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Recently exploratory studies were performed on the possibility of constraining the neutron star
equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black
hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as
Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined
information from multiple detections would enable one to distinguish between different equations of
state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron
star spins both in signals and in template waveforms and considering tidal effects to 1PN order,
it was found that O(20) sources would suffice to distinguish between a stiff, moderate, and soft
equation of state. Here we revisit these results, this time including neutron star tidal effects to
the highest order currently known, termination of gravitational waveforms at the contact frequency,
neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses
of neutron stars in simulated sources to be distributed according to a relatively strongly peaked
Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily
have accurate knowledge of this distribution for use as a mass prior. We find that especially the
effect of the latter is dramatic, necessitating many more detections to distinguish between different
EOS and causing systematic biases in parameter estimation, on top of biases due to imperfect
understanding of the signal model pointed out in earlier work. This would get mitigated if reliable
prior information about the mass distribution could be folded into the analyses.

PACS numbers: 26.60.Kp, 95.85.Sz

I. INTRODUCTION

Second-generation ground-based interferometric grav-
itational wave (GW) detectors are currently under con-
struction: Advanced LIGO [1] in the US, Advanced Virgo
[2] in Italy, and KAGRA [3] in Japan. GEO-HF in Ger-
many [4, 5] is already taking data. Later in the decade,
LIGO-India [6] may join this global network of obser-
vatories. Among the most promising sources for a first
direct detection of gravitational waves are compact bi-
naries composed of neutron stars or black holes, with
detection rates in the range 1 − 100 yr−1 depending on
the astrophysical event rate, the instruments’ duty cycle,
and the sensitivities of the detectors [7, 8]; see also [9] for
detection rates under the assumption that short, hard
gamma ray bursts are caused by coalescing binaries.

Coalescing binaries consisting of two neutron stars
(BNS), a neutron star and a black hole (NSBH), or two
black holes (BBH) have rich scientific potential. They
can be used to test general relativity in the genuinely
strong-field regime [10–12] and are self-calibrating “stan-
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dard sirens” for cosmology [13–15]. Moreover, BNS and
NSBH coalescences can be used as probes of the elusive
neutron star equation of state (EOS), about which little
is currently known [16].

The possibility of constraining or measuring the neu-
tron star EOS with gravitational wave observations of
BNS coalescences has recently been the subject of ex-
tensive investigation. The way in which the EOS en-
ters the GW signal from a coalescing binary is mainly
through tidal deformation. During the last stages of in-
spiral, the tidal field Eij of one component of a binary
will induce a quadrupole moment Qij in the other, where
to leading order in the adiabatic approximation Qij =
−λ(EOS;m) Eij . The tidal deformability λ(EOS;m) de-
pends on the neutron star mass m in a way that is
governed by the EOS. This deformation of the neutron
stars has an effect on the orbital motion, and hence on
the waveform of the emitted gravitational wave signal;
in particular, it enters the phase Φ(t). The deforma-
bility is related to the radius R(m) through λ(m) =
(2/3)k2(m)R5(m), where k2 is the second Love number.
Although tidal effects enter the phase at high apparent
post-Newtonian order (first appearing alongside the 5PN
phase contribution), these corrections come with a large
prefactor: λ(m)/M5 ∝ (R/M)5 ∼ 102 − 105 (with M
the total mass of the binary), so that they may be ob-
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servable with advanced detectors. We stress that there
are other ways in which the EOS enters the gravitational
waveform; we will come to these momentarily.

Read et al. estimated that with a single close-by source
(at a distance of ∼ 100 Mpc), the neutron star radius
could be constrained to 10% [17]. Hinderer et al. per-
formed a Fisher matrix analysis with post-Newtonian
(PN) waveforms truncated at 450 Hz to see how well
the neutron star tidal deformability might be measurable
from the low-frequency inspiral dynamics alone [18], con-
cluding that it would be difficult to extract much infor-
mation from this regime, at least with second-generation
detectors. Damour, Nagar, and Villain performed a
Fisher matrix calculation using effective one-body wave-
forms up to the point where the neutron stars are touch-
ing each other [19], which suggested that it might be
possible after all to gain information about the EOS
with advanced detectors. Lackey et al. performed a sim-
ilar analysis for NSBH, which also indicated encouraging
prospects [20]. The abovementioned work considered sin-
gle detections; a first study for multiple detected sources
was performed by Markakis et al. [21], who concluded
that a similar accuracy as in [17] could be attained with 3
sources that have low signal-to-noise ratio (SNR). On the
other hand, Fisher matrix estimates can be unreliable at
low SNR [22–24], prompting more in-depth assessments.

The first fully Bayesian investigation of the problem,
in a realistic data analysis setting, was performed by Del
Pozzo et al. [25]. BNS signals were “injected” into sim-
ulated detector noise, assuming the projected final de-
sign sensitivity of the Advanced LIGO-Virgo detector
network. Sources were distributed in an astrophysically
realistic way, leading to the distribution of SNRs that we
expect to see towards 2018. Two different Bayesian anal-
ysis methods were employed: hypothesis ranking within
a list of different theoretical EOS, and parameter estima-
tion. The former trivially allows one to combine infor-
mation from multiple sources so as to arrive at a stronger
result. To do the same with the latter method, parame-
ters need to be identified that do not vary from source to
source; in [25] these were simply taken to be coefficients
in a Taylor expansion of λ(m) in powers of (m−m0)/M�,
where m0 is some reference mass. A similar analysis as in
[25] in terms of parameter estimation was recently per-
formed by Lackey and Wade [26]. The latter authors
modeled the EOS as piecewise polytropes, allowing them
to directly arrive at statements on the measurability of
pressure as a function of density and neutron star radius
as a function of mass. The latter method also has the ad-
vantage that physical priors such as causality can more
easily be folded in. Both [25] and [26] concluded that
λ(m0), with m0 = 1.4M�, could be measured with an
accuracy of ∼ 10% by combining information from a few
tens of sources.

Of necessity, the studies in [25, 26] used relatively
simple waveform approximants, as otherwise the simu-
lated data analysis problem would have been intractable
with existing methods and computational infrastructure.

Much effort is being put into large-scale numerical sim-
ulations of the spacetimes of coalescing BNS, especially
of the late inspiral [27–32]. The resulting waveforms are
“hybridized” by matching them onto post-Newtonian or
effective one-body waveforms, so that the earlier inspi-
ral is also represented. While such waveforms represent
the state of the art in our understanding of BNS coales-
cence, producing a single one of them can take weeks.
By contrast, high quality parameter estimation requires
millions of waveforms to be compared with the data (see
[33] and references therein). A full solution of the prob-
lem of inferring the EOS from BNS detections will likely
involve a combination of constructing phenomenological
or “tuned” waveform models with input from numerical
relativity [34–40], and significantly speeding up the anal-
ysis of the data, e.g. through the use of Reduced Order
Modeling; see [41, 42] and references therein. In that
regard we note the recent work by Bernuzzi et al. [43],
who derived an effective one-body model that accurately
describes tidal effects close to merger for a number of dif-
ferent EOS, matching results from numerical simulations
essentially to within the numerical uncertainties.

