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We study the breaking of rotational symmetry on the lattice for irreducible tensor operators and practical

methods for suppressing such breaking. We illustrate the features of the general problem using an α cluster

model for 8Be. We focus on the lowest states with non-zero angular momentum and examine the matrix elements

of multipole moment operators. We show that reduced matrix elements are well reproduced by averaging over

all possible orientations of the quantum state. This averaging is performed in terms of a sum of matrix elements

weighted by the Clebsch-Gordan coefficients of each orientation. For our α cluster model, we find that the

effects of rotational symmetry breaking can be largely eliminated for lattice spacings of a ≤ 1.7 fm, and we

expect similar improvement for lattice Monte Carlo calculations.

PACS numbers: 12.38.Gc, 03.65.Ge, 21.10.Dr

I. INTRODUCTION

In recent years, lattice Monte Carlo calculations have been widely

applied to the study of nuclear structure [1–3]. In particular, chiral

Effective Field Theory (chiral EFT) combined with lattice methods

has been employed to study the spectrum and structure of light and

medium-mass nuclei [4–8]. In such calculations, continuous space-

time is discretized and compactified, which simplifies the numerical

treatment of path integrals. The mesh points uniformly span a cubic

box, and boundary conditions (such as periodic ones) are imposed

in each dimension. In general, on the lattice the bound state state

energies and wave functions deviate from their continuum infinite-

volume counterparts due to discretization errors and finite-volume

effects.

Much effort has already been devoted to the removal of lattice

artifacts in field-theoretical calculations. For instance, the finite-

volume energy shifts for two-body bound states [9–18] and for two-

body resonances and scattering problems [19–23] have been stud-

ied in detail. There is also ongoing research to extend these results

to bound states with more than two constituents [12, 13, 24–28].

The removal of artifacts due to non-zero lattice spacing is a more

complicated issue. For chiral EFT, the lattice improvement program

proposed by Symanzik et al. [29–31] provides a framework for the

systematical reduction of discretization errors. Such a method has

also been applied to Yang-Mills theories [29, 30], gauge field the-

ories [31–34] including QCD [35]. Also, Dudek et al. [36] have

proposed a method where the continuum spin of meson [37] and

baryon [38, 39] excited states in lattice QCD can be reliably iden-

tified. Meanwhile, Davoudi et al. [40] have quantified the breaking

and restoration of rotational invariance at both tree level and one-

loop level by means of lattice operators smeared over a finite spatial

region.

On the lattice, the rotational symmetry group is reduced to the fi-

nite group of cubic rotations, according to SO(3)→ SO(3,Z). Sev-

eral basic rules based on the argument of rotational invariance are

therefore violated on the lattice. For instance, in the continuum and

infinite-volume limits, quantum bound states with angular momen-

tum J form a degenerate multiplet of 2J + 1 components, while on

the lattice these energy levels split into subgroups corresponding to

different irreducible representations (irreps) of the cubic group [41–

43]. The sizes of such energy splittings are dictated by the lattice

spacing, the extent of the finite volume, and the boundary condi-

tions.

In Ref. [44], the breaking of rotational symmetry on the lattice

for bound state energies was studied within an α cluster model. It

was shown that the calculated energy is minimized when the natural

separation between particles is commensurate with the distance be-

tween lattice points along the preferred lattice directions associated

with a given angular momentum state1. It was also shown that the

multiplet-averaged energy is closer to the continuum limit than any

single energy level. These results can be applied to future ab ini-

tio lattice studies of nuclear systems where α cluster structures are

important.

Here, we extend the analysis of the binding energy in Ref. [44]

to other observables of interest, such as nuclear radii, quadrupole

moments, and transition probabilities. For instance, an anomalously

large radius compared with the usual∼A1/3 scaling law is indicative

of structure analogous to halo nuclei [45, 46], while the intrinsic

quadrupole moment is related to the appearance of rotational bands

observed in deformed nuclei [47].

For this purpose, we consider irreducible tensor operators sand-

wiched between pairs of bound-state wave functions. In the con-

tinuum limit, such expressions can be factorized and simplified ac-

cording to the Wigner-Eckart theorem. Due to the lack of rotational

symmetry on the lattice, such factorization is no longer possible and

the analysis becomes more involved. Similarly, continuum selec-

tion rules for electromagnetic transitions are not exactly satisfied

on the lattice, and hence transitions that are absolutely forbidden

(in the continuum) by rotational symmetry arguments may assume

non-vanishing amplitudes on the lattice. Our objective in such cases

is to find appropriate corrections to these matrix elements, in order

to minimize symmetry-breaking effects.

We shall now proceed to investigate anisotropic lattice artifacts in

the matrix elements of irreducible tensor operators, and search for

a practical method to restore full rotational symmetry. The details

1 By commensurate, we mean equal to the length of a given lattice vector.
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of the chosen interaction are not essential to our general analysis.

We therefore work with the same α cluster model as was used in

Ref. [44], where the α-α interaction is approximated by an Ali-

Bodmer type potential adjusted to produce a bound 8Be nucleus.

