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We present a lattice-QCD calculation of the B → π`ν semileptonic form factors and a new determi-
nation of the CKM matrix element |Vub|. We use the MILC asqtad 2+1-flavor lattice configurations
at four lattice spacings and light-quark masses down to 1/20 of the physical strange-quark mass. We
extrapolate the lattice form factors to the continuum using staggered chiral perturbation theory in
the hard-pion and SU(2) limits. We employ a model-independent z parameterization to extrapolate
our lattice form factors from large-recoil momentum to the full kinematic range. We introduce a
new functional method to propagate information from the chiral-continuum extrapolation to the z
expansion. We present our results together with a complete systematic error budget, including a
covariance matrix to enable the combination of our form factors with other lattice-QCD and ex-
perimental results. To obtain |Vub|, we simultaneously fit the experimental data for the B → π`ν
differential decay rate obtained by the BaBar and Belle collaborations together with our lattice
form-factor results. We find |Vub| = (3.72 ± 0.16) × 10−3 where the error is from the combined fit
to lattice plus experiments and includes all sources of uncertainty. Our form-factor results bring
the QCD error on |Vub| to the same level as the experimental error. We also provide results for
the B → π`ν vector and scalar form factors obtained from the combined lattice and experiment fit,
which are more precisely-determined than from our lattice-QCD calculation alone. These results
can be used in other phenomenological applications and to test other approaches to QCD.

PACS numbers: 13.20.He, 12.38.Gc, 12.15.Hh

I. INTRODUCTION

The Cabibbo-Kobayashi-Masakawa (CKM) matrix [1, 2] element |Vub| is one of the fundamental parameters of the
Standard Model and is an important input to searches for CP violation beyond the Standard Model. Constraints
on new physics in the flavor sector are commonly cast in terms of over-constraining the apex of the CKM unitarity
triangle. In contrast to the well-determined angle β of the unitarity triangle, the opposite side |Vub/Vcb| is poorly
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determined, and the uncertainty is currently dominated by |Vub|. This is due to the fact that charmless decays of
the B meson have far smaller branching fractions than the charmed decays, as well as the fact that the theoretical
calculations are less precise than for sin 2β, |Vus|, or |Vcb|. Currently the most precise determination of |Vub| is
obtained from charmless semileptonic B decays, using exclusive or inclusive methods that rely on the measurements
of the branching fractions and the corresponding theoretical inputs. Exclusive determinations require knowledge of
the form factors, while inclusive determinations rely on the operator product expansion, perturbative QCD, and non-
perturbative input from experiments. There is a long standing discrepancy between |Vub| determined from inclusive
and exclusive decays: the central values from these two approaches differ by about 3σ. It was argued in Ref. [3] that
this tension is unlikely to be due to new physics effects, and it is therefore important to examine the (theoretical and
experimental) inputs to the |Vub| determinations. With the result obtained in this paper, the tension is reduced to
2.4σ.

In the limit of vanishing lepton mass, the Standard Model prediction for the differential decay rate of the exclusive
semileptonic B → π`ν decay is given by

dΓ(B → π`ν)

dq2
=
G2
F |Vub|2

24π3
|pπ|3|f+(q2)|2, (1.1)

where |pπ| = 1
2MB

[
(M2

B +M2
π − q2)2 − 4M2

BM
2
π

]1/2 is the pion momentum in the B-meson rest frame. To determine
|Vub|, the form factor |f+(q2)| must be calculated with nonperturbative methods. The first unquenched lattice
calculations of |f+(q2)| with 2+1 dynamical sea quarks were performed by HPQCD [4] and the Fermilab/MILC
collaborations [5] several years ago. Here we extend and improve Ref. [5] in several ways.

The most recent exclusive determination of |Vub| from the Heavy Flavor Averaging Group (HFAG) [6] is based
on combined lattice plus experiment fits and yields |Vub| = (3.28 ± 0.29) × 10−3, where the error includes both the
experimental and theoretical uncertainties. The experimental data included in the average are the BaBar untagged
six-q2-bin data [7], the BaBar untagged twelve-q2-bin data [8], the Belle untagged data [9], and the Belle hadronic
tagged [10] data. The theoretical errors on the form factors from lattice QCD [5] are currently the dominant source of
uncertainty in |Vub| [11]. Hence a new lattice calculation of f+(q2) with improved statistical and systematic errors is
desirable 1. To compare, the value of |Vub| from the inclusive method quoted by HFAG is about (4.40± 0.20)× 10−3

[6] using the theory of Ref. [15].
In this paper, we present a new lattice-QCD calculation of the B → π`ν semileptonic form factors and a determina-

tion of |Vub|. Our calculation shares some features with the previous Fermilab/MILC calculation [5] but makes several
improvements. We quadruple the statistics on the previously used ensembles and improve our strategy for extracting
the form factors by including excited states in our three-point correlator analysis. In addition, we include twice as
many ensembles in this analysis. The new ensembles have smaller lattice spacings, with the smallest lattice spacing
decreased by half. This analysis also includes ensembles with light sea-quark masses that are much closer to their
physical values (ml/ms = 0.05 versus 0.1). The smaller lattice spacings and light-quark masses provide much better
control over the dominant systematic error due to the chiral-continuum extrapolation. We find that heavy-meson
rooted staggered chiral perturbation theory (HMrSχPT) in the SU(2) and hard-pion limits provides a satisfactory
description of our data. All together, these improvements reduce the error on the form factors by a factor of about 3.
Finally, we introduce a new functional method for the extrapolation over the full kinematic range.

The determination of |Vub| from a combined fit to our lattice form factors together with experimental measurements
also yields a very precise determination of the vector and scalar form factors over the entire kinematic range. These
form factors will be valuable input to other phenomenological applications in the Standard Model and beyond. An
example is the rare decay B → π`+`−, which we will discuss in a separate paper.

Because our primary goal in this work was a reliable and precise determination of |Vub|, we employed a blinding
procedure to minimize subjective bias. At the stage of matching between the lattice and continuum vector currents, a
slight multiplicative offset was applied to the data that was only known to two of the authors. The numerical value of
the blinding factor was only disclosed after the analysis and error-estimation procedure, including the determination
of |Vub|, were essentially finalized.

This paper is organized as follows. In Sec. II, we present our calculation of the form factors. We describe the lattice
actions, currents, simulation parameters, correlation functions and fits to extract the matrix elements, renormalization
of the currents, and adjustment of the form factors to correct for quark-mass mistunings. In Sec. III, we present the
combined chiral-continuum extrapolation, followed by an itemized presentation of our complete error budget in Sec. IV.
We then extrapolate the form factors to the full q2 range through the functional z expansion method in Sec. V. We
also perform fits to lattice and experimental data simultaneously, to obtain |Vub|. We conclude with a comparison

1 Note that there are several other efforts with 2 [12] and 2+1 flavors of sea quarks [13, 14].
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to other results and discussion of the future outlook in Sec. VI. Preliminary reports of this work can be found in
Refs. [16, 17].

II. LATTICE-QCD SIMULATION

In this section, we describe the details of the lattice simulation. We briefly describe the calculation of the form
factors in Sec. II A. We also calculate the tensor form factor, which follows a analysis similar to that of the vector and
scalar form factors. The tensor form factor enters the Standard-Model rate for B → π`+`− decay, and our final result
for fT will be presented in a forthcoming paper. In Sec. II B, we introduce the actions and simulation parameters used
in this analysis. This is followed, in Sec. II C, by a brief discussion of the currents and lattice correlation functions. The
correlator fits to extract the lattice form factors are provided in Sec. IID. In Sec. II E, we discuss the renormalization
of the lattice currents. In Sec. II F, we correct the form factors a posteriori to account for the mistuning of the
simulated heavy b-quark mass.

A. Form-factor definitions

The vector and tensor hadronic matrix elements relevant for B → π semileptonic decays can be parameterized by
the following three form factors:

〈π(pπ)|Vµ|B(pB)〉 =

(
pµB + pµπ −

M2
B −M2

π

q2
qµ
)
f+(q2) +

M2
B −M2

π

q2
qµ f0(q2), (2.1)

〈π(pπ)|T µν |B(pB)〉 =
2

MB +Mπ
(pµBp

ν
π − pνBpµπ) fT (q2), (2.2)

where Vµ = q̄γµb, and T µν = iq̄σµνb. In lattice gauge theory and in chiral perturbation theory, it is convenient to
parameterize the vector-current matrix elements by [18]

〈π(pπ)|Vµ|B(pB)〉 =
√

2MB

[
vµf‖(Eπ) + pµπ,⊥f⊥(Eπ)

]
, (2.3)

where vµ = pµB/MB is the four velocity of the B meson and pµπ,⊥ = pµπ − (pπ · v)vµ is the projection of the pion
momentum in the direction perpendicular to vµ. The pion energy is related to the lepton momentum transfer q2 by
Eπ = pπ · v = (M2

B +M2
π − q2)/(2MB). With this setup, we have

f‖(Eπ) =
〈π(pπ)|V4|B(pB)〉√

2MB

, (2.4)

f⊥(Eπ) =
〈π(pπ)|Vi|B(pB)〉√

2MB

1

piπ
, (2.5)

fT (q2) =
MB +Mπ√

2MB

〈π(pπ)|T 4i|B(pB)〉√
2MB

1

piπ
, (2.6)

where no summation is implied by the repeated indices here. The form factors f+ and f0 are

f+(q2) =
1√

2MB

[
f‖ + (MB − Eπ)f⊥

]
, (2.7)

f0(q2) =

√
2MB

M2
B −M2

π

[
(MB − Eπ)f‖ + (E2

π −M2
π)f⊥

]
. (2.8)

B. Actions and parameters

The lattice gauge-field configurations we use have been generated by the MILC Collaboration [19–21], and some
of their properties are listed in Table I. These twelve ensembles have four different lattice spacings ranging from a ≈
0.12 fm to a ≈ 0.045 fm with several light sea-quark masses at most lattice spacings in the range 0.05 ≤ am′l/am′h ≤ 0.4.
The parameter range is shown in Fig. 1. We use the Symanzik-improved gauge action [22–24] for the gluons and the
tadpole-improved (asqtad) staggered action [25–30] for the 2+1 flavors of dynamical sea quarks and for the light
valence quarks. Both Table I and Fig. 1 also indicate the ensembles used in the previous Fermilab/MILC calculation
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Figure 1. Lattice spacings and light-quark masses used in this analysis. The area of each filled disk is proportional to the
number of configurations in the ensemble. Open black circles indicate ensembles use in the analysis of Ref. [5]; those with (a,
m′l/m

′
h)=(0.12 fm, 0.4) and (0.09 fm, 0.4) used in Ref. [5] (open circles without disks) are not used in this analysis.

[5]. The current analysis benefits from an almost quadrupled increase in the statistics over that of Ref. [5], as well as
finer lattice spacings and lighter sea-quark masses. All ensembles have large enough spatial volume, MπL ≥ 3.8, such
that the systematic error due to finite-size effects is negligible compared to other uncertainties.

Table I. Parameters of the MILC asqtad gauge-field ensembles used in this analysis. From left to right: approximate lattice
spacing a in fm, the (light/strange)-quark mass ratio am′l/am

′
h, the coupling constant β, the tadpole parameter u0 determined

from the plaquette, lattice volume, the number of configurations Ncfg, MπL (L is the spatial length of the lattice), and the
number of configurations of the four ensembles that were used in Ref. [5].

≈a(fm) am′l/am
′
h β u0 volume Ncfg MπL Ncfg(Ref. [5]))

0.12 0.01/0.05 6.760 0.8677 203 × 64 2259 4.5 592
0.007/0.05 6.760 0.8678 203 × 64 2110 3.8 836
0.005/0.05 6.760 0.8678 243 × 64 2099 3.8 529

0.09 0.0062/0.031 7.090 0.8782 283 × 96 1931 4.1 557
0.00465/0.031 7.085 0.8781 323 × 96 984 4.1
0.0031/0.031 7.080 0.8779 403 × 96 1015 4.2
0.00155/0.031 7.075 0.877805 643 × 96 791 4.8

0.06 0.0072/0.018 7.480 0.8881 483 × 144 593 6.3
0.0036/0.018 7.470 0.88788 483 × 144 673 4.5
0.0025/0.018 7.465 0.88776 563 × 144 801 4.4
0.0018/0.018 7.460 0.88764 643 × 144 827 4.3

0.045 0.0028/0.014 7.810 0.89511 643 × 192 801 4.6

In this calculation, we work in the full-QCD limit, so that the light valence-quark masses aml are the same as the
light sea-quark masses am′l, which are degenerate. For the bottom quarks, we use the Fermilab interpretation [31] of
the Sheikholeslami-Wohlert clover action [32]. In Table II, we list parameters for the valence quarks.

