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Terrestrial gravity noise, also known as Newtonian noise, produced by ambient seismic and in-
frasound fields will pose one of the main sensitivity limitations in low-frequency, ground-based,
gravitational-wave (GW) detectors. It was estimated that this noise foreground needs to be sup-
pressed by about 3 – 5 orders of magnitude in the frequency band 10 mHz to 1 Hz, which will be
extremely challenging. In this article, we present a new approach that greatly facilitates cancellation
of gravity noise in full-tensor GW detectors. The method uses optimal combinations of tensor chan-
nels and environmental sensors such as seismometers and microphones to reduce gravity noise. It
makes explicit use of the direction of propagation of a GW, and can therefore either be implemented
in directional searches for GWs or in observations of known sources. We show that by using the
extra strain channels in full-tensor GW detectors and a modest number of environmental sensors,
the Newtonian-noise foreground can be reduced by a few orders of magnitude independent of the
GW direction of propagation.

PACS numbers: 04.80.Nn, 95.55.Ym, 07.60.Ly, 42.62.Eh, 04.80.-y

I. INTRODUCTION

The advanced generation of large-scale, laser-
interferometric GW detectors LIGO [1] and Virgo [2]
are expected to make the first direct detections of GWs
within the next few years, which will open a new obser-
vational window to the Universe. The Japanese GW de-
tector KAGRA is currently under construction and will
join the detector network near the beginning of the next
decade [3]. These kilometer-scale detectors are designed
to observe GWs in the frequency band between 10 Hz
and a few 1000 Hz. Upgrades of these detectors can po-
tentially extend the band to lower frequencies by a few
Hz [4, 5], but today it seems infeasible to continue devel-
oping the existing facilities into detectors sensitive well
below 10 Hz. Projecting the state-of-the-art GW detec-
tor technology into the near future implemented in a
detector with 10 km arm lengths, and assuming a new
detector site favorable in terms of ambient seismic noise
(and associated gravity noise), it seems feasible to extend
the detection band down to frequencies around 3 Hz, as
was the result of a design study for the European third-
generation detector Einstein Telescope [6]. Completely
new detector designs need to be considered to realize
ground-based GW detectors at even lower frequencies [7].
These include the atom-interferometric [8], the torsion-
bar [9], and the superconducting [10] GW detector con-
cepts targeting signals between 10 mHz and 1 Hz.

The low-frequency sensitivity goals set for any of the
potential future ground-based detectors is strongly influ-
enced by estimates of Newtonian noise (NN). If an ideal
site is selected, which means that seismic and infrasound
noise are near their global minima [11], then GW strain
sensitivities of a few times 10−24 Hz−1/2 can be reached
down to a few Hz without further gravity-noise mitiga-

tion techniques. At less favorable sites, such as the ex-
isting detector sites, or considering lower-frequency de-
tectors, gravity-noise mitigation is required. Proposed
strategies can be divided into two categories; passive and
active noise mitigation. Passive mitigation aims at sup-
pressing sources of gravity perturbation close to a de-
tector’s test masses. The detector buildings hosting the
test masses act as a shield against environmental infra-
sound suppressing associated NN [12]. The construction
of moats has been proposed reflecting incoming seismic
surface waves as a means to reduce NN at the LIGO
sites [13]. Recess structures around the test masses can
also reduce seismically induced NN [14]. However, as
was explained in [14], these techniques are effective only
at higher frequencies around 10 Hz, where the mitigat-
ing structures can have dimensions similar to the lengths
of infrasound or seismic surface waves. Site selection is
also considered a passive mitigation strategy. Building
a GW detector underground, such as the KAGRA de-
tector, greatly suppresses NN from seismic surface waves
above a few Hz [15].

Whenever the passive strategies are not an option or
resulting noise suppression is insufficient, active noise
mitigation needs to be considered. Common to all ac-
tive mitigation strategies is the usage of an array of envi-
ronmental sensors with the purpose to obtain informa-
tion about mass density perturbations in the vicinity
of the test masses. Implementations of these methods
then differ in how one makes use of these data. One
could actively cancel the density perturbations near test
masses using optimal feedback control. For example, mi-
crophones can be controlled to produce sound that can-
cels the ambient sound field inside a chosen volume [16].
A similar scheme may be possible for seismic fields. How-
ever, this approach cannot be effective at very low fre-
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quencies where active cancellation of density fluctuations
must be exerted over large volumes around test masses.
Another idea is feed-forward subtraction where an esti-
mate of the NN obtained from environmental data is used
to cancel the gravity-induced motion of a test mass, or
similarly, the estimate can be subtracted from the de-
tector’s data in a post-processing step. This method
was first investigated in detail for the case of station-
ary NN using Wiener filters [17], and later also tested
in numerical simulations of non-stationary seismic fields
[18]. While in the last publication suppression of NN
from seismic surface waves was achieved using a rela-
tively small array of about 10 seismometers, it is to be
expected that especially subtraction of infrasound NN at
frequencies where it is relevant (below a few Hz) requires
a large number of auxiliary sensors [7]. Suppression of
infrasound NN below 1 Hz by orders of magnitude is con-
sidered an extreme challenge and potential show-stopper
for low-frequency GW detectors.

