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Following the 12 GeV upgrade, a dedicated experiment is planned with the Hall B CLAS12 detector at Jefferson

Lab, with the aim to study electroproduction of nucleon resonances at high photon virtualities up to Q2 =
12 GeV2. In this work we present a QCD-based approach to the theoretical interpretation of these upcoming

results in the framework of light-cone sum rules that combine perturbative calculations with dispersion relations

and duality. The form factors are thus expressed in terms of N∗(1535) light-front wave functions at small

transverse separations, called distribution amplitudes. The distribution amplitudes can therefore be determined

from the comparison with the experimental data on form factors and compared to the results of lattice QCD

simulations. The results of the corresponding next-to-leading order calculation are presented and compared

with the existing data. We find that the form factors are dominated by the twist-four distribution amplitudes that

are related to the P -wave three-quark wave functions of the N∗(1535), i.e. to contributions of orbital angular

momentum.
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I. INTRODUCTION

It is generally accepted that studies of baryon form factors

at large momentum transfer Q2 give access to the light-front

wave functions at small transverse separations between the

constituents, called hadron distribution amplitudes (DAs), al-

though perturbative QCD factorization [1–3] does not seem to

be applicable for realistic Q2 accessible in current or planned

experiments. The problem is that the leading contribution in-

volves two hard gluon exchanges and is suppressed by the

small factor (αs/π)
2 ∼ 0.01 compared to the “soft” (end-

point) contributions which are subleading in the power count-

ing in 1/Q2 but do not involve small coefficients. Hence

the collinear factorization regime is approached very slowly.

Model calculations suggest that “soft” contributions play the

dominant role at present energies. Taking into account soft

contributions is challenging because they involve a nontrivial

overlap of nonperturbative wave functions of the initial and

the final state hadrons, and are not factorizable, i.e. cannot be

simplified further in terms of simpler quantities.

In this situation the question what exactly do we learn from

the studies of form factors is far from trivial. One exist-

ing description is to introduce more complicated, transverse-

momentum dependent (TMD) quark distributions, taking ad-

vantage of Sudakov suppression of large transverse separa-

tions, following the technique suggested initially by Li and

Sterman [4] for the pion form factor. Another approach that

we advocate in this work, is to calculate the soft contribu-

tions to the form factors as an expansion in terms of nucleon

DAs of increasing twist using dispersion relations and duality.

This method is known as light-cone sum rules (LCSRs) [5]

and provides one with the most direct relation of the hadron

form factors and DAs that is available at present, with no other

nonperturbative parameters.

One attractive feature of the LCSR formalism is that there

is no double counting: perturbative QCD contributions [1-3]

appear as part of the higher-order perturbative corrections to

the LCSRs. This matching of LCSR and perturbative QCD

factorization descriptions is shown by explicit calculation and

discussed in great detail in Ref. [6] for the case of the pion

form factor. For baryon form factors the corresponding terms

first occur at the NNLO level (two gluons) and are beyond

the accuracy of the present calculation. Since such terms are

suppressed by an additional αs/(2π) factor, it is unlikely that

they play a significant role at accessible energies.

The LCSR approach has been used successfully for the

calculations of pion electromagnetic and also weak B-decay

form factors, see Refs. [6–8] for several recent state-of-the-art

calculations. The LCSRs for baryon form factors are more

complicated and recent. The first applications for the nucleon

electromagnetic form factors were in Refs. [9, 10]. Several

further studies aimed at finding an optimal nucleon interpo-

lation current [10–13] and extending this technique to other

elastic or transition form factors of interest. LCSRs for the

axial nucleon form factor were presented in [10, 12, 14], for

the scalar form factor in [14] and tensor form factor in [15]. A

generalization to the full baryon octet was considered e.g. in

[16]. Application of the same technique to Nγ∆ transitions

was suggested in [12, 17] and to pion production at threshold

in [18]. LCRSs for weak baryon decays Λb → p,Λℓνℓ etc.

were studied in [19–22], etc. In the early work only the lead-

ing order (LO) contributions to the coefficient functions in the

LCSRs have been taken into account. The first complete next-

to-leading order (NLO) analysis was done for the electromag-

netic nucleon form factors in Ref. [23] and the results appear

to be consistent with the constraints on nucleon DAs from lat-

tice calculations [24]. The picture emerging from these stud-

ies sugggests that the momentum fraction distribution of the

valence quarks in the proton is rather broad, with ∼ 40% of

the momentum carried by the u-quark that carries proton he-

licity, and approximately symmetric to the interchange of the

remaining quarks.
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Our study is motivated by the dedicated experiment planned

with the Hall B CLAS12 detector at Jefferson Lab following

the 12 GeV upgrade, with the aim to study electroproduc-

tion of nucleon resonances at high photon virtualities up to

Q2 = 12 GeV2 [25]. The corresponding form factors can

be calculated using the LCSR machinery in terms of the DAs

of nucleon resonances. Turning this relation around, infor-

mation on the DAs of resonances can be extracted from the

comparison of the LCSR calculations with the experimental

data on form factors and compared to the constraints that can

come, eventually, from lattice QCD simulations. This pro-

gram was suggested in Ref. [26] and an exploratory study was

made there for the particular case of electroproduction of the

lowest negative parity N∗(1535) resonance. In our paper we

elaborate on this proposal. Learning about quark distributions

in nucleon resonances is an exciting possibility, since existing

QCD calculations of resonance properties, e.g. on the lattice,

rarely go beyond the mass spectrum.

The case of N∗(1535) is special because the classifica-

tion and the structure of the light-front wave functions for the

states with opposite parity is almost identical. Hence the LC-

SRs for the corresponding electroproduction form factors are

very similar to the LCSRs for electromagnetic nucleon form

factors. In particular the NLO expressions derived in Ref. [23]

can be overtaken with relatively minor modifications. A de-

tailed analysis of these NLO LCSRs is the main goal of this

work.

The presentation is organized as follows. The electropro-

duction form factors are introduced and the structure of the

corresponding LCSRs is explained in Sect. 2. Sect. 3 contains

a detailed numerical analysis and comparison with the exist-

ing experimental data, and Sect. 4 is reserved for a summary

and outlook. A large Appendix A contains a short review of

the three-quark light-front wave functions of JP =
(
1
2

)−
nu-

cleon resonances, their relation to DAs, and also explains our

conventions. Appendix B contains a simple parametrization

of the Q2 dependence of the coefficient functions in the LC-

SRs.

