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We introduce a highly-parallelizable architecture for estimating parameters of compact binary
coalescence using gravitational-wave data and waveform models. Using a spherical harmonic mode
decomposition, the waveform is expressed as a sum over modes that depend on the intrinsic parame-
ters (e.g. masses) with coefficients that depend on the observer dependent extrinsic parameters (e.g.
distance, sky position). The data is then prefiltered against those modes, at fixed intrinsic param-
eters, enabling efficiently evaluation of the likelihood for generic source positions and orientations,
independent of waveform length or generation time. We efficiently parallelize our intrinsic space
calculation by integrating over all extrinsic parameters using a Monte Carlo integration strategy.
Since the waveform generation and prefiltering happens only once, the cost of integration dominates
the procedure. Also, we operate hierarchically, using information from existing gravitational-wave
searches to identify the regions of parameter space to emphasize in our sampling. As proof of con-
cept and verification of the result, we have implemented this algorithm using standard time-domain
waveforms, processing each event in less than one hour on recent computing hardware. For most
events we evaluate the marginalized likelihood (evidence) with statistical errors of <∼ 5%, and even
smaller in many cases. With a bounded runtime independent of the waveform model starting fre-
quency, a nearly-unchanged strategy could estimate NS-NS parameters in the 2018 advanced LIGO
era. Our algorithm is usable with any noise curve and existing time-domain model at any mass,
including some waveforms which are computationally costly to evolve.

I. INTRODUCTION

The upcoming ground based gravitational-wave detec-
tor network (notably including advanced LIGO [1] and
advanced Virgo [2]) are sensitive to the gravitational-
wave signal from coalescing compact binaries, both the
relatively well understood signal from the earlier inspi-
ral phase [3–14] and the less well understood strong-
field merger [15–22]. Both of these regimes are impor-
tant in understanding the underlying physical processes
and properties of the binary which likely provide the
central engine for phenomena such as short gamma-ray
bursts [23–25]. A multimessenger observation of this cat-
egory of event would be the first of its kind and could
answer open questions about these poorly understood
events. In the era of multimessenger astronomy, rapid
and robust measurements of candidate compact binary
gravitational-wave events will be a critical science prod-
uct for gravitational-wave observatories, as colleagues
with other instruments perform followup and coincident
observations [26]. The most tantalizing proposed elec-
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tromagnetic counterparts are expected to be brief, po-
tentially disappearing within days if not shorter [27–33].
Given limited resources, reliable low-latency parameter
estimation of gravitational-wave signals will significantly
enhance the science output of multimessener astronomy.

With the scheduled resumption of data taking in late
2015 [26], the second generation gravitational-wave in-
terferometers in Hanford, Washington, and Livingston,
Louisiana, are expected to reach unprecedented sensitiv-
ities [34]. The Virgo detector is also expected to resume
data taking within a year of this milestone. In prepara-
tion for the next run, the LIGO and Virgo Collaborations
have implemented and extensively tested a set of low
latency gravitational-wave detection pipelines [33, 35–
37], capable of compact binary event detection within
a few minutes (or less) from the coalescence time. These
pipelines trade the ability to accurately determine all but
a few of the parameters of the coalescence for speed and
breadth of analysis.

Having a more accurate estimation of the bi-
nary coalescence’s parameters is valuable not only to
gravitational-wave science but also to electromagnetic
observatories to guide their pointing. Many astrophys-
ical phenomena which could create transient gravita-
tional waves also have electromagnetic signatures which
may decay rapidly. Moreover, gravitational-wave inter-
ferometer networks often cannot localize gravitational-
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wave events to better than a few hundred square degrees
on the sky [26, 33, 38], implying follow-up observations
should occur expeditiously after the initial identification
to promptly localize as accurately as possible. While sev-
eral Bayesian algorithms for gravitational-wave parame-
ter estimation have been employed in the past, the time
scale of a full parameter estimation analysis remains at
a much higher latency than the initial detection.

With these goals in mind, and moving hierarchically
from the broader search result, fast follow-ups have been
developed to rapidly localize the event in the sky, assum-
ing the search pipelines have provided accurate timing
and masses [33, 39]. However, the most robust interpre-
tation of gravitational-wave data requires systematically
comparing all possible candidate signals to the data, con-
structing a Bayesian posterior probability distribution for
candidate binary parameters [40–47]. These schemes pro-
vide measurements of all the physical parameters of the
coalescence, albeit at a much higher latency than the
search itself. Owing to the complexity and multimodality
of the model space, these strategies have adapted vari-
ants of Markov Chain Monte Carlo (MCMC) or nested
sampling [47, 48] algorithms to estimate the parameters
of the coalescence. In physics, similar path-based meth-
ods have been enormously successful at a broad range
of physical problems, by exploring all possible paths
through a configuration space; see, e.g. [49, 50].

Though successful, these nature of these algorithms is
functionally serial, with moderate degrees of paralleliza-
tion requiring intensive communication to coordinate the
current state. Without state-of-the-art techniques like
ensemble sampling, MCMC and nested sampling tech-
niques therefore do not scale efficiently to beyond a few
tens of cores (e.g., for parallel tempering). In contrast, ef-
ficient and highly-parallelizable Monte Carlo integration
strategies are frequently applied to problems with dimen-
sions comparable or higher than coalescing compact bi-
naries; see, e.g., [51–54]. In this work, we apply such
methods to gravitational-wave parameter estimation for
the first time.

This work is organized as follows. In Sec. II we pro-
vide an executive summary, outlining the principles that
enable our algorithm to provide rapid, accurate results
for the test cases explored here: time-domain models for
non-spinning, circular binaries. Then, in Sec. III and IV,
we outline the pertinent features of our waveform decom-
position and describe our algorithm in detail. To demon-
strate our algorithm provides high performance in an en-
vironment mimicking conditions during an observational
run, Sec. V presents results drawn from a large sample
of events from the “2015 double neutron star mock data
challenge,” results from which are described in [33]. In
Sec. VI, we discuss the broader significance of our result
in the context of other parameter estimation work inside
and outside the community.

II. EXECUTIVE SUMMARY

In this paper, we outline an alternative architecture for
gravitational-wave parameter estimation, based on three
key ingredients: efficient evaluation of the likelihood as
a function of extrinsic parameters, highly-parallelized
Monte Carlo integration over a grid of intrinsic param-
eters, and input derived from gravitational-wave search
and sky localization pipelines.

The computational cost to evaluate the likelihood has
historically been a limiting step in gravitational-wave pa-
rameter estimation. This cost has two factors in each
comparison which is required to be made. The first is
the cost of waveform generation, as discussed in [55–59]
and references therein. Second is the filtering cost related
to the required length of the waveform to be compared
— this scales in proportion to the lowest frequency ac-
cessible by a gravitational-wave interferometer. At fixed
sampling rates, the lowest frequency content of the wave-
form dominates a time-domain likelihood computation.
Recently, several methods have been proposed to perform
this comparison more efficiently [55–57, 60], by interpo-
lating some combination of the waveform or likelihood or
by adopting a sparse representation to reduce the com-
putational cost of data handling. In this work, we intro-
duce a robust and straightforward scheme to reduce the
cost per comparison, without resorting to interpolation
within or manipulation of the waveform family. We first
perform a “precomputation” phase for each intrinsic pa-
rameter by decomposing each physically distinct source
in the spin-weighted spherical harmonic basis. This al-
lows us to quickly evaluate the likelihood as a function
of extrinsic parameters. This method is applicable to
any available waveform model, and the computational
cost of the precomputation step requires the waveform to
be generated and decomposed only once, thereby mak-
ing this step a small fractional cost of the total com-
putation. To our knowledge, this work is the first time
any such method has been implemented for the most ac-
curate but computationally-expensive waveform models
like EOB [61, 62] while leveraging several hundred com-
puting cores at once.

