
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Leptogenesis via neutrino production during Higgs
condensate relaxation

Lauren Pearce, Louis Yang, Alexander Kusenko, and Marco Peloso
Phys. Rev. D 92, 023509 — Published  8 July 2015

DOI: 10.1103/PhysRevD.92.023509

http://dx.doi.org/10.1103/PhysRevD.92.023509


FTPI-MINN-15/21
UMN-TH-3434/15

Leptogenesis Via Neutrino Production During Higgs Relaxation

Lauren Pearce,1 Louis Yang,2 Alexander Kusenko,2, 3 and Marco Peloso4

1William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,
University of Minnesota, Minneapolis, MN 55455 USA

2Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
3Kavli Institute for the Physics and Mathematics of the Universe (WPI),

University of Tokyo, Kashiwa, Chiba 277-8568, Japan
4School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA

During inflation, scalar fields, including the Higgs boson, may acquire a nonzero vacuum expecta-
tion value, which must later relax to the equilibrium value during reheating. In the presence of the
time-dependent condensate, the vacuum state can evolve into a state with a nonzero particle num-
ber. We show that, in the presence of lepton number violation in the neutrino sector, the particle
production can explain the observed matter-antimatter asymmetry of the universe. We find that
this form of leptogenesis is particularly effective when the Higgs condensate decays rapidly and at
low reheat scale. As part of the calculation, we present some exact results for the Bogoliubov trans-
formations for Majorana fermions with a nonzero time-dependent chemical potential, in addition to
a time-dependent mass.

I. INTRODUCTION

During the inflationary era, the Higgs field may de-
velop a stochastic distribution of vacuum expectation val-
ues (VEVs) due to the flatness of its potential [1–3], or
it may be trapped in a quasi-stable minimum. In both
cases, after inflation the Higgs field relaxes to its vacuum
state via a coherent motion [4–6]. At large VEVs, the
Higgs field may be sensitive to physics beyond the Stan-
dard Model, and new terms in the Lagrangian, such as
those considered in models of spontaneous baryogenesis,
can generate an effective potential for baryon and lepton
number [7, 8]. These terms couple the time-dependent
scalar condensate to the lepton (and baryon) number cur-
rents. Consequently, the thermal bath of particles pro-
duced by reheating can lower its energy by converting
particles into antiparticles, through scattering involving
neutrinos, whose Majorana mass violates lepton num-
ber [5, 6]. This scenario can explain the observed matter-
antimatter asymmetry of the universe; it requires suffi-
ciently fast reheating, such that the plasma forms before
Higgs relaxation is complete, which restricts the possible
parameter space. In addition to the Higgs boson, an ax-
ion or a Majoron relaxation could generate the baryon
asymmetry of the universe [6, 9, 10].

However, the relaxation of the Higgs vacuum expecta-
tion value itself results in particle production. Generi-
cally, a classically evolving background scalar field cou-
pled to quantum fields results in particle production; this
can be understood as a consequence of the fact that the
initial vacuum state (which is annihilated by the appro-
priate annihilation operators at t = 0) is not annihi-
lated by the appropriate annihilation operators at later
times [11–13]. (More specifically, the time-dependent
background mixes positive and negative energy solutions
of the field equations, and so an initially diagonal Hamil-
tonian is non-diagonal at later times.) This can result
in the production of both scalar bosons [12, 13] and
fermions [14, 15], provided that the classical scalar field is

coupled to both. This has been explored extensively with
respect to the inflaton (e.g., [16–18]). In this work, we
calculate the excess of neutrinos over antineutrinos pro-
duced by the evolving Higgs condensate in the presence
of chemical potential, generated by higher order terms
in the Lagrangian, which distinguishes particles from an-
tiparticles.

During the oscillations of the Higgs condensate, the ef-
fective chemical potential changes sign, which alternates
whether the production of neutrinos or antineutrinos is
favored. Therefore, the maximal asymmetry is produced
with the Higgs condensate decays quickly, which mini-
mizes this wash out. Furthermore, this mechanism favors
a low reheating scale, which minimizes entropy produc-
tion.

The outline of this paper is as follows: In the next
section, we introduce our model, including the O6 opera-
tor which gives rise to an effective chemical potential for
lepton number. Subsequently, we derive an effective La-
grangian by integrating out the weakly interacting right-
handed neutrino states, and we specialize to the case of
a single fermion family. In section IV, we quantize this
system and find the Bogoliubov transformation equations
which describe particle production. Following this, we
define the occupation number of the physical eigenstates
and lepton number. Finally, present a numerical analysis
of our model, which demonstrates that resulting asym-
metry can be sufficiently large to account for the observed
matter-antimatter asymmetry.

II. THE LAGRANGIAN

In this section, we introduce the model Lagrangian.
We begin with the action in general curved spacetime

S =

∫
d4x
√
−gL (1)
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with a Lagrangian

L = LH + L` + LO6
+ LSM, (2)

where we use LH to denote the Higgs sector contribu-
tion, L` to denote the lepton sector contribution, LO6

to denote higher dimensional operators which will gener-
ate an effective chemical potential for baryon and lepton
number, and LSM represents the Standard Model contri-
butions that do not appear in LH or L`. We consider an
expanding FLRW spacetime with signature (+,−,−,−).

The purely Higgs sector contribution is

LH = gµν∂µΦ†∂νΦ− Vφ(Φ, T ), (3)

where Vφ(Φ, T ) is the Higgs potential, including any rel-
evant loop and finite temperature corrections. We note
that, as with the models discussed in [5, 6], the poten-
tial Vφ(Φ, T ) may require higher dimensional operators
involving the Higgs field Φ (and possibly the inflaton
field I) in order to suppress isocurvature perturbations
resulting from variations in the produced baryon den-
sity [19–21]. The Higgs sector is discussed in more detail
in subsection II A below.

The lepton sector Lagrangian includes the terms

L` = i
∑

L̄

(
gµν γ̃µ∂ν +

3

2
g00 a

′

a
γ̃0

)
L

+ i
∑

N̄R

(
gµν γ̃µ∂ν +

3

2
g00 a

′

a
γ̃0

)
NR −

∑
y`L̄Φ`R

−
∑

yνL̄ΦNR −
∑MN

2
(NR)cNR + h.c., (4)

where L denotes left-handed lepton doublets, ` right-
handed charged leptons, and NR right-handed neutrinos,
and we implicitly sum over indices and families. The
gamma matrices in the FRW metric are related to those
in flat space time by γ̃µ = aγµ. We note in Eq. (4)
the effect of the spin connection evaluated on the FLRW
background. This Lagrangian will be discussed further
in subsection II B below.

The third part of the Lagrangian is the higher dimen-
sional operator

LO6
= − Φ2

M2
∂µj

µ
B+L, (5)

where jµL is the lepton current density. One possibility
for generating an operator of this form is to couple the
Higgs field Φ to the SUL(2) × UY(1) gauge fields A and
B by

O6 = − Φ2

M2

ng
32π2

(
g2

2ε
µναβAaµνA

a
αβ − g2

1ε
µναβBµνBαβ

)
,

(6)
which can be written in the form of using the electroweak
anomaly equation [7, 8]. This transformation requires
the electroweak sphalerons to be in thermal equilibrium,
which may not be satisfied here, although the situation
is complicated by the time-dependent Higgs VEV. For

these reasons, we discuss other ways of generating this
operator in Appendix A.

We will discuss the role of this term further in subsec-
tion II C; for now, we note only that in the presence of
this term, the Higgs evolution induces a chemical poten-
tial that distinguishes particles from antiparticles.

Before we discuss each component separately, we will
first rewrite the action using conformal time, such that
the metric is gµν = a2(η)ηµν , and1

η =

∫ t

0

dt̄

a(t̄)
, (7)

It will be convenient to define the “comoving” fields,

φ̃ = aφ

ψ̃ = a3/2ψ (8)

such that we can write

S =

∫
d4x

(
L̃H + L̃` + L̃O6

+ L̃SM

)
(9)

where

L̃H = ∂µΦ̃∂µΦ̃− a′′

a
Φ̃2 − Ṽφ(Φ̃, T ),

L̃` = i
∑ ¯̃L/∂L̃+ i

∑ ¯̃NR /∂ÑR −
∑

y′ ¯̃LΦ̃˜̀
R

−
∑

y ¯̃LΦ̃ÑR −
∑ aMN

2
(ÑR)cÑR + h.c.,

L̃O6 = −a
4Φ̃2

M2
∂µj

µ
B+L,

L̃SM = a4LSM. (10)

In the first equation, we have defined a comoving poten-
tial Ṽφ = a4Vφ.

In the next subsection, we consider how the Higgs field
might acquire a large VEV during inflation, which re-
laxes to its equilibrium value during reheating. Then
we consider how this affects the quadratic terms in the
lepton sector; subsequently, we demonstrate that when
the Higgs VEV is in motion the O6 operator produces
a chemical potential for baryon and lepton number. Fi-
nally, we gather together the relevant contributions to
the Lagrangian in the final subsection.

A. The Higgs Sector

The Standard Model Higgs boson has the tree-level
potential

Vφ(Φ) = m2Φ†Φ + λ(Φ†Φ)2, (11)

1 Throughout this paper, we will use primes to denote differentia-
tion with respect to conformal time, dots to denote differentiation
with respect to physical time, tildes to denote comoving quanti-
ties, and hats to denote two-component fields. Where necessary,
we will use bars in dummy variables.
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where Φ is the Higgs SU(2) doublet. The parameters
m and λ, although constant at tree-level, are modified
by both loop and finite temperature corrections. For
the experimentally preferred top quark mass and Higgs
boson mass, loop corrections result in a negative run-
ning coupling λ at sufficiently large vacuum expecta-
tion values (VEVs), with the result that the

√
〈φ2〉 =

vEM = 246 GeV minimum is metastable at zero temper-
ature [22]. We note, though, that a stable vacuum is pos-
sible within current experimental uncertainties [22], and
the stability of the potential is also sensitive to Planck-
scale corrections [23].

Therefore, the running quartic coupling produces a
shallow potential, and consequently, the Higgs field may
develop a large VEV during inflation due to quantum
fluctuations [4]. Qualitatively, the scalar field in a de Sit-
ter space can develop a large VEV via quantum effects,
such as Hawking-Moss instantons [1, 24] or stochastic
growth [2, 25, 26]. Subsequently, the field would relax to
its equilibrium value via a classical motion on the time
scale ∼ (d2V/dφ2)−1/2, unless Hubble friction delays this

relaxation. If HI �
√
d2V/dφ2 then quantum jumps oc-

cur frequently enough to maintain a large VEV.