II. ELECTROPRODUCTION FORM FACTORS AND

LIGHT CONE SUM RULES

The matrix element of the electromagnetic current jemν be-

tween spin-1/2 states of opposite parity can be parametrized in

terms of two independent form factors, which can be chosen

as

〈N∗(P ′)|jemν |N(P )〉 = ūN∗(P ′)γ5ΓνuN (P ) ,

Γν =
G1(q

2)

m2
N

(/qqν − q2γν)− i
G2(q

2)

mN
σνρq

ρ , (1)

where q = P ′ −P is the momentum transfer. In what follows

we use the standard notation Q2 = −q2. The helicity am-

plitudes A1/2(Q
2) and S1/2(Q

2) for the electroproduction of

N∗(1535) can be expressed in terms of the form factors [27]:

A1/2 = eB
[
Q2G1(Q

2) +mN (mN∗ −mN )G2(Q
2)
]
,

S1/2 =
eBC√

2

[
(mN−mN∗)G1(Q

2) +mNG2(Q
2)
]
. (2)

Here e =
√
4πα is the elementary charge and B, C are kine-

matic factors defined as

B =

√
Q2 + (mN∗ +mN )2

2m5
N (m2

N∗ −m2
N )

,

C =

√
1 +

(Q2 −m2
N∗ +m2

N )2

4Q2m2
N∗

. (3)

The basic object of the LCSR approach to baryon form fac-

tors [9, 10] is the correlation function

Tν(P, q) = i

∫
dx e−iqx〈N∗(P ′)|T {jν(x)ηN (0)}|0〉 (4)

in which j represents the electromagnetic (or weak) probe and

ηN is a suitable local operator with nucleon quantum num-

bers. The N∗ resonance is explicitly represented by its state

vector 〈N∗(P ′)|, see a schematic representation in Fig. 1. The

P 0
q

P
FIG. 1: Schematic structure of the light-cone sum rule for electro-

production form factors.

LCSR is obtained by comparing (matching) two different rep-

resentations for the correlation function. On the one hand,

when both the momentum transfer q2 = −Q2 and the mo-

mentum P 2 = (P ′ − q)2 flowing in the ηN vertex are large

and negative, the main contribution to the integral comes from

the light-cone region x2 → 0 and can be studied using the op-

erator product expansion (OPE) of the time-ordered product

T {j(x)ηN(0)}. The singularity at x2 → 0 of a particular con-

tribution is governed by the twist of the relevant composite op-

erator whose matrix element 〈N∗| . . . |0〉 is related to the N∗

DA. On the other hand, one can represent the answer in form

of the dispersion integral in P 2 and define the nucleon contri-

bution by the cutoff in the quark-antiquark invariant mass, the

so-called interval of duality s0 (or continuum threshold). The

main role of the interval of duality is that it does not allow

large momenta |k2| > s0 to flow through the ηN -vertex; to

the lowest order O(α0
s) one obtains a purely soft contribution

to the form factor as a sum of terms ordered by twist of the

relevant operators and hence including both the leading- and

the higher-twist nucleon DAs. Note that the contribution of

higher-twist DAs is suppressed by powers of the continuum
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threshold (or by powers of the Borel parameter after applying

the usual QCD sum rule machinery), but not by powers ofQ2,

the reason being that soft contributions are not constrained to

small transverse separations.

The “plus” spinor projection (A.8) of the correlation func-

tion (4) involving the “plus” component of the electromag-

netic current can be parametrized in terms of two invariant

functions

Λ+T+ = p+

{
mNA(Q2, P ′2) + /q⊥B(Q

2, P ′2)
}
N+(P ) ,

(5)

where Q2 = −q2 and P ′2 = (P − q)2. The correlation func-

tions A(Q2, P ′2) and B(Q2, P ′2) can be calculated in QCD

in terms of N∗ DAs for sufficiently large Euclidean momenta

Q2,−P ′2 & 1 GeV2 using OPE. Schematically,

A(Q2, P ′2) =
∑

k

∫
[dx]ak(Q

2, P ′2, xi, µ
2
F )Fk(xi, µ

2
F ),

B(Q2, P ′2) =
∑

k

∫
[dx]bk(Q

2, P ′2, xi, µ
2
F )Fk(xi, µ

2
F ),(6)

where the sum goes over all existing DAs, Fk ∈
{Vk, Ak, Tk, Sk, Pk} defined in Eq. (A.21), the integra-

tion goes over quark momentum fractions and µF stands

for the factorization scale. The coefficient functions

ak(Q
2, P ′2, xi, µ

2
F ) and bk(Q

2, P ′2, xi, µ
2
F ) are known to the

NLO accuracy for twist-three and twist-four DAs [23], and

to leading order (LO) for twist-five and twist-six. In princi-

ple this expansion also contains contributions of four-particle

DAs with an additional gluon, five-particle with two gluons

or a quark-antiquark pair, etc. Such contributions start at

twist-four and they are not included in the present calcula-

tion because the corresponding DAs are very poorly known

(see, however, Ref. [28]). It turns out that the coefficient func-

tions are the same for the states with negative and positive

parity, N∗(1535) and the nucleon, if the definitions are cho-

sen as explained in Appendix A. Thus we are able to use the

NLO expressions for the electromagnetic nucleon form fac-

tors obtained in [23] with trivial modifications, e.g. replacing

nucleon mass mN by mN∗ . One difference is that, because

of the larger mass, corrections of the type m2
N∗/Q2 become

much larger and numerically significant. For this reason in

this work we use complete expressions for the LO coefficient

functions from Ref. [10] rather than the corresponding ex-

pressions from Ref. [23] where the expansion in powers of

m2
N∗/Q2 was truncated to match the accuracy of the calcu-

lated NLO corrections.

The results of the QCD calculation in Euclidean region can

be presented in the form of a dispersion relation

AQCD(Q2, P ′2) =
1

π

∫ ∞

0

ds

s− P ′2
ImAQCD(Q2, s) + . . .

BQCD(Q2, P ′2) =
1

π

∫ ∞

0

ds

s− P ′2
ImBQCD(Q2, s) + . . .(7)

where the ellipses indicate possible subtractions. The same

correlation functions can be written in terms of physical spec-

tral densities that contain a nucleon (proton) pole at P ′2 →

m2
N , nucleon resonances and the continuum. The nucleon

contribution is, obviously, proportional to the electroproduc-

tion form factors of interest, whereas for higher mass states

one can use quark-hadron duality:

Aphys(Q2, P ′2) =
2λN1 Q

2G1(Q
2)

mNmN∗(m2
N − P ′2)

+
1

π

∫ ∞

s0

ds

s− P ′2
ImAQCD(Q2, s) + . . .