Taking advantage of the fast likelihood computation,
each set of intrinsic parameters has a straightforward
and vectorizable Monte Carlo integration performed to
explore and marginalize over the extrinsic parameters.
Monte Carlo integration can provide an exhaustive search
of the parameter space with a fixed cost in convergence
scaling with the number of points drawn. As each Monte
Carlo draw is a statistically independent sample, this pro-
cedure can engage as many computational resources as
are necessary to provide fast convergence of the integral
to a satisfactory level of uncertainty. Efficient Monte
Carlo integration schemes adjust their sampling strategy
while performing the integration by adapting to sample
only the meaningful regions of the space. By using de-
tection search results (e.g. those produced by matched-
filtered searches [63]) to sample near maxima of the like-
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lihood, Monte Carlo methods can retain generality but
still be extremely efficient. We describe a procedure to
explore the extrinsic parameter space and evaluate the
marginalized likelihood that is embarrassingly parallel,
extensibly incorporates information provided to acceler-
ate convergence, and provides a well-understood sam-
pling error estimate, allowing us to target a given level
of precision.

To complete the parameter estimation process, our
algorithm evaluates the likelihood and accumulates in-
trinsic posterior samples using a well-motivated discrete
grid whose position and size is derived from the exist-
ing information provided by gravitational-wave detection
pipelines. To further accelerate convergence, we also use
the information provided by the search to prioritize spe-
cific combinations of extrinsic parameters for further in-
vestigation. Like the process of marginalizing the like-
lihood at fixed intrinsic parameters, this grid search is
embarrassingly parallel. Typically, parameter estima-
tion strategies make almost no use of the information
reported by existing search codes, precisely to avoid self-
consistency issues that can arise by, for example, using
inferences for the data as priors on the reanalysis of that
data. In contrast, by carefully distinguishing between
sampling and integration priors, we circumvent these is-
sues.

To summarize, combining these three factors (paral-
lelizable Monte Carlo integration, efficient likelihoods,
and search information), we can provide reliable param-
eter estimates for merging double neutron star binaries
within one hour on existing hardware for instruments
available in the next five years. This promising and
simple first implementation has performance comparable
to or better than well-developed state-of-the-art Markov
Chain Monte Carlo codes like lalinference applied
to initial detector data with comparable nonprecessing
sources. For advanced instruments, with longer signals
and more costly waveforms, our method should perform
significantly better than the current lalinference im-
plementation with state-of-the-art nonprecessing bina-
ries. Our method therefore provides a valuable alterna-
tive to other promising methods like reduced-order mod-
eling, ensemble sampling, and other tactics to improve
scaling and decrease latency [64, 65]. Owing to its supe-
rior scaling and transparency, our method provides a well
understood and easily implemented alternative to lalin-
ference for suitable problems, particularly valuable for
low-latency and approximate parameter estimation and
for investigations into waveform systematics.

III. BINARY WAVEFORMS

A. Intrinsic and extrinsic parameters

On physical grounds, we group waveform parameters

~µ = (~λ, ~θ) into two classes: the intrinsic parameters (~λ)

and extrinsic parameters (~θ). The intrinsic parameters

are fundamental to the description of the binary: if we
change any intrinsic parameters we must recompute the
orbital dynamics of the binary (typically through the rel-
atively expensive process of numerically integrating ordi-
nary differential equations). Extrinsic parameters sim-
ply describe how the binary is oriented in space and time
relative to the detector; changing extrinsic parameters
involves a relatively inexpensive rotation, translation or
rescaling transformation. As we will show in the next
subsection, for the non-spinning case considered here the
intrinsic parameters (transformations of the binary com-
ponent masses m1 and m2) are

~λ = {Mc, η} , (1)

where Mc = (m1m2)3/5/(m1 +m2)1/5 is the chirp mass
and η = m1m2/(m1 +m2)2 is the symmetric mass ratio.
The extrinsic parameters are

~θ = {tgeo, α, δ, ι,D, ψ, φc} , (2)

where tgeo is the time at which the coalescence point of
the waveform arrives at the Earth geocenter, α and δ are
the right ascension and declination, ι is the inclination
angle of the binary’s angular momentum vector and the
line of sight to Earth, D is the luminosity distance to the
binary1, ψ is the polarization angle, and φc is the orbital
phase of the binary at coalescence.

B. Waveform decomposition

The gravitational wave strain measured by the kth in-
terferometric detector in a network is given by

hk(t) = F+,k(δ, α, ψ)h+,k(t) + F×,k(δ, α, ψ)h×,k(t) , (3)

where F+,k, F×,k are the antenna patterns of the detec-
tor2 and h+,k, h×,k are the two components of the grav-
itational wave strain, evaluated at the kth detector. The
antenna patterns depend only on the extrinsic sky loca-
tion and polarization angle, while the polarizations de-
pend on both intrinsic and extrinsic parameters. Mean-
while, at leading order for inspiral-only waveforms the
polarizations are described Φ(t) the orbital phase, and
the post-Newtonian v(t) “velocity” parameters, these de-
pending only on combinations of the masses of the binary.

1 For the sources considered in this paper, the redshift correction
is assumed to be negligible.

2 Due to the rotation of the Earth, the antenna patterns change
as a function of time. While this has been mostly neglected due
to the signal duration versus the Earth’s rotational velocity, an
accounting of this effect will become necessary as the instruments
become sensitive to longer binary coalescence waveforms.
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Thus, it is convenient to introduce h(t|Mc, η, ι, φc) given
by:

h+,k(t)− ih×,k(t) = h(t− tk|Mc, η, ι, φc) . (4)

Due to the propagation of the wave, each member of the
network will record a different time of arrival at the site
depending only on sky location. Time offsets are then
measured relative to the geocenter arrival time. The ex-
pression, tk denotes the time of arrival of the coalescence
at the kth detector,

tk = tgeo +
~xk · N̂(α, δ)

c
, (5)

where ~xk is a vector pointing from the geocenter to the
kth detector and N̂(α, δ) is the direction of gravitational-
wave propagation.

At this stage, we make no assumptions about the func-
tional form of h(t|Mc, η, ι, φc). We can use a −2 spin-
weighted spherical harmonic mode decomposition (de-
noted hlm) to further separate intrinsic and extrinsic pa-
rameters appearing in the polarizations as

h+,k(t)− i h×,k(t) =
Dref

D

∑
lm

ĥlm(Mc, η, tk; t)Y (−2)
lm(ι,−φc), (6)

evaluated at some fixed distance Dref (in this work we
choose Dref = 100 Mpc).

If we define a complex-valued antenna pattern for each
detector as

Fk = F+,k + i F×,k , (7)

then we can re-express the measured strain in the kth

detector as

hk(~λ, ~θ; t) = Re
Dref

D
Fk(α, δ, ψ)

∑
lm

ĥlm(Mc, η, tk; t) Y (−2)
lm(ι,−φc) . (8)

Aside from tk, we have now completely separated the

intrinsic parameters (which enter only the ĥlm) from
the extrinsic parameters (which enter only the Fk and
Y (−2)

lm).
Given a time-domain representation of the gravita-

tional wave strain, we can define a frequency-domain ver-
sion of this strain via a Fourier transform

h̃(f) =

∫ ∞
−∞

h(t)e−2πiftdt . (9)

Time translation of frequency-domain waveforms is triv-
ial. If h̃(tk; f) is the Fourier-domain representation of
a strain for some arrival time tk, then the same strain
arriving at another time t′k can be simply related by

h̃(t′k; f) = h̃(tk; f) e−2πif(t′k−tk) . (10)

Thus, if we work with frequency-domain waveforms, the
arrival time tk can be factored out as exp(−2πiftk) and
we can complete the separation of intrinsic and extrinsic
parameters.