In this paper, we present a method to optimally reduce
NN in full-tensor GW detectors. Full-tensor detectors
measure all 5 independent components of the gravity-
strain tensor as explained in Section II for the example
of superconducting GW detectors. The basic idea be-
hind the new cancellation scheme is that using data from
a suitable linear combination of some tensor channels
should facilitate NN cancellation in the remaining tensor
channels. This problem is studied analytically in Section
III. It will be shown that tensor NN cancellation still
requires auxiliary environmental sensors, but the prob-
lem is greatly facilitated by including tensor channels.
The optimal combination of tensor channels depends on
the direction of propagation of a GW, and therefore the
method can be applied in directional searches of GWs or
observations of known GW sources. The role of sensor
noise is emphasized in Section IV, where Wiener filters
instead of the analytical expressions are introduced to
find optimal channel combinations. In Section VI, we
propose a practical implementation of the method based
on the simulated noise suppression using Wiener filters.

II. FULL-TENSOR GW DETECTORS

According to general relativity, a gravitational field
is characterized by a curvature tensor. Terrestrial
laser-interferometer GW detectors measure only one off-
diagonal component by combining two orthogonal light
cavities. A full-tensor detector could be constructed by
measuring five degenerate quadrupole modes of a solid
sphere [19, 20]. The bandwidth of the detector could
be widened by using a ”split sphere,” in which six test
masses are suspended from a central mass [21], or a
”dual sphere,” in which a spherical shell encloses an in-
ner sphere [22]. A tensor detector is equally sensitive to
GWs coming from any direction with any polarization
and is thus capable of resolving the source direction and
polarization.

FIG. 1. Test mass configuration for the low-frequency super-
conducting tensor GW detector. Motions of six magnetically
levitated test masses are combined to measure all six compo-
nents of the curvature tensor.

One could construct a low-frequency (0.01 Hz to 10 Hz)
tensor GW detector by using six ”almost free” test
masses [21]. Figure 1 shows the test mass configuration
of such a detector. Six superconducting test masses, each
with three linear degrees of freedom, are levitated over
three orthogonal mounting tubes. The test masses are
made of niobium (Nb) in the shape of a rectangular shell.
Superconducting levitation/alignment coils and sensing
capacitors (not shown) are located in the gap between
the test masses and the mounting tubes, as well as on
the outer surfaces of the test masses. The along-axis mo-
tions of the two test masses on each coordinate axis are
differenced to measure a diagonal component of the wave:

hii(ω) =
1

L
(x+ii(ω)− x−ii(ω)), (1)

where x±ij(ω) is the displacement amplitude of the test
mass on the ±i axis along the j-th axis and L is the
separation between the test masses on each axis. The
cross-axis (rotational) motions of the four test masses on
each coordinate plane are differenced to measure an off-
diagonal component of the wave:

hij(ω) =
1

L

[
(x+ij(ω)− x−ij(ω))

− (x−ji(ω)− x+ji(ω))
]
, i 6= j.

(2)

In addition to measuring the six strain signals, the de-
tector will measure the three linear and three angular
platform acceleration (plus gravity) signals by summing
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the along-axis and cross-axis test mass motions:

aii(ω) = −ω
2

2
(x+ii(ω) + x−ii(ω))

aij(ω) = −ω
2

2

[
(x+ij(ω)− x−ij(ω))

+ (x−ji(ω)− x+ji(ω))
]
, i 6= j.

(3)

These common-mode (CM) acceleration signals are used
to remove the residual sensitivity of the GW detector to
the platform accelerations [10].

Since test mass motion is measured with respect to the
sensing circuit elements mounted on the platform, this
detector requires a rigid platform with mode frequencies
above the signal bandwidth. To reduce its thermal noise,
the platform itself may need to be cooled to 77 K or lower.
To alleviate excessive demand on cryogenics, the plat-
form must not be too heavy while it is rigid enough, with
all the resonance frequencies above 10 Hz. The design de-
tails of this low-frequency tensor detector, called SOGRO
(Superconducting Omni-directional Gravitational Radia-
tion Observatory), will be published elsewhere (Paik et
al., in preparation).

III. NEWTONIAN NOISE FROM
INFRASOUND AND SEISMIC SURFACE FIELDS

In this section, we present the analytical relations be-
tween NN contributions to different channels of the full-
tensor GW detector. We consider the two cases of NN
from seismic surface waves and infrasound, which are
considered the dominant contributions to terrestrial grav-
ity noise below 1 Hz. Rayleigh waves are the only surface
waves producing gravity perturbations. The perturba-
tion of the gravity potential above the surface produced
by Rayleigh waves is given by [7]

δφRf(~%, z, ω) = −2π
γGρ0
k

ξ(ω)e−zkei
~k·~%. (4)

Here, ~% = (x, y), ~k = k(cos(α), sin(α)), G denotes the
gravitational constant, ρ0 the mean mass density of the
ground, ξ(ω) the amplitude of vertical surface displace-
ment, and γ ≈ 0.8 a numerical factor characteristic
for fundamental Rayleigh waves that depends on the
ground’s Poisson’s ratio. We will assume here that the
horizontal wavenumber k obeys the linear dispersion rela-
tion k = ω/cRf , but this is not important for the method
and only simplifies the equations. While the perturbed
gravity potential underground has additional contribu-
tions, for example, from the displacement of cavity walls,
final results presented in this section are independent of
this as long as the depth of the GW detector is not a
significant fraction of the Rayleigh-wave length. So the
choice of considering a surface detector for the Rayleigh
NN calculation is just to simplify some equations.