On the other hand, when focusing on the inspiral
regime, since the way tidal effects contribute to the phase
is analogous for all of the PN approximants and the ef-
fective one-body waveforms [19, 44, 45], one might think
that existing waveforms would already suffice to reliably
extract information on the EOS from this part of the
signal. However, as pointed out in [18] and studied in
detail in [26, 46–48], significant biases can arise in the
estimation of EOS effects due to discrepancies between
waveform approximants – and presumably between these
approximants and the true signal waveform – at high
frequencies. Much of this is due to the fact that for
the underlying point particle waveforms, the different PN
waveforms and the effective one-body models differ sig-
nificantly from each other at frequencies f & 400 Hz,
where tidal effects become apparent.

An important observation was made by Read et
al. [31], who studied the “distinguishability” ||δh|| ≡√
〈h2 − h1|h2 − h1〉 in terms of the usual PSD-weighted

inner product 〈 · | · 〉 for waveforms h1, h2 of the same
family but differing in their parameter values, in this
case λ. As can be seen in their Fig. 12, the dependence
of ||δh|| on changes in λ is very similar for PN approx-
imants and for hybridized numerical waveforms. Thus
one may anticipate that PN approximants will allow us
to predict how well one will be able to infer the EOS from
GW measurements when sufficiently accurate waveforms
will eventually become available for use in data analysis
algorithms, even if the latter waveforms and appropri-
ate analysis techniques are not yet at our disposal to-
day. This will then inform the waveform modeling and
data analysis communities as to what can reasonably be
expected in terms of scientific output once their consid-
erable efforts have come to fruition. Providing such an
assessment is the aim of the present paper.

In this work we significantly expand on the results
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of [25, 26] in two ways: (a) we provide much more ex-
tensive statistics through analysis of a larger number of
simulated BNS sources, so as to identify worst-case and
best-case scenarios depending on the detector noise re-
alizations and the astrophysical distribution of the de-
tected sources; and (b) we take into account as many
physical effects as have been modeled, including tidal ef-
fects to highest known order [19], neutron star spins, the
quadrupole-monopole interaction [49, 50], the impact of
early waveform termination due to the finite neutron star
radii, and a relatively strongly peaked Gaussian distri-
bution for the neutron star masses that is expected on
astrophysical grounds [51–54]. The effect of the latter
was ignored in previous work, but as we shall see, it has
a significant impact on inference of the EOS. As in [25],
we use two Bayesian data analysis methods: hypothesis
ranking within a set of possible EOS to see which one the
true EOS is closest to, and parameter estimation on co-
efficients in a Taylor expansion of the tidal deformability.
We find that when source component masses are in a nar-
row distribution, using a flat component mass prior for
the analyses (as in previous work) increases the number
of detections needed to distinguish between a soft, mod-
erate, and stiff equation of state, and causes additional
biases in parameter estimation on top of the ones due to
imperfect knowledge of the signal model. On the other
hand, this would get mitigated if we could assume accu-
rate knowledge of the astrophysical mass distribution for
neutron stars in binaries, so that it could be used as the
prior distribution of masses.

This rest of this article is structured as follows. In
Sec. II we introduce the waveform model and the EOS-
related contributions from the effects mentioned above.
In Sec. III we explain the two main methods used in the
simulated data analysis: hypothesis ranking and param-
eter estimation. Sec. IV explains the set-up of our simu-
lations. In Sec. V we show the main results of this paper.
A summary and discussion is given in Sec. VI. Finally,
in the Appendix we further investigate the impact of the
prior on component masses.

Throughout this paper we will use units such that G =
c = 1 unless stated otherwise.

II. WAVEFORM MODEL AND EFFECTS OF
THE NEUTRON STAR EQUATION OF STATE

In this section we first discuss the general form of our
waveform model, and then the way in which EOS effects
enter.

A. General form of the waveform model

We model gravitational waveforms from the quasi-
circular inspiral of BNS systems using the stationary
phase approximation (SPA), which yields a convenient

analytic expression of the observed GW strain in the fre-
quency domain [55, 56]:

h̃(f) =
1

D

A(θ, φ, ι, ψ,M, η)√
Ḟ (f ;M, η, χ1, χ2)

f2/3 eiΨ(f ;tc,ϕc,M,η,χ1,χ2).

(1)
Here D is the distance to the source; (θ, φ) denote the
sky position with respect to the interferometer; (ι, ψ) de-
termine the orientation of the orbital plane in relation
to the observer; M = Mη3/5 is the chirp mass, with
M = m1 + m2 the total mass and η = m1m2/M

2 the
symmetric mass ratio; tc and ϕc are, respectively, the
time and phase at coalescence; and χ1, χ2 are the neu-
tron stars’ dimensionless spins. The “frequency sweep”
Ḟ (f ;M, η, χ1, χ2) (related to the time domain phase Φ(t)

by Ḟ (f) = Φ̈(t(f))/π) is an expansion in powers of f
with coefficients that depend on masses and spins, and
the SPA phase takes the general form

Ψ(f) = 2πftc − ϕc −
π

4
+
∑
k

[
ψk + ψ

(l)
k ln f

]
f (k−5)/3,

(2)

where the ψk and ψ
(l)
k again depend on masses and spins.

For the low-mass systems considered in this paper, the
Advanced LIGO-Virgo network will not be very sensitive
to sub-dominant PN contributions to the amplitude [57–
59], and we use the “restricted” post-Newtonian approx-
imation, in which only leading-order PN contributions to
the amplitude are taken into account. In particular, this
means that spin and EOS effects appear in the phasing
only.

For the purposes of this paper, the phase was taken to
3.5PN order, with inclusion of spin effects up to 2.5PN
following [60], and we refer to that paper for explicit ex-
pressions. For simplicity we assume that the components’
spins are aligned or anti-aligned with each other and with
the direction of orbital angular momentum; at the time
this work was started, frequency-domain, precessing-spin
waveform approximants like the ones of Lundgren and
O’Shaughnessy [61], of Hannam et al. [39, 40], and of
Klein et al. [62] were not yet available. It is quite pos-
sible that inclusion of precession would aid in breaking
degeneracies between spins and mass ratio, as was sug-
gested in e.g. [63], enabling more accurate measurements
of EOS effects.

We take into account three ways in which the EOS af-
fects the waveform: tidal deformations, the quadrupole-
monopole effect, and the possible early termination of
the waveform due to the finite size of the neutron stars,
whose radii are set by their masses and the EOS. Let us
discuss these in turn.