Alternatively, the Higgs potential is sensitive to higher-
dimensional operators at large vacuum expectation val-
ues, which can have the effect of lifting the second min-
imum, stabilizing the electroweak vacuum. During infla-
tion, the Higgs field may have a stochastic distribution of
VEVs similar to that of the inflaton itself in chaotic in-
flation models. During inflation, sufficiently large VEVs
evolve towards the false vacuum from above, and then
remain trapped in this false vacuum until destabilized
by thermal corrections during reheating. Subsequently,
the field rolls to the global minimum, until electroweak
symmetry is broken at a significantly later time.

Therefore, it is quite natural to consider scenarios in
which the Higgs field has a large vacuum expectation
value during inflation, which subsequently relaxes to its
equilibrium value. Both of the above scenarios have been
explored previously [5, 6]. Here, we consider the classical
motion of the Higgs field towards equilibrium generically,
without specifying the mechanism which generates the
initial large vacuum expectation value.

We note that if the field has expectation value

〈Φ〉 =
1√
2

(
v(t)

0

)
, (12)

then the comoving field has expectation value

〈
Φ̃
〉

=
1√
2

(
ṽ(η)

0

)
=

1√
2

(
av(η)

0

)
(13)

where we have defined ṽ = av. For completeness, we dis-
cuss the equation of motion for ṽ in the Standard Model,
including loop and finite temperature corrections, in Ap-
pendix B.

B. The Neutrino Sector

Next, we consider the effect of the evolving Higgs VEV
on the quadratic terms in L̃`, given by the second line of
equations (10). Including multiple generations, we write
this as

L̃` = i
∑
α

L̃α /∂L̃α + i
∑
i

ÑRi /∂ÑRi −
∑
αβ

y`αβ
¯̃LαaΦ̃a ˜̀

βR

−
∑
αj

yναjεab
¯̃LαaΦ̃bÑRj −

∑
ij

M̃Nij

2
(ÑRi)cÑRj + h.c.,

(14)

where Φ̃ is the comoving Higgs doublet, L̃ is the comov-
ing left-handed (νL, `L) lepton SUL doublet of species L,

and Ñ are right-handed Majorana neutrino states. Greek
indices label flavors (e, µ, τ), while the Latin indices i
and j label right-handed neutrinos. The indices a and b
are SUL labels. These are the only renormalizable terms
which describe the interactions between the Higgs and
lepton doublets, given the gauge symmetries of the Stan-
dard Model.

When the comoving Higgs field acquires a vacuum ex-
pectation value, this becomes:

L̃` = i
∑
α

L̃α /∂L̃α + i
∑
i

ÑRi /∂ÑRi −
∑
αβ

y`αβ ṽ√
2

˜̀
Lα

˜̀
Rβ

−
∑
αj

yναj ṽ√
2
ν̃LαÑRi −

∑
ij

M̃Nij

2
(ÑRi)cÑRj + h.c.,

(15)

where the comoving mass is M̃ = aM . The right-handed
Majorana neutrinos induce lepton-number violation in
interaction involving neutrinos; however, there is no cor-
responding effect for the charged leptons. Therefore,
these terms will not affect our analysis, and so we will
absorb them into L̃SM. We define the neutrino sector
Lagrangian

L̃ν = i
∑
α

ν̃Lα /∂ν̃Lα + i
∑
i

ÑRi /∂ÑRi −
∑
αi

M̃D
iαÑRiν̃Lα

− 1

2

∑
ij

M̃Nij(ÑRi)cÑRj + h.c., (16)

where the comoving Dirac mass is

M̃D
iα(η) =

y†ναiṽ(η)√
2

. (17)

We note that since ṽ = av, this has the expected scaling
of a comoving mass.

It will be convenient to use two-component comoving
Weyl spinors; we work in the chiral basis, with conven-
tions outlined in Appendix C.
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We denote the two component spinors with tildes, as
in

ν̃L =

(
ν̂L
0

)
, ÑR =

(
0

N̂R

)
,

ν̃L =
(
ν̂†L 0

)(0 1
1 0

)
=
(
0 ν̂†L

)
,

ÑR =
(
0 N̂†R

)(0 1
1 0

)
=
(
N̂†R 0

)
. (18)

The conjugated comoving fields are

Ñ c
R = CÑR

T
=
(
0 −iN̂T

Rσ2

)
, (19)

where the charge conjugation operator C is also given in
Appendix C.

In terms of these two-component comoving spinors, the
neutrino sector Lagrangian can be written as

L̃ν = i
∑
α

ν̂†Lασ̄
µ∂µν̂Lα + i

∑
i

N̂†Riσ
µ∂µN̂Ri

−
∑
αi

(
M̃D
iαN̂

†
Riν̂Lα + M̃D†

αi ν̂
†
LαN̂Ri

)
− 1

2

∑
ij

(
iM̃NijN̂

T
Riσ2N̂Rj − iM̃†NjiN̂

†
Rjσ2N̂

∗
Ri

)
,

(20)

and we note that if we introduce the fields

N̂C
R = −iσ2N̂

∗
R (21)

the mass term has the expected Majorana form,

−(N̂C†
R N̂R + N̂†RN̂

C
R ), (22)

where we remind our readers that these are comoving
fields.

C. The O6 Operator

Next, we turn our attention to the O6 operator intro-
duced in equation (II); we use the lepton and baryonic
currents

jµB =
∑
q

1

nc
q†γµq, jµL =

∑
`

`†γµ`, (23)

where the sums are over all leptonic fields, including
right-handed neutrinos, and baryonic fields respectively.
In a general curved spacetime, we assume this becomes

L̃O6
= −a4gµν

Φ2

M2
∇µjνL, (24)

which generally holds if the gravitational anomaly is can-
celled by having equal numbers of left- and right-handed
neutrinos, as discussed in Appendix A. Next, we inte-
grate by parts by moving the derivative onto the Higgs

vacuum expectation value. As we are in flat FLRW
spacetime, we may replace ∇µ with ∂µ to find

L̃O6 = −a4 ∂µΦ2

M2
jµB+L. (25)

Finally, we want to express this in terms of the comoving
fields. We note that the current is

jµB+L = ψ̄γ̃µψ = a−2j̃µB+L, (26)

where we have defined j̃µB+L =
¯̃
ψγµψ̃. We here intro-

duce the notation of a prime to denote a derivative with
respect to conformal time. This allows us to write

L̃O6
= −∂µΦ̃2 − 2a′Φ̃2δ0µ/a

M̃2
j̃µB+L. (27)

where

∂µΦ̃2 = 2aa′Φ2 + a2∂µΦ2δ0µ

= 2
a′

a
Φ̃2δ0µ + a2∂µΦ2. (28)

When Φ̃ acquires a time-dependent vacuum expecta-
tion value ṽ, this is

L̃O6 = −∂0ṽ
2 − 2a′ṽ2/a

2M̃2
j̃0
B+L. (29)

where we emphasize that ∂0 = ∂/∂η. We define

µ̃ ≡ ∂0ṽ
2 − 2a′ṽ2/a

2M̃2
(30)

since this term acts like a chemical potential for B + L
charge. We note that in terms of v and M , this has the
expected form

µ̃ ≡ − 1

2M̃2

(
∂

∂η
ṽ2 − 2

da

dη

1

a
ṽ2

)
=

a

M2
v
dv

dt
. (31)

Therefore, we also define

µ = − 1

M2
v
dv

dt
(32)

such that µ̃ = aµ. We note that since the Higgs VEV is
initially decreasing, dv/dt is initially negative. The neg-
ative sign in O6 was chosen in order to bias the creation
of particles over antiparticles.

As mentioned previously, lepton number is violated
only in the neutrino sector, and therefore we are inter-
ested only in contribution to the current from the neu-
trinos. Thus the relevant part of the O6 operator is

L̃O6
= µ̃

∑
α

((
0 ν̂†Lα

)(0 1
1 0

)(
ν̂Lα

0

)
+
(
N̂†Ri 0

)(0 1
1 0

)(
0

N̂Ri

))
= µ̃

∑
α

(
ν̂†Lαν̂Lα + N̂†RiN̂Ri

)
. (33)
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D. Complete Two-Component Neutrino
Lagrangian

Using the results of the previous subsections, the
complete effective Lagrangian for the comoving two-
component neutrino fields is

L̃ = i
∑
α

ν̂†Lασ̄
µ∂µν̂Lα + i

∑
i

N̂†Riσ
µ∂µN̂Ri

−
∑
αi

(
M̃D
iαN̂

†
Riν̂Lα + M̃D†

αi ν̂
†
LαN̂Ri

)
− 1

2

(
iM̃NijN̂

T
Riσ2N̂Rj − iM̃†NjiN̂

†
Rjσ2N̂

∗
Ri

)
+ µ̃

∑
α

(
ν̂†Lαν̂Lα + N̂†RiN̂Ri

)
, (34)

which will be the basis for our subsequent analysis. This
describes a set of left-handed and right-handed neutrinos,
with a Dirac mass and a right-handed Majorana mass,
and a chemical potential for neutrino number, obtained
from (33).

III. THE EFFECTIVE LAGRANGIAN FOR ONE
GENERATION OF LEFT-HANDED NEUTRINOS

The Lagrangian in Eq. (34) includes several genera-
tions of both left and right-handed neutrinos. It will be

convenient to integrate out the heavy right-handed neu-
trinos2 and specialize to a single generation, which will
be a sufficiently rich model to capture the asymmetry
production of interest here.