Table III lists the values of r1/a on each ensemble, along with other derived parameters, where r1 is the characteristic
distance between two static quarks such that the force between them satisfies r2

1F (r1) = 1.0 [33, 34]. The absolute
lattice scale r1 is obtained by comparing the Particle Data Group value of fπ with lattice calculations of r1fπ from
MILC [35] and HPQCD [36], yielding the absolute scale r1 = 0.3117(22) fm [37]. This value is consistent with the
independent, but less precise, determination r1 = 0.323(9) from RBC/UKQCD using domain-wall fermions [38].
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Table II. Heavy-quark masses and other parameters used in the simulation. Starting in the third column: the clover parameter
cSW, the simulation b-quark mass parameter κ′b, the current rotation parameter d′1, the number of sources Nsrc and the two
source-sink separations T . Note that we use the same valence light-quark mass as m′l in the sea except the a = 0.09fm,
m′l/m

′
h = 0.00465/0.031 ensemble where a slightly different valence mass aml = 0.0047 is used.

≈ a(fm) am′l/am
′
h cSW κ′b d′1 Nsrc T

0.12 0.01/0.05 1.531 0.0901 0.09334 4 18,19
0.007/0.05 1.530 0.0901 0.09332 4 18,19
0.005/0.05 1.530 0.0901 0.09332 4 18,19

0.09 0.0062/0.031 1.476 0.0979 0.09677 4 25,26
0.00465/0.031 1.477 0.0977 0.09671 4 25,26
0.0031/0.031 1.478 0.0976 0.09669 4 25,26
0.00155/0.031 1.4784 0.0976 0.09669 4 25,26

0.06 0.0072/0.018 1.4276 0.1048 0.09636 4 36,37
0.0036/0.018 1.4287 0.1052 0.09631 4 36,37
0.0025/0.018 1.4293 0.1052 0.09633 4 36,37
0.0018/0.018 1.4298 0.1052 0.09635 4 36,37

0.045 0.0028/0.014 1.3943 0.1143 0.08864 4 48,49

Table III. Derived parameters from the simulation. Starting in the third column: relative scale r1/a, the Goldstone pion mass
Mπ, root-mean-square (RMS) pion mass MRMS

π , and the critical hopping parameter κcrit which enters our definition of the
heavy-quark mass.

≈ a(fm) am′l/am
′
h r1/a Mπ(MeV) MRMS

π (MeV) κcrit

0.12 0.01/0.05 2.7386 389 532 0.14091
0.007/0.05 2.7386 327 488 0.14095
0.005/0.05 2.7386 277 456 0.14096

0.09 0.0062/0.031 3.7887 354 413 0.139119
0.00465/0.031 3.7716 307 374 0.139134
0.0031/0.031 3.7546 249 329 0.139173
0.00155/0.031 3.7376 177 277 0.139190

0.06 0.0072/0.018 5.3991 450 466 0.137582
0.0036/0.018 5.3531 316 340 0.137632
0.0025/0.018 5.3302 264 291 0.137667
0.0018/0.018 5.3073 224 255 0.137678

0.045 0.0028/0.014 7.2082 324 331 0.136640

C. Currents and correlation functions

We calculate the two-point and three-point functions

CP (t;p) =
∑
x

eip·x〈OP (0,0)O†P (t,x)〉, and (2.9)

CJ(t, T ;p) =
∑
x,y

eip·y〈Oπ(0,0)J(t,y)O†B(T,x)〉, (2.10)

where P = B, π labels the pseudoscalar meson, the operators OP (O†P ) annihilate (create) the states with the quantum
numbers of the pseudoscalar meson P on the lattice, and J = V µ, Tµν are the lattice currents.

For the B meson, we use a mixed-action interpolating operator OB which is a combination of a Wilson clover
bottom quark and a staggered light quark [5]:

OB(x) =
∑
y ψ̄(y)S(y, x)γ5Ω(x)χ(x), (2.11)

where Ω(x) = γx1
1 γx2

2 γx3
3 γx4

4 , x = (x, t), and S(x, y) is a smearing function. For the pion, we use the operator

Oπ(x) = (−1)
∑4
i=1 xi χ̄(x)χ(x), (2.12)

which is constructed from two 1-component staggered quarks.
The current operators are constructed in a similar way:

V µ(x) = Ψ̄(x)γµΩ(x)χ(x), and (2.13)
Tµν(x) = Ψ̄(x)σµνΩ(x)χ(x), (2.14)
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Figure 2. Illustrative diagram for the three-point correlation functions.

where the heavy quark field spinor Ψ is rotated to remove tree-level O(a) discretization effects, via [31]

Ψ(x) = (1 + a d1γ ·Dlat)ψ. (2.15)

Figure 2 illustrates the three-point correlation function used to obtain the lattice form factors. The current operator
J is inserted between the b- and l-quark lines. The three-point functions depend on both the current insertion time
t and the temporal separation T between the π and B mesons. The signal to noise ratio is largely determined
by T . A convenient approach is to fix the source-sink separation T in the simulations and then insert the current
operators at every time slice in between. The source-sink separations T at different lattice spacings, sea-quark
masses, and recoil momenta are chosen to be approximately the same in physical units. To minimize statistical
uncertainties and reduce excited-state contamination, we tested data with different source-sink separations before
choosing those shown in Table II. The B meson is at rest in our simulation, while the daughter pion is either at rest
or has a small three-momentum. The light-quark propagator is computed from a point source so that one inversion
of the Dirac operator can be used to obtain multiple momenta. The spatial source location is varied randomly
from one configuration to the next to minimize autocorrelations. The b-quark source is always implemented with
smearing based on a Richardson 1S wave function [39] after fixing to Coulomb gauge. We compute both the two-
point function Cπ(t;p) and three-point function CJ(t, T ;p) at several of the lowest possible pion momenta in a finite
box: p = (2π/L)(0, 0, 0), (2π/L)(1, 0, 0), (2π/L)(1, 1, 0), (2π/L)(1, 1, 1), and (2π/L)(2, 0, 0), where contributions from
each momentum are averaged over permutations of components. We find the correlation functions with momentum
(2π/L)(2, 0, 0) too noisy to be useful, so we exclude these data from our analysis.

D. Two-point and three-point correlator fits

In this subsection, we describe how to extract the desired matrix element from two- and three-point correlation
functions. With our choice for the valence-quark actions and for the interpolating operators, the two- and three-point
functions take the form [40]

CP (t;p) =

∞∑
n=0

(−1)n(t+1)|Z(n)
P (p)|2

[
e−E

(n)
P (p)t + e−E

(n)
P (p)(Nt−t)

]
, (2.16)

CJ(t, T ;p) =

∞∑
m,n=0

(−1)m(t+1)(−1)n(T−t−1)Z(m)
π (p)M(mn)

J Z
(n)
B (0) e−E

(m)
π (p)t−M(n)

B (T−t),

(2.17)

where Nt is the temporal length of the lattice and

Z
(n)
P (p) =

|〈0|OP |P (n)(p)〉|√
2E

(n)
p (p)

, (2.18)

M(mn)
J =

〈π(m)(p)|J |B(n)〉√
2E

(m)
π (p)

√
2M

(n)
B

. (2.19)
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Figure 3. Dispersion-relation tests on the ensemble a ≈ 0.12 fm, m′l/m
′
h = 0.1. Left: fit results of E2

π(p) from two-point
functions are compared with the continuum dispersion relation |p|2 + M2

π . Right: wave-function overlaps 〈0|Oπ|π(p)〉 at
different momenta are compared. The dotted lines show the expected size of the leading momentum-dependent discretization
errors based on power counting, which are of O(α2

s|p|2a2).

Note that due to the staggered action used for the light quarks, the meson interpolating operators also couple to the
positive parity (scalar) states which oscillate in Euclidean times t and T with the factors (−1)n(t+1) and (−1)n(T−t).

Our goal is to extract M(00)
J , the ground state matrix element from these correlation functions. To suppress the

contributions from the positive parity states to the ratio, we follow the averaging procedure of Ref. [5], which exploits
the oscillating sign in their Euclidean time dependence. The time averages can be thought of as a smearing over
neighboring time slices {t, t + 1, t + 2} × {T, T + 1} to significantly reduce the overlap with opposite-parity states.
Denoting the averaged correlators by CP and CJ , we then use the ratio [5]

RJ(t, T ;p) =
CJ(t, T ;p)√

Cπ(t;p)CB(T − t;0)

√
2E

(0)
π (p)

e−E
(0)
π (p)t−M(0)

B (T−t)
, (2.20)

where E(0)
π (p) and M (0)

B are the ground-state pion energy and B-meson rest mass, respectively. The uncertainty in
the B-meson rest mass has significant impact on the ratio RJ , so we follow a two-step procedure. We first determine
the pion and B-meson ground-state energy as precisely as possible using the corresponding two-point functions. We
then feed these ground-state energies into the ratio RJ , preserving the correlations with jackknife resampling.

For the pion two-point functions at zero momentum, the oscillating states — the terms in Eq. (2.16) with odd
powers of (−1) — do not appear. Thus, we fit the pion two-point functions using Eq. (2.16) with the lowest two non-
oscillating states (n = 0, 2). For the two-point functions with nonzero momentum, the contribution from oscillating
states is small but noticeable. We find that we only need to include the lowest three states (n = 0, 1, 2) in the fits.
Because the momenta we consider are typically small compared to 2π/a, the continuum dispersion relation is satisfied
within statistical errors, as shown in Fig. 3. In the main analysis, we therefore use the mass Mπ from the zero-
momentum fit and the continuum dispersion relation to set E(0)

π (p) =
√
|p|2 +M2

π for non-zero momentum. Because
the zero-momentum energy has significantly smaller statistical error than that of nonzero momentum, using this choice
and the dispersion relation for nonzero-momentum energy leads to a more stable and precise determination ofM(00)

J .
Table IV lists the relevant fit ranges for the two-point fits. In the two-point correlators (except the zero-momentum
pion two-point correlators), the noise grows rapidly with increasing t, the distance away from the pion source in the
temporal direction. The data points at large t are not useful, and including them would lead to a larger covariance
matrix which would be difficult to resolve given the limited number of configurations. We choose the upper end of the
fit ranges tmax such that the relative error does not exceed 20%. The lower end tmin is chosen such that the excited
state contamination is sufficiently small, i.e., the resulting central values of the ground state energy are stable against
variations in tmin as shown in Fig. 4 (left).

In our analysis, there are two places where quantities from the B-meson two-point functions are needed. The first is
for M (0)

B in Eq. (2.20). The second is for the B-meson excited state energy in Eq. (2.21) below. For the determination
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Figure 4. Pion (left) and B meson (right) mass in lattice units from the two-point correlator fits versus different choices of tmin

for the a ≈ 0.12 fm, m′l/m
′
h = 0.1 ensemble. The tmin marked in red (filled) is that of our preferred fit. The pion and B meson

correlators are fit to 2+0 and 1+1 states with tmax = 30, 21, respectively.

Table IV. Fit ranges [tmin, tmax] of the two-point correlator fits used to obtain the rest masses of the pion and B mesons.

≈ a(fm) am′l/am
′
h Cπ (2+0) C

(1S)
B (1+1)

0.12 0.01/0.05 [6, 30] [9, 21]
0.007/0.05 [6, 30] [9, 21]
0.005/0.05 [6, 30] [9, 21]

0.09 0.0062/0.031 [9, 47] [12, 32]
0.00465/0.031 [9, 47] [12, 29]
0.0031/0.031 [9, 47] [13, 29]
0.00155/0.031 [9, 47] [14, 29]

0.06 0.0072/0.018 [13, 71] [14, 41]
0.0036/0.018 [13, 71] [14, 41]
0.0025/0.018 [13, 71] [14, 41]
0.0018/0.018 [13, 71] [15, 41]

0.045 0.0028/0.014 [17, 74] [17, 61]

ofM (0)
B in Eq. (2.20) we use two-point functions constructed with a 1S-smearing function in the interpolating operators

for the source and sink. The 1S-smeared operator has good overlap with the ground state and a much smaller overlap
with the excited states than the local source operator, thus reducing excited-state contributions to the corresponding
correlators. We fit the 1S-1S smeared B-meson two-point correlators with relatively large tmin to only two states
(n < 2 in Eq. (2.16)). To choose tmax, we again apply the 20%-rule on the relative error. The lower bound tmin is
chosen in a manner similar to the pion two-point fits and the stability plot is shown in Fig. 4 (right). The chosen fit
ranges are shown in Table IV.

