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We perform Bayesian analysis of gravitational-wave signals from non-spinning, intermediate-mass
black-hole binaries (IMBHBs) with observed total mass, Mobs, from 50M� to 500M� and mass
ratio 1–4 using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform
models based on the effective-one-body formalism and include subleading modes of radiation beyond
the leading (2, 2) mode. The presence of subleading modes increases signal power for inclined binaries
and allows for improved accuracy and precision in measurements of the masses as well as breaking
of degeneracies in distance, orientation and polarization. For low total masses, Mobs . 50M�,
for which the inspiral signal dominates, the observed chirp mass Mobs = Mobs η

3/5 (η being the
symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger
and ringdown, we find that the total mass Mobs has better relative precision than Mobs. Indeed,
at high Mobs (≥ 300M�), the signal resembles a burst and the measurement thus extracts the
dominant frequency of the signal that depends on Mobs. Depending on the binary’s inclination,
at signal-to-noise ratio (SNR) of 12, uncertainties in Mobs can be as large as ∼ 20–25% while
uncertainties inMobs are ∼ 50–60% in binaries with unequal masses (those numbers become ∼ 17%
versus ∼ 22% in more symmetric mass-ratio binaries). Although large, those uncertainties in Mobs

will establish the existence of IMBHs. We find that effective-one-body waveforms with subleading
modes are essential to confirm a signal’s presence in the data, with calculated Bayesian evidences
yielding a false alarm probability below 10−5 for SNR & 9 in Gaussian noise. Our results show that
gravitational-wave observations can offer a unique tool to observe and understand the formation,
evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window.
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I. INTRODUCTION

Advanced interferometric gravitational-wave (GW) de-
tectors LIGO and Virgo will be turned on in late 2015
(2016 for Virgo) and are expected to reach design sen-
sitivity by 2019 [1–4]. At design sensitivity these detec-
tors will operate in the frequency range from 10 Hz to
1 kHz, with an almost flat sensitivity from 40 Hz to 1
kHz. In Fig. 1, we show for the advanced LIGO-Virgo
network, the distance reach1 as a function of observed
total mass for the full inspiral-merger-ringdown signal
of binaries consisting of nonspinning black holes (BHs)
and include several multipole modes beyond the domi-
nant (` = 2,m = 2) mode, as well as higher order post-
Newtonian (PN) corrections (see Sec. II for details) [5].
For nonspinning binary black holes (BBHs) with mass-
ratio 1 (mass-ratio 4) of observed total mass ∼ 200M�
and ∼ 800M�, the distance reach is ∼ 5 Gpc (respec-

1 For a network consisting of two advanced LIGO and Virgo de-
tectors, we compute the distance reach as the root-mean-square
distance, averaged over the whole sky and polarisation angle, at
which the network SNR is equal to 12. We do not average over
the inclination angle, but instead we use a typical value of π/3.

tively, ∼ 3 Gpc), with the largest reach of ∼ 6.5 Gpc
(respectively, ∼ 4 Gpc) for ∼ 400M� (see Fig. 1). The
intrinsic mass (i.e., the rest-frame mass) of a binary M is
related to the observed mass Mobs by Mobs = (1 + z)M,
and so the intrinsic masses detected at these redshifts are
significantly smaller than the observed masses. As we see
from Fig. 1, subleading modes become increasingly im-
portant close to coalescence and their impact on the SNR
is relevant for BBHs of total mass & 200 M�, especially
for asymmetric binaries whose orbital plane is inclined
with respect to the line-of-sight.

The increase in the distance reach brought about by
the use of subleading modes is greater for these latter sys-
tems as compared to face-on, equal-mass systems where
the increase is negligible. When spins are included, the
distance reach can be a factor of two larger (for near
maximal BH spins aligned with the orbital angular mo-
mentum) or smaller (for maximal spins anti-aligned with
the orbital angular momentum) [6–8]. Thus, advanced
LIGO and Virgo could detect BBHs in the hundred solar
mass range with a SNR = 12 up to z ∼ 2, depending on
the mass ratio of the system and spin.

The above mass range falls in the domain of so-called
intermediate mass black holes (IMBHs). The formation
mechanism, evolutionary history and mass function of
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IMBHs are largely unknown, as it is very difficult to
observe them and measure their masses in the electro-
magnetic window. Several mechanisms have been pro-
posed for their birth and evolution [8–11]. There is now
substantial evidence that galactic nuclei contain massive
BHs of millions to billions of solar masses but they are
believed to have been seeded by lighter BHs of hun-
dreds or thousands of solar masses (for a review, see,
e.g. Refs. [10, 12]). While there is also firm support
for the existence of stellar mass BH candidates [13], the
IMBH population seems to be missing and there is only
indirect evidence of their existence. For example, it is
suspected that IMBHs could be responsible for ultra-
luminous X-ray sources. While not all such sources are
believed to host an IMBH [14], some of them do show ev-
idence of BHs of tens to hundreds of solar masses. These
include a stellar mass BH of < 15M� in NGC7793 [15], a
more massive 20M�–30M� BH in M101 ULX-1 [16] and
a ∼ 400M� IMBH in M82 [17].

At present we do not know of any IMBH binaries
(IMBHB). However, astrophysical scenarios of their for-
mation have been proposed in the literature, which in-
clude hierarchical growth of black holes at galactic nu-
clei by accretion of gas, stars and compact objects (i.e.
neutron stars and black holes) and dynamical capture of
smaller black holes by nuclear black holes in stellar clus-
ters. Hierarchical models of structure formation predict
that supermassive BHs found in galactic nuclei might ini-
tially be IMBHs that grow to their current size by accret-
ing gas and merging with other IMBHs [9, 10, 12, 18–20].
In such a scenario we might expect mergers of IMBHBs
when the Universe began assembling the large structure
at high redshift (z ∼ 10–20). Such mergers might have
continued in the local Universe, but it is very difficult
to compute merger rates as we do not fully understand
the initial conditions for IMBHs (mass function of seed
BHs and their spins), their binaries (orbital parameters
at formation and population as a function of mass ratio),
or the process by which they grow (accretion of gas and
merger with other BHs).

Besides growing their mass by dynamical capture in
stellar clusters, massive BHs may form from the collapse
of massive stars and until recently both observations and
theoretical arguments suggested that stars above 150M�
do not form at non-zero metallicity. However, recent
observations of several stars with current masses larger
than 150M� in the R136 region of the Large Magellanic
Cloud triggered a re-analysis [8] of the possibility that
very massive BHs can have stellar origin. Ref. [8] found
that very massive stellar-origin BHs with mass larger
than 100M� can form only in low-metallicity environ-
ments (i.e., Z ≤ 0.1–0.4Z�), if the initial mass function
extends above 500M� and pair-instability supernovae do
not destroy stars with mass above 500M�. Moreover,
the formation of close massive BH binaries requires that
the very massive stars above 500M� expand by a fac-
tor of 2 and go through and survive a common envelope
phase. If these requirements are met, then massive BH

FIG. 1. We show the distance reach as a function of the
observed total mass Mobs for several values of the binary
mass ratio q. The reach is computed using a detector net-
work consisting of two advanced LIGO interferometers and
advanced Virgo, using a network SNR = 12. Detector sen-
sitivities are given by the advanced LIGO and Virgo design
curves [22]; the advanced LIGO design is the zero-detuned
high-power (ZDHP) noise curve. The right y-axis shows the
redshift computed assuming cosmological parameters mea-
sured by the Planck satellite [23]. The continuous curves use
inspiral-merger-ringdown waveforms with the most dominant
five modes (EOBNRv2HM), while the dashed curve only includes
the (2, 2) mode (EOBNRv2). The values here are numerically
averaged over sky location and polarization, with fixed orbital
phase and inclination: {φ, θJN} = {0, π/3} rad. The coales-
cence time is also fixed to a GPS time of tc = 1000000008 s,
corresponding to Sept. 14, 2011 01:46:33 UTC.

binaries are expected to have mass ratios of at most a
few, spins primarily aligned with the orbital angular mo-
mentum, and negligible eccentricity when they enter the
advanced LIGO band [21]. If the above requirements are
not met, then they will have too wide a separation to
coalesce within a Hubble time. However, other phenom-
ena in dense stellar environments (e.g., cluster binary-
single interactions) and in low-density field populations
(e.g, Kozai mechanism in triple systems) can lower the
coalescence time of wide massive BH binaries. The in-
vestigation carried out in Ref. [8] concluded that on the
order of a few massive BH binaries of stellar-origin could
be observed by advanced LIGO and Virgo. However, due
to astrophysical and theoretical uncertainties, the num-
ber of detections per year can be as high as hundreds or
as low as zero.