For the explicit decomposition above, we have focused
on non-spinning waveforms and found that they can be
separated into two intrinsic parameters and seven extrin-
sic parameters. In the general case, which could include
precession, tidal effects and any other physics, this in-
trinsic and extrinsic separation is still possible. In fact,
there will always be seven extrinsic parameters which en-
ter only through inexpensive geometric factors, while any
additional parameters will always be encoded in the ex-
pensive hlm modes.

To see that this is true, first note that Eq. (10) holds
for an arbitrary strain and so can always be used to fac-
tor out the dependence on time of arrival. Similarly, a
gravitational wave far from its source will always fall off
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as 1/D. Furthermore, the antenna patterns F+ and F×
depend on the detector geometry, not the source, and
so are unchanged. This gives a total of five extrinsic pa-
rameters that in general can be factored out exactly as in
our non-spinning waveform. Lastly, we have two angles
which enter into the Y (−2)

lm. The physical interpreta-
tion of these angles depends on the choice of the frame
relative to which the harmonic mode decomposition is
performed. One should choose a frame which is conve-
nient for expressing and computing the hlm. For the
non-spinning case, this means aligning the frame with
the orbital angular momentum, L̂, in which case one can
show that the zenith angle is ι and the azimuth is −φc.
In the precessing case, one would most likely use a frame
aligned with the total angular momentum, Ĵ , e.g. using
the parameterization described in [66]. In the notation of
that paper, the extrinsic spherical harmonic dependence
is Y (−2)

lm(θJN ,−φJL), where θJN is the inclination of
the total angular momentum to line of sight, and φJL
marks the azimuthal position of L̂ on its precession cone
about Ĵ .

IV. METHODS

A set of data dk(t) collected from a gravitational-wave
detector is typically decomposed into the inherent noise
of the detector and a putative gravitational-wave signal:

dk(t) = hk(t) + nk(t) . (11)

In the absence of a signal and under the assumption that
each detector produces stationary Gaussian noise, the
noise ñk(f) in the kth detector is characterized by its
one-sided power spectral density Sk(f):

〈ñk(f)∗ñk(f ′)〉 =
1

2
Sk(|f |)δ(f − f ′) . (12)

In the following discussion, we define a weighted
inner-product of two complex Fourier-domain functions
ã(f), b̃(f) with a weighting function 1/S(f):

〈a|b〉 ≡ 2

∫ ∞
−∞

df
ã∗(f)b̃(f)

S(f)
. (13)

The mode decomposed waveforms ĥlm, can be shifted in
time in reference to a detector relative to the geocentric
time via Eq. (10). For this reason, the overlap between
a single detector data time series d(t) and a time-shifted
complex function h(t− tk) is

〈h(tk)|d〉 = 2

∫ ∞
−∞

d̃(f)h̃∗(f)

S(f)
e2πiftkdf . (14)

Note that this is simply the Fourier transform of the in-
tegrand in Eq. (13), which means we can compute the
overlap for all possible time shifts with a single Fourier
transform.

A. Bayesian evidence and posteriors

If the detector noise is Gaussian, it follows that the
probability of some set of noise realizations in each of
our detectors is

p({d}|H0) ∝
∏
k

exp

(
−〈d|d〉k

2

)
(15)

in the absence of a gravitational-wave signal. Here, H0

indicates the hypothesis that the data is only Gaussian
noise.

With a gravitational-wave signal present, the data
from each detector is noise plus the response of an in-
terferometer to the gravitational-wave h(~µ). In this case,
the probability of some measured d given the presence of
the signal with parameter values ~µ is

p({d}|~µ,H1) ∝
∏
k

exp

(
−〈d− h(~µ)|d− h(~µ)〉k

2

)
(16)

where H1 indicates the hypothesis that the data consists
of Gaussian noise plus a gravitational-wave signal.

By Bayes’ theorem, the posterior probability of the
parameters ~µ under the signal present hypothesis H1 is

p(~µ,H1|{d}) =
p({d}|~µ,H1)p(~µ)

p({d}|H1)
(17)

where

p({d}|H1) =

∫
p({d}|~µ,H1)p(~µ)d~µ . (18)

It is convenient, at this stage, to introduce the likelihood
ratio

L({d}|~µ) =
∏
k

exp {−〈d− h(~µ)|d− h(~µ)〉k/2}
exp {−〈d|d〉k/2}

(19)

and to rewrite Eq. (17) in the form

p(~µ,H1|{d}) =
L({d}|~µ)p(~µ)

Z
, (20)

where Z is defined to be

Z =

∫
L({d}|~µ)p(~µ)d~µ ≡ p({d}|H1)

p({d}|H0)
. (21)

We can also compute the posterior probability density
(which we will abbreviate as simply the posterior) for
one or multiple parameters (marginalized over all other
parameters). Let x be one or more parameters in ~µ and
y be all other parameters, such that ~µ = x ∪ y. Then,
the posterior for x is

p(H1|x) ≡ p(x|H1)

Z({d}|H1)

∫
dy p(y|H1)L(x, y) . (22)
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B. Efficiently evaluating the likelihood

We now show how the waveform decomposition de-
rived above can be exploited to speed up evaluations of
the likelihood ratio. In Eq. (8) note that we have taken
the observed strain in a detector Hk(t) and rewritten it
as a linear combination of harmonic mode time series
ĥlm(t). The harmonic mode time series depend on the
intrinsic parameters, but the extrinsic parameters (apart
from tk) are entirely encoded in the coefficients of the
linear combination. Because computing the likelihood is
just an inner product, which is a linear operator, we can
pull these coefficients outside the inner product integral.
Thus, we need only compute inner products involving

the ĥlm and data {d}. If we store these, we can compute
the likelihood for any extrinsic parameters by simply re-
computing the coefficients and reconstructing the linear
combination.

To that end, we define the following quantities:

Qk,lm(~λ, tk) ≡
〈
hlm(~λ, tk)|d

〉
k

= 2

∫ ∞
−∞

df

Sk(|f |)
e2πiftk h̃∗lm(~λ; f)d̃(f) ,

(23a)

Uk,lm,l′m′(~λ) = 〈hlm|hl′m′〉k , (23b)

Vk,lm,l′m′(~λ) = 〈h∗lm|hl′m′〉k . (23c)

Note that each Qk,lm(~λ, tk) is computed for all tk with a
single inverse Fourier transform, as in Eq. (14). A signal
will produce a peak in the filtered outputs localized to
a short millisecond time window around the coalescence
time, so the Qk,lm(~λ, tk) will be sharply peaked as func-
tions of tk and we need only retain the values for a narrow
range of tk. To allow for detector arrival times that dif-
fer from the geocenter time, the range of tk for which we
must store the Qk,lm is set by the light travel time across
Earth (2R⊕/c ' 42ms). Conservatively, work we store
the Qk,lm for a much longer 300 ms range of tk. The

Uk,lm,l′m′(~λ) and Vk,lm,l′m′(~λ) are independent of tk and
are computed once by a straightforward use of Eq. (13).

By plugging Eq. (8) into Eq. (19), taking a log and
collecting terms, we obtain

lnL(~λ; ~θ) = (Dref/D)Re
∑
k

∑
lm

(FkY
(−2)

lm)∗Qk,lm(~λ, tk)

− (Dref/D)2

4

∑
k

∑
lml′m′

[
|Fk|2[Y (−2)

lm]∗Y (−2)
l′m′Uk,lm,l′m′(~λ)+Re

(
F 2
kY

(−2)
lmY

(−2)
l′m′Vk,lm,l′m′(~λ)

)]
.

(24)

Importantly, the intrinsic parameters ~λ enter only
through the Qk,lm, Uk,lm,l′m′ and Vk,lm,l′m′ . These are
the dominant cost, as they require computing the orbital
dynamics, the hlm, inner product integrals and inverse
Fourier transforms. By contrast, the extrinsic parame-
ters enter the Fk and Y (−2)

lm, which are much cheaper
to compute.