The gravity gradient tensor is defined as

g(~r, ω) ≡ −∇⊗∇δφRf(~r, ω). (5)

The gravity-gradient tensor can be identified with the
second time derivative of gravity strain, g = ḧ. This
equivalence holds at low frequencies and for ground-based
detectors where the effect of a GW can effectively be
described as a tidal force acting on test masses. The re-
sponse of low-frequency GW detectors to NN is described
by this tensor since the distance between test masses is
much smaller than the length scale of variations in the
gravity field. In other words, the expression for strain
NN in large-scale GW detectors, −∇δφRf/L, with L be-
ing the distance between test masses, is approximately
given by the second spatial derivative in Equation (5).
Consequently, NN in low-frequency detectors is indepen-
dent of L.

For Rayleigh waves, we have

gRf(~r = ~0, ω;α) = 2πγGρ0ξ(ω)k

·

 cos2(α) cos(α) sin(α) −i cos(α)
cos(α) sin(α) sin2(α) −i sin(α)
−i cos(α) −i sin(α) −1

 .
(6)

An arbitrary Rayleigh-wave field can be written as a sum
over many individual waves. Parameterizing the direc-
tion of propagation of a GW by angular spherical coor-
dinates θ, φ, we can define a rotation R(θ) · R(φ) that
aligns the coordinate system of the gravity-noise strain
tensor hRf with the propagation frame of the GW. In
this case, the contribution of the GW to the total strain
tensor h assumes the simple Cartesian form

h′GW =

h+ h× 0
h× −h+ 0
0 0 0

 . (7)

In the GW propagation frame, the z-axis corresponds to
the direction of propagation. The two rotation matrices
are given by

R(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 ,

R(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

 ,

(8)

and the transformation of the gravity-noise tensor reads

h′Rf = R(θ) ·R(φ) · hRf ·R(−φ) ·R(−θ). (9)

Let us now take the sum h′ of a single GW h′GW and
Rayleigh-wave NN

∑
i h
′
Rf(αi, ξi). It can be shown that

the following relations hold:

h+ = h′11 − 2 cot(θ)h′13 + cot2(θ)h′33

+ csc2(θ)2πγGρ0
k

ω2

∑
i

ξi(ω),

h× = h′12 − cot(θ)h′23

+ i csc(θ)2πγGρ0
k

ω2

∑
i

ξi(ω) sin(αi − φ).

(10)
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The sum over displacement amplitudes in the first equa-
tion simply denotes the total amplitude of vertical seis-
mic surface displacement at the GW detector. Applying
a trigonometric addition theorem, the sum over Rayleigh
waves in the second equation can be rewritten in terms
of horizontal seismic displacement of the Rayleigh-wave
field along the two directions x, y. Therefore, a linear
combination of tensor channels and one or two seismic
channels (CM accelerations) can be found that perfectly
cancels NN in the two target channels h11, h12. Since
the linear combination involves csc(θ) and cot(θ) func-
tions that can become very large, it should be intuitively
clear that the analytical relation cannot be used in prac-
tice when channels are also contaminated by additional
instrumental noise. These noise contributions would be
amplified by the gravity-noise cancellation. A practical
solution to this problem is investigated in Section IV.

Next, we repeat the calculation for infrasound NN.
Here, we choose to calculate the gravity perturbation un-
derground. We simply want to avoid the technical prob-
lem of placing the GW detector inside the fluctuating
density field (i. e. the infrasound field), which leads to ad-
ditional terms in the NN. Avoiding these terms does not
change the final results or applicability of the method.
Below surface, the perturbation of the gravity potential
by a plane infrasound wave reflected from the surface
reads

δφIS(~%, z, ω) = −4π
Gρ0
γp0

δp(ω)

k2
ezkhei

~kh·~%, (11)

where δp(ω) is the amplitude of pressure fluctuations,
γ the adiabatic coefficient of air, p0 the mean air pres-
sure, ρ0 the mean air mass density, and kh the horizontal
wavenumber of an infrasound wave. This leads to the
gravity-gradient tensor

gIS(~r = ~0, ω;α, β) = −4π
Gρ0
γp0

δp(ω) sin2(β)

·

 cos2(α) cos(α) sin(α) −i cos(α)
cos(α) sin(α) sin2(α) −i sin(α)
−i cos(α) −i sin(α) −1

 .

(12)

The matrix is identical to the Rayleigh-wave matrix in
Equation (6). As before, the angle α specifies the direc-
tion of propagation of the wave along the horizontal direc-
tion. The factor sin2(β) is owed to the fact that the hori-
zontal wavenumber of an infrasound wave, kh = k sin(β),
depends on the angle of incidence β with respect to the
surface normal.