II. THEORETICAL FRAMEWORK

A. Alpha cluster Hamiltonian

Let mα = 3727.0 MeV denote the mass of the α particle, and

µ = mα/2 the reduced mass. Our starting point is the continuum

Hamiltonian

H ≡−∇2

2µ
+V (r), (1)

where r =
√

x2 + y2 + z2 is the distance between the two α particles,

V ≡ VN +VC is the α-α potential, including nuclear and Coulomb

contributions.

While our two-body potential is identical to that used in Ref. [44],

we shall briefly review its functional form and parameters. For the

nuclear part of the α-α interaction, we use an isotropic Ali-Bodmer-

type potential,

VN(r)≡V0 exp(−η2
0 r2)+V1 exp(−η2

1 r2), (2)

where V0 = −216.0 MeV, V1 = 354.0 MeV, η0 = 0.436 fm−1 and

η1 = 0.529 fm−1, determined by fixing the S- and D-wave α-α scat-

tering lengths to their experimental values. The Coulomb potential

is given by

VC(r)≡
4e2

r
erf

(√
3r

2Rα

)

, (3)

where Rα = 1.44 fm is the radius of the α particle, e is the funda-

mental unit of charge and “erf” denotes the error function.

We note that with the above parameters, the 8Be nucleus is un-

bound. Since our objective is to study bound-state properties, we

increase V0 by 30%. With this adjustment, the 8Be nucleus pos-

sesses a ground state at E(0+) = −10.8 MeV and one excited state

at E(2+) =−3.3 MeV, measured relative to the α-α threshold.

On the lattice, the spatial vector rrr assumes discrete values, and

thus we may express the Hamiltonian (1) in terms of a matrix. In a

box of size L, we impose periodic boundary conditions on the wave

functions, according to

ψ(rrr+ nnniL) = ψ(rrr), (4)

where the nnni with i = x,y,z are unit vectors along the three coordi-

nate axes. The energy eigenvalues and wave functions of 8Be can

then be obtained by diagonalization of a Hamiltonian matrix of di-

mension (L/a)3 × (L/a)3.

We express the kinetic energy term of the Hamiltonian (1) by

means of a finite difference. For instance, in one dimension we

have

f ′′(x)≈ c
(N)
0 f (x)+

N

∑
k=1

c
(N)
k [ f (x+ ka)+ f (x− ka)] , (5)

where a is the lattice spacing and c
(N)
k is a fixed set of coefficients.

The formula of order N involves 2N +1 lattice points, and the trun-

cation error is of O(a2N). The coefficients c
(N)
k can be found for

N ≤ 4 in Ref. [44]. Here, we express the Laplace operator using the

N = 4 formula. This choice removes most of the rotational symme-

try breaking effects due to the kinetic energy operator.

B. Lattice wave functions

The continuum Hamiltonian (1) is invariant under spatial rota-

tions. As a result, the bound states of H form angular momentum

multiplets. Let us denote the bound-state wave functions by φlm,

where the integer l is the angular momentum and the integer m its

z-component, with −l ≤ m ≤ l. For systems with more than one

bound state with the same value of l, additional radial quantum num-

bers are required. Such cases are not considered here. The angular

dependence of these wave functions are given by the spherical har-

monics Ylm.

On the lattice, the multiplets of angular momentum l are split into

irreps of the cubic rotational group SO(3,Z). The splitting patterns

of the multiplets for l ≤ 8 were given in Ref. [44]. In order to specify

the wave functions belonging to the same irrep, we define a quantum

number k valid on the lattice through the relation

Rz

(π

2

)

≡ exp
(

−i
π

2
k
)

, (6)

where Rz(π/2) is a rotation around the z-axis by π/2. The inte-

gers k equal m modulo 4, and are non-degenerate for each irrep of

SO(3,Z). We label the wave function ψlτk for any eigenstate ac-

cording to l, k and the irrep τ it belongs to. If the angular momen-

tum l contains more than one “branch” belonging to the same irrep,

we distinguish them by adding primes to the names of the irreps.

For instance, the notation “ψ
6T ′

21
” denotes the wave function with

l = 6 and k = 1, which belongs to the second T2 irrep. Note that the

quantum number l is only approximate on the lattice, in the sense

that a wave function labeled by l can have overlap with an infinite

number of irreps of the rotational group carrying angular momenta

other than l. Nevertheless, such mixing is suppressed by powers of

the lattice spacing. In the continuum limit, the wave functions ψlτk

form a complete basis for the subspace of bound states, and the cor-

responding energies are degenerate for the same angular momentum

l. In contrast, on the lattice the energies depend on both l and the

irrep τ .

In the continuum limit, we can write down unitary transforma-

tions from the φlm basis to the ψlτk basis and vice versa,

φlm ≡ ∑
τk

Ulmτkψlτk, (7)

ψlτk ≡ ∑
m

U−1
lτkmφlm, (8)

see Ref. [48] for details. As an example, we show the case of l = 2.