Bphys(Q2, P ′2) =
−2λN1 G2(Q

2)

m2
N − P ′2

+
1

π

∫ ∞

s0

ds

s− P ′2
ImBQCD(Q2, s) + . . .(8)

where s0 ≃ (1.5 GeV)2 is the interval of duality (also called

continuum threshold). Matching the two above representa-

tions and making the Borel transformation that eliminates sub-

tractions constants

1

s− P ′2
−→ e−s/M2

(9)

one obtains the sum rules

2λN1 Q
2G1(Q

2)

mNmN∗

=
1

π

∫ s0

0

ds e(m
2

N
−s)/M2

ImAQCD(Q2, s) ,

−2λN1 G2(Q
2) =

1

π

∫ s0

0

ds e(m
2

N
−s)/M2

ImBQCD(Q2, s) .

(10)

The dependence on the Borel parameterM2 is unphysical and

has to disappear in the full QCD calculation. It can be used to

estimate theoretical uncertainties.

III. NUMERICAL ANALYSIS

Main nonperturbative input to the LCSRs for electropro-

duction form factors is provided by the DAs of nucleon reso-

nances that can be parameterized by two normalization con-

stants fN∗ , λN
∗

1 and a set of shape parameters ϕnk , ηnk cor-

responding to contributions of local operators of increasing

dimension, see Eqs. (A.27), (A.31). The dependence of the

form factors on these parameters is linear so that the results

can conveniently be presented as

G1(Q
2) =

λN
∗

1

λN1

{
g001 (Q2) + g101 (Q2)η10 + g111 (Q2)η11

+
fN∗

λN
∗

1

[
f00
1 (Q2) + f10

1 (Q2)ϕ10 + f11
1 (Q2)ϕ11 + . . .

]}

(11)

and similarly

G2(Q
2) =

λN
∗

1

λN1

{
g002 (Q2) + g102 (Q2)η10 + g112 (Q2)η11

+
fN∗

λN
∗

1

[
f00
2 (Q2) + f10

2 (Q2)ϕ10 + f11
2 (Q2)ϕ11 + . . .

]}

(12)
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Method λN
1 /λN∗

1 fN∗/λN∗

1 ϕ10 ϕ11 ϕ20 ϕ21 ϕ22 η10 η11 Reference

LCSR (1) 0.633 0.027 0.36 -0.95 0 0 0 0.00 0.94 this work

LCSR (2) 0.633 0.027 0.37 -0.96 0 0 0 -0.29 0.23 this work

LATTICE 0.633(43) 0.027(2) 0.28(12) -0.86(10) 1.7(14) -2.0(18) 1.7(26) - - [24]

TABLE I: Parameters of the N∗(1535) distribution amplitudes at the scale µ2 = 2 GeV2. For the lattice results [24] only statistical
errors are shown. The set of parameters indicated as LCSR (1) corresponds to the fit to the form factors G1(Q

2) and G2(Q
2)

extracted from the measurements of helicity amplitudes in Ref. [29] adding the errors in quadrature. The set of parameters
indicated as LCSR (2) is obtained from the fit to helicity amplitudes including all available data at Q2

≥ 1.7 GeV2 [29–32].

where the ellipses stand for the contributions of second-order

polynomials in the leading-twist DAs (A.27), terms in ϕ20,

ϕ21, ϕ22. The coefficient functions fn,k
1,2 (Q

2) and gn,k1,2 (Q
2)

are given by very cumbersome analytic expressions [23] and

depend implicitly on the masses of N∗ and the nucleon, the

continuum threshold s0, Borel parameter M2, QCD cou-

pling αs(µF ) and the factorization scale µF . Note that, e.g.,

f00
1 (Q2) includes the sum of contributions of the asymptotic

leading-twist DA and the corresponding Wandzura-Wilczek

terms in the higher-twist DAs, see Appendix A and Ref. [23]

for more details. Note also that the DA Ξ4 (A.25) correspond-

ing to the ℓz = 2 component of the light-front three-quark

wave function does not contribute to the LCSRs for our choice

of the nucleon interpolating current.

Calculations in this work are done for the "standard" choice

of the specific LCSR parameters: continuum threshold s0 =
(1.5 GeV)2, Borel parameterM2 = 2 GeV2 and factorization

(and renormalization) scale µ2
F = 2 GeV2. The dependence

on these parameters is rather mild; in particular varying the

Borel parameter in the range 1.5− 2 GeV2 induces an overall

variation of form factor of the order of 10% so that, e.g., the

ratio G2/G1 is largely unchanged.

The resonance mass corrections enter the LCSRs in a com-

plicated way, as terms in m2
N∗/Q2 and m2

N∗/s0. The lat-

ter ones do not decrease at large momentum transfers and in

ideal case have to be resummed to all orders. The correspond-

ing expression exists for the LO LCSRs [10] but not for the

NLO corrections. In order to minimize this mismatch we have

rescaled the O(αs) contributions calculated in [23] by the ra-

tio of the corresponding LO terms calculated with account for

m2
N∗ corrections and putting m2

N∗ to zero. For the numeri-

cally important contributions this rescaling corresponds to a

reduction of the NLO correction by 10− 20%.

Existing information on the DAs of negative parity reso-

nances is very scarce. The results of the recent lattice cal-

culation [24] are presented in Table 1. The most interesting

feature of these results is that the corrections to the asymp-

totic leading twist DAs have alternating signs for the lattice

states with increasing mass. In particular the twist-three DA

of N∗(1535) has a very small value at the origin and is ap-

proximately antisymmetric with respect to the exchange of

the two valence quarks forming a scalar “diquark”, whereas

the DA of N∗(1535) is symmetric and similar in shape to the

nucleon DA, see Fig. 9 in Ref. [24]. These results are still

exploratory and have to be taken with caution because iden-

tification of lattice states with particular physical resonances

is not obvious and requires further study. Even with this un-

certainty, the lattice values are very helpful as knowing the

order of magnitude of the parameters allows one to establish

a hierarchy of different contributions to the LCSR.