The comoving right-handed neutrinos obey the equa-
tions of motion

0 = iσµ∂µÑRi −
∑
α

M̂Diαν̃Lα + i
∑
j

(M̂†N )ijσ2Ñ
∗
Rj

+ µ̃ÑRi. (35)

In the limit of small µ̃ and when the kinetic term is neg-
ligible, namely at scales below that of the right-handed
Majorana mass eigenvalues, this equation is solved by

N̂Rk = −i
∑
αi

(M̂T−1
N )ki(M̂

∗
D)iασ2ν̃

∗
Lα, (36)

which when substituted into the Lagrangian gives

L̃eff = i
∑
α

ν̂†Lασ̄
µ∂µν̂Lα −

i

2

∑
α,β

[
(M̃T

DM̃
∗−1
N M̃D)αβ ν̂

T
Lασ2ν̂Lβ − (M̃†DM̃

T−1
N M̃∗D)βαν̂

†
Lβσ2ν̂

∗
Lα

]
+ µ̃

∑
α

ν̂†Lαν̂Lα

+ µ̃
∑
α,β

(M̃†DM̃
†−1
N M̃−1

N M̃D)αβ ν̂
†
Lαν̂Lβ . (37)

Doing so induces a Majorana mass for the left-handed neutrinos, of magnitude,

M̃L = M̃T
DM̃

∗−1
N M̃D. (38)

Thus this Lagrangian may be written (using implicit notation for the sums):

L̃eff = iν̂†Lασ̄
µ∂µν̂Lα −

i

2

[
(M̃L)αβ ν̂

T
Lασ2ν̂Lβ − (M̃†L)βαν̂

†
Lβσ2ν̂

∗
Lα

]
+ µ̃ν̂†Lαν̂Lα + µ̃(M̃†DM̃

†−1
N M̃−1

N M̃D)αβ ν̂
†
Lαν̂Lβ ,

(39)

which has the equations of motion,

0 = iσ̄µ∂µν̂Lα + i
∑
β

(M̃†L)αβσ2ν̂
∗
Lβ + µ̃ν̂Lα + µ̃(M̃†DM̃

†−1
N M̃−1

N M̃D)αβ ν̂Lβ . (40)

2 We do emphasize that we integrate out ÑR, which are not,
strictly speaking, identical with the heavy mass eigenstate. This is a good approximation below the scale of the right-handed Ma-
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It is beneficial at this point to specialize to the one-
generation case, since, as we will show, one generation
is enough to obtain a nonvanishing asymmetry in the
presence of the O6 operator. We see explicitly that the
induced Majorana mass transforms with the form appro-
priate to a comoving mass,

M̃L =
M̃2
D

M̃N

= a
y2v2

2MN
. (41)

Thus we use the effective Lagrangian,

Leff = iν̂†Lσ̄
µ∂µν̂L −

iM̃L

2

[
ν̂TLσ2ν̂L − ν̂†Lσ2ν̂

∗
L

]
+ µ̃eff ν̂

†
Lν̂L,

(42)

where

µ̃eff = µ̃

(
1 +

M̃2
D

M̃2
N

)
≈ µ̃, (43)

wheen M̃2
D/M̃

2
N = y2

νv
2/2M2

N � 1. We have rotated the

field ν̂L to eliminate the phase in M̂L which arises from
the phase in the Yukawa coupling yν . (Note that the
Higgs VEV v can be taken to be real at all times.)

IV. QUANTIZATION AND BOGOLIUBOV
TRANSFORMATIONS

Let us now discuss quantization. First, we consider
the scenario in which the mass and chemical potential
are time-independent; we solve the equations of motion
and determine the creation and annihilation operators
which diagonalize the Hamiltonian.

Then we include the time-dependence of the mass and
chemical potential, which induces a mixing between the
positive and negative energy solutions of the field equa-
tion. Consequently, even if the Hamiltonian is diagonal
at time t = 0, at a later time it will be non-diagonal.
It may be diagonalized with a time-dependent redefini-
tion of the creation and annihilation operators; the co-
efficients of this diagonalization are known as the Bo-
goliubov coefficients, and in the subsequent section, we
will relate these coefficients to the occupation number
of physical eigenstates and to the lepton number. This
follows the procedure of e.g. [27–29].

We do note that in the multi-generation case, the time-
dependent rotation that diagonalizes the mass matrix can
introduce novel effects into particle production, as dis-
cussed in [29]; however, such features will not be neces-
sary to generate a nonzero lepton number. Therefore we
work in the one generation limit, using Eq. (42), where
these terms are absent.

jorana mass eigenvalues.

A. Constant Mass and Chemical Potential

The equation of motion for Lagrangian with a single
comoving Weyl field, Eq. (42), with constant comoving

mass M̃L and comoving chemical potential µ̃eff , is

(i∂0 − iσ · ∂)ν̂L = −M̃L(iσ2)ν̂∗L − µ̃eff ν̂L. (44)

or in momentum space,

(i∂0 + h|k̃|)ν̂L = −M̃L(iσ2)ν̂∗L − µ̃eff ν̂L. (45)

For consistency, we will use k̃ for the comoving momen-
tum, and p for the physical momentum. We consider a
solution of the form

ν̂L =

∫
d3k̃

(2π)3

∑
h=±1

[
u(h, k̃)a

(h)

k̃
χ(h)(k̃)eik̃·x

−v(h, k̃)∗a
(h)†
k̃

χ(−h)(k̃)e−ik̃·x
]
, (46)

where χ(h)(k̃) is the two-spinor which is an eigenstate of

the helicity operator (appropriate to k̃) with eigenvalue
h = ±1. This ansatz, when substituted into the equation
of motion, requires

(i∂0 + h|k̃|)u(h, k̃) = hM̃Lv(h, k̃)− µ̃effu(h, k̃)

(i∂0 + h|k̃|)v(h, k̃)∗ = −hM̃Lu(h, k̃)∗ − µ̃effv(h, k̃)∗.
(47)

These equations can be decoupled,

(i∂0 + h|k̃|+ µ̃eff)(−i∂0 + h|k̃|+ µ̃eff)F = −M̃2
LF (48)

with F = u, v, satisfies

∂2
0F =

[
(h|k̃|+ µ̃eff)2 + M̃2

L

]
F. (49)

This has solutions of the form F = e±iω̃η, where

ω̃ ≡
√

(h|k̃|+ µ̃eff)2 + M̃2
L. (50)

Therefore, we take

u(h, k̃) =
α√
2

√
1− fe−iω̃η +

β√
2

√
1 + feiω̃η,

v(h, k̃) =
hα√

2

√
1 + fe−iω̃η − hβ√

2

√
1− feiω̃η, (51)

where

f =
h|k̃|+ µ̃eff

ω̃
, (52)

and α and β are constant coefficients. (In the time-
dependent case, these will be the Bogoliubov coeffi-
cients.) One can verify that these satisfy the first order
equations of motion.
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The state ν̂L obeys the anticommutation relations{
ν̂L(x), ν̂L(y)†

}
= δ(3)(x− y),

{ν̂L(x), ν̂L(y)} = 0,
{
ν̂†L(x), ν̂†L(y)

}
= 0. (53)

These follow from the ansatz{
a

(h)

k̃
, a

(h̄)†
q̃

}
= (2π)3δ(3)(k̃ − q̃)δh,h̄,{

a
(h)

k̃
, a

(h̄)
q̃

}
= 0,

{
a

(h)†
k̃

, a
(h̄)†
q̃

}
= 0. (54)

along with the normalization condition |α|2 + |β|2 = 1.
Next we proceed to diagonalize the Hamiltonian; the

appropriate creation and annihilation operators will not

be the a
(h)

k̃
and a

(h)†
k̃

operators themselves, but linear

combinations of these operators. Note that even with
the O6 operator, the equation of motion ensures L = 0;
this follows from the fact that the equation of motion is
first order. Therefore the Hamiltonian is

H =
i

2

∫
d3x

(
ν̂†L∂0ν̂L − (∂0ν̂

†
L)ν̂L

)
. (55)

In terms of the a operators, this Hamiltonian is:

H =
1

2

∫
d3k̃

(2π)3

∑
h

ω̃
[
2
[
|α|2 − |β|2

]
a

(h)†
k̃

a
(h)

k̃

+2hα∗β∗ζ(k̃, h)a
(h)†
k̃

a
(h)†
k̃D

+ 2hαβζ(k̃, h)∗a
(h)

k̃D
a

(h)

k̃

]
,

(56)

where we have introduced the notation pD for the four-
vector (E,−k̃). ζ(k̃, h) is a phase factor which arises from
the product of the two spinors. For the interested reader,
the important steps in this derivation are discussed in
Appendix D. This can be written as a matrix equation:

H =
1

2

∫
d3k̃

(2π)3

∑
h

ω̃
(
a

(h)†
k̃

a
(h)

k̃D

)
·
(
|α|2 − |β|2 2hα∗β∗ζ(k̃, h)

2hαβζ(k̃, h)∗ |β|2 − |α|2

)(
a

(h)

k̃

a
(h)†
k̃D

)
(57)

We introduce the rotated states:(
A

(h)†
k̃

A
(h)

k̃D

)
=

(
α∗ hβζ(k̃, h)∗

−hβ∗ζ(k̃, h) α

)(
a

(h)†
k̃

a
(h)

k̃D

)
(58)

which diagonalizes the Hamiltonian

H =
1

2

∫
d3k̃

(2π)3

∑
h

ω̃(A
(h)†
k̃

A
(h)

k̃
−A(h)

k̃D
A

(h)†
k̃D

)

=

∫
d3k̃

(2π)3

∑
h

ω̃A
(h)†
k̃

A
(h)

k̃
, (59)

where we have normal ordered and changed the integra-
tion variable to −p in the second term. We note that
since h2 = 1, we can also write the eigenvalues as

ω̃ ≡
√

(|k̃|+ hµ̃eff)2 + M̃2
L. (60)

Additionally, we note that as expected, ω̃ = aω, where

ω =
√

(|p|+ hµeff)2 +M2
L, (61)

and p is the physical momentum corresponding to the
comoving momentum k̃.

B. Time-Dependent Mass and Chemical Potential

Now we consider the case in which both the comoving
mass and comoving chemical potential evolve in time. We
again use an expansion of the comoving Weyl spinor of
the form of Eq. (46), and the equation of motion again re-
quires u and v to satisfy equations of the form of Eq. (47),

but with time dependent quantities M̃L and µ̃eff .
We will consider solutions of the form

u(h, k̃) =
α√
2

√
1− fe−i

∫ η
0
ω̃dη̄ +

β√
2

√
1 + fei

∫ η
0
ω̃dη̄

v(h, k̃) =
hα√

2

√
1 + fe−i

∫ η
0
ω̃dη̄ − hβ√

2

√
1− fei

∫ η
0
ω̃dη̄.