Therefore, if we fix a point in the intrinsic parameter

space we can compute the Qk,lm(~λ, tk), Uk,lm,l′m′(~λ) and

Vk,lm,l′m′(~λ) only once, vary the extrinsic parameters and
compute the likelihood for only the cost of the Fk and
Y (−2)

lm. This allows us to efficiently integrate over the
extrinsic parameters and obtain a marginalized posterior

for the intrinsic parameters p(~λ) as in Eq. (22). If we do
this for a collection of points in the intrinsic parameter

space, we can integrate over ~λ as well and obtain Z as
in Eq. (21). Note that the computation for each point in
the intrinsic space is completely independent of the oth-
ers. This makes the algorithm embarrassingly parallel
and given enough CPU cores the entire analysis can be
run in the time it takes to integrate over the extrinsic pa-
rameters (modulo some brief startup and post-processing
steps).

The remainder of this section provides more details on
the various steps of our algorithm.

C. Placement over intrinsic parameters

In the current work, we restrict ourselves to consider non-
spinning binaries in which we also neglect tidal effects.
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FIG. 1: We use an effective Fisher matrix to compute an
approximate ellipsoidal region of overlap ≥ 90% with the
masses reported by a detection pipeline. We then fill this
ellipsoid with discrete points and cut any with unphysical
values of symmetric mass ratio η. In this case m1 = 1.5M�
and m2 = 1.35M�, so a little under half of the points placed
would have been unphysical. At each physical grid point,
we marginalize the likelihood over all extrinsic parameters as
described in Sec. IV D.

Therefore, we need only two mass parameters to describe
the intrinsic parameter space, for which we use the sym-
metric mass ratio η = m1m2/M

2 and the chirp mass
Mc = Mη3/5 (where M = m1 + m2 is the total mass).
Since detection searches will report masses for the can-
didate event, we use these to guide which region of the
intrinsic parameter space to explore.

Let (M∗, η∗) be the masses reported by a detection
pipeline. We then perform an effective Fisher matrix
calculation as described in [67, 68] centered about this
point. This involves evaluating the overlap

|〈h(~λ∗)|h(~λ)〉|√
〈h(~λ∗)|h(~λ∗)〉〈h(~λ)|h(~λ)〉

(25)

between our waveform with masses (M∗, η∗) and approx-
imately tens of nearby waveforms with different intrin-
sic parameters (while extrinsic parameters are held con-
stant). The measured overlap values are then fit with
a multi-dimensional quadratic. The coefficients of this
quadratic fit are called the effective Fisher matrix. Like
the standard Fisher matrix, the effective Fisher matrix
serves as a quick, crude estimate of expected parame-
ter estimation performance and can be used to predict
surfaces of constant overlap, which will in general be el-
lipsoids. In this work, we use the effective Fisher matrix
to approximate the region of intrinsic parameter space
which will have overlap ≥ 90% with the masses (M∗, η∗).

Once we have defined this 90% overlap ellipsoid, we
must fill it with a set of discrete points at which we will
compute the likelihood. To do this, we first specify the to-
tal number of intrinsic parameter points we wish to place,
here 200 points. Then, these points are arranged within

a unit sphere. In this work, we placed points along 20
radial lines, with 10 points per spoke. Along each spoke,
the points are placed uniformly in radial distance. Now,
the eigenvalues and eigenvectors of the effective Fisher
matrix tell us the lengths and orientations of the axes of
the 90% overlap ellipsoid. We use these to deform and ro-
tate our set of points in the sphere to a set of points in the
90% overlap ellipsoid. Once we have filled our ellipsoid,
we remove any points that have unphysical η (> 1/4).
We ensure that we always place spokes in our ellipsoid
along the direction of constant η, so that we always have
many points along this boundary of the parameter space.
One reason for the choice of spoked placement is so that
we can always ensure near-equal mass binaries will have
many points near the η = 0.25 boundary of the param-
eter space, the region where most astrophysical binary
neutron stars are expected. Fig. 1 illustrates this place-
ment of intrinsic parameter points.

D. Integrating over extrinsic parameters

Because precomputed quantities allow us to efficiently

evaluate the likelihood L(~λ, ~θ) as a function of ~θ, we first

integrate the likelihood L(~λ, ~θ) over all extrinsic param-

eters ~θ to get

Lred(~λ) =

∫
L(~λ, ~θ)p(~θ)d~θ , (26)

where p(~θ) is our prior over the extrinsic parameters. We
assume the sources analyzed are randomly-oriented and
randomly distributed in the universe out to a fiducial ra-
dius3. With the potential exception of the sky position,
our priors are independent, and thus separable. We then
evaluate the reduced likelihood Lred by integrating over
the geocentric time of arrival t, distance D, sky position
Ωsky represented as right ascension α and declination δ,
angular momentum orientation as measured by inclina-
tion ι, polarization angle ψ, and coalescence phase φc,
using the separable prior to get

Lred(~λ) =∫
dt

Twindow

D2dDdΩsky

Vmax

d(cos ι)dφc
4π

dψ

π
p(~θ)L(~λ, ~θ) .

(27)

In this expression and our calculations, we adopt a max-
imum distance Dmax (here 300 Mpc, beyond which we
do not expect appreciable sensitivity from a 2015 era in-
terferometer) and a time window Twindow (here, 300 ms)
surrounding the event.

3 Beyond which we do not expect our instruments to be apprecia-
bly sensitive in the next two years.
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With the exception of time (described below), we eval-
uate these integrals and reconstruct the posterior distri-

bution using Monte Carlo integration [69, 70]. If ps(~θ) is
a distribution which is never zero, then

Lred(~λ) =

∫
L(~λ, ~θ)p(~θ)

ps(~θ)
[ps(~θ)d~θ] . (28)

If we drawN random samples ~θq from ps, we can estimate

the value of the integral L̂red and its error σLred
as follows.

Let

wq ≡
L(~λ, ~θq)p(~θq)

ps(~θq)
, (29)

for a given draw q of ~θ, then

L̂red(~λ) ≡ 1

N

∑
q

wq = 〈w〉 , (30)

σ2
Lred

=
〈
w2
〉
− 〈w〉2 . (31)

The weighted samples also provide an estimate of the
marginalized one-dimensional cumulative distributions

P̂ (< x) at fixed ~λ:

P̂ (< x) ≡ 1∑
q
wq

∑
q

wqΘ(x− xq), (32)

where x is one of the extrinsic variables in ~θ, and Θ is
the Heaviside step function. This formula follows by per-
forming Monte Carlo integration on the parameter vol-
ume < x, keeping track of overall normalization. In the
limit of many samples, this discontinuous estimate should
converge to a smooth, marginalized posterior distribu-
tion. For any set of samples and any x, the error in
P̂ follows from the (correlated) statistics of the Monte
Carlo integrals in its numerator and denominator. In the
typical case that all samples xq are distinct, the unique
sample with the largest weight corresponds to the largest
discontinuity in P̂ . The magnitude of this discontinu-
ity, or equivalently its inverse neff , provides a practical
measure of how reliable we expect this one-dimensional
posterior to be:

neff ≡

∑
q
wq

max{wq}
. (33)

Equivalently, the “effective number of samples” neff mea-
sures how many independent samples produce similar
weights near the largest observed weight.

Following the discussion of priors earlier in this sec-
tion, unless otherwise indicated, we draw samples using

a separable sampling distribution ps(~θ) =
∏
α ps,α(θα).

Each factor ps,α is equal to the corresponding prior in
that dimension.