We test for autocorrelations by blocking the configurations on each ensemble with different block sizes, and then
using a single-elimination jackknife procedure to propagate the statistical error to the two-point correlator fits for Mπ

and M (0)
B . We do not observe any noticeable autocorrelations in all the ensembles we use, as illustrated in Fig. 5 for

the coarsest and finest ensembles, and choose not to block the data.
The ratios in Eq. (2.20) have the advantage that the wavefunction overlap factors ZP cancel, but the trade-off is

that we need an additional factor — the square root term on the right-hand side — to remove the leading t dependence
in the ratio. If the lowest lying states dominated the ratio RJ , then it would be constant in t and proportional to the
lattice form factor fJ . The subscript J now runs over ⊥, ‖, and T , corresponding to the operators V i, V 4, and T 4i,
respectively. Our previous analysis employed a simple plateau fit constant in time. With our improved statistics, the
small excited-state contributions to the ratio are significant and cannot be neglected. On the other hand, even with
our improved statistics, we find that contributions to RJ from wrong-parity states are still negligible. We use two
different fit strategies to remove excited state contributions and use the consistency between them as an added check
that any remaining excited state contamination is negligibly small.
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Figure 5. Fitted Mπ and MB in lattice units versus the block size for the a ≈ 0.12 fm, m′l/m
′
h = 0.1 ensemble (top) and for

the a ≈ 0.045 fm, m′l/m
′
h = 0.2 ensemble (bottom). The dashed line shows the ratio of the fit errors from the blocking and

non-blocking data, which can be read off from the right y-axis.

The first strategy starts with the ratio in Eq. (2.20) and minimally extends the plateau fitting scheme by including
the first excited state of the B meson in the following form:

RJ(t)

hJ
= f lat

J

[
1 +AJe−∆MB(T−t)

]
, (2.21)

where AJ and f lat
J are unconstrained fit parameters, ∆MB ≡ M

(2)
B − M

(0)
B is the lowest energy splitting of the

pseudoscalar B meson, and the prefactors are h‖ = 1, h⊥ = piπ and hT = (
√

2MBp
i
π)/(MB +Mπ). We choose the fit

ranges for RJ such that contributions from pion excited states to RJ can be neglected. The fit parameter ∆MB is
determined by the B-meson two-point correlators. In practice, we fit the ratio in Eq. (2.21) along with the B-meson
two-point correlation functions with ∆MB as a common parameter. We find it beneficial in the combined fit to
include both the local and smeared two-point correlation functions. We use 2+2 states for both correlators, but use
a different set of fit ranges (listed in Table V). The results of these two-point fits are shown in Fig. 6. The agreement
in the B-meson energies between the separate and combined fits is very good, but the combined fit leads to smaller
errors.

To summarize our strategy, for the case of zero momentum, we fit the ratio R‖(t) together with the local and
smeared B-meson two-point correlators C(d)

B , C(1S)
B simultaneously. For non-zero momentum p, ∆MB is common to

all three ratios, R‖, R⊥, RT . Thus, we perform a combined fit to the five quantities: R‖, R⊥, RT , C
(d)
B and C(1S)

B .
Figure 7 shows an example of these fits. Figure 8 shows the stability plots of R⊥ against the variations in the fit
ranges of the ratio fits, and the variations in the fit ranges of both two-point correlators. The preferred fit ranges are
set to be in the stable region upon these variations.

Our second fit strategy includes excited-state contributions from both the pion and the B meson. It starts with a
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Figure 6. Ground-state energy (bottom) and the first excited-state splitting (top) of the B meson on the a ≈ 0.12 fm,
m′l/m

′
h = 0.1 ensemble, from different fits to local, 1S-smeared and both two-point correlators.

Table V. The fit ranges [tmin, tmax] of the combined two-point and three-point ratio fits to obtain the lattice form factors.

≈ a(fm) am′l/am
′
h C

(d)
B C

(1S)
B R‖ R⊥ RT

0.12 0.01/0.05 [9, 23] [7, 21] [6,12] [6,12] [6,12]
0.007/0.05 [9, 23] [7, 21] [6,12] [6,12] [6,12]
0.005/0.05 [9, 23] [7, 21] [6,12] [6,12] [6,12]

0.09 0.0062/0.031 [12, 32] [9, 32] [9,16] [9,16] [9,16]
0.00465/0.031 [12, 32] [9, 29] [9,16] [9,16] [9,16]
0.0031/0.031 [12, 32] [9, 29] [9,16] [9,16] [9,16]
0.00155/0.031 [12, 29] [9, 29] [9,15] [9,15] [9,15]

0.06 0.0072/0.018 [13, 41] [9, 41] [12,22] [12,22] [12,22]
0.0036/0.018 [13, 41] [9, 41] [12,22] [12,22] [12,22]
0.0025/0.018 [13, 41] [9, 41] [12,22] [12,22] [12,22]
0.0018/0.018 [13, 41] [9, 41] [12,21] [12,21] [12,21]

0.045 0.0028/0.014 [16, 61] [10, 61] [16,26] [16,26] [16,26]

different ratio, without time averages, which ensures that there are enough data points to constrain all the parameters:

R̃J(t) =
CJ(t, T ;p)

Cπ(t;p)CB(T − t;0)
, (2.22)

where the two- and three-point correlators are defined in Eqs. (2.9) and (2.10). We fit R̃J(t) with all the possible
states with m,n ≤ 2 in Eqs. (2.16) and (2.17), combining the fits to the pion and B-meson two-point correlators. We
compare the fit results of the two different fit schemes in Fig. 9. The first (simple) fit model described in Eq. (2.21)
gives, fitting either simultaneously or individually to the three lattice form factors fJ , results that are consistent with
the second fit model that includes the full set of first excited states in Eq. (2.22). In contrast, the plateau fits to RJ
defined in Eq. (2.20) yield results that are as much as one statistical σ smaller. In summary, we find that the first fit
strategy described by Eq. (2.21) is sufficient to remove contributions from excited states, and we therefore adopt this
method for the main analysis.

E. Matching

We match the lattice currents to continuum QCD with the relation,

J .
= ZJblJ, (2.23)
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where J and J denote the vector or tensor currents in the continuum and lattice theories, respectively, and “ .=”
means “has the same matrix elements” [41]. We calculate the current renormalization with the mostly nonperturbative
renormalization method [18, 42],

ZJbl = ρJbl

√
ZV 4

bb
ZV 4

ll
, (2.24)

where ZV 4
bb

and ZV 4
ll
are the matching factors for the corresponding flavor-conserving vector currents. These factors

capture most of the current renormalization. The remaining flavor off-diagonal contribution to the matching factor,
ρJbl , is close to unity.

We calculate the factors ZV 4
bb

and ZV 4
ll
nonperturbatively for each ensemble by computing the matrix elements of

the flavor-conserving vector currents and using the relations

1 = ZV 4
ll
〈π|V 4

ll |π〉, (2.25)

1 = ZV 4
bb
〈Bs|V 4

bb|Bs〉, (2.26)

where the lattice current V 4
ll is a bilinear of light staggered quark fields and V 4

bb is a bilinear of clover heavy quark
fields. The factors ZV 4

bb
and ZV 4

ll
are listed in Table VI. Because there is very little ml dependence in the factor ZV 4

ll
,

we use the same ZV 4
ll
for ensembles with different light quark masses but the same lattice spacing. The factor ZV 4

bb

depends crucially on the heavy b quark mass, though it has negligible light quark mass dependence.
We use lattice perturbation theory [43] to compute the remaining renormalization factors ρJ at one-loop. Due to

the cancellation of the tadpole contributions in the radiative corrections to the left and right side of Eq. (2.24), the
factors ρJ are very close to one. They have the perturbative expansion

ρJ = 1 + αV (q∗)ρ
[1]
J +O(α2

V ), (2.27)

where we take the strong coupling in the V -scheme [43] at a scale q∗ that corresponds to the typical gluon loop
momentum. In practice, we choose q∗ = 2/a. The details of the calculation of the one-loop coefficients ρ[1]

J will be
presented elsewhere. The values used in this work are shown in Table VI.

F. Heavy-quark mass correction

In the clover action, the hopping parameter κb corresponds to the bare b-quark mass. When we started generating
data for this analysis, we had a good estimate for the bottom-quark κ′b on each ensemble, but not the final tuned
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Table VI. The parameters for the renormalization of the form factors. The first two columns label the ensemble with its
approximate lattice spacing and the sea light- and strange-quark mass ratio. The third column is the simulation κ′b. The fourth
and fifth columns are the nonperturbative heavy-heavy and light-light renormalization factors ZV 4

bb
, ZV 4

ll
. The sixth, seventh,

and eighth columns are the one-loop estimates of ρV 4 , ρV i and ρT , respectively. The tensor current has a nonzero anomalous
dimension; the numbers reported here match to the MS scheme at renormalization scale µ = m2, which corresponds to the pole
mass. Note that with our convention ZV 4

ll
and ZV 4

bb
are normalized so that at tree-level Z [0]

V 4
ll

= 2 and Z [0]

V 4
bb

= 1− 6u0κ
′
b [37]. As

a result, ZV bb4
only approaches 1 in the limit mb →∞.

≈ a(fm) am′l/am
′
h κ′b ZV 4

bb
ZV 4

ll
ρV 4
bl

ρV i
bl

ρTbl
0.12 0.01/0.05 0.0901 0.5015(8) 1.741(3) 1.006214 0.973023 1.033350

0.007/0.05 0.0901 0.5015(8) 1.741(3) 1.006252 0.973109 1.033280
0.005/0.05 0.0901 0.5015(8) 1.741(3) 1.006197 0.973082 1.033270
0.01/0.05 0.0860 0.5246(9) 1.741(3) 1.012999 0.977290 1.030650
0.01/0.05 0.0820 0.5469(10) 1.741(3) 1.018261 0.980129 1.028960

0.09 0.0062/0.031 0.0979 0.4519(15) 1.776(5) 0.999308 0.975822 1.036590
0.00465/0.031 0.0977 0.4530(15) 1.776(5) 0.999405 0.975775 1.036390
0.0031/0.031 0.0976 0.4536(15) 1.776(5) 0.999441 0.975744 1.036350
0.00155/0.031 0.0976 0.4536(15) 1.776(5) 0.999416 0.975703 1.036390

0.06 0.0072/0.018 0.1048 0.4089(21) 1.807(7) 0.995605 0.979279 1.042390
0.0036/0.018 0.1052 0.4065(21) 1.807(7) 0.995371 0.979260 1.043160
0.0025/0.018 0.1052 0.4065(21) 1.807(7) 0.995350 0.979217 1.043190
0.0018/0.018 0.1052 0.4065(21) 1.807(7) 0.995327 0.979176 1.043250

0.045 0.0028/0.014 0.1143 0.3564(65) 1.841(6) 0.994195 0.984351 1.058790

Table VII. Parameters needed to apply heavy-quark mass corrections. The third column contains the value κ′b used for the
calculation, the fourth column contains the tuned value κb with its statistical error. Subsequent columns contain the percentage
shift in m2 and each of the form factors.

a(≈fm) am′l/am
′
h κ′b κb

∆m2
m2

(%) ∆f⊥
f⊥

(%)
∆f‖
f‖

(%) ∆fT
fT

(%)
0.12 0.01/0.05 0.0901 0.0868(9) 10.9 1.79 1.55 1.60

0.007/0.05 0.0901 0.0868(9) 10.9 1.80 1.57 1.58
0.005/0.05 0.0901 0.0868(9) 10.9 1.81 1.58 1.56

0.09 0.0062/0.031 0.0979 0.0967(8) 4.3 0.69 0.60 0.62
0.00465/0.031 0.0977 0.0966(8) 3.9 0.63 0.55 0.56
0.0031/0.031 0.0976 0.0965(8) 3.9 0.64 0.56 0.55
0.00155/0.031 0.0976 0.0964(8) 4.2 0.70 0.61 0.59

0.06 0.0072/0.018 0.1048 0.1054(5) −2.4 −0.37 −0.36 −0.44
0.0036/0.018 0.1052 0.1052(5) 0.0 0.0 0.0 0.0
0.0025/0.018 0.1052 0.1051(5) 0.4 0.06 0.06 0.06
0.0018/0.018 0.1052 0.1050(5) 0.8 0.13 0.11 0.11

0.045 0.0028/0.014 0.1143 0.1116(4) 14.3 2.34 2.03 2.10

values, which were obtained as described in Appendix C of Ref. [44]. We therefore need to adjust the form factors a
posteriori to account for the slightly mistuned values of κb.