(62)

As shown in Appendix E, this leads to the differential
equations

dα

dη
= −β

2

1

ω̃2

[
M̃L

dµ̃eff

dη
− (h|k̃|+ µ̃eff)

dM̃L

dη

]
· e2i

∫ η
0
ω̃dη̄ (63)

dβ

dη
=
α

2

1

ω̃2

[
M̃L

dµ̃eff

dη
− (h|k̃|+ µ̃eff)

dM̃L

dη

]
· e−2i

∫ η
0
ω̃dη̄. (64)

We take the initial conditions to be α(η = 0) = 1,
β(η = 0) = 0. This is consistent with the normalization
condition |α|2 + |β|2 = 1, and at t = 0, the A operators
align with the a operators, so the Hamiltonian (at this
time) is diagonal when expressed in terms of either set.
The diagonalization of the Hamiltonian proceeds as in
the time-independent case, as discussed in Appendix E.

The effect of the time-dependent comoving mass M̃L

and chemical potential µ̃eff is to mix positive and nega-
tive frequency modes, as is evident by the fact that β will
generally be nonzero at later times. From the transfor-
mation matrix Eq. (58), the operators that diagonalize
the Hamiltonian at later times will generally be nontriv-

ial linear combinations of a
(h)
p and a

(h)†
p .

V. PARTICLE NUMBER AND LEPTON
NUMBER OPERATORS

Next, we express the expectation values of the occupa-
tion number operator (for the physical eigenstates) and
the lepton number operator in terms of the Bogoliubov
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coefficients α and β. As the operators A(h) and A(h)†

diagonalize the Hamiltonian, these correspond to physi-
cal particles. The procedure that we follow is this: we
first express Nh and Leff in terms of these operators
and normal order (for a discussion on normal ordering
see [30]). We then express the operator in terms of the

a
(h)
p and a

(h)†
p operators using the transformation equa-

tions (58). Then, we take the expectation value with the
state |VAC, 0〉, the vacuum at time t = 0.

The total number of physical particles of helicity h is

Ñh =

∫
d3k̃

(2π)3

〈
VAC; 0|A(h)†

k̃
A

(h)

k̃
|VAC; 0

〉
. (65)

This operator is already normal-ordered, so we proceed

to write this in terms of the time-independent a
(h)

k̃
oper-

ators,

A
(h)†
k̃

A
(h)

k̃
= |β|2a(h)

k̃D
a

(h)†
k̃D

+ hα∗β∗ζ(k̃, h)a
(h)†
k̃

a
(h)†
k̃D

+ hαβζ(k̃, h)∗a
(h)

k̃D
a

(h)

k̃
+ |α|2a(h)†

k̃
a

(h)

k̃
.

(66)

We assume that we are in the state |VAC, 0〉, the vac-
uum state at time t = 0. Therefore, all operators of the

form a
(h)

k̃
annihilate the vacuum. Therefore,〈
VAC; 0|A(h)†

k̃
A

(h)

k̃
|VAC; 0

〉
= |β|2

〈
VAC; 0|a(h)

k̃D
a

(h)†
k̃D
|VAC; 0

〉
. (67)

This matrix element is〈
VAC; 0|a(h)

k̃D
a
(h)†
k̃D
|VAC; 0

〉
= (2π)3δ(3)(0)δh,h 〈VAC; 0|VAC; 0〉 −

〈
VAC; 0|a(h)†

k̃D
a
(h)

k̃D
|VAC; 0

〉
= Vcm, (68)

where Vcm stands for the comoving volume (and we
have used the usual formal manipulation (2π)3δ(0) =∫
d3x̃eix̃·0 = Vcm). This gives the expected result

Ñh = Vcm

∫
d3k̃

(2π)3
|βk̃,h|

2, (69)

where in general, β may depend on the momentum and
helicity, as we have noted.

Next we consider effective lepton number, which is car-
ried by the neutrinos. This charge is given by

L̃eff =

∫
d3x ν̂†Lν̂L. (70)

Following the procedure outline above gives us a normal
ordered expression

L̃eff =

∫
d3k̃

(2π)3

∑
h

[
(−f)A

(h)†
k̃

A
(h)

k̃
− M̃L

2ω̃
e2i

∫ η
0
ω̃dη̄ζ(h, k̃)A

(h)†
k̃

A
(h)†
k̃D
− M̃L

2ω̃
e−2i

∫ η
0
ω̃dη̄ζ∗(h, k̃)A

(h)

k̃D
A

(h)

k̃

]
, (71)

where the important steps are described in Appendix F. Taking the inner product with the t = 0 vacuum gives〈
VAC; 0| : L̃eff : |VAC; 0

〉
=

∫
d3k̃

(2π)3

∑
h

[
(−f)

〈
VAC; 0|A(h)†

k̃
A

(h)

k̃
|VAC; 0

〉
−M̃L

2ω̃
e2i

∫ η
0
ω̃dη̄ζ

〈
VAC; 0|A(h)†

k̃
A

(h)†
k̃D
|VAC; 0

〉
− M̃L

2ω̃
e−2i

∫ η
0
ω̃dη̄ζ∗

〈
VAC; 0|A(h)

k̃D
A

(h)

k̃
|VAC; 0

〉]
(72)

We express these in terms of the a(h) operators, which an-
nihilate the state |VAC; 0〉; however, now that we have
normal ordered we are careful to maintain any Dirac delta
functions that arise from using the anticommutation re-
lations. The second and third matrix elements are

〈
VAC; 0|A(h)†

k̃
A

(h)†
k̃D
|VAC; 0

〉
= hα∗βζ∗Vcm〈

VAC; 0|A(h)

k̃D
A

(h)

k̃
|VAC; 0

〉
= hαβ∗ζVcm (73)

Therefore, the lepton number as a function of time is

〈
VAC; 0| : L̃eff : |VAC; 0

〉
= Vcm

∫
d3k̃

(2π)3

∑
h

[
(−f)|β2|

−M̃L

2ω̃
h
(
α∗βe2i

∫ η
0
ω̃dη̄ + αβ∗e−2i

∫ η
0
ω̃dη̄
)]

(74)

where f = (h|k̃|+ µ̃eff)/ω̃.
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VI. ROTATED OPERATORS

At this point, it is convenient to define the rotated
operators:

ᾱ = αe−i
∫ η
0
ω̃dη̄

β̄ = βei
∫ η
0
ω̃dη̄ (75)

which obey the differential equations

dᾱ

dη
= −c(η)β̄ − iω̃ᾱ

dβ̄

dη
= c(η)ᾱ+ iω̃β̄, (76)

where

c ≡ 1

2

1

ω̃2

[
M̃L

dµ̃eff

dη
− (h|k̃|+ µ̃eff)

dM̃L

dη

]
, (77)

and we also have the normalization condition |ᾱ|2+|β̄|2 =
1 along with the initial condition ᾱ = 1 and β̄ = 0.

Note that we can rewrite this so that the helicity h
multiplies the chemical potential,

c =
h

2

1

ω̃2

[
M̃Lh

dµ̃eff

dη
− (|k̃|+ hµ̃eff)

dM̃L

dη

]
. (78)

In terms of these rotated coefficients, the number den-
sities and lepton number are:〈

VAC; 0| : Ñh : |VAC; 0
〉

= Vcm

∫
d3k̃

(2π)3
|β̄k̃,h|

2,〈
VAC; 0| : L̃eff : |VAC; 0

〉
= Vcm

∫
d3k̃

(2π)3

∑
h[

−h|k̃|+ µ̃eff

ω̃
|β̄2

k̃,h
| − M̃L

2ω̃
h
(
ᾱ∗
k̃,h
β̄k̃,h + ᾱk̃,hβ̄

∗
k̃,h

)]
(79)

which has eliminated the fast oscillatory time depen-
dence. The comoving number densities are therefore

ñh =

∫
d3k̃

(2π)3
|β̄k̃,h|

2,

ñL =

∫
d3k̃

(2π)3

∑
h[

−h|k̃|+ µ̃eff

ω̃
|β̄k̃,h|

2 − M̃L

2ω̃
h
(
ᾱ∗
k̃,h
β̄k̃,h + ᾱk̃,hβ̄

∗
k̃,h

)]
(80)

At late times, the Higgs VEV v approaches zero, and
therefore the comoving VEV ṽ = av also does. Conse-
quently, M̃L → 0, µ̃eff → 0, and ω̃ → |k̃|. Therefore, the
limit of the comoving lepton asymmetry is

lim
t→∞

ñL =

∫
d3k̃

(2π)3

∑
h

(−h)|β̄k̃,h|
2. (81)

As expected, this is the difference in the number of he-
licity states.

The physical number density and lepton density are

nh =
1

a(t)3

∫
d3k̃

(2π)3
|β̄k̃,h|

2,

lim
t→∞

nL =
1

a(t)3

∫
d3k̃

(2π)3

∑
h

(−h)|β̄k̃,h|
2. (82)

The final lepton asymmetry is given by

ηL ≡ lim
t large

nL
nγ

= − π

2ζ(3)T (t)3

1

a(t)3

∫
d3k̃

(2π)3

∑
h

(−h)|β̄k̃,h|
2, (83)

which should be evaluated at a time after the comple-
tion of reheating, so that a(t)T (t) approaches an asymp-
totic constant value, but before electroweak sphalerons
redistribute the charge between lepton and baryons. Fol-
lowing this, further entropy production results in a final
baryonic asymmetry about an order of magnitude smaller
than ηL.

VII. APPROXIMATIONS AND NUMERICAL
ANALYSIS

During the evolution of the Higgs VEV, c(η) (defined
in (77)) is nonzero, which results in β̄(η) 6= 0, signaling
particle production. Additionally, since c(η, h = +) 6=
c(η, h = −) generically, we expect a nonzero lepton asym-
metry. At late times, c(η) → 0 for both helicity values,

resulting in β̄ ∼ exp(i|k̃|η), which gives a nonzero asymp-

totic value for |β̃|2, which is not generically identical for
the two helicity values. Therefore, we expect a nonzero
asymmetry to survive at late times, after the Higgs VEV
(and hence ML and µ) approaches zero.

Calculating this asymmetry is complicated by the lack
of analytic closed form solutions to the differential equa-
tions (76), which must be solved numerically. In this
section, we introduce a sequence of useful approxima-
tions which simplify this problem significantly; we then
present a numerical analysis of the resulting asymmetry.
We focus particularly on the range of parameter space in
which an asymmetry matching the observed cosmological
baryonic abundance is generated.