The wave functions ψ2E0 and ψ2E2 belong to irrep E , and ψ2T21,

ψ2T22, and ψ2T23 to irrep T2. Following Ref. [48], we find

ψ2E0 = φ20, ψ2T21 = φ21, ψ2T23 = φ
21̄
,

ψ2E2 =

√

1

2
(φ22 +φ

22̄
) ψ2T22 =−i

√

1

2
(φ22 −φ

22̄
), (9)
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where for notational convenience, we have used m̄ to denote −m.

On the lattice, we can obtain the bound state wave functions ψlτk

by simultaneously diagonalizing the lattice Hamiltonian (or trans-

fer matrix [1]) and Rz(π/2). Since the full rotational symmetry is

broken, the angular momentum l should be viewed as a label that

describes the angular momentum multiplet obtained by dialing the

lattice spacing continuously to zero. Nevertheless, we can use the

unitary transformation in Eq. (7) to define the wave functions φlm

at non-zero lattice spacing. We do this even though the wave func-

tions φlm are in general not exact eigenstates of H when the lattice

spacing is non-zero.

We use the notation ϕlm to denote the continuum limit (a → 0) of

the lattice wave functions φlm. For lattice observables we use paren-

theses, e.g. ( f |O|i), to denote lattice matrix elements computed by

summation over lattice sites. For continuum observables we use

brackets, e.g. 〈 f |O|i〉, to denote matrix elements computed by inte-

gration over continuous space.

Let us now consider the bound-state wave functions for a zero

angular momentum state φ00, and for a general angular momentum

state φlm. Then, the matrix element of the multipole operator rlYlm

sandwiched between φ00 and φlm,

Cm ≡ (φlm|rlYlm|φ00) = ∑
nnn

φ∗
lm(nnna)|nnna|lYlm(n̂nn)φ00(nnna), (10)

should be independent of m for a → 0. When using Eq. (7), the

requirement that Cm satisfy this constraint provides a convenient

check that the phases of φlm and ψlτk agree with standard conven-

tions, as defined in Ref. [48].

C. Factorization of the matrix elements

Consider a pair of wave functions φl1m1
(rrr) and φl2m2

(rrr). On the

one hand, the lattice matrix element of the multipole moment oper-

ator rl′Ylm is

(l1m1|rl′Ylm|l2m2) = ∑
nnn

φ∗
l1m1

(nnna)|nnna|l′Ylm(n̂nn)φl2m2
(nnna), (11)

where the summation runs over all lattice sites. We consider inde-

pendent integers l and l′ in the multipole moment operator, in order

to keep the radial and angular degrees of freedom independent. This

makes our conclusions sufficiently general and applicable to all irre-

ducible tensor operators. On the other hand, the continuum version

of this multipole matrix element is

〈l1m1|rl′Ylm|l2m2〉=
ˆ

d3rrr ϕ∗
l1m1

(rrr)rl′Ylm(Ω)ϕl2m2
(rrr), (12)

where ϕl1m1
(rrr) and ϕl2m2

(rrr) denote the wave functions in the con-

tinuum limit. Matrix elements of the form (12) occur frequently in

the calculation of various nuclear observables, such as mean square

radii, quadrupole moments, and transition probabilities. Here, we

focus on lattice artifacts that produce differences between the nu-

merical values of Eqs. (11) and (12) at a given lattice spacing a, and

methods for removing them.

According to the Wigner-Eckart theorem, the matrix element (12)

can be expressed as a product of two factors: Clebsch-Gordan (C-G)

coefficients and the “reduced” matrix element that encodes the dy-

namics of the problem at hand. This gives

〈l1m1|rl′Ylm|l2m2〉= 〈l1|rl′ |l2〉Q
l1m1
l2m2,lm

, (13)

with

〈l1|rl′ |l2〉 ≡
ˆ

dr rl′+2 R∗
1(r)R2(r), (14)

Q
l1m1
l2m2,lm

≡
ˆ

dΩY ∗
l1m1

(Ω)Ylm(Ω)Yl2m2
(Ω), (15)

where R1(r) and R2(r) denote the radial parts of the wave functions

ϕl1m1
(rrr) and ϕl2m2

(rrr), respectively.

The radial integral in Eq. (14) represents the matrix element of

the moment operator of order l′, and is independent of the quantum

numbers m, m1 and m2. Meanwhile, Q
l1m1
l2m2,lm

can be written as a

product of C-G coefficients according to

Q
l1m1
l2m2,lm

=

√

(2l+ 1)(2l2 + 1)

4π(2l1 + 1)
C

l10
l20,l0 C

l1m1
l2m2,lm

, (16)

such that all of the dependence on the quantum numbers m, m1, m2

and l is absorbed into Q
l1m1
l2m2,lm

. In Table I, we list the Q
l1m1
l2m2,lm

with

l1 = l2 = 2 and 0 ≤ l ≤ 4. Others can be obtained from standard

tables of C-G coefficients.

