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Abstract
We study the power spectrum of super-Hubble fluctuations of an inflaton-like scalar field, the

“system”, coupled to another scalar field, the “environment” during de Sitter inflation. We ob-

tain the reduced density matrix for the inflaton fluctuations by integrating out the environmental

degrees of freedom. These are considered to be massless and conformally coupled to gravity as a

proxy to describe degrees of freedom that remain sub-Hubble all throughout inflation. The time

evolution of the density matrix is described by a quantum master equation, which describes the

decay of the vacuum state, the production of particles and correlated pairs and quantum entangle-

ment between super and sub-Hubble degrees of freedom. The quantum master equation provides a

non-perturbative resummation of secular terms from self-energy (loop) corrections to the inflaton

fluctuations. In the case studied here these are Sudakov-type double logarithms which result in

the decay of the power spectrum of inflaton fluctuations upon horizon crossing with a concomitant

violation of scale invariance. The reduced density matrix and its quantum master equation fur-

nish a powerful non-perturbative framework to study the effective field theory of long wavelength

fluctuations by tracing short wavelength degrees of freedom.
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I. INTRODUCTION

Cosmology is entering the precision era, measurements of the cosmic microwave back-
ground anisotropies by the WMAP[1] and PLANCK[2] missions have provided confirmation
of a nearly scale invariant power spectrum of adiabatic perturbations, one of the main pre-
dictions of inflation. These measurements support the main paradigm of inflation based on a
scalar field slowly rolling down a potential landscape leading to a nearly de Sitter inflationary
stage and the generation of perturbations from the quantum fluctuations that are amplified
when their wavelengths cross the Hubble radius. This simple and compelling picture invites
deeper scrutiny at a fundamental level. Most models of inflation rely on either a single scalar
field or several scalar fields (which typically yield isocurvature or entropy perturbations) but
no interactions between the inflaton field and the large number of degrees of freedom of the
standard model of particle physics (and beyond). Excitation of the degrees of freedom that
would populate a radiation dominated era post inflation is assumed to happen at the end
of inflation during a period of “reheating”[3–5], however, this necessarily implies a coupling

between the inflaton and the degrees of freedom that describe the physics of the radiation
dominated era. Such interaction between the inflaton and other (fermionic, scalar) degrees
of freedom cannot just switch-on at the end of inflation, and on physical grounds should be
expected to be present even during the inflationary stage. Interactions of quantum fields in
de Sitter (or nearly de Sitter) space-time have been the focus of several studies[6–25] which
show strong infrared and secular effects and the possibility that the vacuum state in de
Sitter space time may be unstable towards decay[26]. Non-Gaussianity is a manifestation
of self-interactions of curvature perturbations and could leave an observable imprint on the
cosmic microwave background, although it is argued to be small in single field slow roll
inflationary models[27–29].

Interactions with heavy fields with masses M ≫ H with H the Hubble parameter during
inflation have been treated in terms of effective field theory descriptions[30–33] mainly by
neglecting kinetic terms and correlations, effectively treating the heavy degrees of freedom
as auxiliary fields that can be “integrated out” at tree level, or including correlations of the
heavy fields in powers of H/M ≪ 1[34].

In a non-equilibrium situation as is the case with cosmological expansion, integrating out
short wavelength degrees of freedom leads to the effective field theory description in terms of
a reduced density matrix for long wavelength fluctuations. Such a description is, fundamen-
tally, akin to a Wilsonian approach to an effective field theory[35] by coarse graining short
distance degrees of freedom. At the level of a non-equilibrium effective action, the study
of the effects of tracing out degrees of freedom was pioneered with the study of quantum
Brownian motion[36–39], the degrees of freedom of interest are considered to be the “system”
whereas those that are integrated out (traced over) are the “bath” or “environment”. The
effects of the bath or environment are manifest in the non-equilibrium effective action via
an influence action which is in general non-local and describes dissipative processes. This
influence action is determined by the correlation functions of the environmental degrees of
freedom, and determines the time evolution of the reduced density matrix. An alternative
but equivalent description of the time evolution of the reduced density matrix is the quantum
master equation[40, 41] which includes the effects of coupling to the environmental degrees
of freedom via their quantum mechanical correlations.

A generic quantum master equation approach for a reduced density matrix describing
cosmological perturbations has been advocated in ref.[42] in terms of local correlations of
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environmental degrees of freedom.
In ref. [43] the equivalence between the influence functional and the quantum master

equation in Minkowski space-time was established, and shown that they provide a non-
perturbative resummation of self-energy diagrams directly in real time providing an effective
field theory description of non-equilibrium phenomena.

Motivations and goals: In this article we consider an inflaton-like scalar field as “the
system” in interaction with other fields considered as the “environment” with the goal of
studying the influence of sub-Hubble degrees of freedom of the “environment” upon the
power spectrum of super-Hubble fluctuations of the “system” during de Sitter inflation.
The quantum fluctuations of the inflaton-like scalar (the system) are amplified and become
classical when their wavelengths become larger than the Hubble radius during inflation and
in the non-interacting theory their power spectrum becomes nearly scale invariant. We
study the influence of the environmental fields by obtaining the reduced density matrix
for the inflaton-like scalar field, and the quantum master equation that describes its time
evolution by consistently tracing over the environmental degrees of freedom. Our goal is to
obtain the corrections to the power spectrum of super-Hubble fluctuations of the inflaton-
like scalar from the interaction with degrees of freedom whose quantum fluctuations remain
sub-Hubble all throughout the inflationary stage. For this purpose we consider the system
to be a minimally coupled scalar (inflaton-like) coupled to a massless conformally coupled
scalar field–the “environment”– that serves as a proxy for fields (including fermionic fields)
whose quantum correlations do not become amplified for super-Hubble wavelengths. We
also comment on the case of minimally coupled environmental fields. The mode functions
of the quantum environmental fields effectively describe quantum fluctuations that remain
sub-Hubble all throughout inflation.

Brief summary of results: We obtain the reduced density matrix of the inflaton-
like scalar field (the system) and its quantum master equation, by tracing out sub-Hubble
degrees of freedom (the “environment”) up to second order in the coupling. We consider
the case in which both the “system” and the “environment” are in their Bunch-Davies
vacuum states at the beginning of the inflationary stage. A perturbative analysis of the
quantum master equation explicitly shows the decay of the vacuum state and the production
of single particles as well as correlated pairs which lead to quantum entanglement between
the inflaton fluctuations and those of the environmental fields. The full solution of the
quantum master equation provides a non-perturbative resummation of self-energy diagrams
determined by the correlation functions (loops) of the environmental degrees of freedom.
From the quantum master equation we obtain the equations of motion for super-Hubble
correlations of the inflaton field from which we extract the power spectrum. Its solution
provides a non-perturbative resummation of secular Sudakov-type double logarithms from
the inflaton self energy and yields the corrections to the power spectrum of super-Hubble
fluctuations. These indicate the decay of the power spectrum after “horizon crossing” and
violation of scale invariance even when the power spectrum in absence of interactions is scale
invariant.

II. THE MODEL:

We consider a spatially flat Friedmann-Robertson-Walker (FRW) cosmological space-time
and two interacting scalar fields φ, ϕ although the methods and broad conclusions will be

3



more general. The field φ is an inflaton-like scalar field minimally coupled to gravity, this is
the “system”, and the field ϕ is the “environment” as discussed below it will be chosen to
be a massless, conformally coupled scalar field and it will be traced out of the total density
matrix to yield the reduced density matrix for φ.

In comoving coordinates, the action is given by

S =

∫

d3x dt a3(t)

{

1

2
φ̇2 − (∇φ)2

2a2
− 1

2

(

M2
φ + ξφ R

)

φ2

+
1

2
ϕ̇2 − (∇ϕ)2

2a2
− 1

2

(

M2
ϕ + ξϕ R

)

ϕ2 − λφ : ϕ2 :

}

, (2.1)

with

R = 6

(

ä

a
+
ȧ2

a2

)

(2.2)

being the Ricci scalar, ξ = 0, 1/6 correspond to minimal and conformal coupling respectively.
The interaction has been normal-ordered

: ϕ2 := ϕ2 − 〈ϕ2〉 (2.3)

where the brackets 〈(· · · )〉 refer to the expectation value in the initial density matrix (see
below).