A. Higgs Oscillations

We first note that it is desirable to have significant
damping in the oscillations of the Higgs VEV. This is
because the chemical potential µ̃eff ∼ vv′ changes sign
frequently during the oscillations, and so whether par-
ticle or antiparticle production is favored also oscillates.
Therefore, a significant damping in the amplitude of the
oscillation avoids washout from this alternation.
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As we explain below, this allows us to make two sim-
plifications: First, that the asymmetry production occurs
on a time scale during which a(t) is approximately con-
stant, and second, particle production occurs primarily
in those comoving momenta least affected by washout.

We noted above that washout is significant unless the
Higgs VEV is significantly damped. Consequently, the
asymmetry production is dominated by the particle pro-
duction during the initial relaxation of the Higgs VEV,
which may be a fast process, compared to the evolution
of the universe. We have mentioned in Sec. II A that
there are several reasons why the Higgs field may have
a large vacuum expectation value after inflation. In one
scenario, the Higgs VEV grows due to quantum fluctua-
tions within the unmodified Standard Model, or alterna-
tively, the Higgs field may be trapped in a false vacuum
during inflation. In the latter example, it is quite nat-
ural that the evolution of the Higgs VEV, once it is re-
leased from the false vacuum, would occur on time scales
τ � 1/H. This is more difficult to arrange in the former
scenario, as the condition for the VEV to grow requires
meff . HI , and the time scale of the Higgs VEV evolu-
tion is ∼ 1/meff . Rapid evolution of the Higgs VEV may
still be arranged, as both meff and H are functions of
time, although this may be somewhat unnatural.

In the limit that the evolution of the Higgs VEV is
rapid compared to the expansion of the universe, we may
approximate a(t) ∼ a(tS) constant, where we define t =
tS to be the time at which the Higgs VEV begins rolling
significantly. The comoving momentum during the epoch
of particle production is k̃ = a(tS)p, and it is convenient
to express β̄ and ᾱ as functions of physical time t instead
of conformal time η. They obey the differential equations

dᾱ

dt
= −C(t)β̄ − iωᾱ,

dβ̄

dt
= C(t)ᾱ+ iωβ̄, (84)

with

C(t) =
c(t)

a(t)
=

h

2ω2
[ML (H(t)µeff + µ̇eff)

− (|p|+ hµeff)
2
(
H(t)ML + ṀL

)]
, (85)

We remind our readers that the untilded µeff , ML, and
ω are the physical, and not comoving, quantities. For
self consistency, we drop the terms proportional to H(t),
giving

C(t) ≈ h

2ω2

[
MLµ̇eff − (|p|+ hµeff) ṀL

]
. (86)

We emphasize that these expressions involve the physical,
not comoving, momentum. However, when the evolution
of the Higgs VEV is fast, these are related by the constant
factor a(tS); we use this assumption to write

ηL = − πa(tS)3

2ζ(3)T (t)3a(t)3

∫
d3p

(2π)3

∑
h

(−h)|β̄p,h(tE)|2,

(87)

where tE is the effective end of particle production.
We emphasize that our assumption is that a(t) is ap-
proximately constant while the neutrino asymmetry is
produced (for tS ≤ t ≤ tE), which allows us to use

|k̃| ∼ a(tS)|p| in the integral of Eq. (83). Once the
Higgs VEV relaxes to zero, no further asymmetry is pro-
duced; however, the physical volume continues expanding
∼ a(t)3. This is responsible for the factor of a(t)3 in the
denominator, which may be large; that is, this equation
continues to hold even when a(t)/a(tS) � 1, provided
that a(tE) ∼ a(tS).

Next we observe that if |β̄|2 � 1 at all times, we can
approximate ᾱ ≈ 1 and the relevant differential equation
is simply

β̄ =

∫ t

0

C(t̄)dt̄. (88)

Sample plots of ω(t)2C(t) (the factor ω2 cancels the 1/ω2

dependence in Eq. (86)) and C(t) are shown in Fig. 1. We
note that ML/µeff ∼ y2

νM
2v/MN v̇ ∼ y2

νM
2/HIMN , and

y2
ν/MN ∼ 10−20 GeV−1 is fixed by the observed neutrino

masses differences. Therefore, it is not surprising that for
these parameters the typical scale of µeff ≈ µ is about 12
orders of magnitude larger than the typical scale of ML.
We proceed to describe the qualitative behavior of these
plots.

The C(t) panel (top) has a sequence of sharp peaks
for h = −1, of alternating sign, while these peaks are
absent for h = +1. These are a consequence of the 1/ω2

factor in C(t). We note that during the initial pass of the
Higgs field towards zero, µ(t) is positive, and therefore,
ω ∼ |p|+ hµ has a significant cancellation when |p| ∼ µ
for h = −1, while for h = +1 these factors always add.
Additionally, for h = −1, |p| + hµ changes sign at this
peak. As the scale of µ̇ is larger than the scale of the left-
handed neutrino mass ṀL, C(t) changes sign “within”
this peak. This is responsible for the very sharp positive
and negative peaks. When evaluating this integral, these
peaks cancel to a significant precision.

To understand the behavior better, we consider
ω2C(t), which eliminates the sharp peaks. This plot is
shown in the bottom panel of Fig. 1. We observe that in
contrast to the C(t) plot, the h = +1 functions generally
have smaller magnitudes than their h = −1 counterparts.
This is because C(t) ∝ |p| + hµ, and so the is a partial
cancellation that affects ω also affects the overall magni-
tude of C(t) for h = −1.

Additionally, for h = −1, the factors of (|p| + hµ)

changes sign (since µ is negative), which affects the ṀL.
This factor is responsible for the various sign changes in
the bottom plot of Fig. 1, even though the Higgs VEV
is decreasing during the entire time shown. We also note
that the sharp spikes occur when µ̇ = 0, and so, momen-
tarily, these plots are dominated by the ṀL term, which
(at this time) happens to be much larger in magnitude.

As a simpler toy model, we consider a Higgs field which
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FIG. 1. C(t) (top) and ω(t)2C(t) (bottom). The solid lines
are for h = +1, while the dashed lines are for h = −1. These
plots cover the initial pass of the Higgs VEV to zero. For
concreteness, we have used the IC-2 scenario of Ref. [5, 6]
with the parameters ΛI = 1013 GeV and ΓI = 105 GeV,
along with M , the scale in O6, equal to 1011 GeV. This is
about four orders of magnitude larger than the initial Higgs
VEV. µmax is the maximum of |µ(t)|. Units are appropriate
powers of GeV.

obeys the equation of motion,

d2v

dt2
+ 3H

dv

dt
+m2v + ΓH

dv

dt
= 0, (89)

along with the boundary condition v(t0) = v0, v̇(t0) =
0. This is easier to analyze numerically, as opposed
to considering the Higgs potential with running, and
temperature-dependent, coupling constants. Further-
more, the Standard Model Higgs field decays primar-
ily through non-perturbative effects [4, 31]. For self-
consistency, we again assume the Hubble friction term
is negligible. This has the approximate solution

v(t) = v0e
−ΓH(t−t0)/2 cos(Ω(t− t0)), (90)

where Ω =
√
m2 − Γ2

H . We have taken t = 0 as the time
at which the Higgs starts oscillating, and so tS = 0.

We note that a particularly interesting scenario is the
case in which the potential V (v) = λv4/4; this is well-
motivated by the fact that the Standard Model potential
at large VEVs is dominated by this term. In this case, the
term m2v in the equation of motion would be replaced
by λeffv

3, and in the solution the cosine function would
instead be cn(v0t/λ

1/4), where cn is a Jacobi sinusoidal
function [32].

The Higgs potential is not known at large VEVs; there-
fore, we will consider the parameters v0, m, and ΓH to

be independent, and furthermore, which may be chosen
independently of any parameters describing inflation and
reheating. We do note that in the scenario in which the
initially large Higgs field VEV is produced via quantum
fluctuations, v0 will be determined by the scale of in-
flation, although it will also be affected by any higher
dimensional operators that influence the Higgs potential.

We also made these further approximations: First, we
assumed Ω� ΓH , such that

ML ≈
y2v2

0

4MN
e−ΓHt (1− cos(2Ωt)) ,

ṀL ≈ −
y2v2

0Ω

2MN
e−ΓHt sin(2Ωt),

µ ≈ v2
0Ω

2M2
e−ΓHt sin(2Ωt),

µ̇ ≈ v2
0Ω2

M2
e−ΓHt cos(2Ωt). (91)

Although we want significant damping, this is self-
consistent, as we must have Ω & ΓH in order for the
Higgs VEV to undergo oscillatory motion.

Next, we observe that the d3p integral is dominated
by momenta |p| ∼ µmax, where µmax is the maximum of
|µ(t)| This is because these momentum values suffer the
least washout during the subsequent oscillations of the
Higgs VEV. Therefore, we approximate

η ≈ − π

2ζ(3)T (t)3

a(tS)3

a(t)3

µ3
max

(2π)3

∑
h

h|β̄µmax,h(tE)|2. (92)

B. Low Scale of Inflation

For simplicity, we assume coherent oscillations begin
instantly at the end of the inflationary epoch. We nor-
malize the scale factor to one at the end of inflation, when
the coherent oscillations of the inflaton start. In the fol-
lowing computations, we approximate that the higgs os-
cillations also start at this time. This is a good approx-
imation in the case when the Higgs VEV is prevented
from rolling by Hubble friction; when the Higgs is in-
stead trapped in a false vacuum, this approximation will
only be valid for sufficicently small barriers.

Next we consider the factor of a(t)3T (t)3 in the denom-
inator of η given by Eq. (92). We emphasize that a(t)T (t)
is the value approached at relatively late times, well into
the radiation dominated epoch after Higgs relaxation has
ended, but before the Standard Model degrees of free-
dom have decoupled. This is completely determined by
the two inflationary parameters, the inflationary scale ΛI
and the decay rate of the inflaton, ΓI , where the Hubble
parameter during inflation is

HI =

√
8π

3

Λ2
I

MPl
. (93)

Since we do not fix a specific model of inflation, we
take these to be independent parameters. We note that
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FIG. 2. Contours of asymptotic late time aT ; the scale factor
is normalized to 1 at the time the inflaton starts oscillating.
In the gray area, ΓI > HI , and there is no inflationary epoch.

a(t)T (t) becomes constant once reheating has completed,
and the asymptotic value is shown in Figure 2. We can
obtain the scaling of this factor as a function of the pa-
rameters of the inflationary sector, under the assumption
of instantaneous inflaton decay at H = ΓI and of instan-
taneous thermalization. This gives:

a(t)T (t) ∝
Λ

4/3
I

M
1/6
Pl Γ

1/6
I

, (94)

or in terms of the reheat temperature,

1

(a(t)T (t))3
∝ TRH

Λ4
I

. (95)

where we recall that the scale factor a has been normal-
ized to one at the end of inflation, which we take to be
simultaneous with the beginning of Higgs relaxation. We
see that a large baryon asymmetry is obtained for a low
inflationary scale. For this reason we consider values in
the bottom left corner of Fig. 2, which are characterized
by a relatively low ΛI . By consistency, TRH then needs
to be below ΛI .

