
Moreover, the original normalization chosen in [14] does
not lie on any of these families. This suggests that there
may be an optimal one-parameter family of normaliza-
tions that is different from the original choice of [14]
which improves the EoS universality of the My-Ms and
S3-Ms relations.

IV. EOS UNIVERSALITY
IN FULL GENERAL RELATIVITY

We have seen that it is possible to construct I-Q, My-
Ms and S3-Ms relations that are properly normalized
such that they are essentially EoS insensitive in the New-
tonian limit and for simple polytropic EoSs; but does
such a choice of normalization also lead to EoS insen-
sitivity in the relativistic regime and for realistic EoSs?
This section is devoted to answering this question.

Let us start by reviewing how the I-Q, My-Ms and
S3-Ms relations are computed in full GR, following [7,
14, 57]. We construct solutions to the Einstein equations
that represent isolated, unmagnetized and slowly rotat-
ing NSs, perturbatively in the ratio of the spin angular
momentum to the stellar mass squared with the Hartle-
Thorne framework [42, 43]. In order to compute the hex-
adecapole moment My, we must retain terms up to fourth
order in the small-rotation parameter. The matter sec-
tor is modeled as a perfect fluid with realistic EoSs, such
as APR [33], SLY [34, 35], LS220 [36, 37], Shen [38, 39],
WEFF1 [40] and ALF2 [41]. All these EoSs support NSs
with masses greater than 2Mg, which is needed given
the two recently discovered massive pulsars [56, 58]. We

also include a few simulations with polytropic EoSs for
comparison with the previous section.

The equations of structure are then solved order by or-
der in the slow-rotation expansion (see e.g. [7, 14, 57]). At
any given order in rotation, one must solve the structure
equations numerically in the interior of the star and then
match them at the stellar surface to an exterior solution.
The numerical calculations are done with an adaptive 4"
order Runge-Kutta integrator [59]. The boundary con-
ditions at the stellar center are obtained through a lo-
cal analysis of the structure equations at the stellar core,
while the boundary conditions at spatial infinity are fixed
via asymptotic flatness. The matching of the solutions
at Nth order in rotation yields the Nth multipole mo-
ment of the NSs. The multipole moments computed in
the slow-rotation approximation to quartic-order in spin
agree with those computed without this approximation
provided the spin frequency is roughly below 500 Hz [14].

We now investigate the no-hair relations in the rela-
tivistic regime and with polytropic and realistic EoSs,
using the numerical framework described above. Let
us first focus on the I-Q) relations and let us normal-
ize the moment of inertia and the quadrupole moment
as in Egs. (27) and (19). These relations then become a
function of (anr2,ar) and we wish to determine the set
that minimizes the degree of EoS variability. To do so,
we will compute the relative fractional difference in the
I-Q relations with different polytropic and realistic EoSs,
with respect to the relations computed with a reference
EoS, which in this case we take to be LS220.

Figure 6 shows the contours of mazimum relative frac-
tional difference in the I-Q relations in the (aar2,ar)
plane, i.e. for a discrete set of values in the (aar2,ar)
plane, we compute the relative fractional differences in
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FIG. 5. (Color Online) Same as Fig. 3 but using the M4-M> in the (aa,2, an,4) plane (left) and Ss-Ms in the (as,3,an,2) plane
(right) relations. Observe again that all the curves cluster around each other and that the original normalizations of [14] do
not quite coincide with the normalizations that lead to the least EoS variability.

FIG. 6. (Color Online) Same as left panel of Fig. 1 but zoomed
out. Observe that the original normalization of [6, 7] is in the
region of (au,2,ar) that lead to the least EoS-variability. Ob-
serve also that the one-parameter family of normalizations
that lead to the least EoS variability in a Newtonian treat-
ment (yellow line) does not coincide with the regions that
lead to the least EoS variability in full GR (purple regions).
Finally, observe also that the region that leads to the most
EoS variability (white region) is shifted from what one would
expect from a Newtonian analysis (green line).

the I-Q relations calculated with an 1L.S220 EoS and all
other realistic EoSs, and then, we create contours of the
maximum values of those relative fractional differences.
Observe that there still exists a set of normalizations for
which the maximum EoS variation is ~ 1%, as shown
by the violet regions of the figure. Observe also that the

50

ap

FIG. 7. (Color Online) Same as the left panel of Fig. 1 but
for a n = 1 polytropic EoS with a n = 0 polytropic EoS as a
reference.