The equations for the noise cancellation are given by

h+ = h′11 − 2 cot(θ)h′13 + cot2(θ)h′33

+ csc2(θ)
4π

ω2

Gρ0
γp0

∑
i

δpi(ω) sin2(βi),

h× = h′12 − cot(θ)h′23

+ i csc(θ)
4π

ω2

Gρ0
γp0

∑
i

δpi(ω) sin2(βi) sin(αi − φ).

(13)

Here, we can see that the case of infrasound cancel-
lation is more challenging. The sums over infrasound
waves do not correspond to easily observable quantities.
For example, a microphone collocated with the GW de-
tector would observe

∑
i δpi(ω) independent of the an-

gles αi, βi. Directional information could come from a
gravimeter sensing associated fluctuations of the gravity
field. Still, the sums cannot be rewritten in terms of
gravimeter channels (CM acceleration) due to additional
factors sin(βi). Another problem of gravimeter channels
is that they would be dominated by seismic noise at fre-
quencies above 10 mHz, which makes these channels use-
less for the cancellation of infrasound NN.

In this section, we have presented analytical expres-
sions describing a new approach to cancel NN in full-
tensor GW detectors. Cancellation of Rayleigh NN as
shown in Equation (10) can be achieved with tensor chan-
nels and an additional 3-axis seismometer. In the ten-
sor detector described in Section II, the CM acceleration
channels of the detector provide a three-axis linear and
three-axis angular seismometer with SNR in excess of 105

at 0.1 – 0.3 Hz. However, we have seen in Equation (13)
that cancellation of infrasound NN is more challenging.
A term remains that cannot be observed by a single mi-
crophone. Nonetheless, it is shown in Section IV that
tensor channels greatly simplify the noise cancellation.
Furthermore, while the analytical expressions cannot be
used when including instrumental noise, it will be shown
that efficient subtraction using only a small number of
environmental sensors is still possible, for Rayleigh and
infrasound NN.

IV. NEWTONIAN NOISE CANCELLATION IN
TENSOR GW DETECTORS

It was estimated that low-frequency GW detectors
need to achieve strain sensitivities of about 10−20 Hz−1/2

above 0.1 Hz in order to have good chances to observe
GWs [7]. In Figure 2, a sensitivity model is shown to-
gether with estimates of the seismic (Rayleigh) and in-
frasound NN. It can be seen that seismic NN needs to
be suppressed by about 3 orders of magnitude, and in-
frasound NN by about 5 orders of magnitude. This is a
truly daunting challenge and is rightfully considered a po-
tential show-stopper for ground-based, low-frequency de-
tectors. In order to achieve this suppression, it was pro-
posed that large arrays extending over square-kilometers
made of several tens to hundreds of sensors are to be
deployed around the GW detector. The environmental
sensors need to monitor their signals with sufficient sen-
sitivity to avoid significant sensor-noise contributions in
the cleaned strain channels.

Assuming array configurations designed with maxi-
mized efficiency (no sensor can be removed without in-
creasing noise residuals to an unacceptable level), the
sensor signal-to-noise ratio (SNR) needs to be at least
as high as the inverse of the suppression goal. For low-
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FIG. 2. Sensitivity target for low-frequency GW detectors
as first derived for the MANGO detector concepts [7]. The
two NN estimates are based on measured seismic [23] and
infrasound spectra [24].

frequency detectors, this means that seismometers need
to sense seismic displacement with SNR > 1000, and mi-
crophones need to sense pressure fluctuations with SNR
> 105 at 0.1 Hz. Requirements can be far more demand-
ing for microphones than suggested by this rule of thumb.
The additional challenge with infrasound NN cancella-
tion is that the density perturbations are described by a
3D infrasound field, but the array can only be deployed at
the surface. This greatly limits the ability to extract the
required information from the infrasound measurements,
and affects the optimal array configuration. Irrespective
of the intrinsic sensitivity of microphones to pressure fluc-
tuations, wind noise poses a challenge for high-sensitivity
infrasound monitoring [25]. Consequently, a solution of
the infrasound NN problem requires new methods and
technology.

It is assumed that all noise is stationary and Gaussian,
which means that optimal noise cancellation is achieved
with Wiener filters [26]. In frequency domain, the Wiener

filter is a vector mapping reference channels ~R to an es-
timate n̂ of the NN according to

n̂(ω) = ~w(ω) · ~R(ω). (14)

This form makes use of the fact that noise at different
frequencies is uncorrelated. If the Wiener filter is ap-
plied in time domain, then the last equation needs to be
substituted by a convolution between the filter and the
reference channels [27]. The estimated NN n̂ is subse-
quently subtracted from the target channel.