We note that altering ΛI and ΓI may modify the evolu-
tion of the Higgs VEV, particularly if finite temperature
corrections to the Higgs potential are significant. In par-
ticular, in scenarios in which the Higgs VEV begins in
a false minimum which is destabilized by thermal fluc-
tuations, there is a minimum reheat temperature which
constrains ΛI and ΓI .

h=+1

h=-1

2. ´ 10-12 4. ´ 10-12 6. ´ 10-12 8. ´ 10-12 1. ´ 10-11

-4 ´ 109

-3 ´ 109
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1 ´ 109

FIG. 3. C(t) for v0 = M = Ω = 1012 GeV and ΓH =
1011 GeV, which governs the differential equations for β̄.
Units are GeV−1 for time and GeV for C(t).

C. Numerical Example

As a numerical example, we used v0 = M = Ω =
1012 GeV and ΓH = 1011 GeV, which gives µmax ≈ 4.6 ·
1011 GeV. A plot of C(t) is shown in Fig. 3; the above-
mentioned spikes are small for these parameters.

β̄ asymptotically approaches 0.0008 (for h = +1) and
0.006 (for h = −1). We have verified that β̄ < .1 at
all times, so that our approximation in equation (88) is
reasonable. The resulting asymmetry is

ηL ≈
1028 GeV3

a(t)3T (t)3
. (96)

We must ensure that the Higgs energy density does not
dominate the energy density of the universe, causing
additional inflationary expansion, which requires ΛI &
1012 GeV. For the minimum value, the inflationary Hub-
ble parameter is then HI = 2 · 105 GeV. If we take
ΓI = 105 GeV, then at late times a(t)T (t)→ 5·1011 GeV.
The resulting lepton asymmetry ηL ≈ 10−7.

We note that as m ∼ Ω� HI , a realistic implementa-
tion of these parameters would likely have the Higgs VEV
trapped in a false vacuum. The relaxation of the Higgs
field would then commence after the start of coherent os-
cillations, or tS > tend of inflation. The asymmetry is then
enhanced by the factor a(tS)3/a(tend of inflation)3 > 1.

This asymmetry will be diluted by a factor of 30 due
to further entropy production, and it will be distributed
between baryons and leptons by electroweak sphalerons.
Therefore final baryonic asymmetry is about one or two
orders of magnitude smaller.

In summary, we have shown an explicit numerical ex-
ample in which the asymmetry generated through neu-
trino production is more than sufficient to explain the
cosmological baryon abundance. We have also seen
that production of a large asymmetry requires significant
damping of the oscillations of the Higgs VEV, and also
favors a low inflationary scale.
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VIII. CONCLUSIONS

In this work, we have explored particle production dur-
ing an epoch of post-inflationary Higgs relaxation, with a
particular emphasis on the production of a lepton asym-
metry, which can be converted into the observed baryonic
asymmetry. Unlike in previously considered models [5, 6],
the asymmetry considered here is produced via the evo-
lution Higgs condensate directly, and does not involve
interactions in the plasma produced by inflaton decay.
Therefore, these models do not require a fast reheating,
and in fact, we have shown a low reheating scale is desir-
able.

In particular, we have introduced a specific O6 opera-
tor which involves only Standard Model fields (although
extensions of the Standard Model may be necessary to
produce this operator). This operator produces an effec-
tive chemical potential for lepton number.

We have solved the equations of motion exactly, in-
cluding both this operator and a time-dependent Majo-
rana mass. We then used a Bogoliubov transformation to
relate the time-dependent creation and annihilation op-
erators to the corresponding operators fixed at the time
when the Higgs relaxation began. The resulting Bogoli-
ubov coefficients describe the rate of neutrino production
during Higgs relaxation. From this, we calculated the re-
sulting lepton asymmetry.

After completing this formal analysis, we performed a
numerical analysis, using a simplified model for the Higgs
condensate evolution. This emphasized the importance
of rapid condensate decay, which suppresses washout due
to the oscillating sign of the effective chemical potential,
and also the low reheat scale. We developed an approx-
imation scheme that smooths out the sharp peaks that
occur when |p| ≈ µ(t). We finally illustrated a choice of
parameters for which the resulting asymmetry is compa-
rable to the observed value.

Our scenario differs significantly from other scenarios
of leptogenesis. In particular, the asymmetry can be
generated for reheat temperatures well below the right-
handed neutrino masses. This paves the way for a su-
persymmetric generalization of the model in which the
problem of gravitino overproduction does not arise. Fur-
thermore, the final asymmetry is not tied to the param-
eters of the neutrino mass matrix as in thermal leptoge-
nesis, and a successful leptogenesis is possible even for
the neutrino masses above 0.2 eV, in which case thermal
leptogenesis is stymied by excessive washout [33].
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Appendix A: The Origin of the O6 Operator

In this appendix, we discuss methods of generating the
O6 operator

LO6
= − Φ2

M2
∂µj

µ
B+L. (A1)

In the Standard Model in a flat static spacetime, the ABJ
anomaly allows the relation

∂µj
µ
B+L = ng

(
g2

2

32π2
εµναβAaµνA

a
αβ −

g2
1

32π2
εµναβBµνBαβ

)
,

(A2)

where A and B are that SUL(2) and UY(1) gauge fields,
respectively, and ng is the number of fermion genera-
tions. The substitution of Eq. (A2) into Eq. (A1) is valid
when the decay of electroweak sphalerons is fast, as com-
pared to the Hubble parameter. Otherwise, the term A1
involves the Chern-Simons number density, which is not
changed by Higgs relaxation unless the phase of the Higgs
VEV evolves.

As to coupling these gauge fields to the Higgs field, we
note that an effective term of precisely this form can be
generated within the Standard Model, using quark loops
and the CP-violating phase of the CKM matrix [34, 35].
This term is small due to the small Yukawa couplings and
small CP-violating phase. However, such a term can also
be generated by heavier states with a different source of
CP violation. The scale in the denominator may be the
temperature, due to thermal loops, or the mass scale of
new physics [34–37].

The sphaleron transition rate per unit volume at finite
temperature, for constant Higgs VEVs, is

Γsp = kα5
WT

4 exp(−MW /gWT ), (A3)

where the exponential factor accounts for the suppres-
sion due to being in the broken phase; it is equivalent
to exp(−v/2T ) where v is the Higgs VEV. Electroweak
sphalerons are in equilibrium when this is greater than
H4, where H is the Hubble parameter. The transition
rate in the presence of a quickly evolving Higgs VEV
has not been explored, although the rate during the elec-
troweak phase transition from v = 0 to v = 247 GeV has
been analyzed on the lattice, as a function of v(T ) [38].

In section V, we found that the asymmetry is sup-
pressed by a factor of (a(t)T (t))3, which favors a low
inflationary scale. This generally corresponds to a slow
reheating, while Higgs relaxation frequently occurs on
a faster time scale. Therefore, during much of the re-
laxation period, v & T and the sphalerons may not be
in thermal equilibrium; the conditions for electroweak
sphalerons to be in thermal equilibrium in the presence
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of a time-dependent background have not been exten-
sively explored.

In each oscillation of the Higgs VEV, there is a brief pe-
riod as the VEV passes zero during which v . T , during
which the above-mentioned suppression is absent. This
also corresponds to the time of maximal particle produc-
tion, which occurs when ṽ = a(t)v(t) ≈ 0. However, the
time when the maximal asymmetry is produced is slightly
offset from this time, as the effective chemical potential
µ̃ ∝ ṽṽ′ is zero when ṽ = 0. It seems unlikely that the
time scale of sphaleron transitions will be less than the
relevant time scale during which v . T , even if the time
of maximal asymmetry production is within this period.
At the very least, it is difficult to arrange for this to hold.

Therefore we note that, if there is another gauge group
which couples chirally to leptons, it will also contribute
to the divergence in equation (A2). (The chiral coupling
is necessary due to Furry’s Theorem.) Provided that
interactions between the gauge field configurations and
fermions are in thermal equilibrium, we find

∂µj
µ
B+L = (EW anomaly) +

ngCg2

32π2
εαβµνF

µνFαβ , (A4)

where F is the new gauge field and C is a constant deter-
mined by the charges of the leptons and baryons under
the new gauge group. Provided that these gauge bosons
acquire masses which are not proportional to the Higgs
VEV, it is possible for these to be in thermal equilib-
rium at the relevant temperatures. (There may dynami-
cal symmtry breaking in this sector, via a separate Higgs
mechanism, or in the case of a U(1) symmetry, via the

Stückleberg mechanism.) This equation can be rewritten
as,

ngCg2

32π2
εαβµνF

µνFαβ = ∂µj
µ
B+L−CS , (A5)

where jCS is the current associated with the elec-
troweak Chern-Simons charge density. If the electroweak
sphalerons are out of equilibrium, this is conserved, and
therefore has no effect on the analysis of sections III
through VII (similarly to how the baryonic current has
no effect).

Therefore, if the electroweak sphaleron rate is insuffi-
cient, we can couple the Higgs boson to a new gauge field
combination, εαβµνF

µνFαβ , to generate a term similar to
(A1). As in the electroweak case, the coupling of Φ2 to
εαβµνF

µνFαβ can be accomplished through either thermal
loops or heavy fermions. In the latter case, it is impor-
tant that the fermions do not acquire masses through the
Standard Model Higgs mechanism; otherwise, the Higgs
VEV dependence cancels out. Such fermions may have
soft masses similar to higgsinos and gauginos in super-
symmetric models, or if a different Higgs sector is used
to give masses to the F gauge boson, this field may also
give masses to the relevant fermions.