B. Tidal deformations

Towards the end of the evolution of a BNS system,
when the gravitational wave frequency reaches f & 400
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Hz [18], the tidal tensors Eij of one component of the
binary will start to induce a significant quadrupole mo-
ment Qij in the other. In the adiabatic approximation,
the two are related by [44, 64, 65]

Qij = −λ(m) Eij , (3)

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function λ(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn affect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability λ(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through λ(m) =
(2/3) k2(m)R5(m). Tidal effects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizeable (λ/M5 ∝ (R/M)5 ∼ 102 − 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The effects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (πMf)1/3, one has

Ψ(v) = ΨPP(v) + Ψtidal(v), (4)

where ΨPP(v) is the phase for the inspiral of point parti-
cles, and Ψtidal(v) is the contribution from tidal effects.
The latter takes the form

Ψtidal(v) =
3

128η
v−5

2∑
A=1

λA
M5XA

[
−24 (12− 11XA) v10 +

5

28

(
3179− 919XA − 2286X2

A + 260X3
A

)
v12

+24π(12− 11XA)v13

−24

(
39927845

508032
− 480043345

9144576
XA +

9860575

127008
X2
A −

421821905

2286144
X3
A +

4359700

35721
X4
A −

10578445

285768
X5
A

)
v14

+
π

28

(
27719− 22127XA + 7022X2

A − 10232X3
A

)
v15
]
, (5)

where XA = mA/M , A = 1, 2, and λA = λ(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a stiff EOS (MS1),
are illustrated in Fig. 4.

For the function λ(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to different EOS from Hinderer et al. [18], with maximum
residuals of ∼ 0.02 (which will turn out to be negligible
compared to the measurability of λ). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
stiff EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole effects

As mentioned before, tidal effects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = −5

2
lim
r→∞

( r

M

)3
∫ 1

−1

ν(r, θ)P2(cos θ) d cos θ, (6)

where P2(x) = (3x2 − 1)/2 is the second Legendre poly-
nomial, and ν is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = −e−2νdt2 + r2 sin2 θ e2β (dφ− ωdt)
2

+ e2α
(
dr2 + r2dθ2

)
, (7)

where the undetermined α, β, ν are all functions of (r, θ).
The quadrupole moment q is the leading-order (1/r3)
coefficient of the second multipole in the asymptotic ex-
pansion of ν(r, θ) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.

Since a stiffer EOS implies a larger neutron star (NS)
radius for a given mass, the quadrupole moment increases
in absolute value with the stiffness of the EOS. Examples
of q estimates for different EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].
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FIG. 1: The tidal deformability parameter λ(m) as a func-
tion of neutron star mass for three different EOS: a soft
one (SQM3), a moderate one (H4), and a stiff one (MS1).
Adapted from [18]. Curves are fitted quartic polynomials,
whose residuals are shown in the lower subplot. Only masses
within the unshaded region [1, 2]M� will be considered in our
analyses.

These demonstrated the dependence on the dimension-
less spin χ, which for a fixed NS mass can be fit very well
up to the maximum spin value χmax (also dependent on
the EOS) by a quadratic rule:

q ' −aχ2, (8)

where a = aEOS(m) is a mass-dependent parameter. Fur-
ther evidence to support the quadratic relation Eq. (8)
is given in [69, 70]. The authors of [69, 71] also point
out a spin correction in the identification of multipole
moments that was previously overlooked; this correction
preserves the quadratic spin behaviour of Eq. (8), and
vanishes in the slow-rotation limit. Assuming that this
relation will hold for any EOS, we will only be concerned
with the spin-independent parameter a which, similarly
to the tidal deformability parameter λ, has a functional
dependence on the neutron mass that is determined by
the EOS.

The effect of such a quadrupole moment on the grav-
itational waveform emitted by a binary system was de-
rived in [49]. To Newtonian order it introduces an ad-
ditional coupling in the effective gravitational potential,
between the mass quadrupole of each spinning neutron
star and the mass of its companion, whence the name
“quadrupole-monopole (QM) effect”. In the stationary
phase approximation, the additional contribution to the
GW phase due to the QM interaction reads:

ΨQM(v) = − 30

128η
σQMv

−1, (9)

making it of 2PN order in phase. The parameter σQM

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
m[M¯]

0

5

10

15

20

a

BH (a=1)

MS1

H4

SQM3

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three different EOS in Fig. 1. The hori-
zontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.

depends on masses and spins through

σQM =− 5

2

∑
A=1,2

qA

(mA

M

)2 [
3(χ̂A · L̂)2 − 1

]
(10)

'5

2

∑
A=1,2

a(mA)
(mA

M

)2 [
3(χ̂A · L̂)2 − 1

]
χ2
A ,

where the unit vectors χ̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption, ΨQM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned

spins, which we will assume throughout, 3(χ̂A · L̂)2−1 =
2.

As mentioned above, in our simulations we will use pre-
dictions for λ(m) corresponding to different EOS from
[18]. In order to compute a(m), we make use of the
recently discovered phenomenological Love-Q relation
[72, 73], which is believed to hold irrespective of the EOS:

ln a(m) = 0.194 + 0.0936 ln
λ

m5
+ 0.0474

(
ln

λ

m5

)2

−4.21× 10−3

(
ln

λ

m5

)3

+ 1.23× 10−4

(
ln

λ

m5

)4

.

(11)

The relative fractional errors due to the universal fit were
estimated in [73] for several EOS to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOS in Fig. 1. QM contributions to the
phase are expected to be sub-dominant compared to the
tidal effects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.
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FIG. 3: The frequencies fLSO and fcontact as functions of m1,
m2 for the EOS shown in Fig. 1.

D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut off at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2πM
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cut-off

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
1

π

(
M

R(m1) +R(m2)

)1/2

. (14)

We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which effect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
λ [76]:

C = 0.371− 3.91× 10−2 ln
λ

m5
+ 1.056× 10−3

(
ln

λ

m5

)2

.

(15)
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FIG. 4: Phase contributions of the QM effect and tidal effects
up to different PN orders as functions of GW frequency for
a (1.35, 1.35)M� binary with a stiff EOS (MS1). The QM
contribution from each NS scales quadratically with its spin
and is shown here for χ1 = χ2 = 0.1. The dashed vertical
lines indicate the contact and LSO frequencies.

For a given EOS (i.e a given relationship λ(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.

Fig. 3 shows the dependence of fLSO and fcontact on
component masses m1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA ∈
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the stiffer EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively different
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for different proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star
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EOS. Each model comes with a particular functional de-
pendence of the tidal deformability on the mass, λ(i)(m),
and hence a QM parameter a(i)(m) and radius-mass re-
lation R(i)(m) obtained through Eqs. (11) and (15), re-
spectively. The general form of the waveform given by
Eqs. (1) and (2), together with the tidal and QM contri-
butions (5), (9) and the waveform termination condition

(13), yield a waveform model h̃(i)(f ; ~θ) associated with

the hypothesis Hi. The parameter spaces {~θ} (masses,
spins, sky position, orientation, distance, time at coa-
lescence, and phase at coalescence) are the same for all
the hypotheses Hi, i = 1, . . . ,K, but for given com-
ponent masses mA, A = 1, 2, the calculated values for

λA = λ(i)(mA), aA = a(i)(mA), and f
(i)
cut differ between

one hypothesis and the next.
Given a detection d (to be thought of as a stretch of

detector data containing a confirmed BNS signal), a hy-
pothesis Hi, and any background information I that we
may have, the likelihood function is defined as [77–79]

p(d|Hi, ~θ, I)