In the case of de Sitter space time with a(t) = eHt, it is convenient to pass to conformal
time η = −e−Ht/H with

a(t(η)) = − 1

Hη
, (2.4)

and introduce a conformal rescaling of the fields

φ(~x, t) =
χ(~x, η)

a(t(η))
; ϕ(~x, t) =

ψ(~x, η)

a(t(η))
. (2.5)

After discarding surface terms the action becomes

S =

∫

d3x dη

{

1

2

[

χ′2 − (∇χ)2 −M2
χ(η) χ

2 + ψ′2 − (∇ψ)2 −M2
ψ(η) ψ

2
]

+
λ

Hη
χ : ψ2 :

}

,

(2.6)
with primes denoting derivatives with respect to conformal time η and

M2
χ,ψ(η) =

[M2
χ,ψ

H2
+ 12

(

ξχ,ψ −
1

6

)] 1

η2
, (2.7)

where for consistency of notation we have called

Mφ,ϕ →Mχ,ψ ; ξφ,ϕ → ξχ,ψ (2.8)

respectively.
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Since λ has dimensions of mass we will consider the weak coupling case with λ/H ≪ 1.
In the non-interacting case λ = 0 the Heisenberg equations of motion for the spatial Fourier

modes of wavevector ~k for the conformally rescaled fields are

χ′′
~k
(η) +

[

k2 − 1

η2

(

ν2χ −
1

4

)]

χ~k(η) = 0 (2.9)

ψ′′
~k
(η) +

[

k2 − 1

η2

(

ν2ψ − 1

4

)]

ψ~k(η) = 0 (2.10)

where

ν2a =
9

4
−

(M2
a

H2
+ 12 ξa

)

; a = χ, ψ . (2.11)

The Heisenberg fields are expanded in a comoving volume V as

χ(~x, η) =
1√
V

∑

~q

[

b~q g(q, η) + b†−~q g
∗(q, η)

]

ei~q·~x (2.12)

ψ(~x, η) =
1√
V

∑

~k

[

a~q u(q, η) + a†−~q u
∗(q, η)

]

ei
~k·~x . (2.13)

We choose Bunch-Davies conditions in both fields, namely

b~q|0〉χ = 0 ; a~k|0〉ψ = 0 (2.14)

and

g(q, η) =
1

2
ei
π
2
(νχ+

1

2
)
√
−π η H(1)

νχ (−qη) (2.15)

u(k, η) =
1

2
ei
π
2
(νψ+

1

2
)√−π η H(1)

νψ
(−kη) . (2.16)

These conditions may be generalized to non-Bunch-Davies, but here we consider this simpler
case to highlight the main physical consequences.

The χ field is considered to be minimally coupled, ξχ = 0 and nearly massless with
Mχ/H ≪ 1, from which it follows that as −qη → 0

g(q, η) ∝ 1/η . (2.17)

This behavior in the super-Hubble limit will lead to strong secular contributions in the long
time limit.

The time evolution of a density matrix initially prepared at time η0 is given by

ρ(η) = U(η, η0) ρ(η0)U
−1(η, η0) , (2.18)

where Tr[ρ(η0)] = 1 and U(η, η0) is the unitary time evolution of the full theory, it obeys

i
d

dη
U(η, η0) = H(η)U(η, η0) ; U(η0, η0) = 1 (2.19)

where H(η) is the total Hamiltonian. Writing the total Hamiltonian in terms of the free and
interaction Hamiltonians as H(η) = H0(η)+Hi(η) it is convenient to pass to the interaction
picture introducing the unitary time evolution operator of the free theory U0(η, η0) obeying

i
d

dη
U0(η, η0) = H0(η)U0(η, η0) ; U0(η0, η0) = 1 (2.20)
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and define the density matrix in the interaction picture

ρI(η) = U−1
0 (η, η0)ρ(η)U0(η, η0) ≡ UI(η, η0)ρ(η0)U

−1
I (η, η0) (2.21)

where UI(η, η0) is the unitary time evolution operator in the interaction picture obeying

i
d

dη
UI(η, η0) = HI(η)UI(η, η0) ; UI(η0, η0) = 1 (2.22)

where
HI(η) = U−1

0 (η, η0)Hi(η)U0(η, η0) . (2.23)

From (2.1) we find

HI(η) = − λ

Hη

∫

d3xχ(~x, η) : ψ2(~x, η) : (2.24)

and the χ, ψ fields are in the free field Heisenberg representation (2.12,2.13). Normal ordering
is defined as

: ψ2(~x, η) := ψ2(~x, η)− Tr[ψ2(~x, η)ρI(η0)] (2.25)

III. QUANTUM MASTER EQUATION

The steps leading to the quantum master equation up to second order in the coupling are
given in detail in Minkowski space time in ref.[43]. In this reference the equivalence between
integrating out the heavy (or short wavelength) degrees of freedom in the path integral
representation and the quantum master equation is established up to second order in the
coupling. This equivalence and the relation to a stochastic description translate directly
to the case of an FRW cosmology, these more formal aspects are relegated to a companion
article[44]. In this article we obtain the quantum master equation directly and apply it to
understand several physical consequences.

The time evolution of the density matrix in the interaction picture is given by

ρ′I(η) = −i[HI(η), ρI(η)] (3.1)

whose formal solution is

ρI(η) = ρI(η0)− i

∫ η

η0

[HI(η
′), ρI(η

′)] dη′ , (3.2)

this solution is inserted back into (3.1) leading to the iterative equation

ρ′I(η) = −i[HI(η), ρI(η0)]−
∫ η

η0

[HI(η), [HI(η
′), ρI(η

′)]] dη′ . (3.3)

The next steps leading to the quantum master equation rely on various approximations,
discussed in detail in [43]. The first is factorization, namely

ρI(η) = ρIχ(η)⊗ ρIψ(η0) (3.4)

this is an ubiquitous approximation[40, 41]. In ref.[43] it is shown that this approximation
results from obtaining the non-equilibrium effective action in the path integral Schwinger-
Keldysh formulation in a consistent cumulant expansion of the trace over the environmental
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degrees of freedom when the initial density matrix is factorized. These aspects translate
directly to an FRW cosmology in conformal time as discussed in a companion article[44]. In
this article we assume (as is common in the literature) that the initial density matrix at the
beginning of inflation is of the factorized form, it is clearly interesting to consider the case
of initial correlations, which is postponed to further study.

Taking the trace of ρI(η) over the ψ degrees of freedom yields the reduced density matrix

ρr(η) = Tr{ψ} ρI(η) . (3.5)

The normal ordering (2.25) entails that the first term in (3.3) vanishes upon taking the trace
over ψ leading to

ρ′r(η) = − λ2

H2 η

∫ η

η0

dη′

η′

∫

d3x

∫

d3y

{

χ(~x, η)χ(~y, η′)ρr(η
′)G>(~x− ~y, η, η′)

+ ρr(η
′)χ(~y, η′)χ(~x, η)G<(~x− ~y, η, η′)− χ(~x, η)ρr(η

′)χ(~y, η′)G<(~x− ~y, η, η′)

− χ(~y, η′)ρr(η
′)χ(~x, η)G>(~x− ~y, η, η′)

}

, (3.6)

where

G>(~x− ~y, η, η′) = Tr[: ψ2(~x, η) : : ψ2(~y, η′) : ρIψ(η0)] , (3.7)

G<(~x− ~y, η, η′) = Tr[: ψ2(~y, η′) : : ψ2(~x, η) : ρIψ(η0)] . (3.8)

In writing the correlation functions G>,< as functions of ~x− ~y we used spatial translational
invariance in a spatially flat FRW space-time which allows us to write,

G>(~x−~y, η, η′) = 1

V

∑

~p

K>[p, η, η′] e−i~p·(~x−~y) ; G<(~x−~y, η, η′) = 1

V

∑

~p

K<[p, η, η′] e−i~p·(~x−~y) ,

(3.9)
where V is the quantization volume.

A this stage, the second Markov approximation is invoked: taking ρr(η
′) → ρr(η). This

is justified in weak coupling: since dρr(η)/dη ∝ λ2/H2 ≪ 1, an integration by parts[43]
and neglecting contributions of O(λ4) on the right hand side of (3.6) leads to the Markov
approximation. The main arguments showing the validity of this approximation for weak
coupling are available in ref.[43].

In order to obtain the correlation functions G<,> we need to specify ρIψ(η0), we consider
the simple case

ρIψ(η0) = |0〉ψψ〈0| (3.10)

where |0〉ψ is the Bunch-Davies vacuum for the ψ fields and −η0 is taken to be the beginning
of the (nearly) de Sitter inflationary stage, although a generalization is straightforward. In
this case we find

K>[q; η, η′] ≡ K[q; η, η′] = 2

∫

d3k

(2π)3
u(k, η)u∗(k, η′)u(p, η)u∗(p, η′) ; p = |~k + ~q|

K<(q; η, η′) = K>[q; η′, η] = K∗[q; η, η′] , (3.11)

where u(k, η) etc, are the mode functions (2.16). The Feynman diagrams for the correlation
functions G>, G< are shown in fig.(1).
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~x, η ~y, η′

ψ

ψ ψ

ψ

G> G<

~x, η

ψ

ψ ψ

ψ

~y, η′

FIG. 1: The correlation functions G>(~x− ~y, η, η′), G<(~x− ~y, η, η′).