On the lattice, writing the wave functions as products of radial

and angular components is precluded due to rotational symmetry

breaking. However, the Wigner-Eckart theorem is still applicable

to each irrep of the cubic group. As a result, the lattice matrix ele-

ments that belong to the same irrep are related by C-G coefficients

of the cubic group, which can be straightforwardly computed using

decompositions into spherical harmonics [48, 49]. For instance,

(2T21|r2Y2E0|2T21) =−
√

1

3
(2T21|r2Y2E2|2T21̄), (17)

where

Y2E0 = Y20, Y2E2 =

√

1

2
(Y22 +Y

22̄
), (18)

analogously to the relations in Eq. (9). The factor −
√

1/3 is inde-

pendent of the lattice spacing, box size, and details of the potential.

We shall divide the lattice matrix elements (11) by Q
l1m1
l2m2,lm

as de-

fined in Eq. (16) whenever such factors are non-zero, even though

the factorization (13) is not exact on the lattice. We denote the re-

sulting quantity (for Q
l1m1
l2m2,lm

6= 0)

(l1m1‖rl′Ylm‖l2m2)≡ (l1m1|rl′Ylm|l2m2)/Q
l1m1
l2m2,lm

, (19)

by double vertical lines. Such reduced lattice matrix elements all

converge to 〈l1|rl′ |l2〉 as a → 0. However, at non-zero lattice spac-

ing the ratio will depend on the quantum numbers m, m1, and m2.

The splittings between the components of Eq. (19) are therefore in-

dicative of the rotational symmetry breaking effects.
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l1 l l2 m1 m m2 Q
l1m1

l2m2,lm
m1 m m2 Q

l1m1

l2m2,lm

2 0 2 0 0 0 1
2
√

π
1 0 1 1

2
√

π

2 0 2 1
2
√

π

2 2 2 0 0 0 1
7

√

5
π 2 1 1

√

15
14π

2 0 2 − 1
7

√

5
π 1 1 0 1

14

√

5
π

2 2 0 − 1
7

√

5
π 1 0 1 1

14

√

5
π

1 2 1 −
√

15
14π

2 4 2 0 0 0 3
7
√

π
1 3 2 1

2

√

5
7π

2 0 2 1
14
√

π
1 2 1 − 1

7

√

10
π

2 1 1 − 1
14

√

5
π 1 0 1 − 2

7
√

π

1 1 0 1
7

√

15
2π 2 2 0 1

14

√

15
π

2 4 2

√

5
14π

Table I. The factors Q
l1m1

l2m2,lm
defined in Eq. (16) with l1 = l2 = 2 and 0 ≤

l ≤ 4. Those not given here can be obtained by means of standard tables of

C-G coefficients.

D. Isotropic average

We shall now focus on the removal of spatial anisotropies associ-

ated with the orientation of the lattice wave functions relative to the

lattice axes. We start with the continuum wave functions ϕl1m1
and

ϕl2m2
and define the “skewed” matrix element

〈l1m1|rl′Ylm|l2m2〉Λ

≡
ˆ

d3rrr ϕ∗
l1m1

(R(Λ)rrr)rl′Ylm(R(Λ)Ω)ϕl2m2
(R(Λ)rrr), (20)

where Λ ≡ (α,β ,γ) is a set of Euler angles and R(Λ) is an element

of the SO(3) rotation group. We also define the isotropically aver-

aged matrix element

〈l1m1|rl′Ylm|l2m2〉◦ ≡
ˆ

d3Λ〈l1m1|rl′Ylm|l2m2〉Λ

=C
l1m1
l2m2,lm





1

2l1 + 1
∑

m′ ,m′
1,m

′
2

C
l1m′

1

l2m′
2,lm

′〈l1m′
1|rl′Ylm′ |l2m′

2〉



 , (21)

where d3Λ is the normalized invariant measure on the SO(3) group

space and the subscript “◦” denotes the isotropic average. We note

that rotational invariance of the integral measure guarantees that

〈l1m1|rl′Ylm|l2m2〉, 〈l1m1|rl′Ylm|l2m2〉Λ, and 〈l1m1|rl′Ylm|l2m2〉◦ are

all equal. What is particularly useful is that the last expression in

Eq. (21) encodes the process of angular averaging in terms of C-G

coefficients, and can be applied to lattice matrix elements. We shall

use this to remove anisotropies associated with the orientation of the

lattice axes.