= N exp

[
−2

∫ fcut

flow

df
|d̃(f)− h̃(i)(f ; ~θ)|2

Sn(f)

]
, (16)

with Sn(f) the detector’s one-sided noise power spectral

density [80]; d̃(f) is the Fourier transform of the data
stream, and N is a normalization factor. We will take
the low frequency cut-off to be flow = 40 Hz, and fcut is

the one in Eq. (13). To compute p(d|Hi, ~θ, I) we will use
the method of nested sampling as implemented in GW
parameter estimation by Veitch and Vecchio [77–79]; see
also [33]. The evidence is given by

P (d|Hi, I) =

∫
d~θ p(~θ|I) p(d|Hi, ~θ, I), (17)

with p(~θ|I) the prior density distribution. Using Bayes’
theorem, the posterior probability of the hypothesis Hi

given the data d is then obtained through

P (Hi|d, I) =
P (d|Hi, I)P (Hi|I)

P (d|I)
, (18)

where P (Hi|I) is the prior probability for Hi before any
measurement has taken place, and P (d|I) is the prior
probability of the data. Finally, the odds ratio between
any two hypotheses Hi, Hj is defined as

Oij ≡
P (Hi|d, I)

P (Hj |d, I)
=
P (Hi|I)

P (Hj |I)

P (d|Hi, I)

P (d|Hj , I)
. (19)

Note that the unknown P (d|I) conveniently drops out of
this expression.

The above framework can trivially be generalized to
the case of multiple detections d1, d2, . . . , dN . Using the
multiplication rule for independent random variables, one
obtains

(N)Oij =
P (Hi|I)

P (Hj |I)

N∏
n=1

P (dn|Hi, I)

P (dn|Hj , I)
. (20)

The probabilities P (Hi|I) quantify our prior degree of
belief in the hypotheses. Currently a wide range of
EOS are still consistent with existing observations [16],
including the ones that we will use in our simulations
(although general theoretical considerations suggest a
more restricted range; see e.g. [81]). In the absence of
any additional information, it then makes sense to set
P (Hi|I) = P (Hj |I) for all i and j.

If (N)Oij > 1, then the data favors the hypothesis Hi

over the hypothesis Hj . By looking at the odds ratios for
all pairs of hypotheses, we arrive at an overall ranking of
all the H1, H2, . . . ,HK . We explicitly note that

1. Even if the true equation of state were in the set
Hi, i = 1, . . . ,K, one should not necessarily expect
it to end up at the top of the ranking; this is due to
the effects of noise and the fact that the majority of
detected sources will have low signal-to-noise ratios
(SNRs).

2. In practice, the correct equation of state will prob-
ably not be in the finite set Hi, i = 1, . . . ,K. Nev-
ertheless, one may expect the highest-ranked hy-
pothesis to be close to the true one.

Here a notion of closeness or distance in a space of func-
tions is implied; this can be defined by e.g. employing the
L2 norm ||f || = (

∫
|f |2dµ)1/2. The integration measure µ

need not be uniform in mass (i.e. in principle dµ 6= dm),
but should rather reflect the amount of information that
is collected from each infinitesimal mass interval. That
is, if two functions differ significantly at a mass inter-
val where no sources are found, but are almost equal
elsewhere, then the “distance” between them should be
small. Here however, the set of functions λ(i)(m) that
we consider are clearly distinguishable across the mass
interval of interest [1, 2]M� and admit a strict ordering
in terms of stiffness.

Finally, we note that it is often convenient to work
with the logarithms of the odds ratios, as we will also do
here.

B. Parameter estimation

An obvious advantage of hypothesis ranking is that in-
formation from multiple detections can trivially be com-
bined; see Eq. (20). In measuring parameters, we will
want to do the same. Hence it will not do to just
measure e.g. the tidal deformabilities λA, A = 1, 2 for
each source individually, since these numbers are mass-
dependent and will vary from source to source. In order
to combine information across sources, one must identify
observables that only depend on the equation of state
and not on incidental details of the sources. In [25], the
function λ(m) was approximated by a Taylor expansion
around some reference mass m0, truncated at a suitably
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high order:

λ(m) =

jmax∑
j=0

1

j!
cj

(
m−m0

M�

)j
, (21)

For a given EOS, the coefficients cj will be the same for
all the sources.

A waveform model h̃(f ; ~θ, {cj}) can be constructed
along the lines of Sec. II, but this time substituting the

expansion (21) for λ(m); here ~θ still represents masses,
spins, sky position, orientation, distance, time of coales-
cence, and phase at coalescence. Given a detection d, a
posterior density function for each of the cj can be con-
structed [25, 77–79]. For instance, in the case of c0,

p(c0|d, I) =

∫
d~θ dc1 . . . dcjmax

p(~θ, {cj}|d, I), (22)

where the joint posterior density function for all the pa-
rameters takes the form

p(~θ, {cj}|d, I) =
p(d|~θ, {cj}, I) p(~θ, {cj}|I)

p(d|I)
. (23)

Here 1/p(d|I) acts as a normalization factor, and

p(~θ, {cj}|I) is the joint prior density of all the param-
eters; we will assume that the latter can be written as

p(~θ, {cj}|I) = p(~θ|I)

jmax∏
j=0

p(cj |I), (24)

where p(~θ|I) and p(cj |I) are separate prior densities for

the ~θ and all the cj , respectively. Finally, the likelihood

p(d|~θ, {cj}, I) is given by

p(d|~θ, {cj}, I) = N exp

[
−2

∫ fcut

flow

df
|d̃(f)− h̃(f ; ~θ, {cj})|2

Sn(f)

]
.

(25)
Given multiple detections d1, d2, . . . , dN , individual

posterior density functions such as p(c0|dn, I) can triv-
ially be combined [25]:

p(c0|d1, d2, . . . , dN ) = p(c0|I)1−N
N∏
n=1

p(c0|dn), (26)

where we again assumed independence of the dn and have
used Bayes’ theorem. Similar expressions can of course
be obtained for p(cj |d1, d2, . . . , dN ), j = 1, . . . , jmax.

A choice needs to be made for the order jmax at which
the Taylor expansion (21) is truncated. In [25], the au-
thors chose jmax = 1, under the expectation that but
two coefficients will be measurable when EOS effects only
enter the waveforms through the two parameters λ(m1),
λ(m2). Here we will instead use a quadratic approxima-
tion to λ(m):

λ(m) ' c0 + c1

(
m−m0

M�

)
+

1

2
c2

(
m−m0

M�

)2

, (27)

with m0 = 1.4M�. Visual inspection of the λ(m) for the
EOS considered in e.g. [18] (see their Fig. 2) already sug-
gests that in the most plausible mass range for neutron
stars (roughly m ∈ [1, 2]M�), this will tend to be a good
approximation, which is why we make the choice here;
see also Fig. 1 for the EOS used in this paper. As we
shall see, in practice neither c1 nor c2 will be measurable
even with a large number of sources, but c0 will be.