In this paper we use state-of-the-art waveform mod-
els to explore how well advanced GW detectors can
measure the physical parameters of an IMBHB. Signals
from IMBHB coalescences have several important fea-
tures that should be incorporated in a study of how GW
observations will help to measure the parameters of such
systems. First, as several previous studies have already
pointed out (see, e.g., Ref. [24] and references therin), in
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advanced GW detectors, the plunge, merger and quasi-
normal-mode ringdown phases of evolution contribute
significantly to the detectors’ distance reach if the binary
has a total mass larger than about ∼ 50M�. This means
that we must use the full signal, that is not only the
adiabatic inspiral phase, but also the merger and ring-
down portions. Second, binaries formed in the field will
most likely have negligible eccentricity [25] as they enter
the sensitivity band of advanced detectors and can be
assumed to trace quasi-circular orbits. For binaries un-
dergoing dynamical capture or Kozai mechanism in star
clusters, advanced LIGO and Virgo might detect mild ec-
centricities [26], if Mobs ∼ 10–20M�. For massive BHs,
we expect negligible eccentricities when the binary enters
the detector band. Indeed, for a fixed mass ratio and
speed at infinity, the pericenter distance at capture is
proportional to the total mass [21]. Thus, the frequency
at capture is inversely proportional to the total mass. As
a result, larger total masses result in lower capture fre-
quencies and thus circularize more by the time the binary
gets to a fixed frequency, such as 10 Hz.

In this study we assume our systems to have zero eccen-
tricity. Thus the gravitational wave emission in compara-
ble mass binaries will be dominated by the (` = 2,m = 2)
mode at twice the orbital frequency, at least until merger.
Asymmetric systems with unequal masses, nevertheless,
emit radiation at other multiples of the orbital frequency
or subleading modes (see, e.g., Sec. 10.4 in Ref. [27]).
As shown by several authors [28–35] these subdominant
modes can be important in the inspiral phase in improv-
ing the accuracy with which parameters are deduced from
GW observations, especially when the mass ratio of the
binary is large. The amplitude of those subleading modes
grow more and more toward merger [5, 36–38]. As a con-
sequence, relevant properties of the progenitor binary can
be recovered from the relative amplitudes of the subdom-
inant modes excited in the BH remnant [39–44] and tests
of general relativity [45, 46] can be carried out when those
subdominat modes are included during merger and ring-
down. Moreover, for the purposes of signal candidate
detection in template bank searches, Ref. [47] showed
that when constructing banks for BBH searches, the in-
clusion of subdominant modes yielded improved sensitiv-
ity for systems with Mobs & 100M� and q & 4 (where
q ≡ m1/m2 ≥ 1 is the mass ratio). Third, waveforms
from nonspinning BH binaries on quasi-circular orbits
are very simple chirp-like signals, with monotonically in-
creasing frequency and amplitude. However, BH spins
can cause amplitude and phase modulations, so one must
ideally include spin effects in the waveform model, un-
less the IMBH formation scenario strongly suggests non-
precessing or negligible spins [8], if the BHs grow their
mass through multiple mergers in stellar clusters. In this
paper, however, we will limit ourselves to nonspinning
BH binaries as waveforms that include both spin effects
and subleading modes are not yet available.

The rest of the paper is organized as follows. In
Sec. II we describe the inspiral, merger and ringdown

template family used in our analysis, its parameters and
the main features introduced by the subdominant modes.
In Sec. III we review the basics of Bayesian inference, the
sampling technique that we use (i.e., nested sampling)
and the priors employed in our study. In Sec. IV we dis-
cuss how the Bayesian evidence of the GW signal can
be used to confirm detection, how the false alarm prob-
ability can be obtained from the Bayesian evidence, and
how the Bayesian evidence changes depending on the in-
clusion of the subdominant modes. In Sec. V we discuss
how Bayesian parameter measurement depends on the
binary’s total mass, mass ratio, inclusion of subleading
modes and priors, and compare our study to previous
ones. We also discuss the astrophysical implications of
these measurements of IMBHBs. Finally, in Sec. VI we
draw our main conclusions.

II. WAVEFORMS

In this section we will discuss the waveform family used
in this study and the parameters used to describe the
signal as observed by a detector. In particular, we dis-
cuss the importance of the subleading modes and the
merger and ringdown phases of the signal for IMBHBs.
We demonstrate this by first plotting the signal as ob-
served by an advanced detector and discuss how the SNR
is accumulated as a function of time. We will also plot
the signal power spectrum and highlight the relevance
of subleading modes for unequal-mass systems whose or-
bital plane is inclined with respect to the line-of-sight.

A. Inspiral-merger-ringdown waveforms and
parameters

In this study we employ nonspinning waveforms con-
structed within the effective-one-body (EOB) formal-
ism [48, 49] and calibrated to highly-accurate numeri-
cal relativity (NR) simulations having typical length of
30–40 GW cycles and mass ratios q ≤ 6 [5]. More specif-
ically, we use the EOBNRv2HM code in the LIGO Algo-
rithm Library (LAL) [50] to generate the EOB waveform
model in Ref. [5], which includes four subleading modes,
namely the (l,m) = (2, 1), (3, 3), (4, 4) and (5, 5) modes,
as well as the leading (l,m) = (2, 2) mode 2. [These
modes come from the decomposition of the GW signal
h = h+ − ıh× into −2 spin-weighted spherical harmon-
ics −2Ylm [5].] Consequently, GW signals that we study
contain the first five harmonics of the orbital frequency.
During most of the early inspiral phase only the (2, 2)
mode, and, in particular, its Newtonian amplitude, will

2 An EOB model with different parametrization was subsequently
calibrated to the same set of NR waveforms used in Ref. [5] and
provides two subleading modes (l,m) = (2, 1) and (3, 3) [51],
besides the leading one.
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FIG. 2. We display EOBNR waveforms with subleading modes used in this study. We plot the plus polarization of each
waveform: original (dotted blue), and normalized by the PSD (and then scaled to have equal amplitude at t = 0 as original)
(solid red). The plots in the top row have Mobs = 50M� and in the bottom row have Mobs = 400M�; the left column has
q = 1 and the right column has q = 4. The time axis is scaled by the observed total mass of the system. Vertical lines are at
intervals of 10% of signal power with the right most line at 99%. All systems are observed at an inclination of θJN = π/3 rad
and a distance of dL = 1 Gpc.

be the dominant component. Other harmonics and PN
corrections become increasingly important as we get close
to merger. The effect of these higher modes is especially
relevant when the binary in question has its merger and
ringdown frequencies in the most sensitive part of a de-
tector’s response. The ringdown frequency of the final
remnant of binaries consisting of nonspinning BHs of to-
tal mass 50 M� to 500 M� varies over the range 40 Hz
to 400 Hz—the frequency range where LIGO and Virgo
have the best sensitivity, and this provides the motivation
for our choice of masses used in this study.

A Markov-chain Monte-Carlo (MCMC) study [32]
demonstrated that the EOB waveforms of Ref. [5] are
indistinguishable from the NR waveforms [52] used to
calibrate them up to SNR = 50 for advanced LIGO de-
tectors. Subsequent investigations carried out in Ref. [53]
verified the accuracy of these nonspinning EOB wave-
forms in the entire sensitivity band of advanced LIGO
detectors and suggested that the EOB model be accu-
rate even outside the region of calibration, i.e. when
q > 6. This expectation was verified by the very good
agreement found against the q = 10 NR waveform of 20
GW cycles in Ref. [54] and, especially, against the q = 7
NR waveform of 350 GW cycles recently produced by the

SXS collaboration [55].

Since in our study we consider BBHs in quasi-circular
orbits with negligible spins, the system can be described
by nine parameters: θ = {m1,m2, dL, tc, δ, α, θJN, ψ, φ}.
The parameters m1 and m2 are the masses of the in-
dividual BHs. From these quantities we define the to-
tal intrinsic mass, M = (m1 + m2), the total observed
mass, Mobs = M (1 + z) with z being the redshift, the
mass ratio, q = m1/m2 ≥ 1, the symmetric mass ra-
tio, η = m1m2/(m1 + m2)2 = q/(1 + q)2, the intrinsic
chirp mass, M = Mη3/5 and the observed chirp mass,
Mobs = M (1 + z). The parameter dL is the luminos-
ity distance and when combined with the declination δ
and right ascension α, it defines the sky location of the
binary. The time of the peak in the (2, 2) mode of the
waveform, as measured at the geocenter, is given by tc;
this serves as an approximation of the merger time. The
angle θJN measures the inclination of the binary’s total
angular momentum J (equal to the orbital angular mo-
mentum, L, as the holes are non-spinning) with respect
to the line of sight from the detectors n (geocenter). The
polarization ψ and the phase φ provide the additional
Euler angles necessary to describe the rotation from n to
J.
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FIG. 3. We show the Fourier-domain amplitudes of the wave-
forms displayed in Fig. 2. Extra structure from subdominant
modes can be clearly seen in the non-equal mass cases. For
comparison, we also display the advanced LIGO ZDHP and
advanced Virgo design amplitude spectral density

√
Sn(f).