Furthermore, being a pure Monte Carlo integral, all the
draws are independent. We can simply average the re-
sults of multiple instances to achieve a smaller σLred

, even
if these evaluations adopted to a different sampling distri-
bution. Currently, we perform ntrials (= 10) evaluations
of the integral at each fixed intrinsic point, terminating
when either N iterations crosses a threshold (= 106) or
to some fixed neff threshold (= 1000), whichever comes
first. This approach is thus highly parallelizable: simply
instantiate instances (with different seeds) of the desired
integral across however many computing resources are
required for the target execution time and precision, ef-
fectively dividing the time required to converge by the
number of processes available. Combined with gridding
the intrinsic parameters, this allows for a degree of paral-
lelization which has not been achieved by other sampling
methods in this parameter space. There is a practical
limit to this strategy since there is a fixed start up time,
but the degree of parallelization realized is at least an
order of magnitude or more over current schemes.

1. Adaptive Monte Carlo integration

To better concentrate our samples in regions of high
significance, we implemented an importance sampling al-
gorithm using a simple adaptive Monte Carlo procedure.
Every nadapt samples, we updated the sampling distribu-

tion based on measured weights wβk . We choose to temper
the distribution by raising the likelihood to an exponent
which is chosen heuristically,

β = min

(
0.8, 4

ln(nadapt)

ρ2
net

)
. (34)

where nadapt is the number of samples in the histogram
and ρnet is the network SNR. This choice attempts to mit-
igate the large dynamic range of L in Eq. 30 to a scale
comparable to the number of samples used in each his-
togram. At the end of every adaptation period, we recon-
struct the one-dimensional sampling distributions in each
adapting dimension, using the last nadapt samples. In
each dimension (θ), we subdivide the full range into nbins

equal-length bins then evaluate a tempered, weighted his-
togram. Since the dimensionality of the space is high, but
sparse, there is a danger that early adaptations will have
one-dimensional sampling distributions which suffer from
fluctuations in other parameters after marginalization.
To avoid this effect and better ensure the full prior space
is covered adequately, we then average the histogram W
with a uniform distribution with weight s:

Ŵα = sWα + (1− s)/nbins . (35)
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Finally, we transformed from this discrete, bin-by-bin
representation to a continuous integral by constructing
a one-dimensional sampling distribution ps,α(θα) by in-
terpolating between bin centers, then constructing the
one-dimensional inverse Ps,α(< θα)−1 by integrating
P ′s,α(θα) = ps,α(θα). The latter process ensures that
the sampling distribution and inverse cumulative distri-
bution used to generate random samples are normalized
and self-consistent.

As configured for this paper, we used nbins =
100, nadapt = 1000, and s = 0.1. The adapted sampling
distributions are frozen in after 105 samples are drawn.

The adaptive sampler was not used for all parameters.
The parameters that are useful to adapt often have a
significant dynamic range (i.e., distance) or could be rep-
resented with more detailed prior information (i.e. sky
location). Conversely, parameters whose marginalized
posterior is expected to resemble the prior, like orbital
phase and polarization, were not adapted as our one-
dimensional method would provide no benefit.

2. Using search results to target specific areas of the sky

Gravitational-wave search pipelines have usually al-
ready identified candidate event times in two or more in-
terferometers’ data, typically to much less than the light
crossing time of the earth.

However, the initial search pipeline is not designed
to provide estimates of the sky location, so the
bayestar pipeline [71] rapidly processes the results of
a gravitational-wave search to identify candidate sky lo-
cations consistent with a gravitational-wave event, using
only the information provided by the top-level search.
This code produces a posterior distribution pBS(α, δ)
for the gravitational-wave signal sky location in a dis-
cretized, interlocking, equal-area grid of pixels corre-
sponding to sky regions, with probabilities for each pixel
(a HEALPix4 skymap). The refinement of the grid is
variable and scales with the resolution required to resolve
the features of the posterior in α and δ.

While we could allow the adaptive sampling to reduce
the sky area required to be searched, we can also use
the two-dimensional (α, δ) posterior from bayestar as a
sampling distribution to immediately target our Monte
Carlo at a region of high support. This is more effective
than the adaptive sampler because the one-dimensional
sampling distributions, even if well converged to the true
marginalized one-dimensional posteriors, over cover the
two-dimensional space, thus limiting their effectiveness
in sampling only where support truly exists.

For simplicity, when using a bayestar skymap, we
adopt a purely discrete sky: the samples are selected from
the set of sky region centers as calculated by the healpix

4 http://healpix.sourceforge.net/

library. In practice, the pixels are at a sufficient resolu-
tion such that detrimental effects from the discretization
are rarely noticeable.

3. Time marginalization

Having already computed the Qk,lm(~λ, tk), we can
evaluate the likelihood versus time L(t) cheaply, by ar-
ray addition operations. Hence, rather than performing
Monte Carlo integration, we can likewise efficiently inte-
grate over time.

Specifically, for every sky location drawn by the adap-
tive Monte Carlo routine, we compute the correspond-
ing time shift between geocenter and each detector with
Eq. (5). To evaluate the value of lnL for some geocenter
time tgeo, we simply look up the corresponding value of

the Qk,lm(~λ, tk) from our precomputed values and plug
them into Eq. (24). The resulting time series L(t) is then
numerically integrated using Simpson’s rule in a window
of 300 ms, centered on tgeo. The integrated time series
is required to be at a high enough sampling rate to ac-
curately capture the peak feature. We integrate it at the
same sample rate (16 kHz) of the native h(t) data.

E. Intrinsic priors and posterior construction

At this point, we have evaluated Lred(~λ) over a struc-
tured grid of intrinsic parameters (here indexed by r) λr.

By construction, the values Lred(~λ) have small statistical
errors (e.g., typically less than a few percent). We can

then interpolate Lred(~λ) throughout the sampled grid.

Combined with the prior p(~λ) over intrinsic parameters,
we evaluate the overall evidence Z and posterior distri-

bution p(~λ) over intrinsic parameters via

Z =

∫
p(~λ)Lred(~λ)d~λ , (36)

p(~λ) =
1

Z
p(~λ)Lred(~λ) . (37)

To construct posteriors for the intrinsic parame-
ters Mc, η, we adopt a uniform prior in m1,m2

with m1,m2 ∈ [1, 2]M�: inside the specified region,
the (uniform) prior density is p(m1,m2)dm1dm2 =
dm1dm2/(M�)2. Changing coordinates using the Ja-
cobian d(m1,m2)/d(Mc, η) = δMc/M

2 = δη6/5Mc
−1

where δ = (m1 − m2)/M =
√

1− 4η, we find the prior
density in Mc, η coordinates is

p(Mc, η)dMcdη =
1

M2
�

McdMcdη

η6/5
√

1− 4η
. (38)

In other words, due to a coordinate singularity, the prior
in η diverges near the equal-mass line. This coordinate
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singularity has a disproportionate impact on comparable-
mass binary posteriors.

However, unlike MCMC and nested-sampling codes,
we can reweight our results, allowing the user to re-
process the posterior using any user-specified intrinsic-
parameter prior. As a result, our approach also enables
several other calculations of practical interest: reanal-
ysis given alternative astrophysical priors, simultaneous
analysis of multiple events, adapting the “prior” intrin-
sic (mass, tide [72, 73], cosmological parameter [74–76])
distribution to reproduce multiple observations, and si-
multaneous independent constraints from multimessen-
ger observations.

To a good approximation, the intrinsic and extrinsic
parameter distributions often separate after marginaliz-
ing in time. In other words, after marginalizing in time,
the extrinsic parameter distributions are nearly indepen-

dent of ~λ. In that case, each individual extrinsic param-
eter distribution provides a reliable estimate of the pos-
terior. As a crude approximation to the one-dimensional
cumulative posterior distribution P (θ), we simply aver-
age all weighted samples (xr,q, wr,q) from all mass points:

P̂ (< x) =

∑
r,q
wr,qΘ(x− xr,q)∑

r,q
wr,q

, (39)

where Θ is the Heaviside step function.