original normalization used in [7], denoted by a white
dot in Fig. 6, is close to the best choice of normalization.
The one-parameter family of normalization that gives the
least EoS variability in the Newtonian case (yellow line)
disagrees with that which minimizes the EoS variability
in the relativistic case. Yet still, in the relativistic case,
it seems like there is a one-parameter family that mini-
mizes the EoS variability, except that now the relativistic
corrections modify the slope of the Newtonian relation.
Another important observation is that there exist choices
of normalization (white region) for which the maximum
EoS variation is not well behaved numerically; this agrees



Yi Ty a; b;
-0.0664 0.8733

0.6172 0.6212
0.2178 0.9595

ar am,2
am,4 apM,2
as,;3 ap,2

TABLE I. Estimated numerical coefficients for the fitting for-
mula given in Eq. (35).

with the divergent region (green line) in the Newtonian
case.

A zoomed-in version of the first quadrant of Fig. 6 is
shown in Fig. 1 (left panel). The best choice of normaliza-
tion in the non-relativistic scenario does not necessarily
agree with the best choice in full GR. The latter can be
fitted in a single line (orange):

Yi = a; + bix; (35)

where the coefficients are summarized in Table I. In con-
clusion, we found a family of normalizations that lead
to strong EoS insensitivity in the I-Q relations, which
includes the original normalization of [6, 7], in the rela-
tivistic regime with realistic EoSs.

The one-parameter family of normalizations that gives
the least EoS variation in the I-Q relation for relativis-
tic stars with realistic EoSs is different from that found
when considering Newtonian polytropes; but what is re-
sponsible for such a discrepancy? the relativistic effect
or the different choice of EoS? In order to address this
question, let us return to the left panel of Fig. 1 and focus
on the relativistic effect only, by studying the maximum
EoS variation in full GR but with polytropic EoSs. Fig-
ure 7 shows the contours of mazimum relative fractional
difference in the I-Q) relations evaluated in full GR in
the (an,2,ar) plane for polytropic EoSs with an n = 1
polytrope and using an n = 0 polytrope as a reference.
Observe that the qualitative features of this figure are
very similar to those of the left panel of Fig. 1. In par-
ticular, the region that gives the minimum EoS variation
in full GR does not follow the yellow line obtained in the
Newtonian limit in either figures. Therefore, we conclude
that such a discrepancy originates from the relativistic
effects and not from using different EoSs.

Let us now investigate higher multipole order, no-hair
relations and attempt to determine the normalizations
that lead to the strongest EoS universality. In particu-
lar, let us focus on the My-Ms and Ss-M, relations in
the relativistic regime and with realistic EoSs. Figures 1
(right panel) and 8 show the contours of maximum rel-
ative fractional difference in these relations due to EoS
variation in the plane of the normalization parameters.
Observe that in both cases there is a region in the normal-
ization plane that lead to the least EoS variability and
that resembles a one-parameter family. Observe also that
this one-parameter family in the relativistic case is dif-
ferent from the one found in the Newtonian case (yellow
lines), just as in the I-Q relations. This time, however,

FIG. 8. (Color Online) Same as right panel of Fig. 1 but for
the Ss-Mj; relation in the (as,s,anm,2) plane. Observe again
that the one-parameter family of normalizations that mini-
mizes the EoS variability in the Newtonian regime (yellow
line) does not coincide with the set of normalizations that
does so in full GR (purple region or the fitted orange line).
Importantly, observe that the original normalization chosen
in [14] is quite far from the purple region. This implies that
there are better choices of normalization that would make the
S3-M-> relations more EoS universal.

the Newtonian one-parameter family seems to be close
to its relativistic version. Importantly, observe that the
original normalizations in [14, 15] are not that close to
the relativistic one-parameter family that minimizes the
EoS variability. For example, the best choice of normal-
ization for the M4 — M> relations leads to a maximum EoS
variation of ~ 6% [14], while the maximum EoS variation
using the original normalization was ~ 9%. Similarly, the
best choices of normalization for the S3 — My relations
lead to a maximum EoS variation of ~ 2%, while the orig-
inal parameterization lead to a variation of 3.5% [14]. In
conclusion, we have found the set of normalization pa-
rameters that minimizes the EoS variability, and this set
is different from the original normalization used in [14],
enhancing universality by a factor of 2-4.