Using the expansion (2.12) we find the general form of the quantum master equation up
to second order in the interaction (2.24)

ρ′r(η) = − λ2

H2 η

∫ η

η0

dη′

η′

∑

~q

{

χ~q(η)χ−~q(η
′)ρr(η)K(q; η, η′) + ρr(η)χ−~q(η

′)χ~q(η)K
∗(q; η, η′)

− χ~q(η)ρr(η)χ−~q(η
′)K∗(q; η, η′)− χ−~q(η

′)ρr(η)χ~q(η)K(q; η, η′)

}

(3.12)

where
χ~q(η) = b~q g(q, η) + b†−~q g

∗(q, η) ; χ−~q(η) = χ†
~q(η) . (3.13)

To obtain expectation values of operators in general one has to solve the quantum master
equation and find ρr(η). However, it is most useful to obtain the evolution equations for
operators that do not evolve in time in the interaction picture. Consider one such operator
O which is constant in the interaction picture, then with 〈O〉(η) = TrOρr(η) it follows that

d

dη
〈O〉(η) = Tr

(

O ρ′r(η)
)

. (3.14)

It proves illuminating to write the quantum master equation in terms of the operators
b†q, bq, this yields simpler expressions for the matrix elements of the reduced density matrix
in the Fock basis of quanta associated with these operators, in the case under consideration
these are Bunch-Davies Fock states. We find

ρ′r(η) = − λ2

H2 η

∫ η

η0

dη′

η′

∑

~q

{

g(q, η′)g∗(q, η)K[q, η, η′]
[

b†~qb~q ρr(η)− b~q ρr(η) b
†
~q

]

+ g(q, η)g∗(q, η′)K∗[q; η, η′]
[

ρr(η )b
†
~qb~q − b~q ρr(η) b

†
~q

]

+ g(q, η)g∗(q, η′)K[q; η, η′]
[

b~qb
†
~q ρr(η)− b†~q ρr(η) b~q

]

+ g(q, η′)g∗(q, η)K∗[q; η, η′]
[

ρr(η) b~qb
†
~q − b†~q ρr(η) b~q

]

+ g(q, η)g(q, η′)K[q; η, η′]
[

b~qb−~q ρr(η)− b−~q ρr(η) b~q

]

+ g(q, η)g(q, η′)K∗[q; η, η′]
[

ρr(η) b~qb−~q − b−~q ρr(η) b~q

]

+ g∗(q, η)g∗(q, η′)K[q; η, η′]
[

b†~qb
†
−~q ρr(η)− b†−~q ρr(η) b

†
~q

]

+ g∗(q, η)g∗(q, η′)K∗[q; η, η′]
[

ρr(η) b
†
~qb

†
−~q − b†−~q ρr(η) b

†
~q

]

}

. (3.15)
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Introducing the expectation values

Nq(η) = 〈b†~qb~q〉 = Tr
(

b†~qb~q ρr(η)
)

; Mq(η) = 〈b~qb−~q〉 = Tr
(

b~qb−~q ρr(η)
)

(3.16)

we find

N ′
q(η) = γq(η)Nq(η) + i

[

Mq(η)βq(η)−M∗
q β

∗
q (η)

]

+ S(N)
q (η) (3.17)

M ′
q(η) = iαq(η)Mq(η) + 2iβ∗

q (η)Nq(η) + S(M)
q (η) , (3.18)

where

γq(η) =
4λ2

H2η

∫ η

η0

dη′

η′
KI [q; η, η

′] Im
[

g(q, η′)g∗(q, η)
]

(3.19)

S(N)
q (η) =

λ2

H2η

∫ η

η0

dη′

η′

[

g(q, η)g∗(q, η′)K[q; η, η′] + g(q, η′)g∗(q, η)K∗[q; η, η′]
]

(3.20)

βq(η) =
2λ2

H2η

∫ η

η0

dη′

η′
KI [q; η, η

′]
[

g(q, η′)g(q, η)
]

(3.21)

S(M)
q (η) = − 2λ2

H2η

∫ η

η0

dη′

η′
K[q; η, η′]g∗(q, η′)g∗(q, η) (3.22)

αq(η) = − 2λ2

H2η

∫ η

η0

dη′

η′
KI [q; η, η

′]g(q, η′)g∗(q, η) (3.23)

K[q; η, η′] = KR[q; η, η
′] + iKI [q; η, η

′] . (3.24)

Once the kernel K[q; η, η′] is found the above equations can be integrated. The in-

homogeneous source terms S
(N)
q (η);S

(M)
q (η) are noteworthy, if these vanish, the vacuum

Nq = 0,Mq = 0 would remain a fixed point of the dynamics, therefore these source terms
indicate particle production and the production of correlated pairs of particles. Since these
terms are independent of the initial number of particles and emerge even when the initial
density matrix corresponds to the vacuum pure state, they can be understood perturbatively.

IV. PERTURBATIVE INTERPRETATION: PARTICLE PRODUCTION, AND

ENTANGLEMENT

Before proceeding to analyze the full quantum master equation, it proves illuminating to
understand the different contributions from the point of view of a perturbative expansion in
the coupling. This analysis yields important insight into the correlations between the system
and the enviroment and how the quantum master equation provides a non-perturbative
resummation of self-energy contributions.

Consider that the initial density matrix describes the pure vacuum state ρI(η0) = |0〉〈0|
where |0〉 = |0〉χ |0〉ψ, up to second order in the interaction we find the state

|Ψ(η)〉 = |0〉+ |Ψ(1)(η)〉+ |Ψ(2)(η)〉+ · · · (4.1)

where

|Ψ(1)(η)〉 = (−i)
∫ η

η0

HI(η
′) dη′ |0〉 , (4.2)

|Ψ(2)(η)〉 = (−i)2
∫ η

η0

HI(η1)

∫ η1

η0

HI(η2) dη1dη2 |0〉 = (−i)
∫ η

η0

HI(η1)|Ψ(1)(η1)〉 dη1 .(4.3)
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Up to second order the reduced density matrix up is given by

ρr(η) = Trψ|Ψ(η)〉〈Ψ(η)| = Trψ

[

|0〉〈0|+ |Ψ(1)(η)〉〈Ψ(1)(η)|+ |0〉〈Ψ(2)(η)|+ |Ψ(2)(η)〉〈0|
]

.

(4.4)
There is no cross term |0〉〈Ψ(1)(η)| since the state |Ψ(1)(η)〉 has vanishing overlap with |0〉ψ
because of the normal ordering in the interaction Hamiltonian (see below).

We find

|Ψ(1)(η)〉 = i
λ

H
√
V

∑

~q

∑

~k

∫ η

η0

dη1
η1

g∗(q, η1)u
∗(k, η1)u

∗(p, η1) |1~q〉χ |1~k, 1~p〉ψ ; ~p = −~k − ~q ,

(4.5)
where |1~q〉χ are single χ particle states and similarly for the kets with ψ particles. The state
(4.5) is an entangled quantum state of the system (χ) and environmental (ψ) fields. This
state describes particle production from the vacuum state by the interaction, depicted in
fig.(2). In Minkowski space time these are virtual processes as they do not conserve energy,
however in an expanding cosmology these processes are available as “real” because there is
no time-like Killing vector[6, 8]. In particular the mode functions g(q, η1) feature a growing

component when q crosses the Hubble radius g(q, η) ≃ η
1

2
−νχ leading to secular (growing)

contributions to the time integrals as η → 0 for νχ ≈ 3/2 for a minimally coupled scalar
field. This feature will become important below when we discuss the power spectrum.

χ

ψ

ψ

~q

−~k − ~q

~k

FIG. 2: The state |Ψ(1)(η)〉: production of correlated χ and ψ particles from the vacuum state.