A Wiener filter is calculated from the matrix CRR of
correlations between reference channels, which contains
the sensor noise contributions on the diagonal, and corre-

lations ~CRT between reference channels and target chan-
nel. In general, correlations between channels have to
be estimated from measurements, but here we assume
that the density fields are isotropic (in a 2D sense for
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FIG. 3. Estimated SNRs of reference channels. The self-noise
of the seismometer lies a factor 10 below commercially avail-
able broadband instruments. The self-noise of the microphone
is already achieved in current instruments. Wind noise is not
included (see [28] for a recent review on wind noise reduction
methods). SOGROs CM channels function as seismometers
with 1000× higher SNRs.

the Rayleigh field, and for the half-sphere of incident in-
frasound waves), which allows us to calculate the cor-
relations precisely. Examples of calculated correlations
between seismometers and gravity data can be found in
[15, 18]. In the notation of the previous section, the tar-
get channels of the noise cancellation are h′11, h

′
12. The

reference channels consist of all environmental sensors
and the strain channels h′13, h

′
23, h

′
33. The components

of the Wiener filter are given by

~w(ω) = ~C>RT(ω) · (CRR(ω))−1. (15)

In order to evaluate the performance of a Wiener filter,
we plot the residual spectrum of the target channel after
NN subtraction relative to the initial spectrum CTT(ω)
of the target channel. The residual is given by [17, 18]

r(ω) = 1−
~C>RT(ω) · (CRR(ω))−1 · ~CRT(ω)

CTT(ω)
(16)

The relative subtraction residuals r(ω) have frequency
dependence since a distributed array of reference chan-
nels has frequency-dependent correlations between chan-
nels, and also since sensor SNRs vary with frequency, as
shown in Figure 3.

In the following subsections, we investigate Wiener fil-
tering of infrasound and Rayleigh NN in detail. Results
are presented only for the h′11 target channel. Noise resid-
uals are similar for h′12, but we point out that since the
Rayleigh NN cancellation ideally requires horizontal seis-
mometer channels, there may be additional noise from
surface shear waves (Love waves) that contribute to hor-
izontal surface motion without producing gravity noise.
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A. Rayleigh Newtonian noise

In the following, we demonstrate the effect of strain ref-
erence channels on residuals after subtraction of Rayleigh
NN. Figure 4 shows the residual noise in h′11 using 7
seismometers on a 5 km ring around the detector, and
the vertical CM channel of the detector. The speed of
Rayleigh waves is equal to 3.5 km/s assumed here to be
independent of frequency. For simplicity, we also assume
that the seismometers measure seismic displacement with
a frequency-independent SNR = 1000 (the CM channel
with 1000× higher SNR), and the strain channels mea-
sure Rayleigh NN with frequency-independent SNR =
1000. Frequency-dependent SNRs require yet to be de-
veloped numerical tools to optimize sensor arrays used
for NN cancellation.

It is worth discussing in detail how this result compares
to the analytical expression in Equation (10). First, if
only the seismic channel at the detector were used, then
residuals near θ = 0, π would grow to values close to
1 independent of frequency. This case is represented in
Figure 4 by the residuals at frequencies > 0.3 Hz, where
the seismometers on the ring have vanishing impact on
residual noise. Residual noise close to 1 is already better
than predicted by Equation (10), since the cot(θ), csc(θ)
factors mean that noise in reference channels is amplified
to infinity at these angles. The Wiener filter avoids excess
noise as can be understood from Figure 5. It shows the
non-zero Wiener filter coefficients with reference chan-
nels consisting of the strain channels, the CM vertical
channel, and 7 seismometers on a 5 km ring. Since the
filter magnitude varies over orders of magnitude, the log-
modulus transform, f(x) ≡ sgn(x) log10(1 + |x|), was ap-
plied [29], where sgn is the signum function. The dashed
curves show noise residuals for infinite sensitivity refer-
ence channels. As expected, filter coefficients tend to in-
finity near θ = 0, π. The curves differ from the analytical
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FIG. 5. Filter coefficients of a noiseless Wiener filter for
Rayleigh NN subtraction at 0.1 Hz (dashed), and using ref-
erence channels with SNR = 1000 except for the CM vertical
channel, which has SNR = 106 (solid). Coefficient w(h′

23) = 0
in both cases. Gray curves in the background are for the 7
seismometers on a 5 km ring.

expression in Equation (10) due to additional seismome-
ters on the ring. If reference channels have finite SNRs,
then the Wiener filter has reduced coefficients towards
the boundaries. In this way, the Wiener filter avoids in-
jecting excess sensor noise into the target channel at the
price of vanishing NN cancellation. The filter coefficients
also explain why the noise residuals in Figure 4 are very
small near θ = π/2. For this value of θ, the only reference
used in the NN cancellation is the vertical CM channel,
which has very high SNR. In comparison, the impact of
the CM channel on residuals near θ = 0, π is less pro-
nounced since the residuals are dominated by noise from
the strain and seismometer channels.

Figure 4 also shows that, if seismometers are added to
form a ring around the detector, then subtraction per-
formance is increased substantially for all values of θ, es-
pecially within a certain frequency band. This frequency
band can be chosen by adjusting the radius of the ring.
The optimal radius for a certain target band depends on
the Rayleigh-wave speed and on the SNR of the reference
channels. The higher the SNR or the lower the speed, the
smaller the optimal ring radius.