Figure 9 shows the EoS variation for two normaliza-
tions of the My — M5 relation. The upper panel shows
the variation with the original normalization of [6, 7],
while the lower panel shows the variation with the nor-
malization chosen from a point on the orange line of Fig-
ure 1. Observe that, as expected, the lower panel shows a
smaller degree of variability, with a maximum EoS varia-
tion of around 6%; the maximum EoS variation with the
original normalization is around 10%.
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FIG. 9. (Color Online) Fractional difference of various EoSs
with respect to the LS220 EoS for two different choices of
normalization for the M4 — M> relation. The upper axes shows
the mass range for LS220 and the black dashed line shows the
maximum EoS variation in that mass range.

V. DISCUSSION

The recently-discovered, approximately EoS insensi-
tive, I-Love-Q relations are important for future obser-
vations. In particular, the I-Q relations are helpful in
determining the mass and radius of NSs from the X-ray
pulse profile emitted by millisecond pulsars. The NICER
and LOFT collaborations hope to measure the mass and
radius to 5% accuracy, and thus, one requires I-Q rela-
tions that are EoS-insensitive to at least this level. More-
over, the expected pulse profile may also be affected by
higher-order-in-spin corrections, for example induced by
the octopole and hexadecapole moments of the NS, pro-
vided the latter is spinning sufficiently fast [14]. Thus,
one would wish to also find My-Ms and S3-Ms relations
that are the least EoS sensitive as possible.

In this paper, we have studied how to construct I-Q
and higher multipole order, no-hair relations for NSs that
maximize the degree of EoS insensitivity. To do so, we
investigated whether one can normalize these quantities
in a way that strengthens the EoS insensitivity relative
to the original normalizations used in [7]. We have found
the optimal one-parameter family of normalizations that
leads to the strongest EoS-insensitivity both with a New-
tonian and a fully relativistic analysis. We have observed
that this one parameter family is strongly affected by rel-
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ativistic corrections, and the best normalization in the
Newtonian limit does not necessarily lead to the least
EoS variation in the relativistic regime. Yet,regarding
the I-Q relations, there is little gain in EoS insensitivity
when using these normalizations relative to the original
ones of [7], because the latter happened to coincidentally
lie very close to the optimal family. On the other hand,
relativistic corrections to the My-Ms and S3-Ms relations
greatly affect this one-parameter family; in fact, there are
choices that can improve the degree of EoS-insensitivity
relative to the original normalizations of [14].

Our calculation focuses on NSs in uniform, rigid rota-
tion. One of the main applications of the new universal
relations found here is for X-ray pulse profile observa-
tions. Since these pulsars are old, uniform rigid rotation
should be an excellent approximation. Nevertheless, it
might be interesting to investigate universal relations for
differentially rotating stars [60, 61] and see how different
normalization changes the universality.

One could extend the present study to other modi-
fied theories of gravity, such as dynamical Chern-Simons
gravity (DCS) [62, 63]. Modified theories typically in-
troduce dimensional coupling constants that characterize
the degree to which they differ from GR. One could thus
study what normalization minimizes the degree of EoS
variability in such modified theories.

Quite recently the I-Q relations were studied for highly
magnetized NSs [10]. The authors showed that for strong
magnetic fields (B > 1012G) with a twisted-torus config-
uration the relations lose universality. The NSs consid-
ered in [10] are characterized by dimensional magnetic
fields but we know that the universality of the I-Q re-
lation depends heavily on how we normalize the NS ob-
servables. Future work could concentrate on investigat-
ing whether the universality holds for highly magnetized
NSs if a different choice of normalization for the magnetic
field strengths is made.

VI. ACKNOWLEDGMENTS

We would like to thank Neil Cornish for valuable com-
ments and suggestions. NY acknowledges support from
NSF CAREER Award PHY-1250636. BM is supported
by the Fulbright-Nehru Postdoctoral Research Fellow-
ship. Some calculations used the computer algebra-
systems MAPLE, in combination with the GRTEN-
SORII package [64].

[1] J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426
(2001).

[2] J. M. Lattimer and M. Prakash, Phys.Rept. 442, 109
(2007), arXiv:astro-ph/0612440 [astro-ph].

[3] J. M. Lattimer, Ann.Rev.Nucl.Part.Sci. 62, 485 (2012),
arXiv:1305.3510 [nucl-th].

[4] A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astro-
phys.J. 722, 33 (2010), arXiv:1005.0811 [astro-ph.HE].



[5] J. M. Lattimer and A. W. Steiner, Astrophys.J. 784, 123
(2014), arXiv:1305.3242 [astro-ph.HE].

[6] K. Yagi and N. Yunes, Science 341, 365 (2013),
arXiv:1302.4499 [gr-qc].