In second order the state |Ψ(2)(η)〉 features several contributions obtained by applying
the interaction Hamiltonian to |Ψ(1)(η)〉 as per the second equality in (4.3). However, only
two of these contribute to ρr(η) to second order, these are: I) annihilate all particles in
|Ψ(1)(η)〉 returning to the full vacuum state |0〉, II) create another χ particle and annihilate
(both) ψ particles returning to the ψ vacuum state but to a two particle state of the χ field.
Only these two contributions feature an overlap with the ψ vacuum state necessary for the
third and fourth terms in (4.4). These two states are given respectively by

|Ψ(2)(η)〉I = − λ2

H2

∫ η

η0

dη2
η2

∫ η2

η0

dη1
η1

∑

~q

g∗(q, η1)g(q, η2)K[q; η2, η1]|0〉χ|0〉ψ (4.6)

|Ψ(2)(η)〉II = − λ2

H2

∫ η

η0

dη2
η2

∫ η2

η0

dη1
η1

∑

~q

g∗(q, η1)g
∗(q, η2)K[q; η2, η1]|1~q, 1−~q〉χ|0〉ψ . (4.7)
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χ

~q

χ

~q

ψ

ψ

(a)

χ

~q

χ

~q

ψ

ψ

(b)

FIG. 3: The states in |Ψ(2)(η)〉 that contribute to ρr(η): (a) = |Ψ(2)(η)〉II ; (b) = |Ψ(2)(η)〉I .

and their associated Feynman diagrams are shown in fig.(3)
The state |Ψ(2)(η)〉II describes the production of correlated particle pairs of the field χ

out of the initial vacuum state. Inserting these results into (4.4) and carrying out the trace
over the ψ degrees of freedom, we find up to second order

ρr(η) = |0〉〈0|+
∑

~q

[

C(1)(q; η)|1~q〉〈1~q|+ C
(2)
2 (q, η)|1~q, 1−~q〉〈0|+ (C

(2)
2 (q, η))∗|0〉〈1−~q, 1~q |

+ C
(2)
0 (q, η)|0〉〈0|+ (C

(2)
0 (q, η))∗|0〉〈0|

]

(4.8)

where now all the kets correspond to χ particle states (we suppressed the label χ to simplify
notation). The coefficients are given by

C(1)(q; η) =
λ2

H2

∫ η

η0

dη2
η2

∫ η

η0

dη1
η1
g(q, η2)g

∗(q, η1)K[q; η2, η1] > 0 (4.9)

C
(2)
2 (q, η) = − λ2

H2

∫ η

η0

dη2
η2

∫ η2

η0

dη1
η1
g∗(q, η1)g

∗(q, η2)K[q; η2, η1] (4.10)

C
(2)
0 (q, η) = − λ2

H2

∫ η

η0

dη2
η2

∫ η2

η0

dη1
η1
g(q, η2)g

∗(q, η1)K[q; η2, η1] (4.11)

The coefficient C(1)(q; η) can be written in a more illuminating manner by introducing
Θ(η2 − η1) + Θ(η1 − η2) = 1 in the integrals, in the term with Θ(η1 − η2) relabel η1 ↔ η2
and use the property K[q; η1, η2] = K[q; η2, η1]

∗ to find the relation

C(1)(q; η) = −
(

C
(2)
0 (q, η) + (C

(2)
0 (q, η))∗

)

. (4.12)

This identity confirms unitarity in the total time evolution, since

Trχρr(η) = 1 +
∑

~q

[

C(1)(q; η) + C
(2)
0 (q, η) + (C

(2)
0 (q, η))∗

]

= 1 = Trρ(η0) . (4.13)

Several aspects stem from the above results:

• i): with b†~q b~q = Nq it follows that

TrNq ρr(η) = 〈Nq〉(η) = C(1)(q; η) , (4.14)
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the relation (4.12) leads to

N ′
q(η) =

λ2

H2 η

∫ η

η0

dη1
η1

[

g(q, η)g∗(q, η1)K[q; η, η1]+g
∗(q, η)g(q, η1)K

∗[q; η, η1]
]

, (4.15)

this is precisely the source term S
(N)
q (η) (3.20) in the rate equation (3.17), and makes

manifest the production of χ particles from the vacuum state, namely the decay of the
vacuum during the time evolution. Whereas in Minkowski space time these are virtual
processes leading to the wave function renormalization of the vacuum, the lack of a
time-like Killing vector as a consequence of the cosmological expansion makes these
processes to contribute in the long time limit[6, 10].

The super-Hubble limit of the mode functions (in the nearly massless case) g(q, η) ∝
1/η (2.17) leads to secular growth of particle production and vacuum decay in per-
turbation theory. These secular contributions are effectively re-summed by the full
quantum master equation. This statement will become clear below.

• ii): The probability of the χ vacuum state in the reduced density matrix is

Z(η) = 〈0|ρr(η)|0〉 = 1−
∑

~q

Nq(η) , (4.16)

which is interpreted as the vacuum wave function renormalization, namely the prob-
ability of finding the “bare” vacuum state in the full state time evolved from the
vacuum. This result is in agreement with that found in ref.[21] within the Wigner-
Weisskopf approximation, if the number of particles does not saturate in time, the
Bunch-Davies vacuum is unstable towards particle production consistent with the
results of refs.[9, 17, 26]. The expectation values M∗

q (η) = 〈b†~qb
†
−~q〉 describe the pro-

duction of correlated pairs.

• iii): The contribution |Ψ(1)(η)〉 given by (4.5) and in the trace (4.4) clearly shows that
the degrees of freedom of the system χ are entangled with those of the environment ψ.
In particular for q ≪ −1/η and k ≫ −1/η, there is quantum entanglement between
super-Hubble modes of the system and sub-Hubble modes of the environment. This is
in agreement with the super-sub-horizon entanglement discussed in ref. [18].

• iv): Although the last two terms in (4.8) can be combined, they arise from
|Ψ(2)(η)〉I〈0| and |0〉I〈Ψ(2)(η)| respectively, then writing the various contributions in

(4.8) in terms of b†~q , b~q we find

ρr(η) = ρr(η0) +
∑

~q

[

C(1)(q; η) b†~q ρr(η0) b~q + C
(2)
2 (q, η) b†~qb

†
−~q ρr(η0) +

(C
(2)
2 (q, η))∗ ρr(η0) b~q b−~q + C

(2)
0 (q, η) b~q b

†
~q ρr(η0) + (C

(2)
0 (q, η))∗ ρr(η0) b

†
~q b~q

]

.(4.17)

Upon using the relation (4.12) and taking the derivative with respect to η one recog-
nizes by inspection the similar terms in (3.15) when taking ρr(η) → ρr(η0) = |0〉〈0| on
the right hand side of (3.15) to lowest order in perturbation theory.

Therefore it becomes evident that (3.15) along with (3.17,3.18) furnish a non-perturbative
resummation for the time evolution, similar to quantum kinetic equations as discussed in
ref.[43] in Minkowski space-time.
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V. TRACING OUT SUB-HUBBLE MODES:

The discussion in the previous section has been quite general and does not specify in
detail either the mass or the coupling to gravity of the environmental degrees of freedom ψ,
namely the value of ξψ in (2.7).

Our main goal in this article is to understand the effective evolution of super-Hubble
fluctuations of the system field χ (inflaton) upon integrating out (tracing over) fluctuations
of the environmental field with wavelengths that remain sub-Hubble all throughout inflation.
In other words, we seek to obtain an effective field theory for long wavelength modes, those
that would be of cosmological relevance today, tracing out short wavelength modes of the
environmental fields. For physical wavelengths that are much smaller than the Hubble radius
−kη ≫ 1, the Bunch-Davis mode functions of the environmental fields

u(k, η)
−−−−−−→−kη ≫ 1

e−ikη√
2k

. (5.1)

If the environmental fields are scalar fields minimally coupled to gravity, their quantum
fluctuations feature a growing mode that is amplified upon becoming super-Hubble. If the
χ is the source of (adiabatic) perturbations a minimally coupled environmental scalar field
ψ would yield isocurvature (or entropy) perturbations, which are constrained by CMB ob-
servations. This motivates us to consider the bosonic field ψ to be massless and conformally

coupled to gravity, namely ξψ = 1/6 in which case νψ = 1/2 and

u(k, η) =
e−ikη√
2k

(5.2)

for all k, η. This is also the case if the bosonic field χ couples to a fermionic field with
mass mf ≪ H , the mode functions for the fermionic fields are those of Minkowski space
time but in terms of conformal time[16, 45, 46]. Therefore, choosing ψ to be a massless
conformally coupled scalar field is a proxy for integrating out (tracing over) sub-Hubble
degrees of freedom, leaving an effective action for the degrees of freedom that become super-
Hubble during inflation. With the mode functions (5.2) it is now straightforward to obtain

K[q, η, η′] = − i

8π2

e−iq(η−η
′)

(η − η′ − iε)
; ε→ 0+ (5.3)

where ε is a short-distance cutoff that regulates the momentum integral in (3.11). This result
can also be confirmed from the operator product expansion of the composite operator : ψ2 :
in Minkowski space-time since the mode functions are the flat space time plane waves and
the normal ordering is in the vacuum state. If, instead, we considered the environmental
field (ψ) to be minimally coupled, there is an additional contribution to K[q, η, η′] from
modes that become super-Hubble, this is discussed in the second reference in[22] and will
not be considered further here.