IV. SETUP OF THE SIMULATIONS

We now briefly describe how the simulations were set
up. Different choices were made for the parameter dis-
tribution of the simulated signals, or injections, and for
the priors on the parameters used for the data analysis.

A. Injections

For the parameters of the simulated sources, we choose
astrophysically motivated distributions. Sources are
placed uniformly in co-moving volume in a distance range
D ∈ [100, 250] Mpc. The upper bound is approximately
the angle-averaged range which Advanced LIGO is ex-
pected to reach, while the lower bound corresponds to
the distance within which one can expect a detection
once every two years [7]; this cut-off also serves to ex-
clude unexpectedly loud sources from our ensembles. The
sky location (θ, ϕ) and orientation (ι, ψ) are both dis-
tributed uniformly on the sphere. The phase at coa-
lescence ϕc is taken to be uniform in [0, 2π). For the
spins we note that observed pulsar periods and assump-
tions about spindown rates lead to birth periods in the
range 10− 140 ms [82], which corresponds to dimension-
less spins J/m2 . 0.04; the fastest known pulsar in a
BNS system has J/m2 ∼ 0.02. The observed popula-
tion is expected to spin down to much lower values of
spin at the time of coalescence, but currently there is no
good estimate on the spin distribution for a population
of coalescences that will be observed with GW detectors.
We choose to take a conservative approach and assume
the spins to be small but non-negligible for the analysis:
when including spins in the simulated signals, we take
them to be Gaussian distributed with zero mean and a
spread of σχ = 0.02. Unless stated otherwise, the com-
ponent masses are picked from a Gaussian with mean
µm = 1.35M� and spread σm = 0.05M�. The latter is
inspired by estimates of the mass distribution of known
neutron stars in BNS systems [51–54].

For the EOS, we want to find out under what circum-
stances one will at least be able to distinguish between
a stiff, a moderate, and a soft EOS. For these we choose
the EOS labeled MS1, H4, and SQM3, respectively, in
Fig. 1.

The simulated GW waveforms are added coherently
to simulated data streams for Advanced LIGO detectors
at Hanford, WA, and Livingston, LA, as well as an Ad-
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vanced Virgo detector at Cascina, Italy. The detector
noise is taken to be stationary and Gaussian, where the
underlying noise curve for Advanced LIGO is the one
with zero detuning of the mirror and high laser power,
and for Advanced Virgo we choose a BNS-optimized
curve assuming an appropriate choice for the signal re-
cycling detuning and the signal recycling mirror trans-
mittance; see [25] and references therein. To realisti-
cally simulate a scenario in which BNS signals have been
detected, we impose two conditions on the signals: (i)
the optimal network SNR should be greater than 8 but
smaller than 30, and (ii) the post-analysis log Bayes fac-
tor for signal versus noise should be greater than 32 with
templates that assume point particle coalescence [85].
This is also what was done in [12], and we refer to that
paper for more details.

B. Templates

The data analysis was performed as described in
Sec. III, with the following choices of prior distributions
for the parameters. Distance was allowed to vary in the
range D ∈ [1, 1000] Mpc. The coalescence phase ϕc was
taken to be uniform on [0, 2π). The coalescence time was
allowed to vary within 100 ms of an injection. When al-
lowing for non-zero spins in the templates, we took the
priors on χ1, χ2 to be uniform on the interval [−0.1, 0.1].

As we shall see, the prior density distribution for the
component masses will play an important role. In princi-
ple we could take this to be the same as the mass distribu-
tion for the injections, i.e. Gaussian with µ = 1.35M�
and σm = 0.05M�. However, we would then implic-
itly be assuming that the astrophysical mass distribu-
tion of neutron stars in binaries will be reliably known
in the advanced detector era. At the time of writ-
ing only 9 double neutron star systems have been ob-
served, sometimes with large error bars on the mea-
sured masses; it seems unlikely that this situation will
improve dramatically in the next few years. We also
note the differing results for observationally based esti-
mates of the mass distribution in BNS systems; for ex-
ample, (µm, σm) = (1.37M�, 0.042M�) in Valentim et
al. [51] and (µm, σm) = (1.33M�, 0.13M�) in Kiziltan
et al. [54], the difference partially being due to the use
of different subsets of the known systems based on the
reliability of individual mass measurements. Finally, it
is possible that due to selection biases, the distribution
of masses in electromagnetically observed neutron star
binaries will not be identical to the mass distribution
in BNS coalescences detected by Advanced LIGO and
Virgo. For these reasons, we will mostly assume a flat
component mass prior with m ∈ [1, 2]M�. However, in
the Appendix we will also briefly investigate what hap-
pens if the astrophysical distribution of masses of neutron
stars in binaries can be assumed known after all.

For the EOS in the hypothesis ranking, we again con-
sider MS1, H4, and SQM3, as well as the “point particle”

model, denoted PP. The latter corresponds to a waveform
model where λ(m) ≡ 0.

Finally, when doing parameter estimation on the co-
efficients c0, c1, and c2 in the quadratic approxima-
tion to λ(m) as in Eq. (27), the priors are chosen to
be c0 ∈ [0, 5] × 10−23s5, c1 ∈ [−2.5, 0] × 10−23s5, and
c2 ∈ [−3.7, 0] × 10−23s5. In the mass regime of interest,
this captures all the EOS in Fig. 2 of [18].

V. RESULTS

Let us now present the results of our simulations, first
for the hypothesis ranking described in Sec. III A and
then for parameter estimation as explained in Sec. III B.

A. Hypothesis ranking

A first estimate of how well one will be able to deter-
mine the EOS using hypothesis ranking was presented
in our earlier paper [25]. In that work, only tidal ef-
fects up to 1PN rather than 2.5PN were taken into ac-
count, quadrupole-monopole contributions were disre-
garded, waveforms were terminated at LSO instead of
the frequency fcut of Eq. (13), and spins were set to zero
both in the injections and in the template waveforms.
Additionally, the component masses were taken to be dis-
tributed uniformly in the interval [1, 2]M� rather than
according to a Gaussian with mean µm = 1.35M� and
spread σm = 0.05M�.

Ideally one would like to look at the impact of each
of these effects individually. However, the simulations
presented in this paper are computationally expensive if
one wants to have good statistics. For this reason, we
proceed as follows:

• First we set the spins to zero both in injections and
templates (so that the quadrupole-monopole effect
is not present), but we take tidal effects to 2.5PN
and terminate the waveforms at the minimum of
contact frequency and LSO frequency. We generate
results for injected component masses distributed
uniformly in [1, 2]M�, and then for component
masses following a Gaussian with µm = 1.35M�
and σm = 0.05M�; however, in both cases the
mass prior in our Bayesian analysis is taken to be
uniform on [1, 2]M�. Again because of computa-
tional cost, we only make this comparison for the
case where the EOS in the signals is MS1, i.e. the
stiffest equation of state considered in this paper.