The κb parameters are adjusted so that the corresponding Bs kinetic masses match the experimentally-measured
value [44]. Table VII shows both the simulation and final tuned κb values. For some ensembles, the difference
between the two is as large as 7σ of the statistical uncertainty associated with the tuning procedure. We study
the κb-dependence of the lattice form factors by generating data on the a ≈ 0.12 fm, m′l/m

′
h = 0.2 ensemble, with

two additional κ′b values, 0.0860 and 0.0820, and all other simulation parameters unchanged. To generalize the κb
dependence from this ensemble to others, we work with the quark kinetic mass m2 instead of κb itself. We expand
the form factor f (f = f⊥,‖,T ) in m−1

2 about a reference point m̄−1
2 (which corresponds to the tuned κb) as follows

f(m−1
2 , a2,ml, Eπ) ≈ f(m̄−1

2 , a2,ml, Eπ) +
∂f(m̄−1

2 , a2,ml, Eπ)

∂m̄−1
2

(
m−1

2 − m̄
−1
2

)
= f(m̄−1

2 , a2,ml, Eπ)

[
1 +

1

f

∂f

∂m̄−1
2

(
m−1

2 − m̄
−1
2

)]
= f(m̄−1

2 , a2,ml, Eπ)

[
1− ∂ ln f

∂ ln m̄2
(
m̄2

m2
− 1)

]
, (2.28)
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Figure 10. The normalized slopes −(∂ ln f/∂ ln m̄2) of the three different form factors f‖,⊥,T at several momenta for B → π
(left) and B → K (right) semileptonic decays. The horizontal shaded error bands in each plot are the results of correlated fits
to all momenta for each form factor.

where the masses and Eπ are all in r1 units. To obtain f at the reference point, we need to find the dimensionless
normalized slope −(∂ ln f/∂ ln m̄2).

We use exactly the same procedure as described in Sec. IID for κ′b = 0.0901 to obtain the B → π`ν form factors
f‖,⊥,T for the additional values κ′b = 0.0860 and 0.0820. We apply the matching factors given in Table VI. Finally,
we take m̄2 to be the kinetic mass corresponding to κb = 0.0868 (the tuned kappa given in Table VII) and use it as
the reference point. We fit each form factor at each momentum for the three data points to the linear form given in
Eq. (2.28), taking f(m̄−1

2 ) and −(∂ ln f/∂ ln m̄2) as fit parameters. The result is shown in Fig. 10 (left). As shown in
the plot, the normalized slope −(∂ ln f/∂ lnm2) has a very mild Eπ dependence. Therefore, for each form factor we
perform a correlated fit to all momenta to obtain a single common normalized slope. The result is shown in Table
VIII. Fitting the data to a linear form in Eπ results in a slope statistically consistent with zero.

To examine the light-quark mass dependence of the normalized slopes, we repeat the same procedure for the
B → K semileptonic form factors with a heavier daughter valence quark ams = 0.0349, which is close to the physical
strange-quark mass. The results are plotted in Fig. 10 (right). We fit the points of each form factor to a constant
and tabulate the results in Table VIII. Comparing the normalized slopes for fB→π and fB→K , taking into account
statistical correlations, we observe a mild but statistically-significant light daughter-quark mass dependence. So we
fit the slopes for fB→π and fB→K simultaneously to a linear form,

− ∂ ln f

∂ ln m̄2
= c+ d

ml

ms
, (2.29)

where ml/ms = 0.2 and 1.0 for fB→π and fB→K , respectively. The results for the parameters c and d are given in
Table VIII. Note that the results in Table VIII are also used in Ref. [45].

We use the parameters c and d in Table VIII to determine the normalized slope −(∂ ln f/∂ ln m̄2) for each ensemble.
Although the dependence of the normalized slopes on the light daughter-quark mass is resolvable, the effects are small
for the ensembles we use in the analysis (with light daughter-quark masses ranging from 0.05ms to 0.4ms). We expect
similarly small effects from the spectator-quark masses. We also expect that the lattice-spacing dependence of the
normalized slopes is small, because it is a dimensionless ratio. We therefore correct each lattice form factor in each

Table VIII. Fitted normalized slopes to all momenta for fB→π, fB→K and their combined fit with daughter-quark mass
dependence.

B → π B → K Combined fit with ml/ms dependence
p value ∂ ln f

∂ ln m̄2
p value ∂ ln f

∂ ln m̄2
p value c d

f⊥ 0.56 0.145(11) 0.46 0.115(9) 0.4 −0.146(11) 0.032(3)
f‖ 0.51 0.160(16) 0.74 0.139(13) 0.84 −0.165(17) 0.025(8)
fT 0.66 0.146(16) 0.79 0.126(13) 0.88 −0.137(17) 0.034(8)
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ensemble by a factor

1 +
∆f

f
=

[
1− ∂ ln f

∂ ln m̄2

(
m̄2

m2
− 1

)]−1

, (2.30)

where m2 and m̄2 are the kinetic masses corresponding to the simulation κ′b and tuned κb, respectively. The resulting
relative shift for each ensemble is shown in Table VII. Although the corrections to κb itself are significant for some
ensembles, the corresponding corrections to the form factors are much smaller (. 2.3%), as a consequence of the small
normalized slopes.

III. CHIRAL-CONTINUUM EXTRAPOLATION

Here we extrapolate the form factors at four lattice spacings with several unphysical light-quark masses to the
continuum limit and physical light-quark mass. We use heavy-meson rooted staggered chiral perturbation theory
(HMrSχPT) [46, 47], in the hard-pion and SU(2) limits. We also incorporate heavy-quark discretization effects into
the chiral-continuum extrapolation.

A. SU(2) staggered chiral perturbation theory in the hard-pion limit

The full-QCD next-to leading order (NLO) HMrSχPT expression for the semileptonic form factors can be written
[46]

fNLOJ = f
(0)
J

[
cJ0 (1 + δfJ,logs) + cJ1χval + cJ2χsea + cJ3χE + cJ4χ

2
E + cJ5χa2

]
, (3.1)

where J =⊥, ‖, T . Note that the expressions are in units of the mass-independent scale r1 and the coefficients cJi have
the dimension of r−3/2

1 . The leading-order terms are

f
(0)
⊥,T =

1

fπ

gB∗Bπ
Eπ + ∆B∗ + δDlogs

, (3.2)

f
(0)
‖ =

1

fπ
, (3.3)

with gB∗Bπ the B∗-B-π coupling constant and ∆B∗ ≡ MB∗ −MB the B∗-B mass splitting. The terms δfJ,logs and
δDlogs are the one-loop nonanalytic contributions in the chiral expansion, and depend upon the light pseudoscalar
meson mass and energy [46]. Note that in the heavy-quark expansion fT is proportional to f⊥ up to O(1/mb). We
therefore use the same pole location and nonanalytic corrections for fT as f⊥. The terms analytic in χi are introduced
to cancel the scale dependence arising from the nonanalytic contribution in Eq. (3.1). The dimensionless variables χi
are proportional to the quark mass, pion energy, and lattice spacing. We define

χval =
2µml

8π2f2
π

, (3.4)

χsea =
µ(2m′l +m′h)

8π2f2
π

, (3.5)

χE =

√
2Eπ

4πfπ
, and (3.6)

χa2 =
a2∆̄

8π2f2
π

. (3.7)

Note that the valence mass ml is equal to the sea mass m′l in our data. The low-energy constant µ relates the
pseudoscalar meson masses to the quark masses,

M2
ξ,PS = (m1 +m2)µ+ a2∆ξ, (3.8)

and ∆ξ is the mass splitting for staggered taste ξ. The average taste splitting in Eq. (3.7) is ∆̄ ≡ 1
16

∑
ξ ∆ξ. The

quantities µ and ∆ξ are obtained from the MILC Collaboration’s analysis of light pseudoscalar mesons and are shown
in Table IX.
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Table IX. Fixed parameters that enter the chiral-continuum extrapolation fit function. The taste splittings r2
1a

2∆ξ, ξ =
P,A, T, V, I are for the pseudoscalar, axial-vector, tensor, vector and scalar tastes, respectively. The pseudoscalar taste splittings
are zero by virtue of the remnant chiral symmetry of staggered fermions. The hairpin parameters r2

1a
2δ′V (A) were determined

in a combined fit to light-pseudoscalar quantities at multiple lattice spacings. We take the result for these couplings at the
a ≈ 0.12 fm lattice and scale them to other lattice spacings by the ratio ∆rms(a)/∆rms(0.12fm) where ∆rms is the rooted mean
square of the taste splittings. The continuum value of the low-energy constant µ is evaluated at the same scale as the 0.09 fm
lattice in our mass-independent scheme.

a(fm) 0.12 0.09 0.06 0.045 0
r2
1a

2∆P 0 0 0 0 0
r2
1a

2∆A 0.22705 0.07469 0.02635 0.01041 0
r2
1a

2∆T 0.36616 0.12378 0.04298 0.01698 0
r2
1a

2∆V 0.48026 0.15932 0.05744 0.22692 0
r2
1a

2∆I 0.60082 0.22065 0.07039 0.02781 0
r2
1a

2δ′V 0.0 0.0 0.0 0.0 0
r2
1a

2δ′A −0.28 −0.09 −0.03 −0.01 0
r1µ 6.83190 6.63856 6.48665 6.41743 6.015349

We constrain the parameter gB∗Bπ with a prior. The value of gB∗Bπ has been calculated with lattice QCD in the
static limit [48, 49] or with a relativistic b quark [50] on gauge fields generated with domain-wall or Wilson sea quarks
[51]. We set the prior, based on these lattice-QCD calculations, to be gB∗Bπ = 0.45± 0.08, where the error covers the
differences among different determinations of the coupling. The LO and NLO coefficients, {ci, 0 ≤ i ≤ 5}, are well
determined by the data. Note that the formula given in Eq. (3.1) is slightly different from that in Ref. [5] where the
NLO coefficients therein are our |cJi /cJ0 | (i 6= 0). With the introduction of variables χi defined in Eqs. (3.4)-(3.7), we
should expect that |cJi /cJ0 | . 1 (i 6= 0), or |cJi | . |cJ0 |. In the actual fits, |c⊥,‖0 r

3/2
1 | . 0.6 and |cT0 r

3/2
1 | . 1.0. Note that

the coefficients cJi are dimensionful, and they are evaluated here in r1 units. We constrain them with loose priors:
c
⊥,‖
i r

3/2
1 = 0± 1 and cTi r

3/2
1 = 0± 2.

Standard HMrSχPT uses the assumption that the external and loop pions are soft, i.e., Eπ ∼Mπ [52, 53]. In our
work, however, the external pion energies can be quite large, in some cases as much as 7 times the physical pion mass,
and standard HMrSχPT may not converge well enough in this range. Indeed, the fit of the lattice form factor f‖ to
Eq. (3.1) gives a poor confidence level (p ∼ 0), which is not improved by including higher-order contributions in the
chiral expansion. Bijnens and Jemos [54] proposed an approach called hard-pion χPT, in which the internal energetic
pions are integrated out and the Eπ dependence is absorbed into the low energy constants. 2 Since hard-pion χPT
provides a more appropriate description of our data, we adopt it in this analysis. The explicit expressions for the
hard-pion nonanalytic terms δfhardJ,logs using SU(3) chiral perturbation theory as well as its SU(2) limit are given in
the appendix of Ref. [45]. We take the SU(2) limit by integrating out the strange quark. The resulting expression
has no explicit strange-quark mass dependence, which has been absorbed into the value of the low energy constants.
The SU(2) hard-pion χPT provides a better description of our f‖ data than the SU(3) hard-pion χPT (p value 0.29
versus 0.09 from the NLO χPT fit with priors). We also find that the chiral expansion converges faster using SU(2)
χPT when including higher-order chiral corrections in the fit to our data, which results in smaller χPT truncation
errors than from using SU(3) χPT. Finally, Ref. [53] provides phenomenological arguments to prefer the application
of SU(2) HMχPT over SU(3) to lattice-QCD data. We therefore use the SU(2) formula for our central value fit, but
also check the consistency with the SU(3) fits in Sec. IV.