V. RESULTS: RUNTIME DETAILS AND
LARGE SCALE TESTS

We present a proof-of-principle study of our parame-
ter estimation pipeline, employed in a environment which
should resemble the steps taken after the identification
of search triggers. To this purpose, a mock data chal-
lenge was constructed to exercise both the low latency
gravitational wave searches as well as the parameter es-
timation follow-up processes expected to be applied to
gravitational-wave candidates identified by the search
[33]. This challenge proceeded in several stages, each
designed to emulate the anticipated workflow in a low la-
tency binary neutron-star (BNS) detection environment.

From the reported search pipeline results, we use the
Mc and η coordinates from which the intrinsic search
space is extrapolated, and the window for time marginal-
ization (see Sec. IV D 3) is formed around the reported
coalescence time tr. The search pipeline also provides
reference power spectral densities S(f) utilized in evalu-
ating the likelihood.

Unless otherwise stated, the likelihoods were evalu-
ated using nonspinning TaylorT4 templates at 3.5 post-
Newtonian (PN) order, including only the (2,±2) and
(2, 0) modes. As we will discuss at length below, this
signal model does not include all degrees of freedom
permitted to the binary in the data. When evaluat-
ing the likelihood, waveforms started at flow = 40Hz.

The inner product integration Eq. (13) uses an in-
verse power spectrum filter targeting the frequency range
[fmin, fmax] = [fmin, 2000Hz], constructed from the mea-
sured power spectrum.

Only distance used an adaptive sampling function,
starting initially with a constant function. Our distance
prior was uniform in volume out to D = 300Mpc. The
declination and right ascension were sampled from the
posterior provided by bayestar. As used here, the
skymap had 12 × 642 pixels, roughly one per square de-
gree.

A. Ensemble of events

We first present the agglomerated results from 450
events drawn randomly from a set of recovered events
in [33, 77]. These events were also processed using
bayestarand a subset were processed by the lalin-
ference Monte Carlo sampler codes. All events have
false alarm rate — as determined by the GSTlal search
pipeline — smaller than one per century. This threshold
is motivated by the selection criteria outlined in [26]. As
in [33], this data set adopts a noise PSD set at the me-
dian sensitivity from fiducial predictions for 2015 LIGO
observing [26, 78]. It is expected that the Virgo inter-
ferometer will not be functional during this time period,
leaving a two detector LIGO site network.

A population of gravitational-wave signals from BNSs
was added into the data, as described in [33] and reviewed
here. Events in this set (the 2015 MDC data) were dis-
tributed isotropically on the sky, and uniformly in volume
out to 219 Mpc. The BNS injections had uniform ran-
dom component masses in 1.2M�−1.6M� and randomly
oriented spins with the dimensionless magnitude not ex-
ceeding 0.05. These (precessing) binary signals were gen-
erated via precessing SpinTaylorT4 templates at 3.5 PN
order [6], including all known post-Newtonian modes [13].

First, the GSTlal BNS search was performed over
the MDC set, identifying events for further follow up.
For each event identified by the gravitational-wave search
pipeline, we distributed the intrinsic points according to
the procedure described in Sec. IV C and evaluated the
Monte Carlo integral 10 times for each mass point, com-
bining each of the runs together after. We outline the
form of the priors and sampling functions for each pa-
rameter in Table I.

In addition to the information provided by the search
pipeline, we also make use of the posterior probability
of α and δ, provided by bayestar. It is expected that
such information will be available within a few minutes of
trigger identification. The gains in time to convergence
in the Monte Carlo integral are expected to outweigh the
loss of time waiting for bayestar to finish processing if
the bayestar posterior is used as a sampling function
for the sky location.

In order to validate the results of the pipeline, we
present a comparison of the ensemble distribution of re-
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parameter physical prior initial sampling distribution

distance (D) uniform in volume uniform in distance
inclination (ι) uniform in cos ι, ι between (−π, π) same

polarization (ψ) uniform in (0, 2π) same
orbital phase (φ) uniform in (0, 2π) same

declination (δ) uniform in cos δ, δ between (−π, π) drawn from bayestar skymap
right ascension (α) uniform in (0, 2π) drawn from bayestar skymap

TABLE I: Prior distributions used for the extrinsic parameters in the 2015 MDC study.

FIG. 2: For 450 randomly-selected NS-NS binaries, a plot of
the cumulative distribution of Pθ(θk) for each extrinsic vari-
able θ = D,α, δ, ι, ψ, φ. The curves represent the normalized
fraction of events with estimated cumulative probability less
than the injected parameter value. The grey shaded regions
are the 1σ uncertainty regions.

covered parameters versus their intrinsic distribution as
determined by the prior — a so called PP plot — in Fig.
2. If our estimates for the one-dimensional cumulative
distributions P (< x) are unbiased and if x∗ is a random
variable consistent with the prior, then P (x∗) should be
a uniformly-distributed random variable. To test this hy-
pothesis, we use the one-dimensional posteriors provided
by the MDC.

For each parameter x, each colored curve in Fig. 2 is
the fraction of events with estimated cumulative proba-
bility P (< x∗) at the injected parameter value x∗. Specif-
ically, if P (x∗q) are the sorted cumulative probabilities
for the q = 1 . . . n events with P (x∗1) < P (x∗2), then the
points on the plot are {P (x∗q), q/n}.

There are a few possible sources of bias in the recovery
of the posterior distribution. While the spins are nom-

inally mild, it is possible that the use of non-spinning
templates in the signal analysis for both the GSTlal and
our parameter estimation codes could cause biases. Addi-
tionally, the event selection process outlined in [33] intro-
duces a small selection (Malmquist) bias which slightly
disfavors edge-on binaries relative to our uniform prior.
Our parameter estimation strategy does not account for
selection biases; for a sufficiently large ensemble of events,
small deviations between the statistical properties of our
posteriors and the ensemble are expected.

B. Marginalization details

Two events were selected for demonstration. One event
represents a marginal detection by the GSTlal pipeline.
It is suggestive of what might be seen in the 2015-2016
era, and is not a confident detection by itself. The second
event is a “gold-plated” event, one which is an assured
single-event detection by the GSTlal pipeline. They are
qualitatively comparable in most regards, however, the
stronger event (#21091), being more strongly peaked in
likelihood did not accumulate as many effective samples,
and hence the error on the reduced likelihood (Lred(λ))
tends to be larger by an order of magnitude, yet still
small in the relative sense. We provide the simulation
and GSTlal event IDs so that the interested reader can
cross-correlate results here with those obtained by other
samplers in [33]. We will refer to them by their GST-
lal IDs #21091 and #14631. Their properties are enu-
merated along with the values obtained by the GSTlal
pipeline and the recovered parameters in Table V B.

Each event was gridded in the elliptical region of 10%
mismmatch in the same manner described in Sec. IV C.
After unphysical points were thrown out, there were 128
points for event #14631 and 124 points for event #21091.
Each point had ten independent instances of the integra-
tor applied, both to accumulate samples in parallel fash-
ion as well as to cross-validate the results. The approx-
imate wall clock time for any given instance was about
45 minutes. With approximately 100 intrinsic points and
10 copies of the integrator instance for a given event, the
total time of order 750 CPU hours.