• Next we specialize to the more astrophysically mo-
tivated Gaussian distribution for the component
masses (still keeping a uniform prior in the analy-
sis), and we also switch on spins. In the injections,
we let the latter be Gaussian distributed with zero
mean and σχ = 0.02, while in the templates we let
the prior on the spins be uniform on the interval
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FIG. 5: Hypothesis ranking in the case where the EOS of the simulated sources is MS1. As in [25], spins are set to zero both
in the injections and the templates, and masses are distributed uniformly on the interval [1, 2]M�, so that any qualitative
differences with previous results come from considering tidal effects to higher PN order, and terminating waveforms at contact
or LSO, whichever comes sooner. Left: The cumulative distributions of the log odds ratios ln (20)OEOS

MS1 for catalogs of 20 sources
each, where “EOS” is in turn H4, SQM3, and PP. Note how the EOS are ranked according to how dissimilar they are to the
correct one: PP differs the most and is indeed the most deprecated, followed by SQM3 and H4. Right: The fraction of catalogs
for which PP, SQM3, and H4 are correctly ranked lower than MS1, as a function of the number of events per catalog. What is
shown are the medians and 95% confidence intervals obtained from combining individual sources into catalogs in 1,000 different
ways.
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FIG. 6: The same as in Fig. 5, but this time with a relatively strongly peaked Gaussian distribution for the injected component
masses (while still using a flat mass prior in the analyses). To approach the discernability of EOS seen in Fig. 5, we now need
O(100) sources per catalog. Even then, H4, the EOS that is closest to the injected MS1, can not be distinguished from it.

[−0.1, 0.1], to reflect the ignorance about spins we
will in practice have. Since in this case we are in-
cluding all the astrophysical effects considered in
this paper, we generate results not only for MS1,
but for H4 and SQM3 as well.

1. Zero spins; flat versus Gaussian distribution of
component masses

First we consider the case of zero spins in injections
and templates, and component masses are distributed
uniformly on the interval [1, 2]M�. Results are shown in

Fig. 5. We let the injections have MS1 as their EOS, and
as in [25], we compute the log odds ratios ln (20)OEOS

MS1 for
catalogs of 20 sources each, where, in turn, “EOS” stands
for PP, SQM3, and H4. Examples of the cumulative dis-
tributions of these log odds ratios are shown in the left
panel of the figure. In the absence of detector noise, one
would have ln (20)OEOS

MS1 < 0 in all three cases, since any
EOS different from the correct one (MS1) would be dep-
recated. What we see is that ln (20)OPP

MS1 < 0 for about

80% of the catalogs, while ln (20)OH4
MS1 < 0 in about 60%

of the cases. Note that H4 is the most similar to MS1, fol-
lowed by SQM3 and PP; and indeed, the log odds ratios
obtained tend to correctly rank the EOS in this way. This
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is similar to what one sees in the top right panel of Fig. 2
of [25]. However, despite the fact that in the present work
we take tidal effects to much higher order, the left tails
of the cumulative log odds ratio distributions stretch to
less negative values. This can be explained by the dif-
ferent termination of the waveforms, which for the EOS
and mass distributions we consider tends to be at con-
tact rather than LSO (see Fig. 3). For a typical system
with component masses (1.35, 1.35)M� and equation of
state MS1, the termination frequency is fcontact = 1222
Hz whereas fLSO = 1629 Hz, so that the signal contains
less information on tidal effects (which manifest them-
selves at high frequency) than in [25]. Indeed, as can be
seen in Fig. 4, the higher-order tidal effects due to their
alternating signs do not significantly change the number
of cycles in the phase, though they will add some struc-
ture because they come with different powers of v; on
the other hand, termination at contact seems to have a
much stronger effect, cutting the tidal phase short (in
this example by roughly 15 radians). The QM effect is
much weaker and is not expected to give a significant
contribution to the inference.

The right panel of Fig. 5 shows the fraction εMS1
EOS of cat-

alogs for which MS1 is ranked higher than, respectively,
H4, SQM3 and PP (i.e. ln (20)OEOS

MS1 < 0 where “EOS” is,
in turn, PP, SQM3, and H4), as a function of the number
of sources per catalog. Also shown are 95% intervals on
εMS1
EOS obtained from combining 1,800 individual sources

into catalogs in 1,000 different ways. We see the same
trend as in the left panel: H4, being the most similar to
MS1, is ranked below MS1 the least often, and PP, be-
ing the most dissimilar, the most often. We note that in
going to a higher number of sources per catalog, we start
experiencing small number statistics; at 100 sources per
catalog only 18 independent catalogs can be composed.

Next, in Fig. 6 we look at the case where the spins
are still zero in injections and templates, but the in-
jected masses are distributed according to a Gaussian
with µm = 1.35M� and σm = 0.05M�. Unlike in Fig. 5,
in the left panel showing the cumulative distributions
of the log odds ratios, we now consider catalogs of 100
sources each, which turns out to be necessary to approach
the discriminatory power we had with a uniform mass
distribution. Even then, H4, the EOS that most closely
resembles the injected MS1, is not distinguishable from
it: the probability that MS1 gets ranked above H4 is ap-
proximately the same as the probability that H4 ends up
above MS1.

2. Gaussian mass distribution, non-zero spins

We now specialize to the astrophysically better moti-
vated Gaussian distribution for the injected component
masses (but sticking to a uniform mass prior in our anal-
yses), and we switch on spins χA, A = 1, 2. In the injec-
tions, the spins are Gaussian distributed with zero mean
and σχ = 0.02, while in the templates, the χA have priors

that are uniform on the interval [−0.1, 0.1]. This time we
give results for injections where the EOS is MS1, H4, and
SQM3, respectively.

In the left panels of Fig. 7 we see examples of cumu-
lative distributions of ln (100)OEOS

inj for catalogs of 100
sources each, where “inj” is the injected equation of state,
while “EOS” is, in turn, taken to be each of the other
three EOS considered in this paper. From top to bottom,
the injections follow MS1, H4, and SQM3, respectively.

In the right panels of Fig. 7 we again vary the number
of sources per catalog, and show the fraction εinj

EOS of
times that the injected equation of state is ranked higher
than each of the other three EOS in turn. For a given
number of sources per catalog, we combine individual
sources into catalogs in many different ways and look at
the medians and 95% confidence intervals of the εinj

EOS.
Let us first compare the results for MS1 (top panels in

Fig. 7) with the ones for Gaussian distributed masses but
zero spins in injections and templates (Fig. 6). Looking
at the εMS1

EOS, we infer that EOS again tend to be ranked
correctly according to “stiffness” and similarity to MS1,
and we even see some improvement in the discernability
of H4 from MS1, especially as the number of sources per
catalog goes to 100.

For H4 injections (middle panels in Fig. 7), the me-
dians of εH4

EOS are still ordered, with the median of εH4
PP

staying above that of εH4
MS1, which in turn trumps εH4

SQM3.
However, H4 being in between MS1 and SQM3 in stiff-
ness (see Fig. 1), the 95% uncertainty intervals of the
εH4
EOS show considerable overlap; although H4 is ranked

above each of the other EOS reasonably frequently, the
internal ranking is less clear.