Based on the above discussion, we use the following conditions for f⊥, f‖ and fT in Eq. (3.1):

δfJ,logs = δf
hard, SU(2)
J,logs , (3.9)

δDlogs = 0, (3.10)

cJ2 = 0, (3.11)

χval =
2(2µml)

8π2f2
π

− a2∆I/3

8π2f2
π

, (3.12)

where Eq. (3.10) is a consequence of the hard-pion limit, Eq. (3.11) and the factor 2 in the first term of Eq. (3.12)
follow from the fact that we take ml = m′l and m′h has been integrated out, Eq. (3.12) preserves the chiral scale

2 The factorization of hard-pion χPT breaks down starting at three loops [55], but we only use the one-loop non-analytic terms.
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independence of the SU(2) hard-pion NLO expression, and a2∆I is the taste splitting of the taste-singlet pseudoscalar
meson mass.

The fits of the lattice form factors using NLO SU(2) hard-pion HMrSχPT have acceptable confidence levels. We
find, however, that there is a sizable shift in the fit result when including higher-order terms in the χPT expansion.
We therefore need to study the effects of higher-order contributions in the chiral expansion.

B. Next-to-next-to-leading order (NNLO) corrections

We supplement the NLO SU(2) hard-pion χPT expression with the following NNLO analytic terms

δfNNLOJ,analytic = cJ6χvalχE + cJ7χa2χE + cJ8χ
3
E + cJ9χ

2
val

+cJ10χvalχ
2
E + cJ11χa2χval + cJ12χa2χ

2
E + cJ13χ

2
a2 + cJ14χ

4
E , (3.13)

such that the complete NNLO χPT expression is,

fNNLOJ = fNLOJ + f
(0)
J δfNNLOJ,analytic. (3.14)

Note that fNLOJ here uses the hard-pion and SU(2) χPT, as manifested in Eqs. (3.9)-(3.12). All light-quark discretiza-
tion errors that arise from taste violations are included here; generic errors from light-quark and gluon action, which
are O(αsa

2Λ2), are discussed in Sec. III C.
Again, the expectation from chiral perturbation theory is that the coefficients of these analytic terms should satisfy

|cJi /cJ0 | ∼ O(1) when written in terms of the dimensionless variables χ given in Eqs. (3.4)–(3.7). We set the priors for
the NNLO coefficients for f⊥,‖, {c

⊥,‖
i r

3/2
1 , 6 ≤ i ≤ 14}, to be 0± 0.6, since the role of these terms is simply to absorb

the effects of higher-order contributions in the chiral expansion. This width 0.6 corresponds to the size of |c⊥,‖0 r
3/2
1 |.

For the same reason, we set the priors for the coefficients for fT , {cTi r
3/2
1 , 6 ≤ i ≤ 14}, to be 0 ± 1.0. Doubling the

prior widths leads to negligible shifts on the central values of the form factors and less than 20% increases in the fit
errors.

C. Heavy-quark discretization effects

The chiral-continuum extrapolation implemented in Eq. (3.14) accounts for the discretization effects from the gluons
and the light staggered quarks. Discretization effects from the heavy b quark need a separate treatment. Heavy-quark
discretization errors arise from the short-distance mismatch of higher-dimension Lagrangian and current operators
[41, 42]. By power counting, such mismatches are of O(a2Λ2) or O(αsaΛ) where Λ is a QCD scale appropriate for the
heavy-quark expansion. We follow the same method for incorporating the heavy-quark discretization effects described
in Ref. [37] and include the following error function in Eq. (3.1),

δfHQJ =
(
zJEfE + zJXfX + zJY fY

)
(aΛ)2 +

(
zJBfB + zJ3 f3

)
(αsaΛ) + zJ0 αs(aΛ)2, (3.15)

where the mismatch functions fE,X,Y,B,3 are given in the Appendix of Ref. [37]. The error functions fB,E arise from
mismatches of operators in the Lagrangian, while functions fX,Y,3 arise from those of the vector current. The last
term in Eq. (3.15) accounts for higher order heavy-quark and generic light-quark and gluon errors not included in
Eq. (3.14), which is of the order αs(aΛ)2. The fit parameters are constrained with priors: 0 ± 1 for zY , zB , z0 and
0±
√

2 for zX , z3; the latter two are wider because the functions fX and f3 both appear twice [42].
To summarize, after incorporating the heavy-quark discretization effects, the complete NNLO SU(2) hard-pion

HMrSχPT expression is

fNNLO+HQ
J = fNNLOJ × (1 + δfHQJ ), (3.16)

where fNNLOJ is defined in Eq. (3.14). With this treatment, the uncertainty due to truncating the chiral expansion
at NNLO (cf. Sec. IV below), NNLO light-quark and gluon discretization effects, and LO heavy-quark discretization
effects are incorporated in the fit error of the chiral-continuum extrapolation. The fits for f⊥, f‖, and fT to Eq. (3.16)
are shown in Fig. 11.

To examine the size of discretization effects, we plot the form factors f⊥ and f‖ with light-quark mass m′l = 0.2m′h
at each lattice spacing versus a2 in Fig. 12. As we can see from the plots, the observed lattice-spacing dependence
is very mild, with the data points at the largest lattice spacing (a ≈ 0.12 fm) only about two statistical sigma away
from the continuum limit.
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Figure 11. Chiral-continuum extrapolation of lattice form factors f⊥ (upper left), f‖ (lower left) and fT (lower right) as functions
of Eπ, where all quantities are in r1 units. The colors denote the lattice spacings: 0.12 fm (gold), 0.09 fm (green), 0.06 fm
(blue) and 0.045 fm (violet). The symbols denote the light-quark masses m′l/m

′
h: 0.05 (diamond), 0.1 (circle), 0.15 (square),

0.2 (downward-pointing triangle), and 0.4 (upward-pointing triangle). The colored lines correspond to the fit results evaluated
at the parameters of the ensembles. The physical-mass continuum-limit curve is shown as a black curve with cyan error band.

IV. SYSTEMATIC ERROR BUDGET

The error output from the central-value fit described in Sec. III C already includes the systematic errors due to the
light- and heavy-quark discretization effects and the uncertainty on gB∗Bπ. We now discuss other sources of systematic
uncertainty. We tabulate systematic error budgets for f+ and f0 at a representative kinematic point q2 = 20 GeV2

within the range of lattice data in Table X. We also present the error budget for the full simulated lattice momentum
range in Fig. 17.
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Figure 12. Discretization effects in the form factor f⊥ (left) and f‖ (right) at a few kinematic points. The plots show the form
factors on them′l = 0.2m′h ensembles at each lattice spacing vs. a2 for various pion momenta (a slight extrapolation/interpolation
is applied to adjust the raw data to the same Eπr1). The range Eπr1 ∈ [0.28, 1.2] is used in the q2 extrapolation to the full
kinematic range.

A. Chiral-continuum extrapolation

As discussed above, our central fit uses NNLO3 SU(2) hard-pion HMrSχPT including contributions from heavy-
quark discretization effects and the uncertainty in gB∗Bπ. Here we consider variations of the fit function and the data
included to estimate truncation and other systematic effects.

First, we study the effects of truncating the chiral expansion by adding next-to-NNLO (NNNLO) analytic terms
δfNNNLOJ,analytic in our fits with coefficients constrained with the same priors as the NNLO coefficients. The variations
in f+ due to changing the order of the χPT analytic terms are shown in Fig. 13. The fits of different orders are
consistent in the q2 region where most of the simulation data are located. Although the central values and errors
differ noticeably between the NLO and NNLO fits, the central values and errors of the NNNLO fit are very close to the
NNLO fit, indicating that the chiral extrapolation has stabilized by NNLO. As discussed earlier, the NLO coefficients
are well determined by the data and we use well-motivated priors based on expectations from χPT for the NNLO and
higher order terms. The fact that the error saturates with NNLO shows that the preferred fit already incorporates
the uncertainty from truncating the chiral expansion, and that we do not need to add an additional systematic error.
The NNLO fit error as a function of q2 is shown in Fig. 14.

The standard soft-pion HMrSχPT fits of f⊥ have reasonable confidence levels, but those of f‖ do not. Here we
estimate the effect of using the hard-pion formalism by using standard HMrSχPT for f⊥ but still employing hard-pion
χPT for f‖. The resulting difference from the preferred fit is small, less than 1% for f+. The same conclusion also
holds for the form factor f0.

We use SU(2) χPT, instead of SU(3) χPT, for our central fit. To estimate the effect of this choice, we restore the
strange-quark dependence of the logarithm and analytic terms in Eq. (3.1). A practical issue arises with NNLO SU(3)
χPT, where the terms proportional to the sea-quark mass, χsea, are not well constrained by our data because the
strange sea-quark mass m′h is so similar on all of our ensembles. To obtain some sensitivity to χsea, we include data on
an additional a ≈ 0.12 fm ensemble with an unphysically small strange-quark mass, am′h,sea = am′l,sea = 0.005. With
the inclusion of this ensemble, we find the fit parameters for the terms involving χsea are better constrained. The
differences between the NNLO SU(3) fits and the preferred fits are shown in Fig. 14. For f+, the difference is within
the statistical error. For f0, the difference lies outside the statistical error for some of the simulated q2 range, but the
NNLO SU(3) fit quality is poor, with a p-value of 0.01. Because SU(3) χPT does not provide a good description of
our data for f0, we do not take the difference between NNLO SU(2) and SU(3) fits as a systematic error.

To check how our results are affected by data with high momenta, we also perform a fit excluding data with
p = (2π/L)(1, 1, 1). As shown in Fig. 14, the form factors f+ and f0 from the low-momentum fit agree very well with

3 NLO + NNLO analytic terms.
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Figure 14. Variations in the chiral-continuum extrapolation from different fit Ansätze. The shaded area shows the fit error
from the preferred NNLO SU(2) fit. The other curves show the systematic deviations from the NNLO SU(2) fit under the
variations discussed in the text.

those from the preferred full-data fit for the region q2 > 20 GeV2. The systematic difference increases for small q2,
where the highest-momentum data provide important information.

Figure 14 summarizes the effects of all these variations. Comparing the deviations between the central values of the
alternate and preferred fits to the statistical error of the preferred fit, we find that the deviations are almost always
smaller than the statistical error of our preferred fit. This confirms that fit errors of our preferred fits adequately
account for the systematic effects associated with these variations. We therefore do not quote any additional systematic
error due to these sources.

We include heavy-quark discretization effects in our chiral-continuum extrapolation. As a consistency check, we
compare our result with a power counting estimate obtained by evaluating δfHQJ in Eq. (3.15) at the a ≈ 0.045 fm
lattice spacing, setting the coefficients zi = 1 and taking Λ = 500 MeV for the heavy-quark scale. We find δfHQJ '
1.5%. Figure 15 shows that the NNLO fit error (without the heavy-quark discretization effects) added to the 1.5%
power-counting estimate in quadrature yields a similar error to that of the full fit. Thus, again, it is not necessary to
add an additional error to that of the preferred chiral-continuum fit.
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B. Light- and bottom-quark mass uncertainties

The effect of mistuning the b-quark mass in our simulation has been largely reduced via the corrections described
in Sec. II F. Errors still arise, however, from the uncertainty in the tuned value κb itself and from the procedure for
shifting the form factors. From Eq. (2.30) we estimate the relative error by

δf

f
≈
(
∂ ln f

∂ ln m̄2

)
δ(1/m2)

1/m2
+ δ

(
∂ ln f

∂ ln m̄2

)
1/m2 − 1/m̄2

1/m̄2
, (4.1)

where δ(1/m2) is related to the uncertainty due to the error in κb while δ( ∂ ln f
∂ ln m̄2

) is the uncertainty on the normalized
slope. The values of the physical κb with errors are given in Table VII, and we can find the statistical uncertainty of
the normalized slope using Table VIII. Using Eq. (2.30), we find that the value of δf/f on all ensembles is at most
0.6%. We take the average value for δf/f on all ensembles, which is 0.4%, to be the error due to tuning κb, and
assign the same error to f+ and f0.

To obtain the physical form factors, we evaluate the result of the chiral-continuum fit at the physical light- and
strange-quark masses determined from the MILC Collaboration’s analysis of light pseudoscalar mesons [19]. (Although
we use SU(2) χPT, we include an analytic term proportional to χsea to allow for a slight shift to the physical strange
sea-quark mass.) The errors on the physical ml ≡ (mu + md)/2 and ms are 3.5% and 3.0%, respectively. We vary
the light- and strange-quark masses at which the chiral-continuum fit function is evaluated by plus and minus one
standard deviation, and find that it produces differences below 0.4% in both form factors.