For all waveforms we use dL = 1 Gpc and θJN = π/3 rad.

B. Accumulation of SNR in waveforms

In this paper we are interested in studying the effect on
parameter estimation of binary systems with larger and
larger total masses. When we maintain a constant SNR
and increase the binary’s total mass, the signal moves
downward in frequency space, resulting in more power
from the merger and ringdown portions as opposed to
the inspiral. The merger occurs at approximately the
frequency of the last stable orbit (LSO), which in the
case of a Schwarzschild BH is fLSO ' 4400 (M�/M)Hz.
We begin our integration at fmin = 10 Hz, so for systems
with Mobs ≥ 400M� there will be little power from the
inspiral portion of the waveform. As the inspiral evolu-
tion is dominated byMobs and the merger and ringdown
are dominated by Mobs, we expect the character of the
parameter estimation to transition from one to the other
(see Sec. V).

To demonstrate this expectation, we compare in Fig. 2
two waveforms with Mobs = 50M� and 400M�. We
show both the original waveform and the waveform nor-
malized by the advanced LIGO zero-detuned high-power
(ZDHP) power spectral density (PSD), Sn(f); the nor-
malized waveform has been re-scaled so that it has the
same amplitude at t = 0 as the original. The compar-
isons clearly show that for the (Mobs, q) = (50M�, 1)
waveform, 90% of the power (SNR2) has been accumu-
lated during the inspiral and that the merger and ring-
down play only a minor role. On the other hand, for the
(Mobs, q) = (400M�, 1) waveform, only 10% of the power
is collected during the inspiral and now the merger and
ringdown are predominant features. In Fig. 3 we show
the amplitudes of the waveforms in frequency space in
comparison to the advanced LIGO ZDHP and advanced

Virgo design
√
Sn(f). We can see in Fig. 3 that for

the higher-mass waveforms, the entire inspiral signal is
strongly down-weighted by the rising of the amplitude
spectral density with the merger occurring as

√
Sn(f)

reaches a minimum. For the lower-mass waveforms, much
of the inspiral is in the frequency band where the am-
plitude spectral density is at or near minimum, thereby
allowing this part of the waveform to dominate.

III. BAYESIAN INFERENCE

This section will provide a short background to
Bayesian inference. We will focus on the application
of Bayesian analysis to the problems of detection, pa-
rameter estimation and model selection that will be used
in Secs. IV and V in the context of GW observations
of IMBHBs. After a brief introduction to the basics of
Bayesian methods, we will discuss a specific technique
called nested sampling that is used to efficiently compute
Bayesian evidence, followed by a description of our choice
of prior probabilities for various parameters and how we
compute the likelihood function.

A. Basics of Bayesian methods

Bayesian inference provides a statistically rigorous
method of measuring the probability distribution of a
set of parameters θ given a model or hypothesis H and
a set of data D. Bayes’ theorem states that

Pr(θ|D,H) =
Pr(D|θ,H) Pr(θ|H)

Pr(D|H)
, (1)

where Pr(θ|D,H) is the posterior probability distribution
of parameters used for making inferences about which
signal parameters θ best fit the data and what the cor-
responding credible regions are; Pr(D|θ,H) is the like-
lihood of obtaining the data given the specific model
and parameters, for which we use the shorthand L(θ);
Pr(θ|H) is the prior probability of the parameters for
the model that represents our knowledge of these values
before looking at the data (a priori); and Pr(D|H) is the
Bayesian evidence, which is commonly abbreviated as Z.
The evidence is the factor needed to normalize the pos-
terior distribution and can therefore also be expressed
as

Z =

∫
Θ

L(θ) Pr(θ|H)dNθ, (2)

where N is the dimensionality of the parameter space.
Since Z is independent of the parameters, it can be safely
ignored for parameter estimation problems, but it is still
useful in model comparison.

When comparing two models, H0 and H1, one can
write their relative probabilities as

Pr(H1|D)

Pr(H0|D)
=
Z1

Z0

Pr(H1)

Pr(H0)
, (3)
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where we used Bayes’ theorem again and have cancelled
out Pr(D) and substituted in Zi = Pr(D|Hi) as appro-
priate. The relative probability of the two models is thus
the ratio of their Bayesian evidences multiplied by the
relative probability prior to considering the data. In our
analysis, we will take the latter to be 1 and consider
the ratio of the Bayesian evidences, which is called the
odds ratio. In the problem of signal detection, H0 can be
considered the noise-only model while H1 is the signal-
plus-noise model. Therefore, an odds ratio much greater
than 1 indicates a strong belief in the presence of a signal.
This method naturally incorporates Occam’s razor, such
that more complicated models are penalized and must
sufficiently improve the fit to the data to be favored.

B. Nested sampling and MultiNest

Nested sampling [56] is a Bayesian inference technique
developed for the calculation of the evidence, through
which posterior probability samples are produced as
a by-product. This is done by transforming the N -
dimensional integral for Z into a 1-dimensional integral
over the prior volume. We define the prior volume X
by dX = Pr(θ|H)dNθ. We can therefore write the prior
probability volume enclosed within a contour (in param-
eter space) of constant likelihood λ as

X(λ) =

∫
L(θ)>λ

Pr(θ|H)dNθ. (4)

The evidence integral of Eq. (2) can be re-written as

Z =

∫ 1

0

L(X)dX, (5)

where L(X) is the inverse of Eq. (4) (returns the like-
lihood at which a prior volume of X is enclosed) and
is a monotonically decreasing function of X (i.e. more
prior volume implies lower likelihood contour bound). If
we can evaluate likelihood values Li = L(Xi) such that
Xi is a sequence of monotonically decreasing values, the
evidence can be computed as a simple sum

Z =

M∑
i=1

Liwi . (6)

Here, the wi are weights which can be taken from a simple
trapezium rule such that wi = 1

2 (Xi−1 −Xi+1).
The individual prior weight of each sampled point can

also be estimated from the sequence of Xi values. This
may be combined with the computed likelihood for that
point and the evidence to produce a final posterior prob-
ability for the point. The full sequence of points can then
be re-sampled accordingly to the points’ individual prob-
abilities to produce a set of samples from the posterior.

Nested sampling operates by starting with an initial
set of ‘live’ points sampled from the prior distribution.

Iterations are then performed whereby the point with
lowest likelihood value is removed from the live point
set and a new point is sampled from the prior with the
restriction that it has higher likelihood than the point
just removed. This removal and replacement is continued
until a stopping condition is reached (e.g., a tolerance on
the evidence calculation). The difficult task here lies in
the efficient sampling of new points under this restriction.
As the likelihood contour moves upwards, the volume
of the prior within that contour will decrease to very
small values, making direct sampling of the prior very
inefficient. The MultiNest algorithm [57–59] addresses
this by enclosing the live points in clusters of ellipsoids.
A new sample can then be made from the ellipsoids very
quickly and as they shrink along with the live points,
they create effective likelihood contours to be sampled
from, thereby greatly increasing the sampling efficiency.
The ellipsoids can be distributed to enclose degenerate
and multimodal distributions, making this approach very
robust.
MultiNest is implemented within BAMBI [60], which

is linked with the LALInference [61] code of LAL. The
lalinference bambi sampler is used for analysis of sim-
ulated signals in this study.

C. Priors used

The priors used in this analysis are flat in the com-
ponent masses, with {m1,m2} ∈ [10, 600] M� and m1 ≥
m2. In Section V D, we assess the effect of changing the
prior by implementing an alternative mass prior that is
flat in the log of chirp mass for M ∈ [2.45, 435.275] M�
and flat over η ∈ [0.03, 0.25].

In both setups, the source location prior is uni-
form in volume, thus proportional to d2

L for dL ∈
[100 Mpc, 10 Gpc] and flat in sin(δ) and α for δ ∈
[0, π] rad and α ∈ [0, 2π) rad. We use a prior flat in co-
alescence time that is centered on the true value with
∆tc ∈ [−0.1, 0.1] s. The orientation angles are assumed to
be isotropically distributed, thus flat in sin(θJN), ψ, and
φ for θJN ∈ [0, π] rad, ψ ∈ [0, π) rad, and φ ∈ [0, 2π) rad.

D. Likelihood function

In general, the data obtained from adavanced LIGO
and Virgo detectors is the sum of signal, h, and noise, n,

d = h + n. (7)

The signal in a given detector is given by

h = F+(α, δ, ψ)h+ + F×(α, δ, ψ)h×, (8)

where h+,× are the two independent GW polarizations
and F+,×(α, δ, ψ) are the antenna response functions [62]
that depend on the source location and polarization. The
antenna response is slowly varying in time due to the
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rotation of the Earth, but this effect is small for the short
duration of the signals considered in this study (< 2 min).