Finally, for SQM3 (bottom panels), this being the soft-
est EOS other than the PP model, the stiff MS1 tends
to be deprecated reasonably strongly, but it is hard to
distinguish SQM3 from either H4 or PP.

B. Parameter estimation

We now turn to the data analysis set-up described
in Sec. III B. Here the templates used for the recovery
do not have a fixed tidal deformability function λ(m);
rather, it is modeled by a quadratic polynomial as in
Eq. (27), where the coefficients c0, c1, c2 are now free
parameters to be estimated, on top of all the usual ones
(masses, spins if applicable, time and phase at coales-
cence, sky position, orientation, and distance). To the
extent that the quadratic approximation can capture the
EOS in the signal in the relevant mass range, in the mea-
surement process we can assume c0, c1, and c2 to have
fixed values, so that their posterior densities can be com-
bined across sources as in Eq. (26).

In our earlier paper [25], where only a linear approx-
imation to λ(m) was used, it was found that only the
zeroth-order coefficient was measurable. The quadratic
approximation used in the present paper should allow
for a better fit, but here too, it turns out that only the
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FIG. 7: The same as in Fig. 6, except that simulated sources have (anti-)aligned spins sampled from a Gaussian distribution
centered at zero and with σχ = 0.02. However, the prior on spins used in the recovery is uniform on the interval [−0.1, 0.1].
Left panels: Examples of cumulative distributions of log odds ratio for the injected EOS versus the other ones considered, for
catalogs of 100 sources each. From top to bottom the injected EOS is MS1, H4, and SQM3, respectively. Right panels: The
fraction of catalogs for which the correct EOS is ranked higher than each of the others in turn, as a function of the catalog size.
Here too, medians and 95% confidence intervals are shown, obtained from combining sources into catalogs in 1,000 different
ways.

leading-order coefficient c0 can be measured with any
kind of accuracy. Thus, unlike with hypothesis ranking,
in practice only a single number pertaining to the EOS
is being extracted from the data. Nevertheless, one has
c0 = λ(m0), with m0 some fixed reference mass (which
we will take to be 1.4M�), and as can be seen in Fig. 2

of the paper by Hinderer et al. [18], which shows nearly
20 different predictions for λ(m), valuable information
could be gleaned from just that one number.

As before, we consider the following cases:

• Spins are zero both in injections and templates,
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and we compare results for an injected mass dis-
tribution that is uniform on [1, 2]M� with what
one gets with a Gaussian mass distribution that
has µm = 1.35M� and σm = 0.05M�. However,
for the templates we do not assume knowledge of
the astrophysical mass distribution, sticking to a
uniform mass prior on [1, 2]M�.

• Next we specialize to the Gaussian injected mass
distribution, and switch on spins. In the injected
waveforms, the latter are drawn from Gaussian dis-
tributions with zero mean and σχ = 0.02, while in
the templates the priors for the spins are uniform
on [−0.1, 0.1].

We stress again that for analysis purposes we will not
assume knowledge of the astrophysical mass distribution,
and we will use a prior on the component masses that is
uniform on the interval [1, 2]M�. As we shall see, sig-
nificant biases will appear in the estimation of c0. These
can be traced back to this flat prior. As demonstrated
in the Appendix, if we had exact knowledge of the astro-
physical mass distribution and could use that as a prior
instead, the biases would go away.

1. Zero spins; flat versus Gaussian distribution of
component masses

Let us start with the case of zero spins, and a uniform
mass distribution. Fig. 8 shows the evolution of the me-
dians and 95% confidence intervals in the measurement of
c0 as information from an increasing number of detected
sources is combined, the injected EOS in turn being MS1,
H4, and SQM3. We see that a clean separation between
posterior densities occurs after ∼ 50 sources have be-
come available, and uncertainties of ∼ 10% are reached
as the number of detections goes towards 100. This can
be compared with Fig. 1 of our earlier paper [25], where
the separation also happens around ∼ 50 sources, but
∼ 10% errors are arrived at somewhat sooner than here.
We recall that in that work, tidal effects were only taken
to 1PN order; on the other hand, waveforms were termi-
nated at the LSO frequency rather than at the minimum
of the LSO and contact frequencies. The earlier termina-
tion of signal waveforms in the present paper leads to a
smaller number of cycles, and somewhat less information
about the EOS is available.

In Fig. 9, we show results for zero spins, and this time a
Gaussian distribution for the injected component masses.
A good separation between MS1, H4, and SQM3 doesn’t
occur until ∼ 150 sources have become available, and
large systematic biases appear. As explained below, this
is related to the continued use of a flat prior on the com-
ponent masses, a distribution which now has a significant
mismatch with the astrophysical one. The effect of the
mass prior is further investigated in the Appendix.
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FIG. 8: Evolution of the medians and 95% confidence inter-
vals in the measurement of c0 = λ(m0), the tidal deformabil-
ity at the reference mass m0 = 1.35M�, for the cases where
the injected EOS is MS1, H4, or SQM3. Both in the injec-
tions and the templates, spins are set to zero, and the injected
mass distribution is uniform on the interval [1, 2]M�.
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FIG. 9: The same as in Fig. 8, but this time the signals have
component masses drawn from a strongly peaked Gaussian
distribution; on the other hand, the prior distribution for the
masses used in the analysis of the data is still taken to be
uniform on [1, 2]M�. Note how large systematic errors ap-
pear. The effect of the mass prior is further investigated in
the Appendix.

2. Gaussian mass distribution, non-zero spins

We now focus on the case of a Gaussian distribution for
the injected component masses, and also switch on spins,
which are drawn from a Gaussian distribution with zero
mean and σχ = 0.02. We also allow for spins in the tem-
plate waveforms, with a prior distribution that is uniform
on [−0.1, 0.1], to reflect the ignorance of the true distri-
bution of spins that we will have in reality. The results
are shown in Fig. 10. As in the non-spinning case with
the same injected mass distribution, there are system-
atic biases. Having to estimate the spins as additional
parameters also increases the statistical errors, because
of the larger dimensionality of the parameter space to be
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FIG. 10: The same as in Fig. 9, but now the signals not only
have Gaussian distributed masses, but non-zero spins as well.
Systematic errors remain, and statistical errors have increased
due to the larger parameter space that needs to be probed.

probed by the sampling algorithm.
Finally, we mention that the higher-order coefficients

c1 and c2 are essentially unmeasurable in all the cases we
considered (with or without a Gaussian mass distribution
or spins); even with 100 sources, the posteriors are not
significantly different from the priors.