Following Eq. (21), we define the isotropically averaged lattice

matrix element

(l1m1|rl′Ylm|l2m2)◦

≡C
l1m1
l2m2,lm





1

2l1 + 1
∑

m′,m′
1,m

′
2

C
l1m′

1

l2m′
2,lm

′(l1m′
1|rl′Ylm′ |l2m′

2)



 , (22)

where it is again convenient to define an isotropically averaged re-

duced matrix element according to

(l1‖rl′Yl‖l2)◦ ≡ (l1m1|rl′Ylm|l2m2)◦/Q
l1m1
l2m2,lm

(23)

for Q
l1m1
l2m2,lm

6= 0. For a → 0, (l1‖rl′Yl‖l2)◦ coincides with the radial

matrix element 〈l1|rl′ |l2〉.
We note that the radial matrix element 〈l1|rl′ |l2〉 is not only inde-

pendent of m, m1 and m2, but also independent of l. So, a non-trivial

test of rotational symmetry restoration is to check that (l1‖rl′Yl‖l2)◦
as defined in Eq. (23) is independent of l. If (l1‖rl′Yl‖l2)◦ is to a

good approximation independent of l, then we have succeeded in

(approximately) factorizing the radial and angular parts of the lat-

tice wave function by means of isotropic averaging. We will test

this numerically with the α cluster model in Sec. III.

III. RESULTS

We first consider the mean square radius operator r2. This corre-

sponds to setting l = 0 and l′ = 2 in Eqs. (11) and (12). In the upper

panel of Fig. 1, we show the expectation values of r2 for the lowest

2+ states as functions of the lattice spacing a. The eigenstate wave

functions ψ2τk are obtained by simultaneous diagonalization of the

lattice Hamiltonian and the Rz(π/2) operator. We then construct

the linear combinations φ2m according to Eq. (9). We use (m‖0‖m)

as an abbreviation for (2m‖r2Y00‖2m), and the solid curve denotes

the isotropic average (2‖r2Y00‖2)◦ defined in Eq. (23). Only three

values with m ≥ 0 are shown, since time reversal symmetry ensures

equal results for m and −m. As discussed in Sec. II, all these re-

duced matrix elements converge to 〈r2〉 ≡ 〈l1 = 2|r2|l2 = 2〉 in the

limit a → 0. Note that in all the following calculations, we suppress

the finite volume effects by means of a large box of size L ≥ 16 fm.

The three branches in Fig. 1 are not linearly independent because

of the cubic symmetries on the lattice. For scalar operators, the

linear relations among them are manifest. According to Eq. (9), the

wave functions φ21 and φ20 belong to irreps E and T2, respectively.

Similarly, the wave function φ22 is a mixture of the irreps E and

T2 with equal weights. Thus (2‖0‖2) equals the arithmetic average

of (0‖0‖0) from irrep E and (1‖0‖1) from irrep T2. So, we find

that the isotropically averaged reduced matrix element (2‖r2Y0‖2)◦
is given by

(2‖r2Y0‖2)◦ =
3

5
(1‖0‖1)+

2

5
(0‖0‖0), (24)

where the factors 3 and 2 in the numerators are simply the dimen-

sionalities of the cubic representations. It is easy to verify that the

weighted average formula is applicable for any angular momentum,

provided that the factors 3 and 2 in Eq. (24) are replaced by the

corresponding irrep dimensionalities. In Ref. [44], we introduced

the multiplet-weighted average to eliminate the anisotropic effects

in the bound-state energies. We have now shown that this procedure

is equivalent to averaging over lattice orientations and applies to the

expectation value of any scalar operator.
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Next, let us examine the dependence of these reduced matrix el-

ements on the lattice spacing a. For a ≤ 1.0 fm, the three branches

in Fig. 1 merge, and for large a they split and exhibit oscillations.

Before discussing the physics behind these observations, it is inter-

esting to compare Fig. 1 in this paper to Fig. 3 in Ref. [44], where the

calculated energies of the 2+ states are shown as a function of a. We

immediately find that these figures are similar if we map (1‖0‖1) to

E(2+T ), and (0‖0‖0) to E(2+E ). Specifically, in Fig. 1 the splitting

between the two branches vanishes at a ≃ 1.4 fm and ≃ 1.9 fm. For

a≤ 1.0 fm, the splitting is negligible. For 1.0≤ a≤ 1.4 fm, (1‖0‖1)
is higher than (0‖0‖0). In the region 1.4 ≤ a ≤ 1.9 fm, the situation

is reversed. For a ≥ 1.9 fm, (1‖0‖1) is once again higher and the

splitting increases monotonically. Such behavior also occurs for the

energies in Ref. [44] with slightly different turning points. Addi-

tionally, the weighted averages (2‖r2Y0‖2)◦ and E(2+A) both show

“down bending” in the transitional region 1.5 ≤ a ≤ 2.0 fm, result-

ing in smaller expectation values for both energy and radii at large

lattice spacings.

Similar behavior as a function of a is found for other scalar oper-

ators. In the lower panel of Fig. 1, we show results for the r4 opera-

tor, which correspond to setting l = 0 and l′ = 4. Here, (m‖0‖m) is

an abbreviation of (2m‖r4Y00‖2m) and the solid curve denotes the

isotropic average. All the curves converge to the expectation value

〈r4〉 ≡ 〈l1 = 2|r4|l2 = 2〉 as a → 0. Again, the isotropic average

equals the multiplet-weighted average over the five-fold multiplet

φ2m. The oscillations of these components as well as the “down

bending” of the isotropic average are similar to those observed for

the r2 operator.