The noise is modeled as independent and Gaussian in
each frequency with a mean of zero and variance given
by the detector’s PSD. Therefore, the probability of a
data stream, da, in detector a containing a given signal,
h(θ), is given by the probability of the resulting noise
realization, n = d − h(θ). This is given by the product
(sum in log-space) of the probability of the noise for each
frequency bin [61]:

logLa(θ) = log Pr(da|HS ,θ, Sn(f)) =

− 1

2

∑
i

[
4

T

|d̃a,i − h̃i(θ)|2

Sn(fi)
+ log

(
πTSn(fi)

2

)]
, (9)

where T is the segment length, the tilde indicates the
discrete Fourier transform of the function, and i is an
index over frequency bins. The noise power spectral den-
sity Sn(f) will vary from detector to detector and here
we use the ones at design sensitivity for advanced LIGO
and Virgo [22]3. Hs indicates that we are using the sig-
nal model that assumes a signal is present; this will be
compared to the noise-only model, Hn, where h = 0.
The final likelihood is the product of likelihoods from
the individual detectors,

logL(θ) =
∑
a

logLa(θ). (10)

To simulate the sensitivity for advanced LIGO and Virgo
detectors, we use a minimum frequency of fmin = 10 Hz.
In order to include the highest ringdown mode for the
lowest possible total mass system, we use a sampling rate
of 4096 Hz, giving a Nyquist frequency of fNyq = 2048 Hz
for the upper bound of our likelihood sum. A segment
length of 128 s ensures that no waveforms are cutoff in-
band.

IV. BAYESIAN DETECTION

It is computationally infeasible to perform a Bayesian
analysis over the entire detector data set, for all sig-
nal types, at all times. Therefore, alternative analysis
pipelines are used to first produce candidate triggers for
follow-up analyses using Bayesian inference over a small
data set and parameter space [63, 64]. In the search for
BBHs, a discrete bank of template waveforms [65–67] is
used to perform matched filter analysis of the data. The
matches that cross a pre-set threshold are ranked by a
re-weighted SNR [63, 64] and their significance is mea-
sured by comparison to the estimated background (i.e.
noise-generated) triggers. This is a frequentist method

3 See https://dcc.ligo.org/LIGO-P1200087-v19/public for PSD
data files

FIG. 4. False alarm probabilities and rates computed using
Bayesian inference for signals buried in Gaussian noise as a
function of the injected signal’s SNR. The solid line is the
median FAP/FAR and the shaded area covers the range from
minimum to maximum values of FAP/FAR. Confident 5-σ
significant detections can be calimed for SNR & 9 but SNRs
∼ 12 are needed in reality for the same significance in real
data that is often non-Gaussian and nonstationary.

of detection (and significance measurement) and is very
useful for generating triggers which then receive a more
detailed follow-up with Bayesian analysis and other tools.
It is the first step in identifying and confirming a GW sig-
nal with LIGO and Virgo.

In Bayesian inference, one can make claims on the pres-
ence of a signal in data by means of model comparison.
This is not the same as trigger/candidate finding, but
rather looking at the evidence that the candidate is in-
deed a real GW signal. We compare the signal-plus-noise
and noise-only models, Hs and Hn, and their respective
evidences, Zs and Zn. The probability that random noise
would produce an evidence ratio Zs/Zn is the false alarm
probability (FAP). This is given by

FAP =
1

1 + Zs/Zn
. (11)

The relative log-evidence (logZs − logZn) is output by
LALInference. The FAP can be converted into a false
alarm rate (FAR) by dividing it by the length of the
time window [68]. This accounts for the amount of time
in which we searched for a signal in the data and assumes
that all such time intervals are independent.

FAR =
1

1 + Zs/Zn
× 1

∆t
. (12)

The time window used in our prior is ∆t = 0.2s.
We compute the Bayesian evidences of the signal plus

Gaussian noise model for all simulated signals using in-
jections at SNRs ranging from 6 to 18. Total observed
masses ranged from 50M� to 500M�, mass ratios were
q = {1.25, 4}, and inclinations were θJN = {0, π/3, π/2}.
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FIG. 5. We show the difference in log-evidence between using
EOBNRv2HM and EOBNRv2 templates for recovering EOBNRv2HM

signals. In cases with significant contribution from subleading
modes the EOBNRv2HM model is strongly favored.

In Fig. 4 we show the median FAP and FAR calculated
over all signals as a function of the SNR. The shaded area
covers the range from minimum to maximum computed
FAPs. Confident detection can be claimed for a network
SNR & 9, as this corresponds to a detection outside of
the ±6-σ region (FAP < 10−5). This should be taken
with a grain of salt, however, as real data will contain
non-Gaussian and non-stationary noise features that will
need to be addressed with noise modeling [69, 70]; SNRs
∼ 12 are needed in reality for the same significance in
real data that is often non-Gaussian and nonstationary.

In systems where the subleading modes contribute sig-
nificantly to the SNR, not including them can result in
not recovering the full power of the signal. This means
that using a (2, 2)-only template (EOBNRv2) will yield
a lower Bayesian evidence than a more complete tem-
plate (EOBNRv2HM) for the same signal. This loss in evi-
dence will lead to a greatly increased FAP and FAR. A
model comparison between the two will favor the com-
plete model when these modes are significant – inclined
systems with larger mass ratios. Fig. 5 shows that in
these cases the EOBNRv2HM waveform model including
subleading modes will be strongly favored; when sub-
leading modes contribute little SNR, neither waveform
model is strongly favored over the other (slight prefer-
ence for (2, 2)-only when θJN = 0 and slight preference
for subleading modes when θJN > 0 and q is close to 1).

The importance of including subleading modes in
search pipelines was investigated in Ref. [47]. They
found that using waveforms with subdominant modes in-
creases the sensitive region only for high total masses
(Mobs & 100M�) and asymmetric (q & 4) IMBHBs.
Furthermore, they found that the most significant gains
are in regions of the parameter space with the lowest

expected event rates. Although the study of Ref. [47]
was limited to component masses mi ≤ 200M� and
Mobs < 360M�, we can expect the trends to continue
for larger masses. The result that subleading modes are
significant in detection only for asymmetric and large to-
tal mass systems is consistent with our findings described
in this section.

V. MEASUREMENT

After the detection of a GW signal from a binary sys-
tem, we perform parameter estimation analysis, which
involves producing a sufficient number of samples from
the posterior distribution so that we are able to measure
peaks and analyze correlations and degeneracies. Since
we expect our first detections to be at just above thresh-
old, all analyses in this section – unless otherwise stated
– use injected signals with a network SNR of 12. This is
achieved by adjusting the distance of the signal to obtain
this exact value.

In the following sections we discuss our ability to per-
form parameter estimation under varying conditions. We
estimate the statistical uncertainty and bias in the mea-
surement of signal parameters; these are the width of the
posterior distribution and the distance between the peak
and the true values, respectively. In creating the data
to be analyzed, no noise realization is added. This elim-
inates additional uncertainty and bias introduced by a
random noise realization; zero noise is the most probable
realization. This is different from averaging over many
noise realizations, as the latter would result in increased
uncertainty even as the biases cancel out (and would also
require many more runs to be performed).

Results presented are predominantly for q = {1.25, 4}
systems. Analyses were also performed where injected
waveforms had q = {1, 2, 3}; we found the results to be
consistent with those discussed here. We limited q ≤ 4
for injected signals due to the increased computational
cost for higher mass-ratio waveforms.

A. Measuring variance with increasing binary’s
total mass

In our first set of comparisons, we study the effect of
the total mass of the system on the estimation of the
source’s intrinsic parameters. Specifically, we investigate
the statistical errors on the measurement of Mobs,M, η,
m1, and m2. Posterior distributions over (Mobs,Mobs)-
space and (m1,m2)-space are shown for various values
of Mobs (always using q = 4 and θJN = π/3) in Fig. 6.
These are summarized in the left panel of Fig. 7, which
shows the relative widths of the 95% (±2-σ) credible in-
tervals (i.e., (x97.5% − x2.5%)/xtrue) for the various mass
parameters. At the lower mass end (Mobs = 50M�), un-
certainty is low due to how well the chirp mass Mobs

is measured from the inspiral phase of a waveform. As
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FIG. 6. Posterior distributions of the mass estimation. All values are presented as fractional errors, i.e., (x − xtrue)/xtrue.
The left column displays m2 vs. m1 and the right column displays Mobs vs. Mobs. The rows are of increasing Mobs from
Mobs = 50M� at the top to Mobs = 500M� at the bottom. For all systems, q = 4 (η = 0.16) and θJN = π/3. The star indicates
the point with highest logL and the contours are at 50%, 90%, and 95% credible levels (inside to outside). In the left column,
the solid lines are of constant Mobs and the dashed lines are constant Mobs; in the right column, solid is constant m1 and
dashed is constant m2. In all cases the lines intersect the true values at (x, y) = (0, 0).

the total mass increases, the uncertainty increases and
for Mobs ≥ 150M� the uncertainty in Mobs is similar to
or greater than that in Mobs. This change is due to less
inspiral signal being present in the most sensitive band of
the detector; the ringdown is predominantly dependent
on Mobs and therefore this parameter is measured more

accurately. However, the inspiral measures Mobs bet-
ter than the ringdown measures Mobs, so the resulting
uncertainty is larger. Above Mobs = 300M�, the un-
certainty decreases slightly; this is due to the ringdown
matching up better with the minimum of the advanced
LIGO/Virgo PSD and the subleading modes moving into
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FIG. 7. Uncertainty in the measurement of different mass parameters: Mobs, M, and η. Results here are for a system with
(left panel) q = 4 (η = 0.16) and (right panel) q = 1.25 (η = 0.247). In both cases, θJN = π/3 and SNR = 12. The solid lines
are for templates with subleading modes and the dashed lines are for templates with the (2, 2) mode only. The relative width
is given by (x97.5% − x2.5%)/xtrue.

more sensitive regions of the PSD.