The evolution of the Monte Carlo integral evaluation is
shown in Figs. 3(a) (#21091) and 3(b) (#14631). This
is for a single mass point corresponding to the center of



12

(a)

(b)

FIG. 3: Figs. (a) and (b) are correspond to events #21091 and #14631, respectively. The top panel in each figure shows the
estimated value (black lines) of the integral, for each of the ten integrators, through a given sample count. 1-σ error regions
are shaded in blue around the curve. Additionally, the value of the integral if all ten integrators are combined is shown in red.
The middle panel shows the maximum value found by the integrator instance throughout the iterations. The last panel plots
the number of effective samples (Eq. (33)) in black, with corresponding ordinate axis the right. In the same panel, the relative
error (Eq. (31)) is plotted in blue, with corresponding ordinate axis on the left.
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GSTlal Search ID #21091, Injection ID #26465

Parameter Injected
Recovered

(GSTlal search)

Recovered
(parameter estimation)

median / mode

m1 (M�) 1.60 1.68 1.55 / 1.55
m2 (M�) 1.40 1.33 1.54 / 1.54
D (Mpc) 68 - 59 / 67
ι 3.0 - 1.3 / 0.47
δ -0.12 - -0.06 / -1.02
α 4.00 - 3.9 / 0.82
ψ 3.12 - 3.08 / 1.01
φ 4.03 - 3.08 / 0.94

Other parameters

Parameter Injected
Recovered

(GSTlal search)
Recovered

(parameter estimation)

|χ1| 0.026 - -
|χ2| 0.008 - -
ρ 16.28 17.24 a 16.85b

awith corresponding false alarm rate 3.8× 10−14

bas measured by 2
√

ln(max{Li})

GSTlal Search ID #14631, Injection ID #30639

Parameter Injected
Recovered

(GSTlal search)

Recovered
(parameter estimation)

median / mode

m1 (M�) 1.32 1.49 1.49 / 1.49
m2 (M�) 1.28 1.14 1.13 / 1.13
D (Mpc) 102 - 85 / 101
ι 3.09 - 1.53 / 2.76
δ 0.28 - 0.28 / 0.91
α 1.89 - 2.39 / 1.83
ψ 2.32 - 3.14 / 3.33
φ 5.73 - 3.08 / 2.26

Other parameters

Parameter Injected
Recovered

(GSTlal search)
Recovered

(parameter estimation)

|χ1| 0.032 - -
|χ2| 0.036 - -
ρ 11.06 12.04a 11.07b

TABLE II: Injected and recovered intrinsic and extrinsic parameters for an injected signal. The GSTlal search only reports
time of arrival, signal-to-noise ratio, and mass information. The parameters from our algorithm are quoted at a weighted
median and mode of the marginalized posteriors. Some other parameters not considered in this study (e.g. the dimensionless
component spin χ1,2) are listed separately.

the ellipsoid constructed for sampling the Mc, η plane,
and so also the mass reported by the GSTlal search.
As explained in section IV C each mass point is inde-
pendently evaluated 10 times. Each integral evaluation
is shown in the top panel as a function of the number
of samples drawn to that point. The blue regions sur-
rounding each line are the error estimate at that point
in the sampling. It is readily apparent that the integra-
tors have sampled near the maximum point within a few
thousand samples (middle panel, Figs. 3(a) and 3(b)),
and at this point the integrators all begin to converge
towards the same evidence value. Within 105 samples,
most of the integrators have highly overlapping error re-
gions, and only moderately small changes in the max-
imum likelihood point searched. The relative error for
each integrator is plotted in blue in the bottom panel,
with the typical 1/

√
N behavior exhibited. The “jumps”

in the curves correspond to a new maximum being found
in the integrand. The final relative error for any of the
integrators is typically of order 5% or less for all cases
(with only one 10% relative error for #21091), and typ-
ically less than 1% for #14631. The red line in the top
panel of the figures shows the evidence value if all ten
integrators were joined as one integrator.

Figs. 4(a) (#21091) and 4(b) (#14631) display the
results of each of the ten integrator instances scattered
in the Neff, evidence plane. The dashed line indicates
the value of the evidence as calculated across all sam-
ples from all ten points. As can be noted, the error on
the evidence values are small and most of the points are
clustered near the total evidence dashed line, further in-
dicating that all ten of the integrators have reached an
internally consistent value, with very little spread around

the average. These evidences are then averaged together
to obtain the reduced likelihood for that mass point. A
contour plot of the evidence for this event is shown in
Figs. 5(a) (#21091) and 5(b) (#14631), with the ac-
tual value of Mc and η of the injected signal marked by
the crosshairs and the value obtained by the GSTlal
search pipeline is at the center of the ellipse. The ev-
idence follows roughly the expected quadratic-shape of
a Fisher-matrix manifold for these two parameters, but
the maximum evidence point is slightly offset from the
true value. We expect that this difference arises from the
mild spin of the system biasing the result, as the wave-
form family used to generate templates and calculate Lred

does not include the effects of spin.

All possible sets of one and two-dimensional posteriors
over the parameters are shown in Figs. 6(a) (#21091)
and 6(b) (#14631). We also display here the posteriors
for the intrinsic parameters (Mc and η). The discreteness
of the grid makes determination difficult for the compo-
nent masses, however, the Mc and η posterior (using
the prior in IV E) is consistent with the result shown in
Figs. 5(a) and 5(b). In both cases, the distinct degen-
eracy between distance and inclination is clearly shown.
In the case of #21091, a southerly inclination is weakly
favored; this being an example of a bimodal distribution
where the wrong mode is selected. The better sampled
#14631 does choose the correct mode, but the degener-
acy between the two is still quite strong, and the true in-
clination is nearly exactly face on. Also apparent in both
cases is the favoring of moderately off-axis binary con-
figurations which tend to bias the distance measurement
towards systematically closer values. The p(α, δ) poste-
rior, in effect the sky position, resembles the bayestar
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(a)

(b)

FIG. 4: Figs. (a) and (b) correspond to events #21091 and #14631, respectively. Each of the 10 integrator results is plotted
against the reduced likelihood and number of effective samples collected (Neff). The error bars represent the uncertainty in the
integral value from statistical error. The horizontal blue dashed line represents the value of the evidence averaged over all 10
integrator estimates.
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(a)

(b)

FIG. 5: Figs. (a) and (b) correspond to events #21091 and #14631, respectively. Level contours of the interpolated evidence
surfaces inMc and η space. The points are the values ofMc, η, which were used to do the integral over the extrinsic parameters,
and all 10 integrator instances have been averaged to get the final value. The injected value is marked with a large cross.
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(a)

(b)

FIG. 6: Posteriors for event #21091, left and event #14631, right. All two-dimensional posteriors are represented as off-diagonal
elements, and the diagonal elements are the one-dimensional fully marginalized posteriors. The true values of each parameter
are marked with X’s in the two-dimensional plots and vertical lines in the one-dimensional plots. From left to right, the
parameters are Mc, η, ι, distance, right ascension, declination, polarization, and coalescence phase. Note that the geocentric
arrival time is omitted because it is marginalized numerically.
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skymap which is used by our algorithm to select sam-
ple points for these parameters. For #21091, there are
two modes along the triangulation ring, corresponding
to a maxima and its mirror image. The sampler was
not able to resolve the degeneracy between the points for
#210915, but the true location of the event lies near one
of the maxima on the ring. In the case of #14631, one
mode is suppressed relative to the other, and the true
location lies very near the maximum. Also notable is the
degeneracy between orbital phase (φ) and polarization
angle (ψ). The recovered posterior’s strong degeneracy
both qualitatively agrees with first principles and sug-
gests further performance improvements (e.g., via direct
phase marginalization).

C. Scaling

For a quasicircular compact binary, it is well-known
that the time to coalescence from a given gravitational-
wave frequency scales as t(f) ∝ f−8/3. As the sensitivity
of detectors improves at low frequencies, this requires the
use of considerably longer waveforms for detection and
parameter estimation. For example, the initial LIGO
detectors were sensitive down to 40 Hz, while the ad-
vanced LIGO detectors could be sensitive down to 10 Hz.
To cover the extra low frequency portion would require
waveforms that are ≈ 40 times longer.

Traditional Bayesian parameter estimation is compu-
tationally limited by waveform generation and likelihood
evaluations. Both of these are linearly proportional to
waveform length. Note that the likelihood evaluations
involve computing an inner product as in Eq. 13, which
is approximated as a finite sum. The number of points in
the sum is determined by the length of the waveform and
data being analyzed, which is why the cost of likelihood
evaluations scales with waveform length. Therefore, one
would expect the cost of Bayesian parameter estimation
using a seismic cutoff of fmin = 10 Hz to be roughly
40 times more expensive than the same analysis using
fmin = 40 Hz.