The divergence equation (A4) holds only in static, flat
spacetime; the situation is more complicated in a curved
and/or expanding spacetime. Generically, there may be
contributions on the right hand side of the anomaly equa-
tion, proportional to the gravitational anomaly [39].

If there are Nng right-handed neutrinos present, then
(generalizing the results of [39])

ngCg2

32π2
εαβµνF

µνFαβ = ∇µjµB+L−CS −
ng

32π2
(1−N)

(
−ε

αβγδ

24
RµναβR

µν
γδ +

εαβγδ

48
Sβ;γSδ;α +

1

6
�Sα;α +

1

96
(SαSνSα);ν

−1

6

(
RναSα −

1

2
RSν

)
;ν

)
, (A6)

where S describes the torsion of the spacetime, and R
is the usual Ricci scalar. However, if there are the same
number of right-handed and left-handed neutrinos then

ngCg2

32π2
εαβµνF

µνFαβ = ∇µjµB+L−CS (A7)

We consider only the scenario with N = 1; that is, there
are the same number of right-handed and left-handed
neutrinos.

Appendix B: Conformal Higgs Field Equation of
Motion

Although we will use a toy model for our numerical
analysis, it is beneficial to find the equation of motion for
the comoving VEV ṽ. From the Lagrangian in section II,

ṽ′′ − a′′

a
ṽ +

∂Ṽ

∂ṽ
= 0, (B1)

where the derivatives signified with a prime are with re-
spect to η and Ṽ = a4V . We note that this is equivalent
to the differential equation for the Higgs VEV v

d2v

dt2
+ 3H

dv

dt
+
∂V

∂v
= 0. (B2)
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It is necessary to express the potential in terms of comov-
ing fields; as an example, we will do this with the 1-loop
Standard Model Higgs potential, including finite temper-
ature corrections. (However, in our numerical analysis,

we will make use of a simpler effective potential for the
evolution of the Higgs field.) The one-loop, zero temper-
ature potential V , times a4, can be written

Ṽ 1−loop
φ =

a2

2
m2
φṽ

2 +
λ

4
ṽ4 +

1

(4π)2

[
a4mH(v)4

4

(
ln

(
mH(v)2

S2

)
− 3

2

)
+

3a4mG(v)4

4

(
ln

(
mG(v)2

S2

)
− 3

2

)
+

3a4mW (v)4

2

(
ln

(
mW (v)2

S2

)
− 5

6

)
+

3a4mZ(v)4

4

(
ln

(
mZ(v)2

S2

)
− 5

6

)
− 3a4mt(v)4

(
ln

(
mt(v)2

S2

)
− 3

2

)]
, (B3)

where S is the renormalization scale and the physical
masses for the Higgs boson, Goldstone mode, W bosons,
Z boson, and top masses are

m2
W =

g2v2

4
, m2

Z =
(g2 + g′ 2)v2

4
, mt =

ytv√
2
,

m2
H = m2

φ + 3λv2, m2
G = m2

φ + λv2. (B4)

It is convenient to define a comoving renormalization
scale, S̃ = aS, along with comoving masses

m̃2
W = a2 g

2v2

4
=
g2ṽ2

4

m̃2
Z =

(g2 + g′2)a2v2

4
=

(g2 + g′2)2ṽ2

4

m̃t = a
ytv√

2
=
ytṽ√

2

m̃2
H = a2(m2

φ + 2λv2) = m̃2
φ + 2λṽ2

m̃2
G = a2(m2

φ + λv2) = m̃2
φ + λṽ2. (B5)

These have the same functional dependence on ṽ as the
regular masses have on v. Then the one-loop potential
can be written:

Ṽ 1−loop
φ =

1

2
m̃2
φṽ

2 +
λ

4
ṽ4 +

1

(4π)2

[
m̃H(ṽ)4

4

(
ln

(
m̃H(ṽ)2

S̃2

)
− 3

2

)
+

3m̃G(ṽ)4

4

(
ln

(
m̃G(ṽ)2

S̃2

)
− 3

2

)
+

3m̃W (ṽ)4

2

(
ln

(
m̃W (ṽ)2

S̃2

)
− 5

6

)
+

3m̃Z(ṽ)4

4

(
ln

(
m̃Z(ṽ)2

S̃2

)
− 5

6

)
− 3m̃t(v)4

(
ln

(
m̃t(ṽ)2

S̃2

)
− 3

2

)]
.

(B6)

We note that care must be used in evaluating the running couplings as functions of the comoving fields. During
reheating finite temperature corrections may also be relevant; in terms of the comoving fields, these are

ṼT (v, T ) = −a
2T 2

2π2

[
6a2mW (v)2JB

(
mW (v)

T

)
+ 3a2mZ(v)2JB

(
mZ(v)

T

)
+ 12a2mt(v)2JF

(
mt(v)

T

)]
= − T̃ 2

2π2

[
6m̃W (ṽ)2JB

(
m̃W (ṽ)

T̃

)
+ 3m̃Z(ṽ)2JB

(
m̃Z(ṽ)

T̃

)
+ 12m̃t(ṽ)2JF

(
m̃t(ṽ)

T̃

)]
, (B7)

where

JB(y) =
∞∑
n=1

1

n2
K2(ny), (B8)

JF (y) =

∞∑
n=1

(−1)n+1

n2
K2(ny). (B9)

and we have defined T̃ = aT . Note the first three terms
of Eq. (B8) and (B9) are fairly good approximation.
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The relevant potential for the comoving VEV is then:

Ṽ (ṽ, T̃ ) = Ṽ 1−loop
φ (ṽ) + ṼT (ṽ, T̃ ). (B10)

We note that as in [5, 6], it may be necessary to add fur-
ther higher dimensional terms to the potential to produce
a quasistable vacuum at large VEVs and/or to suppress
isocurvature perturbations due to variations in baryon
density. Additionally, dissipation effects may be relevant,
and can also influence the production of a baryon asym-
metry [40].

Appendix C: Two-Component Spinor Conventions

In the chiral basis, the Dirac γ matrices are

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, (C1)

and the projection operators are

PR =

(
0 0
0 1

)
, PL =

(
1 0
0 0

)
. (C2)

I note that

γ0PL =

(
0 0
1 0

)
, γ0PR =

(
0 1
0 0

)
, (C3)

and the complex conjugation operator is given by

C = iγ2γ0 = i

(
0 σ2

−σ2 0

)(
0 1
1 0

)
= i

(
σ2 0
0 −σ2

)
. (C4)

We also use the four-vector of Pauli matrices,

σµ = (1, σi) σ̄µ = (1,−σi) (C5)

Appendix D: Diagonalizing the Hamiltonian
(Constant Mass and Chemical Potential)

In this appendix, we present the important steps lead-
ing from equation (55) to (56), for the interested reader.
The two terms in (55) can be written as

∫
d3x ν̂†L∂0ν̂L =

∫
d3k̃

(2π)3

∑
h,h̄

[
[u(h, k̃)∗∂0u(h̄, k̃)]a

(h)†
k̃

a
(h̄)

k̃
χ

(h)†
k̃

χ
(h̄)

k̃
− [u(h, k̃)∗∂0v(h̄, k̃D)∗]a

(h)†
k̃

a
(h̄)†
k̃D

χ
(h)†
k̃

χ
(−h̄)

−k̃

−[v(h, k̃)∂0u(h̄, k̃D)]a
(h)

k̃
a

(h̄)

k̃D
χ

(−h)†
k̃

χ
(h̄)

−k̃ + [v(h, k̃)∂0v(h̄, k̃)∗]a
(h)

k̃
a

(h̄)†
k̃

χ
(−h)†
k̃

χ
(−h̄)

k̃

]
. (D1)

where we use the notation pD for the four-vector (E,−k̃). Similarly,

∫
d3x (∂0ν̂

†
L)ν̂L =

∫
d3k̃

(2π)3

∑
h,h̄

[
[u(h̄, k̃)∂0u(h, k̃)∗]a

(h)†
k̃

a
(h̄)

k̃
χ

(h)†
k̃

χ
(h̄)

k̃
− [v(h̄, k̃D)∗∂0u(h, k̃)∗]a

(h)†
k̃

a
(h̄)†
k̃D

χ
(h)†
k̃

χ
(−h̄)

−k̃

−[u(h̄, k̃D)∂0v(h, k̃)]a
(h)

k̃
a

(h̄)

k̃D
χ

(−h)†
k̃

χ
(h̄)

−k̃ + [v(h̄, k̃)∗∂0v(h, k̃)]a
(h)

k̃
a

(h̄)†
k̃

χ
(−h)†
k̃

χ
(−h̄)

k̃

]
. (D2)

To evaluate the products of the spinors, we note that

χ
(h)†
k̃

χ
(h̄)

k̃
= δh,h̄,

χ
(−h)†
k̃

χ
(−h̄)

k̃
= δ−h,−h̄ = δh,h̄,

χ(−h)(−k̃) = ζ(k̃, h)χ(h)(k̃), (D3)

where ζ is a phase that obeys:

ζ(−k̃, h) = −η(k̃, h)

ζ(−k̃,−h) = η∗(k̃, h)

ζ(k̃,−h) = −η∗(k̃, h). (D4)

Additionally using the anticommutation relations, we
may write the Hamiltonian as
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H =
i

2

∫
d3k̃

(2π)3

∑
h

[
[u(h, k̃)∗∂0u(h, k̃)− u(h, k̃)∂0u(h, k̃)∗ − v(h, k̃)∂0v(h, k̃)∗ + v(h, k̃)∗∂0v(h, k̃)]a

(h)†
k̃

a
(h̄)

k̃

−[u(h, k̃)∗∂0v(h, k̃D)∗ − v(h, k̃D)∗∂0u(h, k̃)∗]ζ(k̃, h)a
(h)†
k̃

a
(h)†
k̃D
− [v(h, k̃)∂0u(h, k̃D)− u(h, k̃D)∂0v(h, k̃)]ζ(k̃, h)∗a

(h)

k̃D
a

(h)

k̃

]
.