As noted in Ref. [44] for the binding energies, these oscillations

are associated with the commensurability of the lattice with the size

and shape of the lattice wave functions. The lattice wave functions

receive large contributions from lattice vectors which form the cor-

responding representation of the cubic rotational group and are clos-

est in length to the (continuum limit) average separation distance R

between constituent particles. Roughly speaking, if the lattice vec-

tors closest in length to R are shorter than R, then 〈r2〉 and 〈r4〉
fall below the continuum value. Conversely, if the lattice separation

vectors closest in length to R are longer than R, then 〈r2〉 and 〈r4〉
will exceed the continuum value. Although we find that isotropic

averaging removes most of these oscillations, some remnants of this

oscillatory behavior remain in the isotropically-averaged results.

Given the results shown in Fig. 1, we can compare the compo-

nents (m‖0‖m) to the continuum limit and determine which ones

exhibit the least dependence on a. On the one hand, we find that

(1‖0‖1) and (0‖0‖0) are not particularly reliable estimators for 〈r2〉
and 〈r4〉 on coarse lattices. On the other hand, the arithmetic av-

erage (2‖0‖2) and the multiplet-weighted average both provide a

good description of the continuum values over a wide range of lat-

tice spacings. In principle, both could be used as a good approxi-

mation to the continuum limit. The multiplet-weighted average is

theoretically preferable because of its clear physical interpretation

as isotropic averaging. Our conclusions for the operators r2, r4 as

well as the energy apply straightforwardly to other scalar operators

on the lattice. For instance, the linear relation among the compo-

nents (0‖0‖0), (1‖0‖1) and (2‖0‖2) remains satisfied. To estimate

the continuum expectation values, we evaluate the isotropic average

according to Eq. (23). For scalar operators, this equals the weighted

average over the angular momentum multiplet.

We now turn to the case of l = 2. In the upper panel of Fig. 2,
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Figure 1. (color online). Upper panel: Mean square radii 〈r2〉 for the lowest

2+ states of the 8Be nucleus as a function of a. (α‖0‖α) is an abbrevia-

tion of (2α‖r2Y00‖2α), as defined in Eq. (19). The box size L > 16 fm

suppresses finite-volume effects. The solid line gives the isotropic average

(2‖r2Y0‖2)◦ according to Eq. (23). Lower panel: Mean value 〈r4〉 for the

lowest 2+ states of the 8Be nucleus as a function of a. (α‖0‖α) is an ab-

breviation of (2α‖r4Y00‖2α), and the solid line gives the isotropic average

(2‖r4Y0‖2)◦.

the (α‖β‖γ) are abbreviations of the reduced matrix elements

(2α‖r2Y
2β‖2γ) defined in Eq. (19), where the subscripts α , β and

γ run from −2 to 2 and only the components with α = β + γ are

shown. The solid curve represents the isotropic average defined in

Eq. (23). All these curves converge to the expectation value 〈r2〉 as

a → 0. As the 2l+ 1 wave functions in an angular momentum mul-

tiplet mix on the lattice, some components with α 6= β + γ survive

for large lattice spacings. However, because the corresponding C-G

coefficients vanish in this case, such components do not contribute

to the isotropic average.

Compared to the case of the scalar operator r2 shown in Fig. 1,

the insertion of the spherical harmonicY
2β makes the situation much

more complicated, as shown in Fig. 2. Still, we can draw some gen-

eral conclusions. First, as for the scalar operators, we can show

that (2‖0‖2) equals the arithmetic average of (1‖0‖1) and (0‖0‖0),
while (2‖2‖0) equals that of (1‖1‖0) and (0‖0‖0). This point is

apparent in Fig. 2, if we note that in each group the three curves in-

tersect at a single point. Second, applying the Wigner-Eckart theo-

rem for the cubic group, we obtain multiple linear identities between

the lattice matrix elements. These involve not only the components

shown in Fig. 2, but also those that vanish as a → 0.
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Figure 2. (color online). Upper panel: Mean square radii 〈r2〉 for the lowest

2+ states of the 8Be nucleus as a function of a. (α‖β‖γ) is an abbreviation

of (2α‖r2Y
2β‖2γ), as defined in Eq. (19). The solid line gives the isotropic

average (2‖r2Y2‖2)◦ according to Eq. (23). Lower panel: Mean value 〈r4〉
for the lowest 2+ states of the 8Be nucleus as a function of a. (α‖β‖γ)
is an abbreviation of (2α‖r4Y

2β ‖2γ), and the solid line gives the isotropic

average (2‖r4Y2‖2)◦.