[7] K. Yagi and N. Yunes, Phys. Rev. D 88, 023009 (2013),
arXiv:1303.1528 [gr-qc].

[8] J. M. Lattimer and Y. Lim, ApJ. 771, 51 (2013),
10.1088/0004-637X /771/1/51, arXiv:1203.4286 [nucl-th).

[9] A. Maselli, V. Cardoso, V. Ferrari, L. Gualtieri, and
P. Pani, Phys.Rev. D88, 023007 (2013), arXiv:1304.2052
[gr-qc].

[10] B. Haskell, R. Ciolfi, F. Pannarale, and L. Rezzolla, Mon.
Not. Roy. Astron. Soc. 438, L71 (2014), arXiv:1309.3885
[astro-ph.SR].

[11] G. Martinon, A. Maselli, L. Gualtieri, and V. Ferrari,
Phys.Rev. D90, 064026 (2014), arXiv:1406.7661 [gr-qc].

[12] G. Pappas and T. A. Apostolatos, Phys.Rev.Lett. 112,
121101 (2014), arXiv:1311.5508 [gr-qc].

[13] S. Chakrabarti, T. Delsate, N. Gurlebeck, and
J. Steinhoff, Phys.Rev.Lett. 112, 201102 (2014),
arXiv:1311.6509 [gr-qc]-

[14] K. Yagi, K. Kyutoku, G. Pappas, N. Yunes, and
T. A. Apostolatos, Phys. Rev. D89, 124013 (2014),
arXiv:1403.6243 [gr-qc].

[15] L. C. Stein, K. Yagi, and N. Yunes, Astrophys.J. 788,
15 (2014), arXiv:1312.4532 [gr-qc].

[16] K. Chatziioannou, K. Yagi, and N. Yunes, Phys.Rev.
D90, 064030 (2014), arXiv:1406.7135 [gr-qc].

[17] T. Chan, A. P. O. Chan, and P. Leung,
arXiv:1411.7141 [astro-ph.SR].

[18] K. Yagi and N. Yunes, (2015), arXiv:1503.02726 [gr-qc].

[19] Y. H. Sham, L. M. Lin, and P. Leung, Astrophys.J. 781,
66 (2014), arXiv:1312.1011 [gr-qc].

[20] D. D. Doneva, S. S. Yazadjiev, K. V. Staykov,
and K. D. Kokkotas, Phys.Rev. D90, 104021 (2014),
arXiv:1408.1641 [gr-qc].

[21] P. Pani and E. Berti, Phys.Rev. D90, 024025 (2014),
arXiv:1405.4547 [gr-qc].

[22] B. Kleihaus, J. Kunz, and S. Mojica, Phys.Rev. D90,
061501 (2014), arXiv:1407.6884 [gr-qc].

[23] K. Yagi, Phys.Rev. D89, 043011 (2014), arXiv:1311.0872
[gr-qc].

[24] M. Baubock, E. Berti, D. Psaltis, and F. Ozel, Astro-
phys.J. 777, 68 (2013), arXiv:1306.0569 [astro-ph.HE].

[25] D. Psaltis and F. Ozel, Astrophys.J. 792, 87 (2014),
arXiv:1305.6615 [astro-ph.HE].

[26] D. Psaltis, F. Ozel, and D. Chakrabarty, Astrophys.J.
787, 136 (2014), arXiv:1311.1571 [astro-ph.HE].

[27] S. M. Morsink, D. A. Leahy, C. Cadeau, and J. Braga,
Astrophys.J. 663, 1244 (2007), arXiv:astro-ph/0703123
[astro-ph].

[28] M. Baubock, D. Psaltis, and F. Ozel, Astrophys.J. 766,
87 (2013), arXiv:1209.0768 [astro-ph.HE].

[29] K. C. Gendreau, Z. Arzoumanian, and T. Okajima,
in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Society of Photo-Optical In-
strumentation Engineers (SPIE) Conference Series, Vol.
8443 (2012).

[30] P. S. Ray, M. Feroci, J. den Herder, E. Bozzo, L. Stella,
and LOFT Collaboration, in American Astronomical So-
ciety Meeting Abstracts #219, American Astronomical
Society Meeting Abstracts, Vol. 219 (2012) p. 249.06.

[31] M. Feroci, J. W. den Herder, E. Bozzo, D. Barret,
S. Brandt, M. Hernanz, M. van der Klis, M. Pohl,

(2014),

11

A. Santangelo, L. Stella, and et al., in Society of
Photo-Optical Instrumentation Engineers (SPIE) Con-
ference Series, Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 8443 (2012)
arXiv:1209.1497 [astro-ph.IM].