The method proposed here is not computationally lim-
ited by waveform generation. Recall that for each point
in the intrinsic parameter space we compute the wave-
form and the inner products between the various modes
and the data (the assorted Qk,lm, Uk,lm,l′m′ , Vk,lm,l′m′)
only once. We then integrate over the extrinsic pa-
rameters, which involves evaluating F+ + iF× and the
Y (−2)

lm’s for different values of the extrinsic parame-
ters. While generating the waveform and computing in-
ner products does scale with waveform duration, this cost
is insignificant (even for fmin = 15 Hz) compared to the
integration over extrinsic parameters, which is wholly
independent of waveform duration. Therefore, as illus-

5 Though neither did the samplers in [33].

FIG. 7: Points show the runtime of our parameter esti-
mation strategy as a function of the minimum frequency
fmin. For comparison, the solid curve shows the scaling

∝ f
−8/3
min expected if our runtime was proportional to the

waveform duration (e.g., runtime proportional to the num-
ber of time samples). Waveforms were generated using the
standard TaylorT1 time-domain code, with m1 = 1.55M�
and m2 = 1.23M�.

trated by Fig. 7. The cost of our method increases only
a little as fmin is decreased, in contrast to the sharp in-
crease that occurs for waveform-limited techniques such
as traditional Bayesian parameter estimation.

VI. CONCLUSIONS

We have demonstrated a viable strategy for low-
latency parameter estimation for long-duration binary
neutron star signals, using an environment which resem-
bles running conditions during the first advanced LIGO
and Virgo observing runs.

In the era of multimessenger astronomy, rapid
and robust inference about candidate compact binary
gravitational-wave events will be a critical science prod-
uct for LIGO, as colleagues with other instruments per-
form followup and coincident observations [26]. Low-
latency sky localization [26, 38], already provides reason-
able accuracy by approximate methods like bayestar,
so low-latency parameter estimation will further enable
rapid electromagnetic followup and interpretation of can-
didate gravitational-wave events.

Motivated by the need for speed, we have introduced
an alternative, highly-parallelizable architecture for com-
pact binary parameter estimation. First, by using a
mode decomposition (hlm) to represent each physically
distinct source and by prefiltering the data against those
modes, we can efficiently evaluate the likelihood for
generic source positions and orientations, independent of
waveform length or generation time. Second, by inte-
grating over all observer-dependent (extrinsic) parame-
ters and by using a purely Monte Carlo integration strat-
egy, we can efficiently parallelize our calculation over the
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intrinsic and extrinsic space. Third, to target specific
intrinsic (and extrinsic) parameters for further investiga-
tion, we ingest information provided by the searches and
bayestar: the trigger masses and estimated sky posi-
tion. Using standard time-domain waveforms in a pro-
duction environment, we can already fully process one
event in less than 1 hour, using roughly 1000 cores in
parallel, producing posteriors and evidence with repro-
ducibly small statistical errors. By dramatically decreas-
ing the turnaround time for each analysis and by scaling
to harness all available resources efficiently, our strategy
may significantly increase size and scope of parameter
estimation investigations.

Our implementation has bounded runtime – one hour
is the worst case – so we know what resources will be
needed to analyze a given NS-NS binary. Moreover, the
parallel algorithm can exploit all available computing re-
sources, without need for communication or coordination
between jobs, allowing it to operate in computing envi-
ronments with tightly constrained wallclock time.

Our algorithm can also be immediately applied to any
noise curve and existing time-domain model that pro-
vides hlm, at any mass, including EOBNRv2HM [62] and
SEOB [61]. Finally, by construction our dominant oper-
ation count cost is independent of the waveform’s length
(or number of basis vectors). Hence, unlike reduced or-
der methods, our code will run in nearly same amount
of time now and with full aLIGO-scale instruments with
flow ' 10Hz.

A. Comparison with reduced-order quadrature

Reduced-order quadrature methods provide an effi-
cient representation of a waveform family and any inner
products against it. Other authors have recently pro-
posed prefiltering the data against the reduced-order ba-
sis [60], achieving significant speedup. For example, using
TaylorF2 templates, [60] claim runtimes of order 1 hour,
comparable to our end-to-end time in the high-precision
configuration described above.

Our strategy and reduced-order modeling achieve a
similar speedup for qualitatively similar reasons: both
strategies prefilter the data. In our algorithm, at each
mass point, the data is prefiltered against a set of hlm,
then efficiently reconstruct the likelihood for generic
source orientations and distances. By integrating the
likelihood at each mass point over all extrinsic param-
eters, we are dominated by extrinsic-parameter sampling
and hence not limited by waveform generation.

B. Future work

We first recognize that our sampling strategy, espe-
cially the adaptation steps, have some deficiencies, es-
pecially in light of earlier literature [69, 70]. We in-
tend to fortify our current strategy by expanding it be-

yond the independent product of one-dimensional sam-
pling distributions. High-dimensional sampling distribu-
tions can be approximated by kernel density estimators.
This will allow us to better capture n-dimensional corre-
lations with no appreciable loss of computational speed.
This approach will also better allow us to incorporate
more detailed information from other stochastic samplers
to use as sampling distributions. Improvements to the
bayestar algorithm will also likely allow its direct inclu-
sion as a sampler, instead of just using the data products.
Furthermore, the type of parallelization employed here is
highly exploitable by GPU accelerated architectures.

While the alternative architecture proposed here is effi-
cient and highly parallelizable over extrinsic parameters,
all other parameters are currently suboptimally explored.
For example, the algorithm described and implemented
here adopts a fixed, low-resolution grid to sample two
mass dimensions. Recent work [79] suggests that the sim-
ple grid placement scheme employed here could be dra-
matically improved upon. All the compact binary specific
searches expected to run in the next two years are also ca-
pable of providing the specific portion(s) of the template
bank that was triggered. We will soon be in a position
to develop a more tightly hierarchical approach, and con-
struct our mass grid to resemble those portions. While
the method described here should generalize to a few ad-
ditional dimensions, it is not yet clear what additional
computational resources or architectural changes would
be needed to apply our technique to all the intrinsic di-
mensions (e.g. to include tides and component spins).
These higher-dimensional problems are being addressed
with Markov Chain or Nested Sampling codes, including
tests of GR, models which include non-astrophysical en-
vironmental effects [80], and self-consistent electromag-
netic and gravitational-wave parameter estimation. In
the short-term future, we plan to explore straightfor-
ward extension of the intrinsic grid with additional tidal
parameters. Also under exploration is using stochas-
tic banks: these types of banks have been used suc-
cessfully with aligned-spin but otherwise generic binary
coalescence searches. That said, several methods have
been proposed for rapid waveform interpolation, includ-
ing SVD and reduced-order methods. In the long run,
we anticipate being able to perform Monte Carlo inte-
gration over intrinsic dimensions as well, without being
forced to adopt the relatively ad-hoc intrinsic/extrinsic
split presented here.

To provide a complete proof-of-principle illustration of
our algorithm, we developed an independent production-
ready code. That said, the standard lalinference pa-
rameter estimation library in general and existing param-
eter estimation codes (lalinference mcmc and lalin-
ference nest) could implement some or all of the low-
level and algorithmic changes we describe. For example,
MCMC codes could implement our hlm-based likelihood,
then de-facto marginalize over all extrinsic parameters
by strongly favoring jumps at fixed intrinsic parame-
ters (λ). Any implementation which provides accurate
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marginalized probabilities (e.g., Lred) can be parallelized
across parameter space. We hope that by combining
paradigms, future parameter estimation strategies can
reach extremely low latencies, ideally of order a few min-
utes, when advanced detectors reach design sensitivity.
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