When these same systems are face-on (θJN = 0) or
have lower q (more equal component masses), the un-
certainties for the (2, 2)-only waveform closely resemble
those for the waveform with all modes, just a little larger.
This can be seen in the right panel of Fig. 7 and it is what
would be expected for systems with little contribution
from the subleading modes. In all cases, the templates
that include subleading modes of radiation have lower
uncertainty than those using only the (2, 2) mode. Ad-
ditionally, for inclined and asymmetric systems, as Mobs

increases from 300M� to 500M�, the uncertainty when
using (2, 2)-only templates grows significantly while that
from using templates with subleading modes slightly de-
creases. This is due to the fact that the subleading modes
provide information about the mass ratio of the system
in their relative amplitudes and phases. This information
contained in the subdominant modes breaks the model
degeneracies and allows us to better infer the component
masses as the ringdown phase of the waveform enters
the most sensitive region of the PSD. These results can
also be seen in Fig. 6. Being able to accurately mea-
sure the component masses is important in allowing us
to make inferences on the source population of these mas-
sive BHs [8].

Thus, we observe that at an SNR of 12 uncertainties
for Mobs can reach ∼ 20–25% in asymmetric binaries
while uncertainty inMobs reaches up to ∼ 50–60% (these
numbers are ∼ 17% versus ∼ 22% in more symmetric

mass ratio binaries).

In Appendix A, we provide summary tables of rel-
ative 95% credible intervals for measurements of the
masses, luminosity distance, and coalescence time. These
are given over a range of SNRs for two mass ratios
(q = {1.25, 4}) and several observed total masses at the
inclinations of θJN = {π/3, 0}.

B. Measuring degeneracies with increasing binary’s
total mass

As the IMBHB systems increase in total mass, there
are distinct changes in the two-dimensional posterior
probability distributions. As the inspiral phase evolu-
tion strongly constrainsMobs and η, in that order, lower
mass systems will have degeneracies that follow contours
in these parameters. With increasing total mass, how-
ever, the inspiral becomes less important and the merger-
ringdown part of the signal contributes significantly or
dominantly to the SNR. This is most well described by
Mobs with much weaker dependence on η. Thus, we ex-
pect there to be a change in the degeneracies present in
the mass estimation. The inspiral dependency on Mobs

can be seen in the PN inspiral waveforms (see Ref. [71]);
PN approximants are accurate for early inspiral when
the BHs are sufficiently far from merger. The depen-
dency on Mobs of the ringdown is similarly given by the
quasi-normal mode decomposition derived in Ref. [72]
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and implemented in the EOB waveform models used in
our study [5].

This change in the optimally measured parameters as
Mobs increases can be observed in Fig. 6. In the right col-
umn, we show the posterior distribution of the masses,
parameterized as Mobs and Mobs, over a range of to-
tal masses for an asymmetric system (q = 4, η = 0.16)
viewed at an angle (θJN = π/3). In the top row,
Mobs = 50M� and we can see that the principal mea-
surement is of the chirp mass Mobs – posterior samples
and contours lie along a line of near-constant Mobs. As
Mobs increases, at Mobs = 150M� a second principal di-
rection of degeneracy becomes evident. This is due to a
different combination of the mass parameters becoming
increasingly constrained relative to the others and real-
izing a new degeneracy in the measurement.

These observations confirm what we see in the one-
dimensional posteriors in Fig. 7. The chirp mass Mobs

is initially measured to lower fractional error than the
total mass Mobs; as Mobs increases the uncertainty grows
much faster in Mobs than it does in Mobs. The small
decrease in uncertainty at the higher masses is also visible
as the contours shrink slightly. We are now able to see in
Fig. 6 that this increase in uncertainty is accompanied by
a changing of the dominant degeneracy in the parameters
of the waveform model.

C. Importance of including subleading modes

As discussed previously, in addition to the leading
(2, 2) mode, the EOBNRv2HM waveform model also in-
cludes subleading modes (2, 1), (3, 3), (4, 4), and (5, 5),
which introduce additional structure to the waveform and
improve faithfulness to NR waveforms. This increased
structure is important as the relative amplitudes and
phasing of the additional modes introduce information
about the source masses. In the ringdown phase, the
additional modes further constrain the mass and spin of
the final BH. This structure creates variation in wave-
forms as initial component masses are varied, thereby
allowing Bayesian inference to measure the masses more
accurately and precisely as seen in Figs. 7, 8, and 9.

The modes’ structure also contains angular depen-
dence on the inclination of the system to the detector,
θJN, the orientation of the orbit in the plane of the sky
(polarization), ψ, and the orbital phase of the binary, φ.
This structure is present for the primary (2, 2) mode, but
the introduction of additional modes breaks degeneracies
in the observed waveform as these angles vary.

Improvements in measurement of the masses and ori-
entation angles can all be observed in the example pre-
sented in Fig. 8. This figure compares one-dimensional
posterior distributions for the case of an injected sig-
nal with Mobs = 500M�, q = 4, and θJN = π/3. The
solid black line shows the posterior distribution for the
waveform template model including subleading modes
(EOBNRv2HM) and the dashed line is for the waveform

template model including only the leading (2, 2) mode
(EOBNRv2). In both cases, the signal injected into the
data contained the subleading modes – in nature, all
modes of radiation are present.

For parameter estimation, the presence of subleading
modes means that as the angles θJN, ψ, and φ vary, there
is increased variation of the waveform. This variation
is more prominent for unequal mass binaries and bina-
ries not observed face-on or face-off (θJN = {0, π}), as
the subleading modes will have more significant contri-
butions to the SNR. The increased variation allows for
more accurate measurement of θJN and breaks degenera-
cies in ψ and φ to allow these two angles to be measured.
As Mobs and θJN are strongly correlated with the lumi-
nosity distance dL via the amplitude of the waveform,
measuring the former two more accurately means that
the latter will be measured more accurately as well.

The measurement of the coalescence time tc is offset
when using only the leading mode; this is likely due to
slight errors in measuring the sky position of the source
and adjustments in order to align the peak amplitude of
the waveform at merger.

With the additional information provided by the sub-
leading modes in the EOBNRv2HM model, posterior distri-
butions for all mass parameters are narrower and better
centered on the true values. Most notably, the subleading
modes and their relative amplitudes differentiate better
between waveforms with the same total mass, but dif-
ferent mass ratios. The system injected in the analysis
shown in Fig. 8 has very high Mobs so the merger and
ringdown provide the majority of the SNR. The observed
improvement is thus due to a waveform degeneracy in
the mass of the final BH that can be broken when we
are able to measure the final mass and spin of the BH
more precisely. These depend strongly on the mass ra-
tio of the initial components and are further realized in
the relative amplitudes of the subleading modes. The
improved measurement of initial mass values from us-
ing subleading modes can also be seen in Fig. 9, where
we compare two-dimensional posteriors in the masses be-
tween EOBNRv2HM and EOBNRv2 waveform models over a
range of Mobs (q = 4 and θJN = π/3). Note that when
Mobs = 100M�, the posteriors are nearly identical. How-
ever, with increasing Mobs, the late inspiral, merger, and
ringdown become increasingly important. The parame-
ter estimation bias and loss of SNR is evident when using
only the leading mode as the posteriors do not necessar-
ily peak at or strongly support the true values and the
confidence intervals are considerably larger.