As an illustration, the NLO LCSR result for the form factors

at Q2 = 2 GeV2 normalized to the dipole formula

D(Q2) =
1

(1 +Q2/a)2
, a = 0.71 GeV2 (13)

can be written as follows:

GNLO
1 (Q2)

D(Q2)
=
λN

∗

1

λN1

[
0.666− 2.18η10 + 0.86η11

− 0.69f̃N∗ − 1.76f̃N∗ϕ10 + 1.05f̃N∗ϕ11

+ 1.3f̃N∗ϕ20 + 0.66f̃N∗ϕ21 − 0.06f̃N∗ϕ22

]
,

GNLO
2 (Q2)

D(Q2)
=
λN

∗

1

λN1

[
− 0.466 + 1.84η10 + 0.06η11

− 0.82f̃N∗ − 1.06f̃N∗ϕ10 − 1.08f̃N∗ϕ11

+ 2.6f̃N∗ϕ20 + 1.5f̃N∗ϕ21 + 0.39f̃N∗ϕ22

]

where we use a notation f̃N∗ for the ratio of twist-three and

twist-four couplings

f̃N∗ =
fN∗

λN
∗

1

= 0.027(2) [24] . (14)

For comparison, the similar decomposition of the form factors

for the LO LCSRs [26] for the same valueQ2 = 2 GeV2 reads

GLO
1 (Q2)

D(Q2)
=
λN

∗

1

λN1

[
0.816− 2.02η10 + 0.88η11

− 0.59f̃N∗ − 1.60f̃N∗ϕ10 + 1.19f̃N∗ϕ11

+ 1.26f̃N∗ϕ20 + 0.70f̃N∗ϕ21 + 0.12f̃N∗ϕ22

]
,

GLO
2 (Q2)

D(Q2)
=
λN

∗

1

λN1

[
− 0.466 + 1.84η10 + 0.06η11

− 1.19f̃N∗ − 0.78f̃N∗ϕ10 + 3.82f̃N∗ϕ11

+ 2.9f̃N∗ϕ20 + 1.6f̃N∗ϕ21 + 0.28f̃N∗ϕ22

]

so that the NLO corrections are significant.

For convenience we provide a simple parametrization for

the coefficient functions fnk
1,2, gnk1,2 (11), (12) as functions of
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FIG. 2: Helicity amplitudes A12 and S12 for electroproduction of N∗(1535) (left panel) and the form factors G1(Q
2), G2(Q

2),
normalized to the dipole formula (right panel). Experimental data on the left panel are taken from [30] (empty squares) [31] (filled
squares) [32] (filled circles) and [29] (triangles). The form factors on the right panel are calculated from the data [29] on helicity
amplitudes adding the errors in quadrature. The curves show the results of the NLO LCSR fit to the form factors G1(Q

2) and
G2(Q

2) for Q2
≥ 1.7 GeV2 with parameters of the N∗(1535) DAs specified in the first line in Table 1.
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FIG. 3: The same as in Fig. 2 but for the fit to helicity amplitudes A12, S12 including all available data at Q2
≥ 1.7 GeV2. The fitted

parameters of the N∗(1535) DAs are specified in the second line in Table 1.

Q2 in Appendix B. This parametrization was obtained for the

region of momentum transfers 2 GeV2 < Q2 < 12 GeV2 and

should not be used outside this interval. In particular we found

that the mass corrections ∼ m2
N∗/Q2 become very large for

Q2 < 2 GeV2 so that the LCSRs become unstable (and not

reliable). In general, different contributions to the LCSRs are

distinguished by theirQ2-dependence so that one needs a suf-

ficient lever arm in Q2 to determine several of them simulta-

neously.

Since the existing data forQ2 ≥ 1.5−2GeV2 are very lim-

ited, we put in this work all second-order coefficients in the

leading-twist DAs to zero, ϕ20 = ϕ21 = ϕ22 = 0, used cen-

tral lattice values for fN∗ and λN
∗

1 , and constrained ϕ10, ϕ11

to the lattice values within the given error bars. In this way we

are left, essentially, with two free parameters — η10 and η11.

We expect that much more data will become available after

the 12 GeV upgrade at Jefferson Lab where a dedicated exper-

iment is planned to study electroproduction of nucleon reso-

nances at high photon virtualities up to Q2 = 12 GeV2 [25].

Information on the electrocouplings of nucleon resonances

at large momentum transfers is obtained by studying electro-

production of π and η mesons in the respective resonance re-

gion [29–32]. The results are usually presented for the he-

licity amplitudes, and in earlier work only the larger one,

A12(Q
2), was studied for large momentum transfers. The

latest study [29] also includes the results on S12(Q
2) up to

Q2 = 4.16 GeV2 allowing us to extract from these data the

Dirac-like and Pauli-like transition form factors G1(Q
2) and

G2(Q
2) (1) that are more relevant for QCD studies. In this

extraction we assumed that the errors for helicity amplitudes

given in Ref. [29] are uncorrelated and added them in quadra-

ture. The results are shown in Fig. 2 and Fig. 3 on the right

panels; it is seen that the Pauli-like form factor changes sign

and becomes negative at large Q2, although the errors are

quite large.

Two different LCSR fits of the experimental data are shown

in Figs. 2, 3. The difference is that in Fig. 2 the fit is done

to the form factors extracted from the data on helicity ampli-

tudes reported in Ref. [29], and in Fig. 3 we make a fit to the

data on helicity amplitudesA12(Q
2) and S12(Q

2) themselves
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including all existing data for Q2 ≥ 1.7 GeV2. In the sec-

ond case the fit is driven by the data [30–32] on A12(Q
2) that

have smaller errors and not entirely consistent with [29], so

that a worse description of the form factors in this fit is not a

surprise. The corresponding parameters are listed in Table 1.

Because of the small value of the leading twist normaliza-

tion constant suggested by lattice calculations (14), the results

forA12(Q
2) andG1(Q

2) prove to be almost insensitive to the

leading twist DA of the N∗(1535) resonance and are domi-

nated by the twist-four contributions corresponding to the P-

wave parts of the three-quark light-front wave functions (see

Appendix A). Moreover, sensitivity of the results to the shape

parameters of the twist-four DAs, η10 and η11, is rather mild,

cf. two last columns in the first and the second line in Table 1.

Thus A12(Q
2) and G1(Q

2) are both sensitive mostly to the

ratio of the normalization constants λN1 /λ
N∗

1 which we fix to

the lattice value 0.633 [24]. The LCSR predictions for these

observables are very stable, and the agreement of the existing

data with the normalization suggested by lattice calculations

is encouraging.

The S12(Q
2) amplitude and especially the Pauli-like form

factorG2(Q
2) are much more sensitive to the nonperturbative

input and in particular to the shape parameters of the twist-

four DAs, compare Fig. 2 and Fig. 3. Also the leading-twist

contributions play some role in this case because of strong

cancellations. More precise data and a larger interval in Q2

are needed to make this comparison quantitative.

IV. CONCLUSIONS AND OUTLOOK

In this work we argue that the LCSR approach can provide

one with quantitative information on the wave functions of nu-

cleon resonances at short distances. The basic idea behind this

technique is that soft Feynman contributions to the form fac-

tors are calculated in terms of small transverse distance quan-

tities using dispersion relations and duality. The form factors

are thus expressed in terms of light-front wave functions at

small transverse separations, called DAs, without additional

parameters. Alternatively, the distribution amplitudes can be

extracted from the comparison with the experimental data on

form factors and compared to the results of lattice QCD sim-

ulations or other nonperturbative approaches based on, e.g.,

QCD sum rules or Dyson-Schwinger equations. The results

of the corresponding NLO calculation for the particular case

of the N∗(1535) resonance are presented and compared with

the existing data. We find that the form factors are dominated

by twist-four DAs that are related to the P -wave three-quark

wave functions, i.e., to the distribution of orbital angular mo-

mentum.