Therefore K[q, η, η′] features a local and a non-local contribution,

K[q, η, η′] = − i

8π2
e−iq(η−η

′) P
[ 1

η − η′

]

+
1

8π
δ(η − η′) , (5.4)

where P stands for the principal part. The result (5.4) is important, the correlation functions
of environmental fields are often taken to be local in time, namely ∝ δ(η − η′) as in the
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second term in (5.4), however even for fields with sub-Hubble fluctuations there is a non-
local contribution which describes a long range memory. As it will be shown below, this
non-local contribution is of paramount importance in the quantum master equation, it is also
present if the environmental fields are minimally coupled to gravity (see second reference
in[22]).

It is convenient to write the non-local term in (5.4) as

P
[ 1

η − η′

]

=
η − η′

(η − η′)2 + ε2
= −1

2

d

dη′
ln

[

(η − η′)2 + ε2

(−η)2

]

. (5.5)

In (5.5) we have introduced an arbitrary scale (−η) to render the argument of the logarithm
dimensionless and acts as a subtraction or renormalization scale just as in the usual renor-
malization program in Minkowski space-time. It will be judiciously chosen below. We can
now input (5.4) with (5.5) in (3.12) and separate the local contribution from the δ(η−η′) and
the non-local contribution from the principal part to the quantum master equation (3.12).
The non-local contributions feature the integrals

∫ η

η0

K[q; η, η′]χ−~q(η
′)
dη′

η′
;

∫ η

η0

K∗[q; η, η′]χ−~q(η
′)
dη′

η′
, (5.6)

the form (5.5) allows to extract the divergence from the non-local contribution upon inte-
gration by parts.

At this point we choose the arbitrary renormalization scale η = η0 with −η0 very large
(the beginning of the inflationary stage) so that the wave vectors q of interest are sub-Hubble
at this time, namely −qη0 ≫ 1. When evaluated at η0 the lower limit of the integrals (5.6) ,
and for −η → 0 the logarithm in (5.5) yields a contribution ≃ η/η0 which, when combined
with the large −qη behavior of g(q, η) yield a contribution of order λ2/(Hqη0)

2 ≪ 1 to the
quantum master equation. Therefore, choosing η = η0 in (5.5) allows to neglect the contri-
bution from lower limit in the integration by parts. The manifestation of a renormalization
group invariance of this choice will be discussed below.

We obtain, ρ′r(η) = ρ′rL(η) + ρ′rNL(η) where

ρ′rL(η) = −i λ2

8π2H2η2
ln
[ ε

−η0

]

∑

~q

[

χ~q(η)χ−~q(η), ρr(η)
]

− λ2

16πH2η2

∑

~q

{

χ~q(η)χ−~q(η)ρr(η) + ρr(η)χ~q(η)χ−~q(η)− 2χ−~q(η)ρr(η)χ~q(η)

}

, (5.7)

for the local contribution, the non-local contribution is found to be

ρ′rNL(η) = i
λ2

8π2H2 η

∑

~q

{

χ~q(η)X−~q(η)ρr(η) − ρr(η)X−~q(η)χ~q(η)

+ χ~q(η)ρr(η)X−~q(η) −X−~q(η)ρr(η)χ~q(η)

}

(5.8)
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where

X−~q(η) =

∫ η

η0

d

dη′

[

e−iq(η−η
′)χ−~q(η

′)

η′

]

ln
[η − η′

−η0

]

dη′ (5.9)

X−~q(η) =

∫ η

η0

d

dη′

[

eiq(η−η
′)χ−~q(η

′)

η′

]

ln
[η − η′

−η0

]

dη′ . (5.10)

The first term on the right hand side of the local contribution (5.7) (the commutator) is
identified as an ultraviolet divergent mass renormalization, indeed this term can be written
as

−iλ2
8π2H2η2

ln
[ ε

−η0

]

∑

~q

[

χ~q(η)χ−~q(η), ρr(η)
]

= −i
[

δH(η), ρr(η)
]

, (5.11)

with

δH(η) =
δM2(η0)

2H2η2

∑

~q

χ~q(η)χ−~q(η) ; δM2(η0) =
λ2

4π2
ln
[ ε

−η0

]

, (5.12)

δM2(η0) is an ultraviolet divergent mass renormalization of the same form as in Minkowski
space time. This contribution is absorbed into a mass renormalization, the renormalized
mass is

M2
R(η0) =M2

χ + δM2(η0) , (5.13)

where we emphasized that this renormalized mass depends on the renormalization scale η0.
In what follows we absorb this mass renormalization in the original Lagrangian and include
a counterterm to precisely cancel (5.11) thereby neglecting the first term in (5.7).

We can now insert the kernel (5.3) into the coefficient functions (3.19-3.24) in the equa-
tions for Nq(η) and Mq(η) (3.17, 3.18) and solve them to obtain their time evolution. How-
ever, while understanding their dynamical evolution merits such study on its own, neither
Nq(η) nor Mq(η) are directly observable. Instead an important observable is the power
spectrum

P(q; η) =
q3

2π2
〈φ~q(η)φ−~q(η)〉 =

q3H2 η2

2π2
〈χ~q(η)χ−~q(η)〉 . (5.14)

In terms of the field expansion and the expectation values (3.16) it is given by

P(q; η) =
q3H2 η2

2π2

[

(1 + 2Nq(η)) |g(q, η)|2 +Mq(η) g
2(q, η) +M∗

q (η) (g
∗(q, η))2

]

. (5.15)

Furthermore, only the power spectrum for wavevectors of cosmological relevance are of
observational interest, these correspond to wavelengths that became larger than the Hubble
radius ≃ 10 e-folds before the end of inflation. The quantum fluctuations corresponding
to these mode functions are amplified upon becoming super-Hubble and become classical,
the mode functions feature a growing and a decaying mode and only the growing mode is
relevant when the fluctuations become super-Hubble. This means that only a particular
combination of Nq(η) and Mq(η) determined by the growing modes is relevant to the power
spectrum. Rather than solving the coupled set of equations (3.17,3.18) it is more convenient
to directly study the dynamical evolution of the relevant combinations. Therefore we re-cast
the quantum master equation in terms of the degrees of freedom that have direct relevance
to the power spectrum of super-Hubble fluctuations.
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VI. CLASSICALIZATION AND CORRECTION TO THE POWER SPECTRUM:

Rather than studying the dynamics of particle production and two-particle correlations
and solving the coupled equations (3.17, 3.18) with the time dependent coefficients deter-
mined by the kernel K[q, η, η′] above, we focus on understanding the impact of tracing of
sub-Hubble modes upon physical observables, in particular the power spectrum.

The modes of a bosonic field minimally coupled to gravity become classical when their
physical wavelength becomes larger than the Hubble radius during an inflationary stage
(superhorizon), this is a consequence of the fact that there is a growing mode that becomes
amplified and a decaying mode whose amplitude diminishes[47]. This is manifest in the
mode functions g(q, η) (2.15) since

H(1)
ν (−qη) = Jν(−qη) + i Yν(−qη) (6.1)

and

Jν(z)
−−−→
z → 0

(z

2

)ν 1

Γ(ν + 1)
; Yν(z)

−−−→
z → 0 −

(z

2

)−ν Γ(ν)

π
. (6.2)

In order to exhibit the classicalization of the quantum fluctuations in a more direct manner,
it proves convenient to use the real mode functions Jν ; Yν corresponding to the decaying
and growing modes respectively to expand the field, this is achieved by introducing the
combinations

Q~q =
1√
2

(

b~q e
iπ
2
(νχ+

3

2
) + b†−~q e

−iπ
2
(νχ+

3

2
)
)

; Q†
~q = Q−~q (6.3)

P~q =
i√
2

(

b†−~q e
−iπ

2
(νχ+

3

2
) − b~q e

iπ
2
(νχ+

3

2
)
)

; P †
~q = P−~q . (6.4)

These P ′s and Q′s are canonical variables obeying the canonical commutation relations

[P †
~q , Q~k] = −iδ~q,~k ; [P~q, P~k] = [Q~q, Q~k] = 0 . (6.5)

Introducing the real growing and decaying mode functions

g+(q; η) =

√

−πη
2

Yνχ(−qη) ; g−(q; η) =

√

−πη
2

Jνχ(−qη) , (6.6)

we can now write the field expansion (3.13) as

χ~q(η) = Q~q g+(q; η) + P~q g−(q; η) . (6.7)

As discussed in refs.[47] the classicalization of fluctuations in the super-Hubble limit is
gleaned from the relation between χ~q and its conjugate momentum

Π~q(η) = χ′
~q(η) = Q~q g

′
+(q; η) + P~q g

′
−(q; η) ; [Π−~k(η), χ~q(η)] = −iδ~k,~q . (6.8)

For −qη → 0 the growing solution g+(q; η) dominates and

Π~q(η) ≃ χ~q(η)
(g′+(q; η)

g+(q; η)

)

∝ χ~q(η)

η
, (6.9)
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namely the commutator between Π, χ becomes much smaller than the amplitude of the
canonical variables, a necessary condition for the classicalization of the fields. This argument
is independent of the interaction with other fields in the theory and relies solely on the fact
that the solutions of the Heisenberg equations of motion for a minimally coupled scalar field

feature a growing and a decaying mode in the long time limit after the particular physical
wavelength has become super-Hubble. This feature does not apply to either fermionic fields
(which are never classical) nor to massless conformally coupled scalar fields (at least in
absence of interactions).