(D5)

We note that the u’s and v’s depend on the momen-
tum only through |k̃|; therefore, u(h, k̃D) = u(h, k̃) and

v(h, k̃D) = v(h, k̃). The first combination is

u(h, k̃)∗∂0u(h, k̃)− u(h, k̃)∂0u(h, k̃)∗ + v(h, k̃)∗∂0v(h, k̃)

− v(h, k̃)∂0v(h, k̃)∗ = −2iω̃
[
|α|2 − |β|2

]
. (D6)

while the other two are related by complex conjugation.
One can show

u(h, k̃D)∗∂0v(h, k̃)∗ − v(h, k̃)∗∂0u(h, k̃D)∗ = 2iω̃hα∗β∗.
(D7)

Together these give Eq. (56).

Appendix E: Differential Equations for Bogoliubov
Coefficients

In this appendix, we present the important steps in de-
riving the differential equations (64) from the equations
of motion. First, we introduce the notation

g± =
√

1± f. (E1)

The equations of motion require

i
du

dη
+ h|k̃|u+ µ̃effu = hM̃Lv,

i
dv∗

dη
+ h|k̃|v∗ + µ̃effv

∗ = −hM̃Lu
∗. (E2)

Since α, β, and ω̃ are time-dependent,3

du

dη
= −iω̃ α√

2
g−e

−i
∫ η
0
ω̃dη̄ + iω̃

β√
2
g+e

i
∫ η
0
ω̃dη̄ +

du

dα

dα

dη
+
du

dβ

dβ

dη
+

α√
2

dg−
dη

e−i
∫ η
0
ω̃dη̄ +

β√
2

dg+

dη
ei

∫ η
0
ω̃dη̄ (E3)

dv

dη
= −iω̃ hα√

2
g+e

−i
∫ η
0
ω̃dη̄ − iω̃ hβ√

2
g−e

i
∫ η
0
ω̃dη̄ +

dv

dα

dα

dη
+
dv

dβ

dβ

dη
+
hα√

2

dg+

dη
e−i

∫ η
0
ω̃dη̄ − hβ√

2

dg−
dη

ei
∫ η
0
ω̃dη̄ (E4)

However, these functions also satisfy

−iω̃ α√
2
g−e

−i
∫ η
0
ω̃dη̄ + iω̃

β√
2
g+e

i
∫ η
0
ω̃dη̄ + h|k̃|u(h, k̃) + µ̃effu(h, k̃) = hM̃Lv(h, k̃)

−iω̃ hα√
2
g+e

−i
∫ η
0
ω̃dη̄ − iω̃ hβ√

2
g−e

i
∫ η
0
ω̃dη̄ + h|k̃|v(h, k̃)∗ + µ̃effv(h, k̃)∗ = −hM̃Lu(h, k̃)∗, (E5)

which allows us to simplify the above equations of motion to

1√
2

dα

dη
g−e

−i
∫ ∫ η

0
ω̃dη̄ +

1√
2

dβ

dη
g+e

i
∫ η
0
ω̃dη̄ +

α√
2

dg−
dη

e−i
∫ η
0
ω̃dη̄ +

β√
2

dg+

dη
ei

∫ η
0
ω̃dη̄ = 0,

h√
2

dα

dη
g+e

−i
∫ η
0
ω̃dη̄ − h1√

2

dβ

dη
g−e

i
∫ η
0
ω̃dη̄ +

hα√
2

dg+

dη
e−i

∫ η
0
ω̃dη̄ − hβ√

2

dg−
dη

ei
∫ η
0
ω̃dη̄ = 0. (E6)

We may transform these into equations for the derivatives of α and β,

1√
2

dα

dη
(g2
− + g2

+)e−i
∫ η
0
ω̃dη̄ = − α√

2

(
g−
dg−
dη

+ g+
dg+

dη

)
e−i

∫ η
0
ω̃dη̄ − β√

2

(
g−
dg+

dη
− g+

dg−
dη

)
ei

∫ η
0
ω̃dη̄, (E7)

1√
2

dβ

dη
(g2

+ + g2
−)ei

∫ η
0
ω̃dη̄ = − α√

2

(
g+
dg−
dη
− g−

dg+

dη

)
e−i

∫ η
0
ω̃dη̄ − β√

2

(
g+
dg+

dη
+ g−

dg−
dη

)
ei

∫ η
0
ω̃dη̄. (E8)

3 If F is the antiderivative of ω̃, then
∫ η
0 ω̃dη̄ = F (η) − F (0). Differentiating this with respect to η then gives ω̃(η).
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We note that

g2
+ + g2

− = 1 + f + 1− f = 2, (E9)

and

g−
dg−
dη

+ g+
dg+

dη
=

1

2

(
− df
dη

+
df

dη

)
= 0. (E10)

The remaining combination is

g−
dg+

dη
− g+

dg−
dη

=
1√

1− f2

df

dη
. (E11)

Therefore, these equations simplify to

dα

dη
= −β

2

1√
1− f2

df

dη
e2i

∫ η
0
ω̃dη̄,

dβ

dη
=
α

2

1√
1− f2

df

dη
e−2i

∫ η
0
ω̃dη̄. (E12)

Since f = (h|k̃| + µ̃eff)/ω̃,
√

1− f2 = M̃L/ω̃, using the
definition of ω̃ above. Differentiating f gives us

dα

dη
= −β

2

ω̃

M̃L

[
1

ω̃

dµ̃eff

dη
− h|k̃|+ µ̃eff

ω̃3

(
(h|k̃|+ µ̃eff)

dµ̃eff

dη
+ M̃L

dM̃L

dη

)]
e2i

∫ η
0
ω̃dη̄,

dβ

dη
=
α

2

ω̃

M̃L

[
1

ω̃

dµ̃eff

dη
− h|k̃|+ µ̃eff

ω̃3

(
(h|k̃|+ µ̃eff)

dµ̃eff

dη
+ M̃L

dM̃L

dη

)]
e−2i

∫ η
0
ω̃dη̄. (E13)

Finally, we can combine the dµ̃eff/dη terms, using ω̃2 −
(h|p|+ µ̃eff)2 = M̃2

L. This gives Eq. (64), as desired.
Applying equations (E8) in equations (E4) gives

du

dη
= −iω̃ α√

2
g−e

−i
∫ η
0
ω̃dη̄ + iω̃

β√
2
g+e

i
∫ η
0
ω̃dη̄ (E14)

dv

dη
= −iω̃ hα√

2
g+e

−i
∫ η
0
ω̃dη̄ − iω̃ hβ√

2
g−e

i
∫ η
0
ω̃dη̄, (E15)

which shows that the diagonalization of the Hamiltonian
proceeds as in the time-independent case.

Appendix F: Effective Lepton Number Operator

In this appendix, we derive Eq. (71), starting from
Eq. (70). Using the orthonormality of the spinors, an-

ticommutation relations, and the fact that u(r, k̃D) =

u(r, k̃) and v(r, k̃D) = v(r, k̃) because the three-

momentum only appears as |k̃| inside u and v allows us
to write

L̃eff =

∫
d3k̃

(2π)3

∑
r

[
(|u|2 − |v|2)a

(r)†
k̃

a
(r)

k̃

−u∗v∗a(r)†
k̃

a
(r)†
k̃D

ζ(k̃, r) + vua
(r)

k̃
a

(r)

k̃D
ζ(k̃, r)∗

]
. (F1)

Next we evaluate the products of the u’s and v’s,

L̃eff =

∫
d3k̃

(2π)3

∑
h

[
−f
(
|α|2 − |β|2

)
a

(h)†
k̃

a
(h)

k̃
+
M̃L

ω̃

(
αβ∗e−2i

∫ η
0
ω̃dη̄ + α∗βe2i

∫ η
0
ω̃dη̄
)
a

(h)†
k̃

a
(h)

k̃

−h

[
M̃L

2ω̃

(
α2e−2i

∫ η
0
ω̃dη̄ − β2e2i

∫ η
0
ω̃dη̄
)

+ fαβ

]
ζ(k̃, h)∗a

(h)

k̃D
a

(h)

k̃

−h

[
M̃L

2ω̃

(
α∗2e2i

∫ η
0
ω̃dη̄ − β∗2e−2i

∫ η
0
ω̃dη̄
)

+ fα∗β∗

]
ζ(k̃, h)a

(h)†
k̃

a
(h)†
k̃D

]
(F2)
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where f is (h|k̃| − µ̃eff)/ω̃ as above. Using the transformation equations, we recognize that this is

L̃eff =

∫
d3k̃

(2π)3

∑
h

[
−fA(h)†

k̃
A

(h)

k̃

]
+ ∆Leff , (F3)

where

∆Leff =

∫
d3k̃

(2πa)3

∑
h

M̃L

ω̃

[(
αβ∗e−2i

∫ η
0
ω̃dη̄ + α∗βe2i

∫ η
0
ω̃dη̄
)
a

(h)†
k̃

a
(h)

k̃

−h1

2

(
α2e−2i

∫ η
0
ω̃dη̄ − β2e2i

∫ η
0
ω̃dη̄
)
ζ(k̃, h)∗a

(h)

k̃D
a

(h)

k̃
− h1

2

(
α∗2e2i

∫ η
0
ω̃dη̄ − β∗2e−2i

∫ η
0
ω̃dη̄
)
ζ(k̃, h)a

(h)†
k̃

a
(h)†
k̃D

]
. (F4)

Inverting the transformation equations gives(
a

(h)†
k̃

a
(h)

k̃D

)
=

(
α −hβζ∗

hβ∗ζ α∗

)(
A

(h)†
k̃

A
(h)

k̃D

)
(F5)

Using this, we find

∆Leff =

∫
d3k̃

(2πa)3

M̃L

2ω̃

∑
h[

e2i
∫ η
0
ω̃dη̄

(
−2|α|2|β|2 − |β|4 − |α|4

)
ζA

(h)†
k̃

A
(h)†
k̃D

+e−2i
∫ η
0
ω̃dη̄

(
−2|α|2|β|2 − |α|4 − |β|4

)
ζ∗A

(h)

k̃D
A

(h)

k̃

]
(F6)

We note that |α|4 + 2|α|2|β|2 + |β|4 = (|α|2 + |β|2)2 = 1
by the normalization condition, so this gives

∆Leff = −
∫

d3k̃

(2πa)3

M̃L

ω̃

∑
h

[
e2i

∫ η
0
ω̃dη̄ζA

(h)†
k̃

A
(h)†
k̃D

+e−2i
∫ η
0
ω̃dη̄ζ∗A

(h)

k̃D
A

(h)

k̃

]
. (F7)

Substituting this into Eq. (F3) gives Eq. (71).
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