Interestingly enough the LCSRs have the same form for

spin-1/2 resonances of both parities so that apart from the (cal-

culable) effects of resonance mass corrections the difference

in observed form factors of, say,N∗(1535) andN∗(1650) can

be attributed to the difference in the wave functions, which

is of major interest. The differences between nucleon elastic

form factors and electroexcitation of the Roper resonance can

be studied in a similar manner; however, it is likely that in the

latter case interpretation of the results may require a better un-

derstanding and more sophisticated models of twist-five DAs

than are available at present.
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Appendices

Appendix A: Light-front wave functions and DAs of JP =
(

1

2

)

−

nucleon resonances

In the light-front description [3] a hadron is represented by

the superposition of Fock states with different number of par-

tons. Restricting ourselves to the three-quark (valence) com-

ponents we view, e.g., the proton with positive helicity as a

superposition of states with different values of the quark or-

bital angular momentum projection on the direction of mo-

tion, ℓz = −1, 0, 1, 2,

|N↑〉 =
∑

ℓz

|N↑〉ℓzuud . (A.1)

A nonzero value of ℓz accounts for the mismatch between the

proton helicity and the sum of helicities of the valence quarks

λi so that 1/2 = λ1 + λ2 + λ3 + ℓz . The four different

contributions can be written in terms of six independent scalar

light-front wave functions as [33–35]



7

|N↑〉ℓz=0
uud =

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
ψ
(0)
N ;1(1, 2, 3) + iǫαβk⊥1αk

⊥
2βψ

(0)
N ;2(1, 2, 3)

]
b†iu↑(1)

(
b†ju↓(2)b

†k
d↑(3)− b†jd↓(2)b

†k
u↑(3)

)
|0〉 ,

|N↑〉ℓz=1
uud =

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
k⊥1 ψ

(1)
N ;1(1, 2, 3) + k⊥2 ψ

(1)
N ;2(1, 2, 3)

](
b†iu↑(1)b

†j
u↓(2)b

†k
d↓(3)− b†id↑(1)b

†j
u↓(2)b

†k
u↓(3)

)
|0〉 ,

|N↑〉ℓz=−1
uud =

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
k̄⊥1 ψ

(−1)
N (1, 2, 3)

]
b†iu↑(1)

(
b†ju↑(2)b

†k
d↑(3)− b†jd↑(2)b

†k
u↑(3)

)
|0〉 ,

|N↑〉ℓz=2
uud =

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
k⊥1 k

⊥
3 ψ

(2)
N (1, 2, 3)

](
b†iu↓(1)b

†j
u↓(2)b

†k
d↓(3)− b†iu↓(1)b

†j
d↓(2)b

†k
u↓(3)

)
|0〉 . (A.2)

Here b†iu↑(1) etc. are creation operators for the quarks of spe-

cific flavor with positive ↑ or negative ↓ helicity; the argu-

ment (1) stands for the dependence on longitudinal momen-

tum fractions and transverse momenta of the given quark, i.e.

u↑i(1) = u↑i(x1, k
⊥
1 ), and so on. We use the notation for

transverse momenta

k⊥ = k⊥x + ik⊥y , k̄⊥ = k⊥x − ik⊥y . (A.3)

The light-front wave functions ψ
(ℓz)
N ;i (1, 2, 3) depend on

momentum fractions xi and transverse momenta squared

|k⊥,i|2 = kik̄i of all partons. The integration measure is cho-

sen as [28]

[dx] =

3∏

k=1

dxkδ(1−
∑

xk) , (A.4)

and

[dk⊥] =
1

4(2π)6

3∏

k=1

d2k⊥k δ
(2)

(∑
k⊥i

)
. (A.5)

The proton light-cone DAs, in turn, are defined as matrix el-

ements of gauge-invariant nonlocal operators with the three

quark fields separated by a light-like distance. Standard de-

composition [36] involves 24 invariant functions:

4〈0|ǫijkuiα(a1n)ujβ(a2n)dkγ(a3n)|N(P, λ)〉 =
= SN

1 mNCαβ

(
γ5u

+
N

)
γ
+ SN

2 mNCαβ

(
γ5u

−
N

)
γ
+ PN

1 mN (γ5C)αβ (u
+
N )γ + PN

2 mN (γ5C)αβ (u
−
N )γ

+V N
1 (6pC)αβ

(
γ5u

+
N

)
γ
+ V N

2 (6pC)αβ
(
γ5u

−
N

)
γ
+

1

2
V N
3 mN (γ⊥C)αβ

(
γ⊥γ5u

+
N

)
γ

+
1

2
V N
4 mN (γ⊥C)αβ

(
γ⊥γ5u

−
N

)
γ
+ V N

5

m2
N

2pn
(6nC)αβ

(
γ5u

+
N

)
γ
+
m2

N

2pn
V N
6 (6nC)αβ

(
γ5u

−
N

)
γ

+AN
1 (6pγ5C)αβ (u+N )γ +AN

2 (6pγ5C)αβ (u−N )γ +
1

2
AN

3 mN (γ⊥γ5C)αβ
(
γ⊥u+N

)
γ

+
1

2
AN

4 mN (γ⊥γ5C)αβ
(
γ⊥u−N

)
γ
+AN

5

m2
N

2pn
(6nγ5C)αβ (u+N)γ +

m2
N

2pn
AN

6 (6nγ5C)αβ (u−N)γ

+TN
1 (iσ⊥pC)αβ

(
γ⊥γ5u

+
N

)
γ
+ TN

2 (iσ⊥ pC)αβ
(
γ⊥γ5u

−
N

)
γ
+ TN

3

mN

pn
(iσp nC)αβ

(
γ5u

+
N

)
γ

+TN
4

mN

pn
(iσnpC)αβ

(
γ5u

−
N

)
γ
+ TN

5

m2
N

2pn
(iσ⊥nC)αβ

(
γ⊥γ5u

+
N

)
γ
+
m2

N

2pn
TN
6 (iσ⊥nC)αβ

(
γ⊥γ5u

−
N

)
γ

+
1

2
mNT

N
7 (σ⊥⊥′C)αβ

(
σ⊥⊥′

γ5u
+
N

)
γ
+

1

2
mNT

N
8 (σ⊥⊥′C)αβ

(
σ⊥⊥′

γ5u
−
N

)
γ
, (A.6)