As the observed total mass increases, it is very difficult
to measure the mass ratio q (or η) if the source is face-
on. Indeed, in this case the subdominant modes are not
significant; we find that the posteriors are identical and
do not change much with respect to the true q. However,
when θJN = π/3 or π/2, because of the presence of the
subleading modes, it is possible to measure q, although
the influence of the prior is still evident in tending to-
wards smaller values. In Ref. [8], the authors determine
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FIG. 8. One-dimensional posterior distributions for all parameters for an injected signal with Mobs = 500M�, q = 4, θJN = π/3,
and SNR = 12. Posteriors are compared for (solid) the EOBNRv2HM waveform model which includes subleading modes of radiation,
(dashed) the EOBNRv2 waveform model which includes only the (2, 2) mode, and (dotted) the EOBNRv2HM waveform model along
with a different prior distribution that is flat in (log(Mobs), η) instead of flat in (m1,m2). The vertical dashed red lines indicate
the true (injected) value of each parameter.

that IMBHBs formed from stellar-origin massive BHs will
likely have mass ratios q ≤ 1.25. We find that for values
of q ≥ 2, in more massive (Mobs ≥ 300M�) and inclined
systems, we will be able to say that q > 1.25 with cer-
tainty > 90%.

In summary, we find that the inclusion of subleading
modes of gravitational radiation improves the accuracy
and precision of the estimation of the source mass pa-
rameters as well as some extrinsic parameters, such as
distance and orientation angles. They are significant for
asymmetric and inclined binaries where they contribute
more to the signal’s SNR.

D. Effect of priors

So far, in all of the analysis runs, we have used a very
large prior on the component masses, which was flat in
(m1,m2) space. However, one could argue for other rea-
sonable prior distributions on the masses. One such al-
ternative is to use a prior that is flat in log(Mobs). The
quantity log(Mobs) is used because Mobs is a scaling
factor for the waveform amplitude and log(Mobs) is the
so-called Jeffreys prior. Additionally, we employ a prior
that is flat in η for the second mass parameter.

We ran multiple analyses with this second prior op-
tion, which is flat in (log(Mobs), η) and find that even
at an SNR of 12 the strength of the signal is sufficient
to render the different prior distribution a minimal fac-
tor. This can be seen in Fig.8, where we show the

one-dimensional posteriors from a single analysis. More
specifically, we display in dotted lines the 1D posteri-
ors of a run with EOBNRv2HM waveform model that uses
the alternative prior, to be compared with the solid lines
from the run with the original prior. The lines are nearly
identical, with differences much smaller than those from
using the EOBNRv2 waveform; these differences from the
alternative prior will continue to decrease as the SNR is
increased.

E. Comparison to previous parameter-estimation
work with inspiral-merger-ringdown waveforms

In an earlier work, Ajith and Bose [30] used inspiral-
merger-ringdown phenomenological waveform models
(IMRPhenomA) to perform a study similar to ours, but
mainly focusing on understanding how uncertainties are
reduced when merger and ringdown phases are included.
Their study did not include subleading modes. They
examined the statistical error in parameter estimation
as given by the Fisher information matrix4 and MCMC
analyses. Our uncertainties calculated using EOBNRv2

4 The Fisher information matrix measures covariances analytically.
The square root of the diagonal elements of the inverse of the
Fisher matrix gives a lower bound on the standard deviation of
the posterior for the parameters. In the limit of large SNR, this
estimate becomes exact.
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FIG. 9. Posterior distributions of the mass estimation. All values are presented as fractional errors, i.e., (x − xtrue)/xtrue.
The left column displays m2 vs. m1 and the right column displays Mobs vs. Mobs. The rows are of increasing Mobs from
Mobs = 100M� at the top to Mobs = 300M� at the bottom. For all systems, q = 4 (η = 0.16) and θJN = π/3. The asterisks
indicate the point with highest logL and the contours are at 50%, 90%, and 95% credible levels (inside to outside). Blue
contours use EOBNRv2HM as a waveform template while red contours use EOBNRv2, which only includes the leading (2, 2) mode.

templates ((2, 2) mode only) are a factor of a few larger
than those given in Table 1 of Ref. [30] for SNR =
10, Mobs = {100, 200}M�, and η = {0.25, 0.16} (e.g.,
Ref. [30] quotes relative uncertainties of 2.39% and 3.57%
for Mobs in cases with q = 1 and Mobs = 100M� or
Mobs = 200M�; we measure uncertainties of 4.01% and
9.66% in these same cases). The discrepancy in uncer-
tainties is partly a result of the fact that in Ref. [30], the
authors maximize their likelihood function over tc and φ
and only perform a single-detector search using an “ef-
fective” distance that folds in sky position and binary
inclination effects; both of these choices have the effect
of fixing values for parameters that we allow to vary in
our more general analysis, thus introducing additional
uncertainty. Furthermore, we use EOBNRv2HM waveforms

as injections, as these most closely model NR waveforms,
and our EOBNRv2 templates differ from IMRPhenomA ones,
the former being more faithful to NR waveforms [54].
Despite those differences, the quantitative measurements
are in general agreement and we also find agreement in
the qualitative aspects of increasing uncertainty in mass
parameters with increasing Mobs. We report our own es-
timations of the uncertainty in Appendix A, using the
full EOBNRv2HM waveform model.

In Ref. [32], Littenberg et al. examined systematic and
statistical errors of EOBNR waveforms to assess whether
those waveforms are indistinguishable from the NR wave-
forms used to calibrate them. The authors employed
both EOBNRv2 and EOBNRv2HM templates to recover wave-
forms generated by NR simulations and, when using sub-
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leading modes, find systematic errors to be comparable
to or less than statistical errors for mass ratios up to
q = 6 and SNRs up to 50. We find statistical errors
comparable to the ones of Ref. [32] for analyses run in
common. Our results on the importance of subleading
modes for unequal-mass and inclined (θJN > 0) systems
reaffirm their findings.

Varma et al. [37] built on Refs. [32, 47]. They used as
targets “hybrid” waveforms constructed by attaching PN
inspiral/EOB waveforms to NR merger-ringdown wave-
forms, and as templates EOBNRv2 waveforms. Instead of
examining only a few points in parameter space, they ran
many simulations in order to average over relative orien-
tation angles. Statistical errors were computed with the
Fisher information matrix. Confirming previous work,
they found that subleading modes are more important
for parameter estimation when Mobs ≥ 150M� and q ≥ 4
and important for detection when Mobs ≥ 100M� and
q ≥ 6 (see Fig. 1 of Ref. [37]). In contrast, our paper
employs the full EOBNRv2HM waveforms and uses Bayesian
analysis, and it extends the study to higher Mobs.

Bose et al. [31] focused on the importance of includ-
ing merger and ringdown phases of the waveform. They
analyzed the recovery of inspiral-merger-ringdown wave-
forms with PN inspiral waveforms and found that at
masses as low as Mobs = 50M� there are serious system-
atic errors and an increase in statistical errors due to the
loss in SNR. This result is consistent with our analysis
showing the significant amount of signal power present
in the merger and ringdown phases of the waveform at
Mobs = 50M� and above.

F. Astrophysical implications

As mentioned in Sec. I, the merger rate of IMBHBs is
currently highly uncertain. Consequently, detection of
a single event will immediately confirm the existence of
these systems and constrain their rate. In the absence of
detection the upper limits reached could be used to rule
out some of the models.

As shown in Fig. 1, ground-based detectors will have
the greatest distance reach for equal-mass IMBHBs of
observed total mass of ∼ 400M�. The distance reach for
such systems will be ∼ 6.5 Gpc or z ' 1. We find that
the comoving volume averaged over all source orienta-
tions and weighted by the antenna pattern functions of
the advanced LIGO-Virgo network is ∼ 150 Gpc3, larger
by a factor ∼ 1.8 than that in Ref. [8]. This difference
can be explained because, as opposed to Ref. [8], we con-
sider a detector network (which increases the reach) and
use a different SNR (which decreases the reach). After
five years of non-observation of IMBHBs a rate upper
limit of 4 × 10−11 Gpc−3 yr−1 can be achieved, which is
smaller than the rates for most formation models dis-
cussed in Ref. [8–10]. For a binary of same total mass,
∼ 400M�, but mass ratio q = 4, the reach when including
subleading modes is smaller by a factor of 1.5 (see Fig.

1) and the upper limit will be larger by a factor 3.375,
i.e., 1.35 × 10−10 Gpc−3 yr−1. Neglecting the subleading
modes worsens the upper limit by a factor 2.4. However,
Ref. [47] showed that in a realistic search the improve-
ment when including subleading modes is significant only
for mass ratios larger than ∼ 4.

An important question in cosmology is the mass func-
tion of IMBHs. Routine detection of IMBHs will help us
measure the mass function of component BHs that form
merging binaries and this should be a proxy for the mass
function of IMBHs in the Universe, unless IMBHBs are
formed selectively from a sub-population of IMBHs. The
component masses of a binary system are strongly corre-
lated and it is not possible to measure them accurately
while using only the dominant mode; subleading modes
break this degeneracy, especially in the case of asym-
metric binaries for which the mass ratio q is large, help-
ing us measure the component masses more accurately.
In particular (see Fig. 7), the 95% credible interval in
the measurement of the heavier companion can be 10%
to 25%, while the lighter component is measured within
10% to 125%, depending on the total mass of the binary.
These results are far better than what might be possible
by electromagnetic observations of such binary systems.
Therefore, advanced detectors provide the most robust
way of determining the mass function across the range
of masses from 50M� to 500M�. A related question is
the mass function of IMBHBs. Referring to Fig. 7, the
total mass is determined to within a few percent in the
case of lighter binaries of 50M� to within 15–25% for
the heaviest systems of 500M� that we consider. Thus,
advanced detectors should help determine the mass func-
tion of IMBHBs.