[32] D. D. Doneva, S. S. Yazadjiev, N. Stergioulas, and K. D.
Kokkotas, Astrophys.J. 781, L6 (2013), arXiv:1310.7436
[gr-qc].

[33] A. Akmal, V. Pandharipande, and D. Ravenhall,
Phys.Rev. C58, 1804 (1998), arXivinucl-th/9804027
[nucl-th].

[34] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151
(2001).

[35] M. Shibata, K. Taniguchi, and K. Uryu, Phys.Rev. D71,
084021 (2005), arXiv:gr-qc/0503119 [gr-qc].

[36] J. M. Lattimer and F. Douglas Swesty, Nuclear Physics
A 535, 331 (1991).

[37] E. O’Connor and C. D. Ott, Class.Quant.Grav. 27,
114103 (2010), arXiv:0912.2393 [astro-ph.HE].

[38] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nu-
clear Physics A 637, 435 (1998).

[39] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi,
Progress of Theoretical Physics 100, 1013 (1998).

[40] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys.Rev.
C38, 1010 (1988).

[41] M. Alford, M. Braby, M. Paris, and S. Reddy, Astro-
phys.J. 629, 969 (2005), arXiv:nucl-th/0411016 [nucl-th].

[42] J. B. Hartle, Astrophys.J. 150, 1005 (1967).

[43] J. B. Hartle and K. S. Thorne, Astrophys. J. 153, 807
(1968).

[44] C. W. Misner, K. Thorne, and J. A. Wheeler, Gravitation

(W. H. Freeman & Co., San Francisco, 1973).

5] F. D. Ryan, Phys.Rev. D55, 6081 (1997).

6] R. P. Geroch, J.Math.Phys. 11, 1955 (1970).

7] R. P. Geroch, J.Math.Phys. 11, 2580 (1970).

8] R. O. Hansen, Journal of Mathematical Physics 15, 46

(1974).

[49] K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).

[50] G. Pappas and T. A. Apostolatos, Phys.Rev.Lett. 108,
231104 (2012), arXiv:1201.6067 [gr-qc].

[61] D. Lai, F. A. Rasio, and S. L. Shapiro, Astro-
phys.J.Suppl. 88, 205 (1993).

[52] I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, and D. Zwill-
inger, Table of Integrals, Series, and Products, Seventh
Edition by 1. S. Gradshteyn, I. M. Ryzhik, Alan Jef-
frey, and Daniel Zwillinger. Elsevier Academic Press,
2007. ISBN 012-873687-4 (2007).

[63] C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar
interiors : physical principles, structure, and evolution,
2nd ed., by C.J. Hansen, S.D. Kawaler, and V. Trim-
ble. New York: Springer-Verlag, 2004. (2004).

[64] J. S. Read, C. Markakis, M. Shibata, K. Uryu,
J. D. Creighton, et al., Phys.Rev. D79, 124033 (2009),
arXiv:0901.3258 [gr-qc].

[65] J.S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,
Phys.Rev. D79, 124032 (2009), arXiv:0812.2163 [astro-
ph].

[56] J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S.
Lynch, et al., Science 340, 6131 (2013), arXiv:1304.6875
[astro-ph.HE].

[657] Y. Kojima and M. Hosonuma, Astrophys.J. 520, 788
(1999), arXiv:astro-ph/9903055 [astro-ph].

[58] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E.
Roberts, and J. W. T. Hessels, Nature 467, 1081 (2010),



arXiv:1010.5788 [astro-ph.HE].

[69] M. Galassi and B. Gough, GNU Scientific Library: Ref-
erence Manual, GNU manual (Network Theory Limited,
2009).

[60] K. Fujisawa, (2015),
arXiv:1504.05961 [astro-ph.HE].

[61] A. Stavridis, A. Passamonti, and K. Kokkotas,
Phys.Rev. D75, 064019 (2007), arXiv:gr-qc/0701122 [gr-

10.1093/mnras/stv905,

12

qc).

[62] S. Alexander and N. Yunes, Phys. Rept. 480, 1 (2009),
arXiv:0907.2562 [hep-th].

[63] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys.Rev.
D87, 084058 (2013), arXiv:1302.1918 [gr-qc].

[64] “GRTensorll,” This is a package which runs within Maple
but distinct from packages distributed with Maple. It is
distributed freely on the World-Wide-Web from the ad-
dress: http://grtensor.org.