C. Lattice scale r1

We convert the lattice form factors and pion energies to physical units using the relative scale r1/a determined from
the static-quark potential (see Table III) and the absolute scale r1 = 0.3117(22) fm [37]. The statistical uncertainties
on r1/a are negligible. We propagate the uncertainty in r1 by shifting it ±1σ and repeating the chiral-continuum fit.
We find shifts of at most 0.7% in the range of simulated momenta.

D. Current renormalization

With the mostly nonperturbative renormalization procedure that we use for the heavy-light currents, there are two
sources of error. The first is due to the nonperturbatively calculated flavor diagonal factors ZV 4

bb
and ZV 4

ll
. Their
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Figure 16. Subdominant systematic errors over the range of simulated lattice momenta. Error estimates are described in the
text.

values and errors are given in Table VI. We estimate the systematic error due to the uncertainties of ZV 4
bb

and ZV 4
ll

by varying their values by one sigma and looking for the maximum deviations in the form factors f+ and f0. The
resulting deviations are small, ranging from 0.4% to 0.6%.

The second source of error is due to the truncation of the perturbative expansion in the calculation of the ρJ .
Because the ρJ are defined from ratios of renormalization constants, their perturbative corrections are small by
construction. Indeed, as seen in Table VI, for V 4

bl they are less than 1% and for V ibl they range between 2–3%. For
the scale-independent vector current, we observe that the one-loop corrections to ρV 4

bl
are smaller than those for ρV ibl ,

and we use the same error estimate for both. In order to accommodate possible accidental cancellations, we take the
error as 2ρ

[1]
max α2

s, where ρ
[1]
maxαs is an upper bound of the one-loop correction to V µbl in the range of heavy-quark mass

am0 ≤ 3 that corresponds to the range of lattice spacings included in our analysis. The coupling is evaluated at the
scale of the next-to-finest lattice spacing in our calculation, a ≈ 0.06 fm. This procedure yields an error estimate of
1%, which is larger than the one-loop correction to ρV 4

bl
over most of the mass range, and amounts to about 50% of

the one-loop correction to ρV ibl in the mass range that corresponds to the three finest lattice spacings. This leads to
an error of 1% for both f+ and f0 due to the perturbative renormalization factors.

E. Finite volume effects

We estimate the size of the finite-volume effects by replacing the infinite-volume chiral logarithms with discrete
sums and repeating the chiral-continuum extrapolation. The change in our preferred fit after including finite-volume
corrections is very small, less than 0.01%, which we simply neglect.

F. Summary

Figures 16 and 17 visually summarize the systematic error budget for the vector and scalar form factors f+, f0 in
the simulated lattice-QCD momentum range. By far the largest contribution to the total uncertainty is from the fit
error, which includes the statistical uncertainty in addition to the chiral-continuum extrapolation and heavy-quark
discretization errors. The total error on f+ is smallest, about 3%, in the region of q2 ≈ 20–24 GeV2.

The subdominant errors, such as those from heavy-quark mass tuning, the current renormalization etc., have mild
q2 dependence, as can be seen in Fig. 16. We therefore treat them as constant in q2 when propagating them. For each
source, we take the maximum estimated error in the simulated q2 range; we then add these individual error estimates
in quadrature to obtain an overall additional systematic error δf . We find δf+ = 1.4% and δf0 = 1.5%.

In the next section, we will use our result for f+ to obtain |Vub| via a combined fit with experimental data to the
z expansion. Due to phase-space suppression, the experiments have poor access to the large-q2 region. On the other
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Table X. Error budgets of form factors f+ and f0 at q2 = 20GeV2.

Uncertainty δf+ δf0

Statistical+χPT+HQ+gB∗Bπ 3.1 3.8
Scale r1 0.5 0.7
Non-perturbative ZV 4

bb
0.4 0.6

Non-perturbative ZV 4
ll

0.4 0.4
Perturbative ρ 1.0 1.0
Heavy-quark mass mistuning 0.4 0.4
Light-quark mass tuning 0.4 0.2
Total 3.4 4.1
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Figure 17. The distribution of the errors for f+ (left) and f0 (right) as a function of q2. The different bands in the plot show
the contribution of the error source to the sum of squared errors (left y axis). The corresponding error can be read off from
the right y axis.

hand, the lattice-QCD form factor has a larger error than experiment at small q2 due to the sizable q2 extrapolation.
As discussed below, the value of |Vub| is mostly determined in the region q2 ≈ 20 GeV2, which is at the low end of the
q2 range where the lattice-QCD form-factor error is still small. We therefore provide tabulated error budgets for the
two form factors f+, f0 from our calculation at the particular kinematic point q2 = 20GeV2 in Table X. The error on
f+(20 GeV2) is approximately 3.4%, which is about one third of the error on our previously-determined form factor
in Ref. [5].

We compare our results for f+ and f0 with full errors, which are obtained by adding the fit errors from the χPT fits
and δf in quadrature, with previous lattice-QCD calculations in Fig. 18. Our result for f+ agrees with previous results
obtained at q2 & 17 GeV2 from Refs. [4, 5, 13], but is more precise. Our result for f0 is consistent with Ref. [13], but
not with Ref. [4].

V. z EXPANSION AND DETERMINATION OF |Vub|

The chiral-continuum extrapolation described in the previous sections yields the form factors in the range 17 GeV2 ≤
q2 ≤ 26 GeV2. In this section, we extrapolate them to the full kinematic range using the model-independent z
expansion. The form factors resulting from the chiral-continuum extrapolation are functions specified by a set of
parameters. One could, in principle, incorporate the z expansion with the χPT expansion from the outset (see, e.g.,
Ref. [56]). With such an approach, however, the coefficients of the z expansion will have a nontrivial dependence on
ml and a that must be derived from the underlying chiral effective theory. Because the dependence of the coefficients
on a andml is unknown, we instead carry out the extrapolation in two steps, taking the chiral-continuum extrapolated
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Figure 18. Comparison of f+ (left) and f0 (right) from this work with previous lattice-QCD calculations by HPQCD [4],
Fermilab/MILC[5] and RBC/UKQCD [13].

results and feeding them into the z expansion. We introduce a functional method to perform the z expansion. We also
apply the z expansion to the experimental data and, after verifying that the fits to experiment and to lattice QCD
are consistent, we carry out a combined fit to obtain |Vub|. A byproduct of the last step is a precise determination
for f+(q2) constrained by lattice QCD at high q2 and experiment at low q2.

A. z expansions of heavy-light semileptonic form factors

The z expansion involves mapping the variable q2 to a new variable z by [57]

z(t, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (5.1)

where t± = (MB ±Mπ)2 and t0 is chosen for convenience below. This change of variables maps the whole complex q2

plane onto the unit disk in the z plane, where the upper (lower) path along the branch cut [t+,∞) is mapped to the
lower (upper) half of the circle enclosing the unit disk in the complex z plane. Choosing t0 = (MB+Mπ)(

√
MB−

√
Mπ)2

centers the full kinematic range for semileptonic B → π`ν decay around the origin z = 0, and, moreover, restricts
z to |z| < 0.28. The small, bounded interval, together with a constraint from unitarity ensures convergence of the
expansion. As discussed below, we find in practice that the convergence is rapid.

The form factors f+ and f0 are analytic in z except for the branch cut [t+,∞) and poles in [t−, t+]. We can write

Pi(z)φi(z)fi =
∑
n

anz
n (5.2)

where Pi(z), i = +, 0, are the Blaschke factors, which are introduced to remove the poles of fi in the region [t−, t+],
and φi(z) are the outer functions [57, 58]. We choose simple outer functions φ+,0 = 1 and employ the following
formulas to expand the form factors

f+(z) =
1

1− q2(z)/M2
B∗

Nz−1∑
n=0

b+j

[
zn − (−1)n−Nz

n

Nz
zNz

]
, (5.3)

f0(z) =

Nz∑
n=0

b0nz
n. (5.4)
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Table XI. The BCL constants used to estimate Σ(b,Nz).

B00 B01 B02 B03 B04 B05 B06

f0 0.1032 0.0408 −0.0357 −0.0394 −0.0195 −0.0055 −0.0004
f+ 0.0198 0.0042 −0.0109 −0.0059 −0.0002 0.0012 0.0011

Equation (5.3) is known as the Bourrely-Caprini-Lellouch (BCL) expansion [59], which is constructed to reproduce the
threshold behavior at q2 = t+ and the asymptotic behavior as q2 → ±∞. Equation (5.4) is a simple series expansion
of f0 in z.

The BCL coefficients in Eq. (5.3) and (5.4) obey the unitarity constraint [57, 59]

Σ(b,Nz) ≡
Nz∑

m,n=0

Bmnbmbn . 1, (5.5)

where the element Bmn satisfies Bnm = Bmn = B0|m−n| and depends on the choice of t0 [59]. We tabulate the
values of B0k for the form factors f+, f0 in Table XI. The inequality saturates when Nz → ∞. Although we do not
incorporate this constraint into our fits, we check that our results satisfy it.

B. Functional method for the z expansion

In previous work, we have used synthetic data points generated from the χPT fit as inputs to the z fit [5], but
here we take a new approach. We exploit the facts that the χPT expansion is linear in the fit parameters and that it
contains only a finite number of independent functions (see Eq. (3.1)). We construct a covariance function K(z1, z2),
defined as the covariance of any pair of points (z1, z2), using the set of functionals from the χPT expansion. Our new
approach is to formulate the z expansion using the eigenfunctions of an integral operator defined from K(z1, z2).

Let us start with the NLO χPT expression Eq. (3.1), as an example. Because f⊥ and f‖ are linear in their coefficients
c⊥i and c‖i , we can express them both in the compact form

fJ(m`,ms, a
2, Eπ) = CJ ·XJ , (5.6)

where

CJ ≡
[
c0 c1 c2 c3 c4 c5 · · ·

]J
, (5.7)

XJ ≡ f (0)
J

[
(1 + δfJ,logs) χval χsea χE χ2

E χa2 · · ·
]T (5.8)

and where J =⊥, ‖ and the variables are defined in Eqs. (3.4)–(3.6). Any linear combination of f⊥ and f‖ can be
written as

f = [ ξ η ]

[
f⊥
f‖

]
= [ CT⊥ CT‖ ]

[
ξX⊥
ηX‖

]
, (5.9)

with ξ, η functions of q2. The uncertainty of the function f is encoded in the uncertainty in the coefficient vector CJ .
In all these expressions, we are only interested in the terms with Eπ (or q2) dependence and, hence, z dependence.
We can now define the covariance function K(z, z′) in some valid domain [z1, z2]. Explicitly,

K(z, z′) = Y (z)T · Cov · Y (z′), (5.10)

where

Y (z) =

(
ξ(z)X⊥(z)
η(z)X‖(z)

)
, (5.11)

and Cov is the covariance matrix of the involved coefficients cJn

Covmn = 〈δcmδcn〉, (5.12)
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The covariance function K(z, z′) is a Mercer kernel [60], and Mercer’s theorem ensures that there exists a set of
orthonormal functions ψi(z) defined over the domain [z1, z2], such that

K(z, z′) =
∑
i λiψi(z)ψi(z

′), (5.13)

where λi, ψi are the eigenvalues and eigenfunctions of the operator LK induced by the integral equation,

LKψ(z) =

ˆ z2

z1

K(z, z′)ψ(z′)dz′. (5.14)

The form factor f(z) can naturally be expanded in the basis of ψi(z): we only need to project the expansions
in Eqs. (5.3) and (5.4) onto the same basis. The process of finding the expansion coefficients bn is equivalent to
minimizing the following function (in analogy to the usual χ2 function, replacing the sum over discrete points with
an integral over a continuous variable):

χ2
lat =

ˆ z2

z1

dz

ˆ z2

z1

dz′
[
fχPT(z)− gf (b, z)

]
K−1(z, z′)

[
fχPT(z′)− gf (b, z′)

]
=

Nψ∑
i=1

1

λi

[ˆ z2

z1

dz[fχPT(z)− gf (b, z)]ψi(z)

]2

=

Nψ∑
i=1

1

λi

[
fχPTi −

Nz−1∑
n=0

bn

ˆ z2

z1

θfn(z)ψi(z)dz

]2

, (5.15)

where

fχPT(z) =
∑
i

fχPTi ψi(z), (5.16)

is the form factor function from the χPT fit expanded in terms of ψi, and

gf (b, z) =

Nz−1∑
n=0

bnθ
f
n(z) (5.17)

are functions rewritten from the functions defined in Eqs. (5.3) and (5.4). For brevity we define

θ+
n (z) =

1

1− q2(z)/M2
B∗

[
zn − (−1)n−Nz

n

Nz
zNz

]
, (5.18)

θ0
n(z) = zn. (5.19)

To summarize, we expand any form factor function fχPT obtained from the chiral-continuum extrapolation in the
basis formed by the eigenfunctions of its covariance function K(z, z′). We then project the z expansion onto the same
basis. Finally, we solve for the expansion parameters bn by minimizing the function χ2

lat defined in Eq. (5.15).