In this expression α, β, γ are spinor indices, nµ is an auxiliary

light-like vector, n2 = 0,

pµ = Pµ − 1

2

m2
N

Pn
, p2 = 0 , (A.7)

where Pµ is the proton momentum, P 2 = m2
N . Further,

u±N = Λ±uN(P, λ) where uN(P, λ) is the usual Dirac spinor
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in relativistic normalization, the projectors are defined as

Λ+ =
/p/n

2pn
, Λ− =

/n/p

2pn
,

g⊥µν = gµν − pµnν + pνnµ

pn
(A.8)

and C is the charge-conjugation matrix. We use a shorthand

notation σ⊥n⊗γ⊥ = σµνn
νgµα⊥ ⊗γα, etc. The invariant func-

tions F = Vi, Ai, Ti correspond to contributions of a given

collinear twist and can be written as Fourier integrals

F (aj , pn) =

∫
[dx] e−i(pn)

∑
i
xiaiF (xi) (A.9)

where F (xi) depend on the three valence quark momentum

fractions xi.
Using various symmetries these functions can be combined

in 8 independent light-cone DAs [36]. There exists a single

DA for the leading twist-three [3]

〈0|ǫijk
(
u↑i (a1n)C 6nu

↓
j (a2n)

)
/nd

↑
k(a3n)|N(P, λ)〉

= −1

2
fN (pn)/nu

↑
N (P )

∫
[dx] e−i(pn)

∑
xiai ϕN (xi) ,

(A.10)

such that [37]

V1(1, 2, 3) =
1

2
fN

[
ϕN (1, 2, 3) + ϕN (2, 1, 3)

]
,

A1(1, 2, 3) =
1

2
fN

[
ϕN (2, 1, 3)− ϕN (1, 2, 3)

]
,

T1(1, 2, 3) =
1

2
fN

[
ϕN (1, 3, 2) + ϕN (2, 3, 1)

]
,(A.11)

and for twist-four there are three independent DAs [36]

〈0|ǫijk
(
u↑i (a1n)C/nu

↓
j(a2n)

)
/pd

↑
k(a3n)|N(P, λ)〉

=− 1

4
(pn)/p u

↑
N(P )

∫
[dx] e−i(pn)

∑
xiai

×
[
fNΦN,WW

4 (xi) + λN1 ΦN
4 (xi)

]
, (A.12)

〈0|ǫijk
(
u↑i (a1n)C/nγ⊥/pu

↓
j (a2n)

)
γ⊥/nd

↑
k(a3n)|N(P, λ)〉

=− 1

2
(pn)/nmNu

↑
N (P )

∫
[dx] e−i(pn)

∑
xiai

×
[
fNΨN,WW

4 (xi)− λN1 ΨN
4 (xi)

]
, (A.13)

〈0|ǫijk
(
u↑i (a1n)C/p /nu

↑
j (a2n)

)
/nd

↑
k(a3n)|N(P, λ)〉

=
λN2
12

(pn)/nmNu
↑
N (P )

∫
[dx] e−i(pn)

∑
xiai ΞN

4 (xi) ,

(A.14)

where ΦN,WW
4 (xi) and ΨN,WW

4 (xi) are the so-called

Wandzura-Wilczek contributions that can be expressed in

terms of the leading-twist DA ϕN (xi) [38, 39]. The constants

fN , λN1 and λN2 are defined in such a way that the integrals of

the DAs ϕN , Φ4, Ψ4, Ξ4 are normalized to unity:

∫
[dx]F (xi) = 1 , F ∈ {ϕN ,Φ4,Ψ4,Ξ4}. (A.15)

Using the canonical expansion of the quark fields in

(A.10),(A.12) in terms of creation and annihilation operators

and Dirac equation to eliminate “bad” quark field components

it is easy to calculate the required matrix elements from the

set of light-front wave functions in Eqs. (A.2). In this way

one obtains for our normalization (cf. [35, 40])

fNϕN (x1, x2, x3) = −4
√
6

∫
[dk⊥]ψ

(0)
N ;1(1, 2, 3) ,

[λN1 ΦN
4 + fNΦN,WW

4 ](x2, x1, x3) = −8
√
6

∫
[dk⊥]

x3mN
k⊥3 ·

[
k̄⊥1 ψ

(1)
N ;1 + k̄⊥2 ψ

(1)
N ;2

]
(1, 2, 3) ,

[λN1 ΨN
4 − fNΨN,WW

4 ](x1, x2, x3) = −8
√
6

∫
[dk⊥]

x2mN
k̄⊥2 ·

[
k⊥1 ψ

(1)
N ;1 + k⊥2 ψ

(1)
N ;2

]
(1, 2, 3) ,

λN2 ΞN
4 (x1, x2, x3) = −24

√
6

∫
[dk⊥]

x1mN
k⊥1 ·

[
k̄⊥1

(
ψ
(−1)
N (1, 3, 2)− ψ

(−1)
N (1, 2, 3)

)

+ k̄⊥2

(
ψ
(−1)
N (2, 3, 1)− ψ

(−1)
N (2, 1, 3)

)]
(A.16)
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so that DAs correspond to integrals over the light-front wave

functions over transverse momenta, with some prefactors.

One has to have in mind that these relations are somewhat

schematic since transverse momentum integrals on the right-

hand side (r.h.s.) are divergent and have to be regulated e.g.

introducing a cutoff. In turn, the DAs are usually defined us-

ing dimensional regularization and the MS-subtraction so that

a matching coefficient can be necessary. Also the wave func-

tion renormalization factors have to be added for the quark

fields. The twist-four DAs include additional contributions

from the four-particle Fock states with an extra gluon [28, 34].

If these contributions are taken into account, the four-particle

quark-gluon nucleon DAs have to be added as well [28, 38].

The complete set of nucleon DAs carries the full informa-

tion on the nucleon structure, in the same manner as the com-

plete basis of light-front wave functions. In practice, however,

both expansions have to be truncated and the usefulness of a

truncated version, taking into account either the first few Fock

states or a few lowest twist contributions, may depend on the

concrete physics application.