The power spectrum of the original (un-scaled) field φ is

P(q; η) =
q3

2π2
〈φ~q(η)φ−~q(η)〉 (6.10)

in the limit −qη ≪ 1, where φ~q is the spatial Fourier transform of the original field. From
the scaling relation (2.5) and (2.4) and with χ~q expanded as in (6.7) we find for −qη → 0

P(q; η) =
H2 22νχ Γ2(νχ)

4π3

(

− qη
)3−2νχ

[

〈Q†
~qQ~q〉 −

π

22νχ νχΓ2(νχ)
〈
(

Q~qP
†
~q + P~qQ

†
~q

)

〉
(

− qη
)2νχ

+
( π

22νχ νχΓ2(νχ)

)2

〈P †
~qP~q〉

(

− qη
)4νχ

]

(6.11)

With φ being a minimally coupled scalar field with MR ≪ H , where now MR is the renor-
malized mass (5.13) (here we suppressed the renormalization scale η0 in the definition of the
renormalized mass) it follows that

νχ ≃ 3

2
− M2

R

3H2
, (6.12)

therefore to leading order in MR/H we find

P(q; η) ≃ H2

2π2

(

−qη
)

2M2

R
3H2

[

〈Q†
~qQ~q〉−

1

3
〈
(

Q~qP
†
~q+P~qQ

†
~q

)

〉
(

−qη
)3
+
1

9
〈P †

~qP~q〉
(

−qη
)6

]

. (6.13)

A few e-folds after the corresponding mode crosses the Hubble radius, namely −qη ≪ 1 the
second and third terms in the bracket can be safely neglected and

P(q; η)
−−−−−−→−qη → 0

H2

2π2

(

− qη
)

2M2

R
3H2 〈Q†

~qQ~q〉 (6.14)

When the state is the Bunch-Davies vacuum 〈Q†
~qQ~q〉 = 1/2 and for MR → 0 one finds the

usual scale invariant power spectrum for a massless scalar field,

P(q; η)
−−−−−−→−qη → 0

H2

(2π)2
. (6.15)

In order to obtain the quantum corrections from tracing out the sub-Hubble degrees of
freedom, the average 〈(· · · )〉 must be carried out with the reduced density matrix ρr(η).
The free-field Heisenberg operator (6.7) is precisely the operator in the interaction picture
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wherein Q~q, P~q do not depend on time, then the average in the bracket in (6.13) is now
understood with ρr(η) and in the limit (−qη) → 0 the terms with (−qη)3, (−qη)6 can be

safely neglected, leaving only the contribution 〈Q†
~qQ~q〉. Namely we need to obtain

P(q; η) =
H2

2π2

(

− qη
)

2M2

R
3H2 Tr

(

Q†
~qQ~q ρr(η)

)

. (6.16)

Therefore it is more convenient to write ρr(η) in terms of the canonical phase space variables
Q~q, P~q instead of the creation and annihilation operators. Furthermore, we need to extract
the coefficient functions of Q~q, P~q in the expressions X−~q, X−~q in (5.9,5.10). Since the power
spectrum is obtained in the super-Hubble limit, namely −qη → 0 we can simplify the
integrals in (5.9,5.10) by i) taking qη → 0, ii) cutting off- the integrals at a time scale
η∗ ≃ −1/q in the lower limits of the integrals, since the integrand is dominated by the
late time η′ ≃ η → 0 region. These approximations capture the leading behavior in the
super-Hubble limit and simplify the integrals in (5.9,5.10)) leading to

X−~q = X−~q(η) = Q−~q g+(q; η) + P−~q g−(q; η) , (6.17)

where

g±(q; η) =

∫ η

η∗

d

dη′

[

g±(q; η
′)

η′

]

ln
[η − η′

−η0

]

dη′ ; − qη∗ ≃ 1 . (6.18)

After renormalization of the mass by a mass counterterm to cancel the first term in ρ′rL(η)
(5.7) we find the local part of the quantum master equation to be

ρ′rL(η) = − λ2

16πH2η2

∑

~q

{

[

Q~qQ−~q ρr(η) + ρr(η)Q~qQ−~q − 2Q−~qρr(η)Q~q

]

(

g+(q; η)
)2

+
[

P~qP−~q ρr(η) + ρr(η)P~qP−~q − 2P−~qρr(η)P~q

]

(

g−(q; η)
)2

+
[

Q~qP−~q ρr(η) + ρr(η)Q~qP−~q − 2P−~qρr(η)Q~q

]

(

g+(q; η)g−(q; η)
)

+
[

P~qQ−~q ρr(η) + ρr(η)P~qQ−~q − 2Q−~qρr(η)P~q

]

(

g+(q; η)g−(q; η)
)

}

, (6.19)

and the non-local contribution is

ρ′rNL(η) =
iλ2

8π2H2η

∑

~q

{

g+(q; η)g+(q; η)
[

Q~qQ−~q ρr(η)− ρr(η)Q~qQ−~q

]

+ g−(q; η)g−(q; η)
[

P~qP−~q ρr(η)− ρr(η)P~qP−~q

]

+ g+(q; η)g−(q; η)
[

Q~qP−~q ρr(η)− P−~qρr(η)Q~q

]

− g+(q; η)g−(q; η)
[

ρr(η)P−~qQ~q −Q~qρr(η)P−~q

]

+ g+(q; η)g−(q; η)
[

P~qQ−~qρr(η)−Q−~qρr(η)P~q

]

− g+(q; η)g−(q; η)
[

ρr(η)Q−~qP~q − P~qρr(η)Q−~q

]

}

. (6.20)
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As mentioned above, in order to obtain 〈Q~qQ−~q〉 = TrQ~qQ−~q ρr(η) we would need to solve the
quantum master equation. However, since in the interaction picture Q~q is time independent,
we obtain the equation of motion for 〈Q~qQ−~q〉 instead, namely

d

dη
〈Q~qQ−~q〉 = Tr

(

Q~qQ−~q ρ
′
r(η)

)

, (6.21)

from which we obtain 〈Q~qQ−~q〉 by integration.
The terms bilinear in P are proportional to (g−(q; η))

2/η2 ∝ η2 in ρrL and g−(q; η)/η ∝ η
in ρrNL both are subleading in the long time limit η → 0 and can be neglected in the
evaluation of 〈Q~qQ−~q〉. We find that ρ′rL yields no contribution to (6.21) in the long time
limit, finally we obtain the remarkable result

d

dη
〈Q~qQ−~q〉 = −Γ(q; η) 〈Q~qQ−~q〉 , (6.22)

where

Γ(q; η) =
λ2 g+(q; η)g−(q; η)

2π2H2η
(6.23)

is determined by the non-local contribution to the quantum master equation. The above
equation is valid at long time so that the particular wavevector q has crossed the Hubble
radius since we have neglected the contribution from the decaying mode. Therefore the
initial condition for the integration of (6.22) must be set at the scale η∗ ≃ −1/q, hence

〈Q~qQ−~q〉(η) = e−
∫ η
η∗

Γ(q;η′)dη′ 〈Q~qQ−~q〉(η∗) . (6.24)

We can extract the leading behavior from the integral in (6.18) in the limit −qη → 0,
and for M2

R/H
2 ≪ 1 setting νχ = 3/2, namely

g+(q; η) =
1

q3/2 η
; g−(q; η) =

1

3
q3/2 η2 , (6.25)

from which we find to leading and next to leading order as η → 0

g+(q; η) =
1

q3/2 η2

[

ln
( η

η0

)

− 1
]

. (6.26)

These results yield to leading and next to leading order as η → 0 and M2
R/H

2 ≪ 1

Γ(q; η) =
λ2

6π2H2η

[

ln
( η

η0

)

− 1
]

. (6.27)

Carrying out the integral in (6.24) and inserting the result into the power spectrum (6.16)
we find

P(q; η) =
H2

2π2
eα(q) ln[−qη] e−

λ2

12π2H2
ln2[−qη] 〈Q~qQ−~q〉(η∗) , (6.28)

where

α(q) =
2M2

R(η0)

3H2
+

λ2

6π2H2

[

ln[−qη0] + 1
]

. (6.29)

The result (6.28) is noteworthy: the quantum master equation yields a non-perturbative
resummation of secular Sudakov-type double logarithms in the long time limit.
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With M2
R(η0) given by (5.13) and δM2(η0) by (5.12) it is clear that α(q) is independent

of the renormalization scale η0, this is a reassuring confirmation of the consistency of the
renormalization procedure: the effective renormalized mass changes with the renormalization
scale, but the physical power spectrum is independent of this scale, this is a manifestation of a
renormalization group invariance. While the q-independent term in the bracket in (6.29) can
be absorbed as a finite renormalization of the mass the q-dependence of α(q) is a consequence
of the logarithmic renormalization. It is clear that even when the non-interacting theory is
massless and the power spectrum is scale invariant, the coupling to the subhorizon degrees of
freedom will induce a mass via renormalization effects, the logarithmic ultraviolet divergence
implies that the renormalized mass depends on an arbitrary renormalization scale and in
turn this results on a q dependence of α(q).