C. Details on z expansion of the form factors

In addition to the fit errors from the chiral-continuum fit, we also need to propagate the subdominant errors, which
have very mild q2 dependence. We treat them as constant in q2 and add them in quadrature, obtaining δf+ = 1.4%
and δf0 = 1.5%. To include this effective subdominant error to the fit, we slightly modify the covariance function
defined in Eq. (5.10) by

K ′(z, z′) = Y (z)T · Cov′ · Y (z′), (5.20)

where the new covariance matrix includes the subdominant error,

Cov′mn = 〈δcmδcn〉+ δ2
fcmcn. (5.21)

In the function array Y (z) defined in Eq. (5.11), only a relatively small number of the elements are independent
functions. For example, there are 42 terms in the NNLO SU(2) χPT fit functions for f‖,⊥ (including the HQ
discretization contributions). Many of them, however, are set to zero in the continuum limit or become constant once
the light-quark mass is fixed at its physical value. In the end, the chiral-continuum extrapolated f+ is described by
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only 6 independent functions. For f0, the number of independent functions is 7. Although we work in the functional
basis in which the covariance function K(z, z′) is diagonalized, singular modes can arise because K(z, z′) is built upon
Covf , which itself may have singular modes. Figure 19 shows the spectra of the operator LK for form factor f+,0.
The spectrum of f0 contains two very small eigenvalues . 10−12, and they are well separated from the other modes.
When we discard these two modes, the fit quality of the functional z fit improves from p = 0.03 to p = 0.46. For f+,
we do not need to apply any cut on the eigenvalues.

We first consider separate fits of f+ and f0 without any constraints on the coefficients of the z expansion. With
Nz = 3, or three free parameters b0, b1, b2, we obtain a low confidence level, p = 0.05, for the fit to f0. The analogous
three-parameter fit for f+ results in an acceptable confidence level, p = 0.3. With Nz = 4 we find good confidence
levels for both form factors as well as sizable changes in the central values and errors (compared to the Nz = 3 case).
The results of unconstrained fits of f+ and f0 with several values of Nz for f0 and f+ are given for comparison in
Table XII. The kinematic constraint f+(q2 = 0) = f0(q2 = 0) is satisfied automatically, as is shown in Fig. 20 (left).

The z-expansion coefficients bi should approximately satisfy the unitarity bound Eq. (5.5). Figure 21 (right) shows
the bootstrap-sample distribution of Σ(b, 4) from the fits for f0. The unitarity condition is marginally satisfied. In
the case of f+, the sum Σ(b, 4) ∼ 0.03 is much smaller than the unitarity bound. Reference [61] pointed out that the
smallness is expected based on heavy-quark physics. The value of Σ(b, 4) should be of order (Λ/mb)

3, which is about
0.013 with a conservative choice of Λ = 1 GeV. The bootstrap-sample distribution of Σ(b, 4) from the fits for f+ is
shown against the heavy-quark estimate in Fig. 21 (left). They are consistent with each other.
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Table XII. Results from unconstrained z fits of f0 and f+.

f+ f0

Nz 3 4 5 3 4
χ2/dof 1.1 1.0 1.6 3.1 0.54
dof 3 2 1 2 1
p 0.27 0.33 0.2 0.05 0.46∑

Bmnbmbn 0.052(16) 0.024(39) 2(4) 0.60(24) 2.0(11)
f(0) 0.12(6) 0.23(20) 0.40(34) −0.14(9) 0.20(17)
b0 0.409(16) 0.409(12) 0.407(15) 0.493(22) 0.510(23)
b1 −0.72(13) −0.63(20) −0.60(22) −2.1(2) −1.7(2)
b2 −1.0(2) −0.3(1.3) 0.3(1.7) −0.8(5) 1.2(9)
b3 1(2) 4(5) 3(1)
b4 7(7)

The result of the fits of f+,0 with the kinematic constraint are shown in Fig. 20 (right). With this constraint, we
again examine how the fit varies with higher order Nz. We find that the fit central values do not change significantly
when we change Nz from 4 to 5, in contrast to the case from 3 to 4, as is shown in Fig. 22 and Table XIII.

We perform several additional checks to confirm the stability of our results against various fit choices. In our
preferred fit, we set the integral range in Eq. (5.15) to be z = [−0.25, 0.01] (or equivalently q2 = [19.8, 26.0]). The
results, however, do not change noticeably if we extend the integral range to z = [−0.249, 0.069] which covers the full
range of simulated lattice momenta. This is because the statistical fluctuations and correlations of the form-factor
functions are largely decided by the region −0.1 . z . 0, where the χPT fit results are the most precise.

We also try removing the smallest eigenvalue from the covariance function K(z, z′) for f+; we find that the resulting
central values are essentially unaffected. Finally, we also try the fit using, instead of the BCL formula, the Boyd-
Grinstein-Lebed (BGL) formula, which uses more complicated outer functions [58]. We find that the resulting form
factors are within one standard deviation of the BCL result.

To summarize, we obtain our preferred result from a simultaneous fit to f+ and f0 with Nz = 4 and with imposing
the kinematic constraint f+(q2 = 0) = f0(q2 = 0). The results for the two form factors f+ and f0 are plotted in
Fig. 23. In this plot, the form factors obtained from the χPT fit are overlaid on the results of the z fit. The z fit
faithfully reproduces the χPT fits in the region where χPT is reliable (indicated by the ranges of the hatched bands).
The z coefficients with errors from our preferred fit and their correlation matrix are provided in Table XIV. This
information is sufficient to reproduce the lattice form-factor results over the full kinematic range.

Figure 24 shows a comparison of our results with other theoretical calculations of the form factors [13, 62]. While
our results are consistent with the previous results, ours are significantly more precise in the region of z ≤ 0.1.
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Table XIII. Results of simultaneous fits of f+ and f0 with the kinematic constraint. The Nz = 4 fit is our preferred result.

Fit Nz = 3 Nz = 4 Nz = 5
χ2/dof 2.5 0.64 0.73
dof 6 4 2
p 0.02 0.63 0.48∑

B+
mnb

+
mb

+
n 0.11(2) 0.016(5) 1.0(2.3)∑

B0
mnb

0
mb

0
n 0.33(8) 2.8(1.7) 8(19)

f(0) 0.00(4) 0.20(14) 0.36(27)
b+0 0.395(15) 0.407(15) 0.408(15)
b+1 −0.93(11) −0.65(16) −0.60(21)
b+2 −1.6(1) −0.5(9) −0.2(1.4)
b+3 0.4(1.3) 3(4)
b+4 5(5)
b00 0.515(19) 0.507(22) 0.511(24)
b01 −1.84(10) −1.77(18) −1.69(22)
b02 −0.14(25) 1.3(8) 2(1)
b03 4(1) 7(5)
b04 3(9)

Table XIV. Central values, errors, and correlation matrix of the coefficients of f+ and f0 from the Nz = 4 lattice-only z-fit
with the kinematic constraint.

b+0 b+1 b+2 b+3 b00 b01 b02 b03
0.407(15) −0.65(16) −0.46(88) 0.4(1.3) 0.507(22) −1.77(18) 1.27(81) 4.2(1.4)

b+0 1 0.451 0.161 0.102 0.331 0.346 0.292 0.216
b+1 1 0.757 0.665 0.430 0.817 0.854 0.699
b+2 1 0.988 0.482 0.847 0.951 0.795
b+3 1 0.484 0.833 0.913 0.714
b00 1 0.447 0.359 0.189
b01 1 0.827 0.500
b02 1 0.838
b03 1
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Finally, it is interesting to compare the lattice form factors with theoretical expectations from heavy-quark sym-
metry. In the soft-pion limit, the vector and scalar form factors f+ and f0 are related as [63]

lim
q2→M2

B

f0(q2)

f+(q2)
=

(
fB
fB∗

)
1− q2/M2

B∗

gB∗Bπ
(5.22)

up to corrections of O(1/m2
b). This expression updates the leading-order result of Ref. [64] to include the 1/mb
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correction, which turns out to be simply the additional multiplicative factor (fB∗/fB)−1 in the soft-pion limit. In
Fig. 25 we plot the ratio of (f0/f+)/(1 − q2/M2

B∗) obtained using the coefficients of our preferred z-expansion in
Table XIV. We also show the theoretical expectation from Eq. (5.22), taking the HPQCD Collaboration’s recent
three-flavor lattice-QCD result for the decay-constant ratio fB∗/fB = 0.941(26) [65], and using the same value of
gB∗Bπ = 0.45(8) as in our chiral-continuum extrapolation. The large width of the expected band is due to the generous
range taken for gB∗Bπ. Higher-order corrections in the heavy-quark expansion are expected to be small. Taking a
conservative value for Λ = 500 MeV and mb = 4.2 GeV, one would estimate (Λ/mb)

2 corrections to be about 1%. The
difference of fB∗/fB from one also provides a measure of Λ/mb ∼ 6%, which would indicate that (Λ/mb)

2 corrections
may even be below the percent level. The lattice form factors agree with the theoretical expectation for q2 & 27 GeV2.

D. Determination of |Vub|

We now combine our lattice form factors with experimental data for B → π`ν to obtain |Vub|. The Standard-Model
partial branching fraction is τBdΓ/dq2, where dΓ/dq2 is defined in Eq. (1.1). The contribution from f0 is negligible
due to the small lepton mass. Given f+(q2), the branching fraction in the ith q2 bin [q2

i , q
2
i+1] is

∆Bfiti = C2
B |Vub|2

ˆ q2i+1

q2i

|pπ(q2)|3|f+(q2)|2dq2, (5.23)

where C2
B = (τBG

2
F )/(24π3) is a constant. For the combined lattice plus experiment z fit, we define a χ2 for the

experimental measurements ∆Bexpi as

χ2
exp =

∑
i,j

(∆Bexpi −∆Bfiti )Covexpij (∆Bexpj −∆Bfitj ), (5.24)

where ∆Bexpi is the experimentally-measured branching fraction in the ith q2 bin (i is a shorthand notation for each
bin in each experiment included in the fit) and Covexp is the experimental covariance matrix, including the statistical
and all systematic errors.

We use the experimental results compiled by the Heavy Flavor Averaging Group (HFAG) [6]: BaBar untagged 6-bin
analysis (2011) [7], Belle untagged 13-bin analysis (2011) [9], BaBar untagged 12-bin analysis (2012) [8] and Belle
tagged analysis with 13 bins for the B0 and 7 bins for the B− mode (2013) [10]. For convenience in the fit, we assume
isospin symmetry to convert the Belle tagged B− data to the B0 mode via

∆B(B0 → π+`−ν)Belle,B− = 2
τB0

τB−
∆B(B− → π0`−ν), (5.25)
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Table XV. The results of fits to experimental data only.

Fit χ2/dof dof p b1/b0 b2/b0 b0|Vub| × 10−3

All exp. 1.5 48 0.02 −0.93(22) −1.54(65) 1.53(4)
BaBar11 [7] 2 3 0.12 −0.89(47) 0.5(1.5) 1.36(7)
BaBar12 [8] 1.2 9 0.31 −0.48(59) −3.2(1.7) 1.54(9)
Belle11 [9] 1.1 10 0.36 −1.21(33) −1.18(95) 1.63(7)
Belle13 [10] 1.2 17 0.23 −1.89(50) 1.4(1.6) 1.56(8)

where τB0 = 1.519(7) ps and τB− = 1.641(8) ps are from the PDG [66].
We omit systematic correlations between the BaBar and Belle analyses, because they do not share any major

systematic errors. The BaBar 6-bin and 12-bin data have very small overlaps in the selection of samples, so the
statistical errors can be considered approximately uncorrelated. There is some systematic correlation between the
two analyses, which is, however, supposed to be insignificant [67]. The Belle untagged and tagged data are also
largely uncorrelated because the dominant source of systematic errors in these two measurements are very different.
In summary, we take the four experimental analyses as independent measurements.