VI. CONCLUSIONS

In this paper we used state-of-the-art waveform models
for inspiral-merger-ringdown phases of evolution to esti-
mate uncertainties in parameters of IMBHBs with total
mass Mobs = 50M�–500M� and mass ratio q = 1–4.
Because for these systems the majority of the SNR is ac-
cumulated during the last stages of inspiral, merger and
ringdown phases, where subleading modes can become
comparable to the leading (2, 2) mode, we also included
in the analysis four subleading modes, i.e., (2, 1), (3, 3),
(4, 4) and (5, 5). In particular, we employed the EOBNRv2
and EOBNRv2HM waveform models in LAL.

Using a Bayesian analysis, we found that for unequal-
mass systems and inclined binaries subleading modes
improve the measurement of the mass parameters and
break degenaracies in distance and orientation angles
(see Sec. V C). As the binary’s total mass increases, the
merger and ringdown phases dominate the SNR. Since
for such high-mass binaries the signal resembles a burst,
the measurement will extract the dominant frequency
of oscillation of the signal, which depends primarily on
the total mass, thus the uncertainty in total mass be-
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comes smaller than the uncertainty in the chirp mass
(see Sec. V A, Fig. 7 and Tables I and II). In con-
trast, for lower total masses, the SNR accumulates over
many cycles of inspiral and the chirp mass is better mea-
sured. The presence of subleading modes is less crucial
for comparable-mass systems and face-on binaries (see
Sec. V A, Fig. 7 and Table I). Inclusion of subleading
modes allows for improved measurement of the mass ra-
tio for asymmetric and inclined systems (see Table II).
Finally, as discussed in Sec. V F, GW observations of
IMBHBs will demonstrate the existence and shed light on
the demographics of IMBHs, even if component masses
will be measured only with a fractional error of (several)
tens of percent.

Our analysis was restricted to nonspinning IMBHs and
explored only part of the parameter space. These limita-
tions were a consequence of the fact that EOBNR wave-
form models are expensive to generate for Bayesian anal-
yses. Higher-mass binaries (Mobs ∼ 400M�) take tens to
hundreds of milliseconds to generate, while lower-mass
binaries (Mobs ∼ 50M�) will require up to tens of sec-
onds; computational time will quickly add up as 106–107

waveform computations are required for a complete anal-
ysis. This cost is compounded by the requirements both
for long segments to enclose the entire waveform while
in-band (long due to the low minimum frequency) and
a high sampling rate in order to include the subleading
modes in the ringdown signal. Recently, reduced-order
models (ROM) have been developed for EOBNR wave-
forms, either for spinning, nonprecessing systems [73] or
nonspinning, but with subleading-mode waveforms [74].
Future investigations could employ these faster template
families.

While completing this work, we became aware of the
study of Ref. [75], which includes the effect of nonprecess-
ing spins using a ROM built on the SEOBNRv2 template
family [73, 76], while discarding the subdominant modes.
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Appendix A: Summary of measurements

In this section we present tables of the 95% credible
intervals for five of the measured parameters: Mobs, η,
Mobs, dL, and tc. Results are presented for two mass
ratios (q = 1.25 and q = 4) and for two inclinations
(θJN = π/3 and θJN = 0). For all parameters except tc,
these values are scaled by their true values and converted
into percentages. Uncertainty in tc is presented in ms.
Table I presents values for q = 1.25 and Table II presents
results for q = 4. For the two inclinations, results are
side-by-side, with θJN = 0 in parentheses.
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SNR Mobs = 50M� 100M� 150M� 200M� 300M� 400M� 500M�
∆Mobs/Mobs

6 16.810 (16.658) 6.895 (6.655) 2.607 (2.815) 0.612 (0.610) 0.479 (0.515) 0.472 (0.497) 0.400 (0.410)
8 16.756 (16.464) 0.159 (0.158) 0.280 (0.285) 0.288 (0.287) 0.262 (0.251) 0.239 (0.255) 0.213 (0.214)
10 0.052 (0.049) 0.086 (0.090) 0.180 (0.178) 0.202 (0.201) 0.201 (0.200) 0.180 (0.181) 0.155 (0.159)
12 0.041 (0.040) 0.065 (0.064) 0.130 (0.130) 0.166 (0.161) 0.164 (0.169) 0.149 (0.150) 0.132 (0.125)
14 0.031 (0.033) 0.050 (0.050) 0.100 (0.102) 0.137 (0.135) 0.143 (0.139) 0.128 (0.124) 0.113 (0.105)
16 0.027 (0.028) 0.042 (0.045) 0.080 (0.082) 0.116 (0.118) 0.132 (0.129) 0.109 (0.105) 0.090 (0.088)
18 0.025 (0.025) 0.038 (0.038) 0.070 (0.074) 0.100 (0.104) 0.113 (0.107) 0.097 (0.087) 0.083 (0.075)

∆η/η
6 0.874 (0.872) 0.866 (0.863) 0.709 (0.725) 0.488 (0.427) 0.475 (0.484) 0.512 (0.510) 0.520 (0.524)
8 0.870 (0.871) 0.201 (0.191) 0.177 (0.181) 0.182 (0.198) 0.218 (0.227) 0.221 (0.218) 0.203 (0.186)
10 0.109 (0.104) 0.135 (0.144) 0.126 (0.130) 0.132 (0.131) 0.158 (0.146) 0.136 (0.153) 0.131 (0.097)
12 0.085 (0.082) 0.114 (0.112) 0.106 (0.099) 0.113 (0.107) 0.131 (0.129) 0.120 (0.111) 0.094 (0.075)
14 0.063 (0.067) 0.086 (0.093) 0.090 (0.086) 0.089 (0.092) 0.108 (0.100) 0.100 (0.082) 0.065 (0.053)
16 0.055 (0.057) 0.077 (0.086) 0.077 (0.073) 0.080 (0.078) 0.107 (0.096) 0.082 (0.061) 0.054 (0.038)
18 0.049 (0.050) 0.071 (0.072) 0.070 (0.069) 0.072 (0.073) 0.085 (0.074) 0.069 (0.049) 0.045 (0.034)

∆Mobs/Mobs

6 16.913 (16.613) 6.594 (6.315) 0.995 (1.293) 0.605 (0.620) 0.603 (0.602) 0.626 (0.634) 0.627 (0.614)
8 16.662 (16.350) 0.169 (0.182) 0.312 (0.324) 0.333 (0.338) 0.344 (0.344) 0.347 (0.357) 0.304 (0.292)
10 0.029 (0.027) 0.091 (0.099) 0.199 (0.200) 0.237 (0.239) 0.269 (0.263) 0.240 (0.250) 0.213 (0.197)
12 0.021 (0.021) 0.065 (0.068) 0.149 (0.146) 0.203 (0.195) 0.220 (0.223) 0.203 (0.199) 0.170 (0.150)
14 0.015 (0.016) 0.049 (0.052) 0.116 (0.118) 0.163 (0.166) 0.192 (0.190) 0.178 (0.157) 0.138 (0.123)
16 0.013 (0.013) 0.043 (0.043) 0.091 (0.095) 0.140 (0.142) 0.180 (0.173) 0.146 (0.128) 0.110 (0.098)
18 0.011 (0.012) 0.037 (0.036) 0.081 (0.084) 0.125 (0.130) 0.149 (0.137) 0.127 (0.105) 0.096 (0.086)

∆dL/dL
6 1.819 (2.438) 1.252 (1.649) 0.843 (1.078) 0.629 (0.835) 0.469 (0.655) 0.449 (0.615) 0.510 (0.658)
8 2.423 (3.066) 1.470 (1.982) 1.229 (1.569) 0.873 (1.252) 0.673 (0.932) 0.687 (0.911) 0.803 (1.090)
10 1.215 (1.616) 1.211 (1.559) 1.213 (1.628) 1.179 (1.578) 0.973 (1.319) 0.973 (1.375) 1.183 (1.560)
12 1.140 (1.513) 1.084 (1.463) 1.104 (1.526) 1.133 (1.559) 1.164 (1.576) 1.270 (1.561) 1.390 (1.461)
14 1.045 (1.333) 0.980 (1.399) 1.002 (1.417) 1.030 (1.467) 1.106 (1.404) 1.234 (1.245) 1.235 (1.009)
16 0.970 (1.418) 0.896 (1.365) 0.959 (1.430) 1.004 (1.423) 1.036 (1.307) 1.035 (1.010) 0.979 (0.821)
18 0.978 (1.386) 0.895 (1.373) 0.982 (1.378) 0.991 (1.337) 0.976 (1.118) 0.923 (0.846) 0.808 (0.688)