A direct comparison between the case with and with-
out tensor channels is shown in Figure 6. As before,
the configuration of the seismic array consists of 7 seis-
mometers on a ring with 5 km radius, the vertical CM
and strain channels. It can be seen that in the case of
Rayleigh NN subtraction, strain reference channels help,
but do not lead to a large decrease of residuals compared
to the conventional scheme based on seismometers alone.
However, one should keep in mind that the residuals
based on only local reference channels is competitive with
the residuals of the full Wiener filter for 0.5 < θ < 2.6.
Using exclusively local channels not only simplifies the
experimental setup, but also potentially results in an in-
creased robustness of the subtraction performance with
respect to wave scattering and contributions from local
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seismic sources. These claims need to be tested in more
detailed simulations.

B. Infrasound Newtonian noise

Next, we present analogous results for infrasound NN
subtraction. Noise residuals using 7 microphones on a
1 km ring around the detector, another 7 microphones on
a 600 m ring, one microphone located at the detector, and
strain channels are shown in Figure 7. The strain chan-
nels measure infrasound NN with frequency-independent
SNR = 105, and we assume that microphones measure
pressure fluctuations with frequency-independent SNR =
104. With these parameter settings, noise residuals lie
above the required 10−5 level. Increasing the microphone
SNR and correspondingly decreasing the radii of the rings
(see Section V) would further lower residuals, but de-
veloping such microphones will not be straight-forward.
The combined effect of the two microphone rings is good
broadband performance of the noise cancellation. Adding
another smaller microphone ring would lower residuals at
higher frequencies. While increased residuals were to be
expected from Equation (13) near θ = 0, π, the micro-
phones ensure that residuals only weakly depend on θ.
Subtraction residuals at 0.1 Hz would be greater by al-
most an order of magnitude if only a single microphone
ring were deployed.

Subtraction performance is generally worse compared
to the Rayleigh NN case since infrasound NN is caused by
a 3D wavefield that is monitored by a microphone array
constrained to Earth surface. Being composed of evanes-
cent waves, the Rayleigh seismic field also displaces the
ground below surface, but since Rayleigh waves are gen-
uinely surface waves, a seismic array deployed at the sur-
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FIG. 7. Relative residuals of infrasound NN subtraction
in channel h′

11 using 15 microphones. Microphones have
SNR = 104, and the strain channels SNR = 105. Residu-
als are independent of angle φ.

face can extract all information about associated density
fluctuations.

The Wiener filter coefficients in Figure 8 confirm that
the infrasound NN subtraction is more challenging. First,
the plotted filter coefficients are far off the analytical ex-
pression in Equation (13). This was to be expected since
Equation (13) states that no simple combination of lo-
cal reference channels can provide an accurate estimate
of NN. In contrast to the Rayleigh NN case, where good
subtraction can also be achieved with local channels only,
at least for a range of values of θ, deployment of a mi-
crophone array is essential to achieve good subtraction
performance. The dashed curves show the filter coeffi-
cients with a single microphone located at the detector,
while the solid curves are calculated for a Wiener filter
that includes 7 additional microphones on a 600 m ring.
Microphones measure pressure fluctuations with SNR =
104, and strain channels measure infrasound NN with
SNR = 105. Comparison between the two sets of curves
in Figure 8 shows that the microphones on the ring con-
tribute substantially to the noise cancellation, since the
coefficients are greatly modified when including the extra
microphones. Among all local channels, only h′33 con-
tributes to a NN estimate near θ = 0, π in both cases.
Note that for Rayleigh NN, the filter coefficient of h′33 was
zero at these angles to avoid excess sensor noise. The sit-
uation for infrasound NN is different since the analytical
expression in Equation (13) does not represent a noiseless
Wiener filter (the last term is not directly observed by
any channel). The noiseless Wiener filter for infrasound
NN cancellation does not have coefficients diverging at
θ = 0, π.

Coefficients of the Wiener filter for infrasound NN sub-
traction generally depend weakly on the SNR of refer-
ence channels. The coefficients in Figure 8 would look
the same for any SNR values greater than 10. In order
to achieve the low residuals in Figure 7, it was neces-
sary to deploy two rings of microphones, a total of 15
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FIG. 8. Wiener-filter coefficients using microphones with SNR
= 104 and strain channels with SNR = 105 for infrasound
NN subtraction. Coefficient w(h′

23) = 0 in all cases. Dashed:
Single microphone located at the detector. Solid: Seven mi-
crophones on a 600 m ring around the detector and a single
microphone located at the detector. Subtraction is calculated
at 0.1 Hz. Only the coefficient for the microphone at the de-
tector is plotted.

microphones being used for the noise cancellation. At
this point, one may wonder if the strain reference chan-
nels still contribute significantly to the subtraction per-
formance. Figure 9 shows that, in contrast to Rayleigh
NN, reference strain channels play a very important role
in infrasound NN subtraction. The dotted-dashed curve
shows the noise residuals if only local channels are used
(i. e. strain channels and one microphone). Subtraction
performance is very poor. The dashed curve shows sub-
traction residuals if only microphones are used. In this
case, subtraction can be excellent, but only for values of
θ close to 0, π/2, π. If all channels are included, then
excellent subtraction performance is achieved for all val-
ues of θ (solid curve). This means that microphone array
and strain channels both play an important role.