In the upper panel of Fig. 2, most of the components oscillate

and exhibit more than one extremum in this region. For instance,

(0‖0‖0) reaches a maximum at a = 1.6 fm and possesses two min-

ima at a = 1.2 fm and 2.1 fm, respectively. In contrast, (1‖0‖1) has

only one minimum at a = 1.8 fm. For large lattice spacings, the in-

dividual components deviate from the continuum values by as much

as ∼ 100%. Interestingly, an “anomaly” occurs at a= 2.1 fm, where

the matrix element (0‖0‖0) becomes negative, whereas the expecta-

tion value 〈r2〉 is positive in the continuum limit. This discrepancy

arises because we do not calculate 〈r2〉 with the same wave func-

tions on both sides, as was the case for scalar operators in Fig. 1.

For the l = 2 matrix elements in Fig. 2, the reduced matrix element

(0‖0‖0) is defined to be proportional to the expectation value of

the quadrupole operator r2Y20. On the lattice, the angular part of

the quadrupole operator cannot be completely separated, and thus

the insertion of the spherical harmonic Y20 is not fully canceled by

the C-G coefficients included in Eq. (19). We find that the result-

ing lattice artifacts may become as large as the magnitude of the

observable itself. This suggests that random selection of matrix ele-

ments on coarse lattices with a≃ 2 fm leads to inherently unrealistic

results.

In spite of the large differences between the components (α‖β‖γ)

1.4 1.6 1.8 2.0 2.2 2.4
8
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 l = 2 isotropic average
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2 )
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-

Figure 3. (color online) Mean square radii 〈r2〉 calculated with wave func-

tions for a/2. This effectively factorizes out discretization errors due to the

wave functions. The solid line represents the isotropic average (2‖r2Y2‖2)◦
defined in Eq. (23). Only results with large a are shown due to box size

limitations. Note that the residual splittings for small a are a result of the

finite-volume effects.

on coarse lattices, we find that the anisotropy of the lattice arti-

facts can be eliminated by means of the isotropic average defined in

Eq. (23). In the upper panel of Fig. 2, the isotropic average is given

by the solid line. Note that the isotropic average can no longer be

written as a multiplet-weighted average, as the C-G coefficients are

no longer identical. As for the isotropic average shown in the upper

panel of Fig. 1, the isotropic average in Fig. 2 bends slightly down-

ward in the region 1.5 fm ≤ a ≤ 2.0 fm. For the lattice spacings

considered here, the range of values obtained are between 9.8 fm2

and 12.5 fm2, accounting for no more than a ∼ 20% relative error

with respect to the continuum limit.

On the lattice, the angular parts of the wave functions deviate

from the spherical harmonics. We shall briefly study how much of

the observed discretization errors are due to such distortion of the

wave functions. For this purpose, we may consider the isotropic av-

erage using wave functions with greatly reduced lattice artifacts. In

Fig. 3, we show results similar to the upper panel of Fig. 2, with

the exception that the wave functions more closely resemble those

of the continuum limit. Specifically, for each value of the lattice

spacing a, we calculate the wave functions by diagonalizing the lat-

tice Hamiltonian for a/2, after which matrix elements are computed

with the original lattice spacing a. For instance, given a = 2.5 fm,

we use the wave functions obtained with a = 1.25 fm, while drop-

ping all mesh points that are absent for a = 2.5 fm. This has the

effect of minimizing distortion due to the wave functions, such that

the remaining effects are due to the discrete summation. We find

that the splittings for large a are much smaller than in Fig. 2, indi-

cating that effects due to the wave functions are largely responsible

for the observed lattice artifacts. Furthermore, the isotropic average

reproduces the continuum values very well and the “down bending”

in Fig. 2 no longer appears.

Now, let us vary the radial factor of the inserted operator and keep

the angular part the same. In the lower panel of Fig. 2, (α‖β‖γ) de-

notes the reduced lattice matrix element (2α‖r4Y
2β‖2γ) which con-

verges to 〈r4〉 as a → 0. The solid line represents the isotropic aver-

age (2‖r4Y2‖2)◦. Again, the spherical harmonic Y
2β is not fully can-

celed by the C-G coefficients on the lattice. For large lattice spac-
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Figure 4. (color online) Mean value 〈r4〉 for the lowest 2+ states of

the 8Be nucleus as a function of a. (α‖β‖γ) is an abbreviation of

(2α‖r4Y
4β ‖2γ), as defined in Eq. (19). The solid line gives the isotropic

average (2‖r4Y4‖2)◦ according to Eq. (23).

ings, the resulting lattice artifacts shift the various components from

the continuum limit by differing amounts. Nevertheless, comparing

the curves denoted by the same symbol in the upper and lower panel

of Fig. 2, we find that their behavior is qualitatively similar. For ex-

ample, the (0‖0‖0) curves both show a maximum at a = 1.6 fm and

a minimum at a = 2.1 fm, while the (2‖0‖2) curves both show a

minimum at a = 2.0 fm. In other words, the magnitude of the lattice

artifacts may be different if the radial part of the inserted operator is

changed, but the pattern of deviations is largely determined by the

angular momenta of the states and the irreducible tensor operator.