∆tc (ms)
6 187.8 (188.9) 174.7 (173.3) 48.3 (56.5) 28.0 (26.2) 34.8 (34.4) 44.1 (44.4) 46.1 (48.8)
8 191.3 (190.7) 6.9 (6.8) 11.3 (11.6) 14.4 (14.8) 20.9 (19.9) 26.0 (26.2) 30.6 (29.5)
10 3.5 (3.2) 4.8 (4.8) 8.1 (7.6) 10.9 (10.5) 16.3 (15.8) 21.5 (20.2) 24.0 (22.8)
12 3.0 (2.7) 4.0 (3.9) 6.3 (6.2) 9.1 (8.9) 13.8 (13.1) 17.7 (16.3) 19.7 (18.1)
14 2.5 (2.2) 3.4 (3.1) 5.1 (5.0) 7.5 (7.3) 11.5 (11.3) 15.2 (13.6) 16.4 (14.3)
16 2.2 (1.9) 2.9 (2.6) 4.3 (4.3) 6.6 (6.6) 10.8 (9.8) 12.6 (11.1) 14.1 (12.3)
18 2.0 (1.7) 2.6 (2.5) 3.8 (3.8) 5.6 (5.8) 9.1 (8.3) 11.3 (9.6) 12.2 (10.5)

TABLE I. Measurement uncertainties for EOBNRv2HM signals with EOBNRv2HM templates. The values are the (relative) widths
of the 95% credible intervals from the one-dimensional marginalized posterior distributions, scaled by the true value when
indicated. For all runs, q = 1.25 (η = 0.247). θJN = π/3 and θJN = 0 results are shown side-by-side, with the latter in
parentheses.
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SNR Mobs = 50M� 100M� 150M� 200M� 300M� 400M� 500M�
∆Mobs/Mobs

6 16.206 (17.067) 7.659 (7.722) 3.378 (3.896) 1.821 (2.195) 0.966 (1.091) 0.822 (0.930) 0.586 (0.690)
8 16.749 (16.519) 0.336 (0.452) 0.523 (0.626) 0.417 (0.419) 0.362 (0.354) 0.334 (0.320) 0.324 (0.314)
10 15.992 (0.047) 0.138 (0.136) 0.298 (0.229) 0.310 (0.260) 0.292 (0.258) 0.269 (0.262) 0.263 (0.244)
12 0.034 (0.033) 0.111 (0.102) 0.130 (0.110) 0.233 (0.175) 0.253 (0.212) 0.242 (0.214) 0.226 (0.203)
14 0.028 (0.025) 0.091 (0.082) 0.098 (0.084) 0.176 (0.115) 0.220 (0.170) 0.212 (0.174) 0.182 (0.167)
16 0.021 (0.021) 0.078 (0.068) 0.084 (0.068) 0.111 (0.081) 0.196 (0.147) 0.185 (0.153) 0.172 (0.144)
18 0.218 (0.044) 0.072 (0.061) 0.075 (0.058) 0.085 (0.065) 0.173 (0.124) 0.163 (0.128) 0.142 (0.122)

∆η/η
6 1.347 (1.348) 1.343 (1.342) 1.290 (1.314) 1.140 (1.233) 1.035 (1.066) 1.063 (1.043) 1.021 (1.021)
8 1.345 (1.349) 0.817 (0.824) 0.785 (0.826) 0.753 (0.771) 0.717 (0.776) 0.693 (0.744) 0.720 (0.775)
10 1.346 (0.126) 0.478 (0.443) 0.714 (0.623) 0.705 (0.650) 0.648 (0.627) 0.666 (0.645) 0.641 (0.645)
12 0.082 (0.079) 0.344 (0.308) 0.455 (0.389) 0.595 (0.490) 0.597 (0.539) 0.594 (0.551) 0.590 (0.553)
14 0.062 (0.057) 0.272 (0.245) 0.348 (0.295) 0.492 (0.354) 0.547 (0.455) 0.541 (0.459) 0.497 (0.473)
16 0.047 (0.047) 0.227 (0.196) 0.288 (0.237) 0.369 (0.279) 0.503 (0.384) 0.502 (0.412) 0.468 (0.408)
18 0.223 (0.123) 0.203 (0.170) 0.255 (0.202) 0.281 (0.226) 0.450 (0.340) 0.445 (0.354) 0.415 (0.358)

∆Mobs/Mobs

6 20.744 (22.182) 9.828 (10.135) 3.308 (4.837) 1.480 (2.081) 1.268 (1.391) 1.276 (1.368) 1.131 (1.119)
8 21.574 (21.289) 0.613 (0.780) 0.917 (0.934) 0.822 (0.793) 0.780 (0.761) 0.763 (0.745) 0.748 (0.762)
10 20.421 (0.027) 0.164 (0.158) 0.640 (0.521) 0.691 (0.595) 0.682 (0.628) 0.666 (0.639) 0.644 (0.623)
12 0.016 (0.016) 0.109 (0.098) 0.263 (0.208) 0.551 (0.420) 0.609 (0.517) 0.597 (0.534) 0.579 (0.528)
14 0.011 (0.011) 0.080 (0.072) 0.150 (0.130) 0.428 (0.274) 0.547 (0.430) 0.545 (0.443) 0.476 (0.446)
16 0.008 (0.009) 0.064 (0.057) 0.114 (0.101) 0.267 (0.194) 0.485 (0.366) 0.479 (0.392) 0.450 (0.378)
18 0.208 (0.033) 0.056 (0.049) 0.098 (0.084) 0.179 (0.151) 0.432 (0.316) 0.424 (0.330) 0.379 (0.330)

∆dL/dL
6 2.340 (3.107) 1.792 (2.252) 1.503 (2.007) 1.259 (1.658) 1.061 (1.467) 1.119 (1.433) 1.252 (1.537)
8 3.197 (4.272) 2.847 (3.761) 2.465 (3.254) 2.017 (2.683) 1.631 (2.152) 1.693 (2.014) 1.909 (2.189)
10 3.869 (1.842) 1.226 (1.453) 2.090 (2.034) 1.989 (2.128) 1.717 (1.780) 1.691 (1.534) 1.740 (1.495)
12 1.144 (1.388) 0.926 (1.014) 1.019 (1.048) 1.330 (1.271) 1.338 (1.256) 1.272 (1.127) 1.263 (1.039)
14 0.988 (1.147) 0.785 (0.875) 0.750 (0.821) 0.995 (0.941) 1.083 (0.940) 1.006 (0.889) 0.926 (0.839)
16 0.878 (1.036) 0.688 (0.765) 0.656 (0.693) 0.747 (0.719) 0.924 (0.806) 0.852 (0.743) 0.803 (0.676)
18 2.011 (1.183) 0.609 (0.670) 0.609 (0.615) 0.619 (0.634) 0.795 (0.668) 0.750 (0.644) 0.657 (0.589)

∆tc (ms)
6 189.9 (190.2) 185.6 (185.2) 142.4 (166.4) 58.8 (100.6) 54.6 (57.4) 65.2 (65.3) 71.4 (66.7)
8 191.5 (188.9) 11.0 (11.9) 17.3 (19.6) 19.2 (19.3) 26.8 (25.8) 36.7 (34.2) 44.6 (44.7)
10 188.8 (4.4) 7.0 (6.7) 11.1 (10.0) 14.9 (13.1) 21.3 (19.0) 26.1 (24.2) 32.3 (28.1)
12 3.6 (3.4) 6.0 (5.3) 8.2 (7.0) 11.8 (9.7) 18.0 (15.5) 22.3 (19.3) 24.7 (21.2)
14 3.1 (2.9) 5.1 (4.5) 6.7 (5.7) 9.4 (7.8) 15.0 (12.0) 19.1 (15.6) 19.7 (16.7)
16 2.9 (2.6) 4.5 (3.9) 5.8 (4.8) 7.6 (6.1) 13.1 (10.6) 15.8 (13.1) 17.6 (13.6)
18 9.0 (5.1) 4.0 (3.4) 5.1 (4.3) 6.5 (5.4) 11.9 (8.7) 13.6 (10.6) 14.4 (11.6)

TABLE II. Measurement uncertainties for EOBNRv2HM signals with EOBNRv2HM templates. The values are the (relative) widths
of the 95% credible intervals from the one-dimensional marginalized posterior distributions, scaled by the true value when
indicated. For all runs, q = 4 (η = 0.16). θJN = π/3 and θJN = 0 results are shown side-by-side, with the latter in parentheses.
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N. W. Taylor, and A. Zenginoglu, Phys. Rev. D 89,
061502 (2014), arXiv:1311.2544 [gr-qc].