It remains to estimate 〈Q~qQ−~q〉(η∗), to achieve this we would have to keep the full ex-
pressions for the mode functions g±(q; η

′) inside the integrals in (5.9,5.10) along with the
oscillatory factors eiqη

′

. However for −qη′ & 1 in the integration the mode functions behave
as cos[−qη′]/√q; sin[−qη′]/√q and the integrands are of O(1) in the region of integration
−η0 ≫ −η′ ≫ −η∗ = 1/q. The mode functions amplify sharply for −qη′ < 1 and the con-
tribution from this time region dominates the integrals. Therefore the region of integration
with −η′ > −η∗ yields perturbatively small contributions of order λ2/H2 ≪ 1, consequently
〈Q~qQ−~q〉(η∗) = 〈Q~qQ−~q〉(η0) +O(λ2/H2) ≃ 1/2 +O(λ2/H2) where we have used that at η0
the initial density matrix describes the Bunch-Davies vacuum. Therefore the final result for
the power spectrum for wavevectors that cross the Hubble radius is

P(q; η) ≃ H2

(2π)2
eα(q) ln[−qη] e−

λ2

12π2H2
ln2[−qη] . (6.30)

Including the second term in the bracket in (6.29) into a finite renormalization of MR and
setting the renormalized massM2

R(η0) = 0 so that in absence of coupling the power spectrum
is scale invariant, namely

α(q) =
λ2

6π2H2
ln[−qη0] , (6.31)

we obtain the final form of the power spectrum

P(q; η) ≃ H2

(2π)2
e

λ2

6π2H2

[

ln[−qη0] ln[−qη]−
1

2
ln2[−qη]

]

. (6.32)

It follows from this result that the power spectrum decays when the wavevector q becomes
“superhorizon” −qη < 1. If the wavevector q is of cosmological relevance today, it crossed
the Hubble radius ≃ 10 e-folds before ηf , the end of inflation, and if inflation lasts ≃ 60
e-folds, it follows that

ln[−qη0] ≃ 50 ; | ln[−qηf ]| ≃ 10 (6.33)

and the exponent in (6.32) ≃ 8λ2/H2. With λ2/H2 ≪ 1 under the assumption of weak
coupling and the realm of validity of the quantum master equation, we find that the decay
of the power spectrum could be marginally observable if λ/H ≃ 0.1 implying a suppression
. 10% of the power spectrum for modes that re-enter the horizon near recombination,
assuming no further corrections during the post-inflationary era.

Therefore, although the power spectrum decays as a consequence of the interaction with
the environmental degrees of freedom, it is likely that these corrections are of marginal
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observational relevance, at least within the model studied here. However, this important
observational fact notwithstanding, there is the noteworthy and fundamental aspect that the
amplitude of the perturbation does not freeze out but decays after crossing the Hubble radius.
These results confirm in a non-perturbative manner previous perturbative analysis[13, 48]
but also points out that not only the power spectrum does not freeze-out after “horizon
crossing” but that the time dependence is associated with a violation of scale invariance
even when in absence of interactions the power spectrum is exactly scale invariant.

VII. DISCUSSION

There are several aspects of the method and the results that merit discussion:

• What is being re-summed?: The quantum master equation provides a non-
perturbative resummation as is explicit in the final result for the power spectrum
(6.30), the question is what type of contributions are being re-summed. Tracing out
the sub-Hubble degrees of freedom is manifest in the correlation function (3.7,3.8) of
the field ψ shown in fig. (1). These correlation functions define the one-loop self-energy
corrections to the field χ. The perturbative analysis of section (IV) shows how these
correlation functions enter in the time evolution of the density matrix and lead to
the production of single particles and correlated pairs and the quantum entanglement
between the quanta of the system (χ) and those of the (traced-over) environment (ψ).
The Sudakov-type double logarithms originate from several different contributions: i)
the logarithmic behavior of the one-loop self-energy is the same as in Minkowski space
time because these arise from conformally coupled massless fields that act as proxies
for degrees of freedom that remain sub-Hubble all throughout inflation. ii) the scale
factor ∝ 1/η in the interaction vertex, iii) the growing mode functions inside the ker-
nel which lead to the factor 1/η2 in (6.26), which is canceled by the decaying mode
(see eqns. (6.23, 6.25,6.27)), thus leaving finally the 1/η from the scale factor at the
vertex which enhances the long time limit logarithmically (proportional to the number
of e-folds). Thus, in summary, the quantum master equation furnishes a non-
perturbative resummation of the secular Sudakov-type double logarithms
of the one-loop self-energy of the χ field. When the mode functions of the χ
field become “super-horizon” the quantum master equation effectively describes quan-
tum entanglement between these super-horizon modes and the sub-horizon degrees of
freedom that have been traced over, in agreement with the results of ref.[18].

• Generality: We have considered the interaction ∝ χψ2 where χ describe the degrees
of freedom that are of cosmological relevance and become “super-horizon”, namely
the “system” and ψ describes the sub-horizon degrees of freedom that are integrated
out and is considered as a “bath” or environment. This interaction is, in fact, more
general and describes various relevant cases: for example consider the case in which
the original (unscaled) scalar field φ features a quartic self-interaction g φ4 during
slow roll inflation when φ develops a nearly constant expectation value Φ (in slow
roll). Writing φ(~x, η) = Φ + δφ(~x, η) (here we assumed slow roll and neglected
the time dependence of Φ) and writing the spatial Fourier transform of δφ(~x, η) as
δφ>(~q, η) + δφ<(~q, η) where δφ<(~q, η) describes modes that are deep inside the Hub-
ble radius all throughout inflation in terms of the mode functions (5.2), one obtains
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the vertex (gΦ) δφ>(~q, η)δφ<(~k, η) δφ<(−~k − ~q, η) which is the of form λχψ2 where
χ = a(η)δφ>, ψ = a(η)δφ<. In this interpretation tracing over the δφ< degrees of
freedom to obtain the reduced density matrix is akin to a Wilsonian coarse graining
procedure of integrating out short wavelength fluctuations leading to an effective field
theory for long-wavelength fluctuations[35]. A Yukawa interaction with fermionic fields
is also described by the cubic vertex considered here. Indeed the fermionic fields are
expanded in mode functions of the form (2.16) with the index ν ≃ 1/2 for a massive
field with mf ≪ H with technical differences associated with the spinorial contribu-
tions to the loop corrections, which however yield a similar logarithmic contribution to
the self-energy after a quadratic renormalization of the mass since the loop correction
is similar to that in Minkowski space time.

• Minimally coupled scalars secular and infrared enhancements: If the inflaton
(“system”) scalar field couples to other (environmental) scalar fields that are minimally
coupled to gravity and with masses M ≪ H these “environmental” fields feature
quantum fluctuations that are infrared and secularly enhanced when their wavelengths
become super-Hubble[6, 8, 9, 11, 13, 15, 18, 22].

Although in this article we focused on influence of sub-Hubble correlations, the impor-
tance of the infrared and secular enhancements when the environmental scalar field is
minimally coupled to gravity merits a discussion.