We also consider irreducible tensor operators with l = 4. In

Fig. 4, (α‖β‖γ) denotes the reduced lattice matrix element

(2α‖r4Y
4β‖2γ), which converges to 〈r4〉 as a → 0. The solid line

gives the isotropic average (2‖r4Y4‖2)◦. The number of indepen-

dent components is now larger than for l = 2, which leads to qual-

itatively different behavior. For instance, (0‖0‖0) is much closer

to the isotropic average compared to the corresponding curve in the

lower panel of Fig. 2. Also, the (2‖0‖2) curve now exhibits a pro-

nounced minimum at a = 2.0 fm.

Let us finally study to what extent anisotropies due to lattice ar-

tifacts are removed by isotropic averaging according to Eq. (23).

In the upper panel of Fig. 5, we show a comparison between the

isotropic averages (2‖r2Y0‖2)◦ and (2‖r2Y2‖2)◦. The former is cal-

culated by a simple multiplet averaging over the five-fold branches,

while the latter is obtained by a more complicated averaging with

the C-G coefficients as weights. Clearly, for all lattice spacings con-

sidered here, the difference between the two curves is rather small.

Especially, the “down bending” occurs for the same lattice spacing

and the magnitudes of the deviations are also similar. Given that the

C-G coefficients are included explicitly in the definition of isotropic

average (23), we conclude that the effect of the angular part of the

inserted operators is canceled by the C-G coefficients in the denom-

inator. As discussed in Section II, this provides strong evidence for

approximate rotational symmetry restoration, and that we have ef-

fectively succeeded in factorizing the radial and angular parts of the

lattice wave function.

In the lower panel of Fig. 5, we show the quantities that con-

verge to 〈r4〉 as a → 0, including (2‖r4Y0‖2)◦, (2‖r4Y2‖2)◦ and
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Figure 5. (Color online) Upper panel: Mean square radii 〈r2〉 for the low-

est 2+ states of the 8Be nucleus as a function of a. The black and red lines

represent the isotropic average (2‖r2Y0‖2)◦ and (2‖r2Y2‖2)◦, respectively.

Lower panel: Expectation value 〈r4〉 for the lowest 2+ states of the 8Be nu-

cleus as a function of a. The black, red and blue lines represent the isotropic

averages (2‖r4Y0‖2)◦, (2‖r4Y2‖2)◦, and (2‖r4Y4‖2)◦, respectively.

(2‖r4Y4‖2)◦. The three curves coincide even for a > 2.0 fm, which

indicates that rotational symmetry is restored to a large extent after

isotropic averaging. In particular, the difference between the l = 2

and l = 4 results is negligible for all lattice spacings.

IV. CONCLUSIONS

In summary, we have studied the breaking of rotational symme-

try due to lattice artifacts, with emphasis on how the degeneracy of

multiplets of bound states with the same angular momentum is af-

fected. On the lattice, the bound-state wave functions are classified

according to the irreducible representations of the cubic group in-

stead of the full SO(3) rotational group. This leads to significant

complications in the treatment of observables represented by irre-

ducible tensor operators. Here, we have used an α cluster model to

study the lattice matrix elements of such operators, and found that

the qualitative behavior of the various matrix elements as a function

of lattice spacing is mainly determined by the angular momentum

quantum numbers of the states and operators. The matrix elements

of different operators with the same angular momentum show simi-

lar behavior as a function of the lattice spacing.

In order to minimize the effects of rotational symmetry break-
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ing, we have introduced an “isotropic average”, which consists of a

linear combination of the components of the matrix element. The

weight of a given component is given by the C-G coefficient with

the associated quantum numbers. We have shown that this method

is equivalent to averaging over all possible lattice orientations. We

have also found that isotropic averaging eliminates, to a good ap-

proximation, the anisotropy caused by lattice artifacts. This is illus-

trated by numerical calculations for the 8Be nucleus within the α
cluster model.

We have considered the isotropic averages of several irreducible

tensor operators for different angular momenta, and studied their

dependence on the lattice spacing. In all cases, we found excel-

lent agreement with the continuum values. As a function of lattice

spacing, the isotropically averaged 〈r2〉 and 〈r4〉 slightly underesti-

mate the continuum values in the region 1.7 fm ≤ a ≤ 2.0 fm. For

a < 1.7 fm, the deviation from the continuum is very small. As

noted in Ref. [44], some rotational symmetry breaking effects arise

from the commensurability of the underlying lattice with the mag-

nitude and shape of the bound-state wave function. With isotropic

averaging, we are in essence evening out such differences by aver-

aging over all possible orientations of the lattice axes. While this

does not remove all lattice artifacts, the dependence on the lattice

spacing is substantially reduced.

While the present conclusions were obtained within a simple α
cluster model, the method of isotropic averaging is immediately ap-

plicable to ab initio lattice Monte Carlo results. For instance, in the

lattice calculation of transition amplitudes between low-energy ex-

cited states and the ground state of a nucleus, our method is expected

to provide an immediate improvement by removing unphysical level

splittings and minimizing the dependence on the lattice spacing.
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