The classification of the three-quark nucleon light-front

wave functions in Eq. (A.2) can be overtaken for the negative

parity isospin-1/2 resonances, e.g. N∗(1535), without modi-

fication. The symmetry under parity transformation does not

constrain the light-front wave functions but affects the relation

between the wave functions of the states with opposite helic-

ity in terms of the helicity-flipped quarks. The corresponding

expressions can be worked out using the Jacobi-Wick trans-

formation [41]

Ŷ|N, λ〉 = ηN (−1)1/2−λ|N,−λ〉 (A.17)

where Ŷ is the parity transformation followed by a 180◦ ro-

tation along the y-axis, and ηN is internal parity, ηN = 1 for

the nucleon and ηN = −1 for N∗(1535). Thus k⊥
Ŷ7→ k̄⊥,

|N, ↑〉 Ŷ7→ ηN |N, ↓〉 , whereas for the quark states q = u, d

b†iq↑|0〉
Ŷ7→ b†iq↓|0〉 , but b†iq↓|0〉

Ŷ7→ −b†iq↑|0〉 . Applying this

transformation to the both sides of Eq. (A.2) one obtains [33]

|N↓〉ℓz=0
uud = −ηN

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
ψ
(0)
N ;1(1, 2, 3) + iǫαβ k̄⊥1αk̄

⊥
2βψ

(0)
N ;2(1, 2, 3)

]
b†iu↓(1)

(
b†ju↑(2)b

†k
d↓(3)− b†jd↑(2)b

†k
u↓(3)

)
|0〉 ,

|N↓〉ℓz=−1
uud = ηN

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
k̄⊥1 ψ

(1)
N ;1(1, 2, 3) + k̄⊥2 ψ

(1)
N ;2(1, 2, 3)

](
b†iu↓(1)b

†j
u↑(2)b

†k
d↑(3)− b†id↓(1)b

†j
u↑(2)b

†k
u↑(3)

)
|0〉 ,

|N↓〉ℓz=1
uud = ηN

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
k⊥1 ψ

(−1)
N (1, 2, 3)

]
b†iu↓(1)

(
b†ju↓(2)b

†k
d↓(3)− b†jd↓(2)b

†k
u↓(3)

)
|0〉 ,

|N↓〉ℓz=−2
uud = −ηN

ǫijk√
6

∫
[dx][dk⊥]√
x1x2x3

[
k̄⊥1 k̄

⊥
3 ψ

(2)
N (1, 2, 3)

](
b†iu↑(1)b

†j
u↑(2)b

†k
d↑(3)− b†iu↑(1)b

†j
d↑(2)b

†k
u↑(3)

)
|0〉 . (A.18)

so that, e.g., for the ℓz = 0 states

ψ
(0)
N ;1(1, 2, 3)

∣∣∣
N↓

= −ηNψ(0)
N ;1(1, 2, 3)

∣∣∣
N↑

(A.19)

A Lorentz-covariant definition of the DAs of negative parity

resonances involves some freedom. It is convenient to choose

the definition is such a way that the coefficient functions in

the OPE of currents (4) are the same for states of both par-

ities, and also the relations between different DAs imposed

by QCD equations of motion remain the same. As noticed in

Ref. ([26]), this can be achieved using invariant decomposi-

tion of theN∗(1535)matrix element in terms of the γ5-rotated

quark fields

4(γ5)αα′ (γ5)ββ′(γ5)γγ′〈0|ǫijkuiα′(a1n)u
j
β′(a2n)d

k
γ′(a3n)|N∗(P, λ)〉 = SN∗

1 mN∗Cαβ

(
γ5u

+
N∗

)
γ
+ . . . (A.20)
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where the expression on the right hand side is the same as in Eq. (A.6) with obvious replacements mN → mN∗ etc. Projecting

out the γ5 matrices we obtain

4〈0|ǫijkuiα(a1n)ujβ(a2n)dkγ(a3n)|N∗(P, λ)〉 =
= SN∗

1 mN∗Cαβ

(
u+N∗

)
γ
+ SN∗

2 mN∗Cαβ

(
u−N∗

)
γ
+ PN∗

1 mN∗ (γ5C)αβ (γ5u
+
N∗)γ + PN∗

2 mN∗ (γ5C)αβ (γ5u
−
N∗)γ

−V N∗

1 (6pC)αβ
(
u+N∗

)
γ
− V N∗

2 (6pC)αβ
(
u−N∗

)
γ
+

1

2
V N∗

3 mN∗ (γ⊥C)αβ
(
γ⊥u+N∗

)
γ

+
1

2
V N∗

4 mN∗ (γ⊥C)αβ
(
γ⊥u−N∗

)
γ
− V N∗

5

m2
N∗

2pn
(6nC)αβ

(
u+N∗

)
γ
− m2

N∗

2pn
V N∗

6 (6nC)αβ
(
u−N∗

)
γ

−AN∗

1 (6pγ5C)αβ (γ5u+N∗)γ −AN∗

2 (6pγ5C)αβ (γ5u−N∗)γ +
1

2
AN∗

3 mN∗ (γ⊥γ5C)αβ
(
γ⊥γ5u

+
N∗

)
γ

+
1

2
AN∗

4 mN∗ (γ⊥γ5C)αβ
(
γ⊥γ5u

−
N∗

)
γ
−AN∗

5

m2
N∗

2pn
(6nγ5C)αβ (γ5u+N∗)γ − m2

N∗

2pn
AN∗

6 (6nγ5C)αβ (γ5u−N∗)γ

−TN∗

1 (iσ⊥pC)αβ
(
γ⊥u+N∗

)
γ
− TN∗

2 (iσ⊥ pC)αβ
(
γ⊥u−N∗

)
γ
+ TN∗

3

mN∗

pn
(iσpnC)αβ

(
u+N∗

)
γ

+TN∗

4

mN∗

pn
(iσnpC)αβ

(
u−N∗

)
γ
− TN∗

5

m2
N∗

2pn
(iσ⊥nC)αβ

(
γ⊥u+N∗

)
γ
− m2

N∗

2pn
TN∗

6 (iσ⊥nC)αβ
(
γ⊥u−N∗

)
γ

+
1

2
mN∗TN∗

7 (σ⊥⊥′C)αβ
(
σ⊥⊥′

u+N∗

)
γ
+

1

2
mN∗TN∗

8 (σ⊥⊥′C)αβ
(
σ⊥⊥′

u−N∗

)
γ
, (A.21)

This expression replaces the decomposition (A.6) for the nu-

cleon. Note that there are some minus signs and in particu-

lar all three leading twist DAs V1, A1 and T1 are defined in

our convention with a different sign as compared to the nu-

cleon. As a consequence in the definition of leading-twist DA

in terms of the chiral quark fields there is a minus sign as com-

pared to (A.10),

〈0|ǫijk
(
u↑i (a1n)C 6nu

↓
j (a2n)

)
6nd↑k(a3n)|N∗(P )〉

=
1

2
fN∗ (pn)/n u

↑
N∗(P )

∫
[dx] e−i(pn)

∑
xiai ϕN∗(xi) ,

(A.22)

where, of course, P 2 = m2
N∗ and the expressions for the

invariant functions V N∗

1 , AN∗

1 , TN∗

1 in terms of ϕN∗ , are the

same as for the nucleon, Eq. (A.11).