V. COMPARISON WITH NN CANCELLATION
IN CONVENTIONAL GW DETECTORS

In this section, we compare the tensor NN cancella-
tion with NN cancellation in conventional GW detectors,
by which we mean any of the low-frequency concepts that
observe only a single component of the gravity strain ten-
sor, or a single combination of components. This case was
investigated in [7]. It should be noted that the following
discussion also applies to sensor arrays used for cancella-
tion in full-tensor GW detectors. The only difference is
that the additional strain channels of a full-tensor detec-
tor need to be included to achieve the same reduction.

First, we point out that the noise residuals plotted in
Figures 6 and 9 labelled “environmental”, i. e. using only

0
10

−4

10
−3

10
−2

10
−1

10
0

π/4 π/2 3π/4 π
θ [rad]

R
es

id
ua

l

 

 

All
Environmental
Local

FIG. 9. Relative residuals of infrasound NN subtraction at
0.1 Hz in channel h′

11 using strain channels and 15 micro-
phones. The solid curve shows the residuals including all
strain and microphone reference channels, the dashed curve
using only microphones, and the dotted-dashed curve using
only local channels, which means the strain channels and one
microphone located at the detector. Strain channels have
SNR = 105 and microphone channels have SNR = 104.

environmental sensors, do not represent the case of con-
ventional GW detectors. This is because the GW channel
is obtained as a combination of strain channels depend-
ing on the GW’s direction of propagation. Nonetheless,
the residual at θ = 0 can be compared with residuals in
conventional detectors since it represents the case where
no frame rotation is applied. What this means is that
we can expect residuals of close to 10−3 at 0.1 Hz for
Rayleigh and infrasound NN in conventional detectors.

Figure 10 shows the Rayleigh NN residuals in conven-
tional GW detectors for circular seismic arrays with an
additional seismometer located at the GW detector. All
seismometers have a frequency-independent SNR = 1000.
For this SNR, the configuration with 8 sensors is the most
efficient for NN cancellation at 0.1 Hz. Removing only
one sensor significantly increases the residual at 0.1 Hz,
while adding many more sensors does not significantly
lower residuals at 0.1 Hz. The curves obey different limi-
tations. Only the result with N = 14 sensors comes close
to the sensor-noise limit 1/SNR/

√
N . The residuals are

partially determined by the geometrical limitation of the
seismometer array to disentangle waves of the Rayleigh
field. This is generally the case for all curves below some
frequency, e. g. below 0.2 Hz for N = 14 sensors.

The low-frequency limitation is related to the ability
of the array to measure differential displacement between
seismometers, which depends on the sensor SNR, but also
on the size of the array relative to the length of Rayleigh
waves. Increasing the SNR by a factor 10 lowers the resid-
uals at these low frequencies by a factor 10. At higher
frequencies, e. g. above 0.1 Hz for the 8-sensor array, the
noise residuals are independent of SNR unless residuals
are close to the sensor-noise limit as for the 14-sensor ar-
ray. Noise residuals at these frequencies are determined
by the density of sensors in the array (or the sensor noise
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FIG. 10. Rayleigh Newtonian noise residuals in conventional
GW detectors using N seismometers. The array configuration
has N−1 seismometers equally spaced on a 5 km ring, and one
seismometer collocated with the detector. All seismometers
have SNR = 1000. The black horizontal line shows the sensor-
noise limit 1/SNR/

√
N , for N = 14.

limit), and the inability to resolve short Rayleigh waves
cannot be compensated by increasing SNR.

The curve with N = 8 sensors can be compared with
the results in Figure 4 and Figure 6. As to be expected
from the previous discussion, residuals of Rayleigh NN in
conventional GW detectors are similar to residuals in full-
tensor GW detectors. Only the high-SNR CM channel in
the full-tensor GW detector gives a significant advantage
for Rayleigh NN cancellation if GWs are incident from
angles θ ≈ π/2.

Next, we repeat the previous analysis for infrasound
NN. The noise residuals for a conventional GW detec-
tor are shown in Figure 11. First, it can be observed
that the sensor-noise limit is not reached by any of the
curves. In fact, the residuals with N = 81 microphones
do not significantly differ from residuals with even higher
numbers of microphones. This is caused by using a two-
dimensional microphone array to subtract gravity pertur-
bations from a three-dimensional field of density fluctua-
tions, which poses strong limitations on the cancellation
performance. However, reduction of residuals at lower
frequencies, e. g. below 0.1 Hz for the N = 81 case, and
below 40 mHz for the N = 11 case, can be achieved by
increasing SNR.

In principle, significant reduction of noise residuals
over the entire band can be obtained by decreasing the
diameter of the array, and then using much more sen-
sitive microphones, but SNRs of 104 are already push-
ing the horizon of what can possibly be achieved in the
foreseeable future. Disregarding the SNR challenge, this
method works (also for the case of Rayleigh NN) since
smaller arrays have a higher-frequency turnover between
limitations from the low-frequency differential sensitiv-
ity of the array and the high-frequency, short-wavelength
resolution. More explicitly, the decrease in ring radii
shifts the residuals towards higher frequencies without
changing the shape and values of the curve, and subse-
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FIG. 11. Infrasound Newtonian noise residuals in conven-
tional GW detectors using N microphones. The array con-
figuration has (N − 1)/2 microphones equally spaced on a
0.6 km ring, another (N − 1)/2 microphones equally spaced
on a 1 km ring, and one microphone collocated with the detec-
tor. All microphones have SNR = 104. The black horizontal
line shows the sensor-noise limit 1/SNR/