VI. DISCUSSION

We have revisited the question of how well the equa-
tion of state of neutron stars can be measured with obser-
vations of binary neutron star inspirals using Advanced
Virgo and Advanced LIGO. Our starting points were
the Bayesian model selection and parameter estimation
frameworks introduced in our earlier paper [25]. Given a
set of hypotheses associated with a list of different EOS
one can calculate the odds ratios for all pairs in the set,
which provides a ranking in which EOS that are more
similar to the underlying one will tend to come out near
the top, whereas EOS that differ from it signficantly will
get deprecated. Another way to gain information about
the EOS from multiple sources is to model the tidal de-
formability λ(m) as a series expansion in (m−m0)/M�
(with m0 some reference mass), which is truncated at
some suitable order. Since the coefficients in such an
expansion are source-independent, their posterior den-
sity distributions can be combined. For the EOS we
considered a “stiff” (MS1), “moderate” (H4), and “soft”
(SQM3) equation of state, as well as the point particle
model (PP). In [25] it was found that for m0 = 1.4M�,
the deformability λ(m0) could be determined with∼ 10%
accuracy by combining information from O(20) sources.
This was confirmed in recent work by Lackey and Wade
[26], who used a qualitatively similar waveform model as
in [25] but implemented a more physical parameteriza-
tion of the EOS in terms of piecewise polytropes.

We have significantly extended our earlier study [25],

not only by expanding the number of simulated BNS
sources, but also by incorporating as much of the rele-
vant astrophysics as has been analytically modeled, such
as tidal effects to the highest known order [19], neutron
star spins, the quadrupole-monopole interaction [49, 50],
the impact of possible early waveform termination due
to the finite radii of the neutron stars, and a strongly
peaked Gaussian distribution of the component masses
[51–54].

In order to separate the impact of spins from the other
effects, we first set spins to zero both in injections and
templates (in which case the QM effect is also absent)
while retaining the tidal effects as well as the potentially
earlier termination of the waveform, and looked at hy-
pothesis ranking for MS1 injections. When choosing a
wide, uniform distribution for the component masses,
we saw that, as in [25], EOS tend to be ordered cor-
rectly according to stiffness and similarity to the true
EOS. On the other hand, the log odds ratios between
the incorrect and correct EOS seemed to stretch to less
negative values, presumably because of early waveform
termination. Nevertheless (and again as in [25]), hy-
pothesis ranking worked well with catalogs of O(20) de-
tected sources. The picture changed dramatically when
the injected mass distribution was taken to be a strongly
peaked Gaussian while keeping the mass prior to be uni-
form and wide as before. In that case & 100 detections
were needed to approach the discernability of EOS seen
in earlier work. Next we focused on a Gaussian distribu-
tion for the masses, and switched on spins. At least for
MS1 injections, this turned out not to have a significant
additional detrimental effect on our ability to distinguish
between the EOS. For H4, being in between MS1 and
SQM3 in terms of stiffness, we saw that the correct EOS
got ranked above the others a reasonable fraction of the
time, but the internal ordering became less clear. Finally,
for SQM3, even with catalogs of 100 sources only MS1
could be distinguished from the injected EOS reasonably
well, but not H4 or PP.

We also looked at parameter estimation for the coef-
ficients in a series expansion of λ(m) in the small quan-
tity (m − m0)/M�, truncated at some suitable order.
Contrary to our earlier work we used a quadratic rather
than a linearized approximation; nevertheless we found
that, here too, only the leading-order coefficient is mea-
surable. When the signals have a strongly peaked Gaus-
sian mass distribution rather than a flat one, again keep-
ing the wide, flat mass prior, systematic errors are intro-
duced. Switching on spins as additional parameters also
increases the statistical errors.

In the Appendix we investigated the effect on parame-
ter estimation of the prior on the masses. We found that,
if we can assume to have exact knowledge of the astro-
physical distribution of the source masses so that it can
be used as the prior distribution, the biases in the esti-
mation of c0 largely disappear. Recent estimates for this
distribution [51–54] are based on a rather small number
of observed BNS systems and show dependence on the
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methodology used; hence it seems that we can not confi-
dently claim to have detailed knowledge. One could con-
sider supplementing the existing information with com-
ponent mass measurements from the gravitational wave
signals themselves, but as is well-known, these will come
with large uncertainties [33]; moreover, due to selection
biases, the distribution of masses in electromagnetically
observed neutron star binaries may differ from the mass
distribution in BNS coalescences seen by gravitational
wave detectors. A more extensive investigation of the ef-
fect of the prior distribution of component masses is left
for future work.

There could be ways in which our conclusions are on
the pessimistic side. For example, a more physical pa-
rameterization of the EOS as in [26] allows one to fold
in physical constraints such as causality, which is bound
to improve parameter estimation. Moreover, it was re-
cently found that the implementation of quantum squeez-
ing in the interferometers may improve the measurability
of tidal deformabilities by a few tens of percent [83]. Fi-
nally, it is worth noting that with the “plausible” BNS
detection rate of ∼ 40 per year at design sensitivity [7],
the desired number of sources could be collected over the
course of a few years.
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Appendix: Effect of the prior on component masses

Unlike with our evidence calculations, in the case of
posterior density functions it is relatively easy to “re-

weight” the sampling of parameter space so as to make

p(~θ, {cj}|d, I) correspond to different priors on the pa-
rameters [33]. The degradation in the estimation of c0
(and for that matter, hypothesis ranking) happened when
we changed the way the component masses in the injec-
tions were distributed. Hence it is of interest to study
the effect of the prior on the masses in particular.

Let us pretend to have perfect knowledge of the astro-
physical mass distribution – in our example a Gaussian
with µm = 1.35M� and σm = 0.05M� – and take the
prior on m1, m2 to be identical to it. In the case of zero
spins, the result is shown in Fig. 11. We see that the sig-
nificant biases we encountered in Fig. 9 have largely gone
away. In Fig. 12 we also include spins as before; here too,
the biases seen earlier are strongly mitigated, though the
larger parameter space to be probed still causes larger
statistical errors.

This is not a typical case of a “prior-dominated” in-
ference on a parameter, since the bias originates from a
bad choice of priors for different parameters (m1, m2)
than the one that we are interested in (c0). Two im-
portant details that make this bad choice manifest itself
as a bias in the c0 posteriors are the following. First,
there is the fact that the parameters λA, through which
c0 is inferred, have an implicit dependence on the masses
mA. The c0 posterior is determined by the posterior on
the m–λ plane for each component NS, and if the masses
are biased then so is the inferred λ(m) curve. Second,
since c0 is treated as an independent parameter, the bias
enters through the mass prior, in the process of marginal-
izing over m1 and m2, consistently for each source, and
is therefore a persistent bias that will not average out as
the number of sources increases.

In conclusion, the biases we see in the estimation of
c0 mostly result from the mismatch between the mass
distribution for the sources and the prior distribution of
component masses in the Bayesian analysis of the data.
The relatively small remaining biases that occur when the
injected mass distribution is the same as the prior can
be attributed to the quadratic approximation for λ(m)
used in the template waveforms, and the fact that when
most of the masses are in a narrow interval, less of the
underlying tidal deformability function is being probed
by the sources.
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FIG. 11: The same as in Fig. 9, but this time using a Gaus-
sian prior for the component masses that exactly matches the
injected mass distribution. The significant biases that were
seen before have largely disappeared.
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FIG. 12: The same as in Fig. 11, but now with spins switched
on. Again we use a Gaussian prior for the component masses
that matches the injected distribution. Here too, the biases
have been mitigated.
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