To begin with, consider the case when the environmental field is minimally coupled

and massless in this case νψ = 3/2 and

u(k, η) =
e−ikη√
2k

[

1 +
i

kη

]

, (7.1)

then it is clear that the correlation function K[q, η, η′] in (3.11) features logarithmic

infrared divergences in the integration regions k ≃ 0 ; |~k + ~q| ≃ 0. A non-vanishing
mass for the ψ field regulates the infrared, consider Mψ ≪ H from which it follows
that for a minimally coupled environmental field

νψ ≃ 3

2
−∆ ; ∆ =

M2
ψ

3H2
. (7.2)

In ref.[22] it is shown that the logarithmic infrared divergences of the (self-energy)
kernel are manifest as poles in ∆. The calculation of the kernel K[q, η, η′] follows the
same steps described in detail in ref. [22] (see the appendix in the second reference).

The regions of integration k ≃ 0 ; |~k + ~q| ≃ 0 are isolated and an infrared cutoff µ is
introduced in these regions, within which the small argument expansion u(p, η) ∝ p−νψ

is used and the integration yields poles in ∆. Outside these infrared regions it is safe
to take νψ = 3/2, the details are available in the second reference in [22]. Using the
results of this reference we find to leading and next to leading order in ∆

K[q, η, η′] ≡ KIR[q, η, η
′] +Kcc[q, η, η

′] , (7.3)

where

KIR[q, η, η
′] =

H
(1)
νψ (−qη)H(2)

νψ (−qη′)
8π(ηη′)1/2 ∆

[

qηη′]∆

Kcc[q, η, η
′] = − i

8π2
e−iq(η−η

′)P
[ 1

η − η′

]

+
1

8π
δ(η − η′) , (7.4)
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The first line corresponds to the infrared enhancement of a minimally coupled, nearly
massless scalar field, arising from the infrared contribution of super Hubble modes of
the environmental scalar field in the integral in (3.11). The second line is recognized as
the kernel for conformally coupled massless fields. Inspection of the different contribu-

tions available in ref.[22] reveals the former arises from the regions k ≃ 0 ; |~k+ ~q| ≃ 0
in the integral (3.11) whereas the latter contribution arises precisely from the terms
e−ipη/

√
2p in the mode functions u(p; η).

With this kernel we now must obtain the non-local contribution to the quantum master
equation from KIR[q, η, η

′], in particular the coefficients of the respective terms in
(6.20), namely

∫ η

η0

g±(q, η
′)

η′
KIR[q, η, η

′] dη′ . (7.5)

Following the arguments leading to (6.18), the corresponding integrals are dominated
by the region −qη′ ≪ 1, therefore focusing on this region and in the long time limit it
follows that the first line in (7.4) yields to leading order in ∆

KIR[q, η, η
′] ≃ (q2ηη′)2∆

4π2q3(ηη′)2∆
. (7.6)

With the super-Hubble behavior of g± given by (6.25) we find to leading order in ∆

∫ η

η0

g+(q, η
′)

η′
KIR[q, η, η

′] dη′ ≃ 1

q3/2η2
1

12π2(−qη)3∆
∫ η

η0

g−(q, η
′)

η′
KIR[q, η, η

′] dη′ ≃ 1

q3/2η2
ln[η/η∗]

12π2∆
. (7.7)

It becomes clear that the coefficients of the Q,P terms in the non-local contribution
to the quantum master equation now feature a much stronger secular contribution in
the long time limit η → 0 and are infrared enhanced by the pole in ∆.

In this case we expect that the corrections to the power spectrum of the “system”
field will feature a stronger decay as discussed in the second reference in [22]. This
case merits further analysis and will be relegated to future study, as our goal in this
article is to explore the impact of environmental degrees of freedom with sub-Hubble
correlations all throughout inflation.

In refs.[48] it was found that self-interactions of curvature perturbations and the inter-
action between a massless minimally coupled scalar field and curvature perturbations
lead to time dependent logarithmic corrections (and powers of logarithms) to the power
spectrum of the ζ (related to the curvature) variable, confirming previous results in
ref.[13]. Although we did not study the curvature perturbation and we considered
the inflaton-like scalar coupled to a massless conformal scalar field, our conclusions
support in a non-perturbative manner the perturbative results of ref.[48] in that the
power spectrum is indeed time dependent (as well as scale dependent) after “horizon
crossing”. Furthermore, the quantum master equation provides a non-perturbative
resummation of secular self-energy corrections (loops) and describes the asymptotic
long time behavior of correlations well after “horizon crossing”.
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VIII. CONCLUSIONS AND FURTHER QUESTIONS.

We studied the dynamics of an effective field theory of two interacting scalar fields during
inflation: a minimally coupled inflaton-like field φ which is taken as the system and another
scalar field ϕ as an environmental quantum field that is integrated out. We obtained the
reduced density matrix for the field φ by tracing out the degrees of freedom of the scalar field
ϕ, the reduced density matrix obeys a quantum master equation which we obtained up to
one loop in the correlation functions of the ϕ field. The quantum master equation describes
the decay of the vacuum state, the production of particles and correlated pairs and quan-
tum entanglement between the fluctuations of the φ and ϕ. When the fluctuations of the φ
field become super-horizon, the quantum master equation describes quantum entanglement
between the super-Hubble degrees of freedom of the system and sub-Hubble degrees of free-
dom of the environment. Renormalization aspects emerge naturally in this formulation. The
quantum master equation provides an effective non-perturbative description of the dynamics
whose solution is a resummation of self-energy corrections (loops). Our main goal in this
article is to study the effect of environmental degrees of freedom that remain sub-Hubble
all throughout inflation upon the power spectrum of super-Hubble fluctuations of the infla-
ton. For this purpose we considered the environmental field ϕ to be a conformally coupled
massless field, as a proxy for degrees of freedom whose mode functions correspond to fluctua-
tions that remain sub-Hubble all throughout inflation and are not amplified. In this case the
quantum master equation provides a non-perturbative resummation of secular Sudakov-type
double logarithms in the asymptotic long time limit. From the quantum master equation we
obtain the time evolution of the power spectrum for super-Hubble fluctuations. Even when
the non-interacting theory features a scale invariant power spectrum, the non-perturbative
resummation of environmental correlations (loops) leads to a breakdown of scale invariance,
and a decay of the power spectrum at long time. Super-Hubble inflaton fluctuations do
not freeze out but decay upon “horizon crossing”. However for weak coupling between the
inflaton and the environmental degrees of freedom, if inflation lasts for only ≃ 60 e-folds,
the corrections to the power spectrum would be just marginally relevant for cosmological
observations. This important aspect notwithstanding, the effective field theory description
based on the reduced density matrix and its quantum master equation furnishes a powerful
non-perturbative framework to study the impact of sub-Hubble degrees of freedom upon the
quantum correlations of inflationary perturbations of cosmological relevance today.

Further questions: The results obtained above within a simple model of interactions
between inflaton fluctuations and other degrees of freedom that remain sub-Hubble sug-
gest several possible avenues of study. For example in the theory of non-Gaussianity the
bi-spectrum is a result of a cubic self-interaction of curvature fluctuations[27, 28]. In the
local limit for a squeezed configuration of the momenta of the three fields, two of the mo-
menta are large and one becomes small, when the small momentum (the shortest side in
the triangle) becomes super-Hubble and the other two are sub-Hubble, the situation is akin
to the case studied in this article. In this case the bi-spectrum describes quantum entan-
glement between sub and super-Hubble degrees of freedom. Tracing over the sub-Hubble
fluctuations leads to a quadratic effective action for the super-Hubble fluctuations much in
the same way as the effective action for inflaton fluctuations considered here. Therefore,
it would be interesting to obtain the corresponding quantum master equation by tracing
over the sub-Hubble curvature fluctuations and study the asymptotic long time evolution
of the power spectrum to understand if it indeed freezes out or if there is a correction such
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as the decay as found here in the simpler scenario. We have commented on the case when
the environmental fields are nearly massless and minimally coupled to gravity highlighting
the enhanced infrared and secular contributions as discussed in ref.[48]. Pursuing a deeper
understanding of this case with the quantum master equation is certainly of interest within
this context because curvature fluctuations are described by massless and minimally coupled
scalar fields, albeit with derivative interactions. Another relevant case to consider is that
with the inflaton Yukawa coupled to fermionic degrees of freedom with masses ≪ H . As
discussed above the mode functions for these degrees of freedom are very similar to those
of a conformally coupled scalar field (with the ensuing spinorial structure). In the standard
model there is a large number of fermionic degrees of freedom, which suggests a large N
(number of fermionic species) expansion which furnishes yet another non-perturbative re-
summation scheme. Tracing over these fermionic degrees of freedom yield loop self-energies
for the inflaton fluctuations, and the reduced density matrix and its concomitant quantum
master equation can be obtained following the methods and steps highlighted here. For
large N one can resort to the case in which the Yukawa coupling ∝ 1/

√
N so that the one

loop self energy becomes exact in the large N limit. The results of some of these studies will
be reported elsewhere.
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