√
N , for N = 15.

quently increasing SNRs reduces the low-frequency part
of noise residuals. For example, for a N = 15 microphone
array, decreasing the radii of the rings by a factor 2, and
increasing the SNRs by a factor 30, residuals at 0.1 Hz
are lowered by an order of magnitude. The more sensors
form the array, the smaller needs to be the increase in
SNR to achieve the same reduction in residuals. This is
because the slope of the curves in Figure 11 above 0.1 Hz,
where the residuals are independent of SNR, is steeper
for arrays with larger numbers of sensors, and therefore
this part of the curve extends more steeply towards lower
frequencies when increasing the SNR.

The NN residuals at 0.1 Hz shown in Figures 10 and
11 are the same as the residuals shown in Figures 4 and
7 at θ = 0. For angles closer to θ = π/2, the full-tensor
detector achieves better NN cancellation. This is gener-
ally true for all full-tensor detectors due to properties of
the two specific NN sources investigated in this paper. In
addition, if the full-tensor detector, such as the SOGRO
concept presented in Section II, provides very sensitive
local acceleration sensors, then additional suppression is
achieved for Rayleigh NN, again near θ = π/2.

VI. DISCUSSION

Combining Figures 6 and 9, we come to a clear con-
clusion towards an efficient scheme of NN cancellation
in full-tensor GW detectors. Since Wiener filter coef-
ficients of the strain channels for Rayleigh and infra-
sound NN are different, it is impossible to cancel both
simultaneously. However, we have seen that Rayleigh
NN can be cancelled efficiently without including strain
channels, whereas subtraction of infrasound NN profits
greatly from strain channels. Consequently, we propose
the following strategy. As a first step, Rayleigh NN
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needs to be cancelled in all 5 independent strain chan-
nels. Good broadband subtraction performance can be
achieved with spiral seismometer arrays consisting of a
few tens of seismometers with SNR = 1000 at the mi-
croseismic peak [7]. The required sensitivity of the seis-
mometers is also near the sensitivity of available com-
mercial instruments [30].

When the strain channels are cleaned from Rayleigh
NN, the next step is to subtract infrasound NN using
microphones and the strain channels. We have seen that
noise residuals are greatly reduced compared to subtrac-
tion with microphones only. Information about the 3D
infrasound field, which cannot be retrieved with a 2D mi-
crophone array is partially provided by the strain chan-
nels. Subtraction residuals still do not reach the sensor-
noise limit, but compared to the scheme with micro-
phones only, residuals are lowered by orders of magnitude
depending on the direction of propagation of the GW.
Therefore, we conclude that the problem of NN mitiga-
tion in full-tensor GW detectors is greatly facilitated by
using its additional strain channels.

Certain aspects of low-frequency NN cancellation de-
mand or deserve a deeper analysis. First of all, SNRs
of the sensors are frequency-dependent although we used
frequency-independent SNRs to simplify our calculation.
In a real experiment, the NN would be removed using
Wiener filters with sensor arrays optimized for the ac-
tual measured SNRs. Numerical tools for array opti-
mization need to be developed. Second, it is conceivable
that mitigation schemes relying on local channels rather
than on data from large distributed arrays are more ro-
bust against wave scattering and disturbance from local
sources, which both influence the spatial correlation of
seismic or infrasound fields. Clearly, it is always easier
to optimize a noise cancellation based on local channels,
but there may be additional advantages of using strain
channels with respect to robustness of the performance.
Robustness can play a very important role since gravity
perturbations need to be understood at a level 1/1000 for
Rayleigh NN or 1/105 for infrasound NN. Especially for
the infrasound microphones, it is unclear whether such

level of accuracy in the monitoring itself can be achieved.
Here, we do not refer to the intrinsic readout noise of the
sensors, but environmental noise, for example, from wind
[25].

Also, it is not yet understood if a change of spatial
correlation due to scattering or local sources poses a lim-
itation to the subtraction performance, which can only
be overcome by deploying additional environmental sen-
sors, or if it leads to modification of NN and density fields
in such a way that a simple rearrangement of senors can
compensate the loss in subtraction performance without
increasing the number of sensors. These considerations
play an important role for high subtraction goals and at
low frequencies since it is highly unlikely that a location
can be identified where heterogeneities of the ground and
surface profile are negligible over the relevant volumes
[31]. Nonetheless, all these challenges exist for any type
of NN mitigation at low frequencies, and one may expect
that they impact coherent noise mitigation more strongly
in schemes based on large sensor arrays than on schemes
partially relying on strain channels and a smaller number
of environmental sensors.

Finally, given the fact that infrasound NN needs to be
understood at a level 1/105 for a complete cancellation
of the noise, approximations in our gravity models such
as negligible size of the GW detector or placing the de-
tector at the surface despite the fact that it may be a
few hundred meters underground potentially lead to sig-
nificant modelling errors. More accurate models need to
be investigated to find out if the mitigation scheme pro-
posed in this article needs to be modified for the most
ambitious noise-suppression goals.
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