On the other hand, there are systematic correlations between the two isospin modes of the Belle tagged data, which
we estimate as follows. Let ∆B−i and ∆B0

α be the branching fractions in the ith and αth bin of the charged and
neutral decay modes, respectively. Let σ−x , σ0

x be the systematic uncertainties of the two modes from source x and r−0
x

be the correlation between them. Then we estimate the off-block-diagonal elements of the systematic error covariance
matrix by

Siα =
∑

x∈all sys.

r−0
x

(
σ−x σ

0
x∆B−i ∆B0

α

)
, (5.26)

where the sum is over all sources of systematic errors. That said, only a few of the systematic errors contribute
noticeably to the sum and the biggest source of error, the tag calibration, dominates. From the correlation matrices,
we construct the total covariance matrices of each isospin decay mode by adding the statistical matrices and the
systematic matrices. We then take the direct sum of the covariance matrices of the B− and B0 modes block-diagonally
and add the off-block-diagonal elements Siα so that we can fit them simultaneously.

We first fit the z expansion to the experimental data only and without any constraints on the coefficients. We
use the BCL formula with three parameters, Nz = 3, where the normalization is |Vub|b0 . The result is shown in
Table XV. To check the consistency in the shape among the experimental data sets, we also fit each experimental
data set separately. The individual fits all have acceptable confidence levels and p values, but the combination of all
four data sets gives a rather poor fit that is not improved by going to higher order in z, e.g., Nz = 4. The poor fit
stems from the BaBar11 measurement, which is only marginally consistent with the other three. Figure 26 compares
the shapes (slopes b1/b0 and curvatures b2/b0) of the separate and combined experimental fits with the lattice-only
fit. The lattice form factor shape is consistent with all of the experimental results.

To perform a combined fit to the lattice and experimental data, we define the total chi squared function,

χ2 = χ2
lat + χ2

BaBar11 + χ2
Belle11 + χ2

BaBar12 + χ2
Belle13, (5.27)

where the lattice and experimental chi squared functions are defined in Eqs. (5.15) and (5.24), respectively. The fit is
performed to these five independent data sets with common shape parameters bm and overall normalization |Vub| by
minimizing Eq. (5.27). Table XVI summarizes the various fit results. Due to the tension between the experimental
data sets, the p value of the fit to the lattice result and all experiments is only 0.02. Table XVII shows the contributions
to the total χ2 from each data set of the combined fit. By far the largest contribution to χ2/dof is from the BaBar
6-bin data set, similar to what we find for the experiment-only fits presented in Table XV.

In the combined fit to lattice form factors and experimental data, the kinematic constraint between f+ and f0 at
q2 = 0 is unimportant for the determination of |Vub|. This is because the experimental data constrain the shape at low
q2. Removing the kinematic constraint from the combined fit and fitting only with the vector form factor f+ changes
neither the coefficients of the z expansion nor the value of |Vub|. We also try varying the number of parameters bm
in the z expansion (Nz). The results are shown in Table XVIII. Compared to our preferred fit with Nz = 4, the fit
using Nz = 3 gives a very low p value and a shift of about 1σ in both the form factor and |Vub|, while the fit result
using Nz = 5 nearly coincides with that of the Nz = 4 fit and the values of |Vub| are almost identical.

The experimental data are plotted in Fig. 27 (left) along with the z fits to the lattice data and to all experimental
data. The lattice form factor and experimental measurements provide complementary information and, when com-
bined, yield an accurate description of the form factor over the full-q2 range and hence a precise determination of
|Vub|. The plot shows that the experimental data dominate the determination of the form-factor shape in the large-z



33

4 3 2 1 0 1 2 3 4
b1/b0

6

4

2

0

2

4

6

b 2
/
b 0

BaBar11
Belle11
BaBar12
Belle13
All expt.
Lattice only

Figure 26. The contour plot of the slope b1/b0 and curvature b2/b0 of the form factor f+. The open ellipses are the 1-σ contour
of the slope and curvature constructed from the 3-parameter z fit to individual experimental data. The gold filled ellipse is
from the combined fit of all experimental data. The cyan filled ellipse is from the 4-parameter z fit to lattice form factors.

Table XVI. Results of the combined lattice+experiment fits with Nz = 4;.

Fit χ2/dof dof p value b+0 b+1 b+2 b+3 |Vub|(×103)
Lattice+exp.(all) 1.4 54 0.02 0.419(13) −0.495(55) −0.43(14) 0.22(31) 3.72(16)

Lattice+BaBar11 [7] 1.1 9 0.38 0.414(14) −0.488(73) −0.24(22) 1.33(44) 3.36(21)
Lattice+BaBar12 [8] 1.1 15 0.34 0.415(14) −0.551(72) −0.45(18) 0.27(41) 3.97(22)
Lattice+Belle11 [9] 0.9 16 0.55 0.412(13) −0.574(65) −0.40(16) 0.38(36) 4.03(21)
Lattice+Belle13 [10] 1.0 23 0.42 0.406(14) −0.623(73) −0.13(22) 0.92(45) 3.81(25)

(small-q2) region while the lattice-QCD form factor dominates the small-z (large-q2) region. In the intermediate
region around q2 ∼ 20GeV2 (z ∼ 0), the lattice-QCD and experimental uncertainties are similar in size. This region
is decisive in determining |Vub| and, hence, can be used to estimate the separate contributions from lattice and exper-
imental data to the |Vub| uncertainty. At q2 = 20 GeV2, the error on the lattice-QCD form factor f+ is about 3.4%
(see Table X) and the error on f+|Vub| from the experiment-only fit is 2.8% at the same momentum. Adding these
two errors in quadrature gives a total uncertainty of 4.4%, which is consistent with the error on |Vub| obtained from
the full fit, 4.3%. Another estimate of the individual error contribution to |Vub| can be obtained from the uncertainty
on the fit parameters from the separate lattice-QCD and experiment fits. From the fit to all experimental data in

Table XVII. The contribution to the total χ2 from each data set of the combined fit. The column “# data” gives the number
of independent functions (for lattice QCD) or the number of bins (for experiment). The total χ2/(# data) agrees with the
χ2/dof in Table XVI, once the constraint and number of fit parameters have been taken into account.

data set # data χ2 χ2/# data
Lattice 11 4.8 0.44

BaBar11 [7] 6 20.9 3.5
BaBar12 [8] 12 15.1 1.3
Belle11 [9] 13 13.8 1.1
Belle13 [10] 20 23.5 1.2

Total 62 78.2 1.26
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Table XVIII. Combined lattice+experiments z fits with Nz = 3, 4 and 5.

Nz χ2/dof dof p value b+0 b+1 b+2 b+3 b+4 |Vub|
3 2.5 56 0.0 0.425(12) −0.424(31) −0.59(9) 3.63(11)
4 1.4 54 0.02 0.419(13) −0.495(55) −0.43(14) 0.22(31) 3.72(16)
5 1.5 52 0.01 0.418(13) −0.491(56) −0.31(30) 0.01(55) −0.6(1.9) 3.72(16)
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Figure 27. Left: comparison of vector form factor f+(z) from z expansion fits to: only the lattice-QCD data (cyan band)
and only experimental data including all four measurements (gold band). Right: the similar plot for the partial branching
fraction dB/dq2. The fits including lattice results use Nz = 4, while the experiment-only fit uses Nz = 3. The experimental
data points and the experiment-only z-fit result in the left plot have been converted from

(
∆B/∆q2

)1/2 to f+ using |Vub| from
the combined fit. The lattice-only fit result(cyan band) and the combined-fit result (red band) in the right plot is converted
from the form factor with the same |Vub|.

Table XV, the normalization is |Vub|b0 = (1.53± 0.04)× 10−3. Similarly, the lattice-only z fit gives the normalization
b0 = 0.407 ± 0.015. Assuming no correlation, one would obtain |Vub| = (3.76 ± 0.17) × 10−3, which is close to what
we obtain from the combined fit.

VI. RESULTS AND CONCLUSION

Our final result for |Vub|, obtained from our preferred z fit combining our lattice-QCD calculation of the B → π`ν
form factor with experimental measurements of the corresponding decay rate, is

|Vub| = (3.72± 0.16)× 10−3. (6.1)

The error includes all experimental and lattice-QCD uncertainties. The contribution from lattice QCD to the total
error is now comparable to that from experiment. The error reported here, following HFAG [6], does not apply the
PDG prescription for discrepant data; that prescription [66] would scale the error by a factor of

√
χ2/dof = 1.2. As

can be seen from Table XVII and Fig. 26, the low fit quality is due to the tension between the BaBar11 data set and
the others. An inspection of all the experimental data in Fig. 27 shows that the point near z = −0.1 in the BaBar11
data set is lower than the others and a bit more precise than one might have anticipated, but does not suggest that
this or any of the data sets have any systematic problems.

We compare our determination of |Vub| with other results in Fig. 28. In particular, our result is consistent with the
recent determination from HFAG using our collaboration’s 2008 form-factor determination [5] obtained from a small
subset of the gauge-field ensembles used in this work. The difference in the central values is due to a small shift in
the central values for the form factor f+ of this analysis compared to our previous analysis [5]. As shown in Fig. 18
(left), the form factor f+ from this analysis is consistent within errors with the previous analysis, but shifted slightly
downward and with an error smaller by roughly a factor of three. The two analyses have very little statistical and
systematic correlation. Our result is also compatible with Standard-Model expectations from CKM unitarity [70, 71].
Although our determination of |Vub| is higher than that in Ref. [5], and thus closer to the determination from inclusive
B → Xu semileptonic decays [6], the inclusive-exclusive disagreement is still greater than 2σ.
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Figure 28. Determinations of |Vub|. The squares are obtained from B → π`ν decay using theoretical form factors from
this analysis, our earlier work [5] (now superseded, but with updated experimental input from HFAG 2014 [6]), a three-flavor
lattice calculation by RBC/UKQCD [13], light-cone sum rules (orange square) [62], and HPQCD [4] (using the q2 > 16 GeV2

experimental data only). The blue upward-pointing triangle is obtained from Λb → p`ν decay using lattice-QCD form factors
from Ref. [68] and experimental data from LHCb [69]. The black diamond shows the inclusive determination using B → Xu`ν
decays [6] with the theoretical approach of Ref. [15]. Also shown is the expectation from CKM unitarity [70] (green filled
circle). For the exclusive determinations from B → π`ν decay (squares), all four experimental results [7–10] are used except in
the LCSR z-fit where only the more recent BaBar [8] and Belle [10] data are used.

A byproduct of the combined lattice and experiment fit is a more precise determination of the vector and scalar
form factors than from the lattice-QCD calculation alone. Both form factors f+ and f0 are well determined from
lattice QCD in the high q2 region, and f+ is strongly constrained by experiment in the low q2 region. This information
is then transferred to f0 via the kinematic constraint f0(0) = f+(0). The resulting form factors are shown in Fig. 29.
The corresponding z-expansion coefficients and their correlations are given in Table XIX. These represent the present
best knowledge of the B → π`ν form factors, and can be used in other phenomenological applications or to test other
nonperturbative QCD calculations.

Future improvements in the determination of the B → π semileptonic form factor f+ will further reduce the
uncertainty on |Vub|. If the uncertainty of fB→π`ν+ at q2 ∼ 20 GeV2 can be reduced further from 3.4% to 1.5%, we
would expect a precision of 3% in |Vub|, using the current experimental input. With the anticipated improvement in
the experimental rate measurement from Belle II, this error would be reduced further. The reduction of uncertainty in
fB→π`ν+ is expected with the newly-available MILC gauge ensembles that are being generated using the highly improved
staggered quark (HISQ) action [72]. The new HISQ ensembles have statistics similar to the asqtad ensembles, but
with much smaller light-quark discretization effects. Further, the HISQ ensembles simulated at the physical light-
quark masses will remove the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in
this work. These ensembles have already helped to determine the form factor fK→π`ν+ (0) [73] and the leptonic decay
constants fD(s)

and fK [74], and hence the relevant CKM matrix elements |Vus|, |Vcd| and |Vcs|, with high precision.
All of these improvements will further refine and reduce the uncertainties in |Vub|, and may also help to resolve the
inclusive/exclusive puzzle.
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Table XIX. Central values, errors, and correlation matrix of the coefficients of f+ and f0 from the Nz = 4 z-fit combining
lattice and all four experiments.

|Vub| × 103 b+0 b+1 b+2 b+3 b00 b01 b02 b03
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b03 1
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