The twist-four DAs also acquire some signs [26]

〈0|ǫijk
(
u↑i (a1n)C/nu

↓
j (a2n)

)
/pd

↑
k(a3n)|N∗(P )〉

=
1

4
(pn) /pu

↑
N∗(P )

∫
[dx] e−i(pn)

∑
xiai

×
[
fN∗ΦN∗,WW

4 (xi) + λ∗1Φ
N∗

4 (xi)
]
, (A.23)

〈0|ǫijk
(
u↑i (a1n)C/nγ⊥/pu

↓
j (a2n)

)
γ⊥/nd

↑
k(a3n)|N∗(P )〉

=− 1

2
(pn) 6nmN∗u↑N∗(P )

∫
[dx] e−i(pn)

∑
xiai

×
[
fN∗ΨN∗,WW

4 (xi)− λ∗1Ψ
N∗

4 (xi)
]
, (A.24)

〈0|ǫijk
(
u↑i (a1n)C/p/nu

↑
j (a2n)

)
6nd↑k(a3n)|N∗(p)〉

=
λ∗2
12

(pn)/nmN∗u↑N∗(P )

∫
[dx] e−i(pn)

∑
xiai ΞN∗

4 (xi) ,

(A.25)

where ΦN∗,WW
4 (xi) and ΨN∗,WW

4 (xi) are given by the same

expressions in terms of the expansion of the leading-twist DA

ϕN∗(xi) as for the nucleon.
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The price to pay for universality of correlation functions for positive and negative parities is that the relations between DAs

and light-front wave functions in this convention acquire some signs as well,

fN∗ϕN∗(x1, x2, x3) = +4
√
6

∫
[dk⊥]ψ

(0)
N∗;1(1, 2, 3) ,

[λN
∗

1 ΦN∗

4 + fNΦN∗,WW
4 ](x2, x1, x3) = +8

√
6

∫
[dk⊥]

x3mN∗

k⊥3 ·
[
k̄⊥1 ψ

(1)
N∗;1 + k̄⊥2 ψ

(1)
N∗;2

]
(1, 2, 3) ,

[λN
∗

1 ΨN∗

4 − fNΨN∗,WW
4 ](x1, x2, x3) = −8

√
6

∫
[dk⊥]

x2mN∗

k̄⊥2 ·
[
k⊥1 ψ

(1)
N∗;1 + k⊥2 ψ

(1)
N∗;2

]
(1, 2, 3) ,

λN
∗

2 ΞN∗

4 (x1, x2, x3) = −24
√
6

∫
[dk⊥]

x1mN∗

k⊥1 ·
[
k̄⊥1

(
ψ
(−1)
N∗ (1, 3, 2)− ψ

(−1)
N∗ (1, 2, 3)

)

+ k̄⊥2

(
ψ
(−1)
N∗ (2, 3, 1)− ψ

(−1)
N∗ (2, 1, 3)

)]
, (A.26)

that have to be taken into account for the interpretation of the

results.

Parametrization of the DAs of the resonances can be over-

taken from that for the nucleon. The leading-twist DA

ϕN∗(xi, µ) can be expanded in the set of orthogonal poly-

nomials Pnk(xi)

ϕN (xi, µ) = 120x1x2x3

∞∑

n=0

n∑

k=0

ϕnk(µ)Pnk(xi) ,

∫
[dx]x1x2x3Pnk(xi)Pn′k′(xi) ∝ δnn′δkk′ , (A.27)

such that the coefficients are renormalized multiplicatively to

one-loop accuracy,

fN∗(µ) = fN∗(µ0)

(
αs(µ)

αs(µ0)

)2/(3β0)

,

ϕnk(µ) = ϕnk(µ0)

(
αs(µ)

αs(µ0)

)γnk/β0

. (A.28)

Here β0 = 11 − 2
3nf is the first coefficient of the QCD β-

function and γnk are the anomalous dimensions. The dou-

ble sum in Eq. (A.27) goes over a complete set of orthogonal

polynomials Pnk(xi), k = 0, . . . , n, of degree n:

P00 = 1 ,

P10 = 21(x1 − x3) , P11 = 7(x1 − 2x2 + x3) ,

P20 =
63

10
[3(x1 − x3)

2 − 3x2(x1 + x3) + 2x22] ,

P21 =
63

2
(x1 − 3x2 + x3)(x1 − x3) ,

P22 =
9

5
[x21+9x2(x1+x3)−12x1x3−6x22+x

2
3] (A.29)

etc., and the corresponding anomalous dimensions are

γ00 =0 , γ10 =
20

9
, γ11 =

8

3
,

γ20 =
32

9
, γ21 =

40

9
, γ22 =

14

3
. (A.30)

The normalization condition (A.15) implies that ϕ00 = 1.

In the main text we refer to the coefficients ϕnk(µ0) with

n = 1, 2, . . ., as shape parameters. The set of these coeffi-

cients together with the normalization constant fN(µ0) at a

reference scale µ0 specifies the momentum fraction distribu-

tion of valence quarks on the nucleon. They are related to

matrix elements of local gauge-invariant three-quark opera-

tors and can be calculated, e.g., on the lattice [24, 26].

The twist-four DAs can be parameterized as [38]

ΦN∗

4 (xi, µ) = 24x1x2

{
1 + η10(µ)R10(x3, x1, x2)

− η11(µ)R11(x3, x1, x2)
}
,

ΨN∗

4 (xi, µ) = 24x1x3

{
1 + η10(µ)R10(x2, x3, x1)

+ η11(µ)R11(x2, x3, x1)
}
,

ΞN∗

4 (xi, µ) = 24x2x3

{
1 +

9

4
ξ10(µ)R10(x1, x3, x2)

}
,

(A.31)

where

R10(x1, x2, x3) = 4

(
x1 + x2 −

3

2
x3

)
,

R11(x1, x2, x3) =
20

3

(
x1 − x2 +

1

2
x3

)
(A.32)

and η10(µ), η11(µ), ξ10(µ) are the new shape parameters. The

corresponding one-loop anomalous dimensions are [38]

γ
(η)
10 =

20

9
, γ

(η)
11 = 4 , γ

(ξ)
10 =

10

3
. (A.33)

For the twist-five DAs we take into account contributions of

geometric twist-three and twist-four operators as explained in

Ref. [23].



12

Note that the asymptotic DAs (at very large scales) for the

nucleon and the resonances are the same:

ϕas(xi) = 120x1x2x3 , Φas
4 (xi) = 24x1x2 ,

ΦWW,as
4 (xi) = 24x1x2(1 +

2

3
(1− 5x3)) ,

ΨWW,as
4 (xi) = 24x1x3(1 +

2

3
(1− 5x2)) ,

Ξ4(xi) = 24x2x3 , Ψas
4 (xi) = 24x1x3 . (A.34)

For completeness we also give here the definitions of the

normalization constants in terms of matrix elements of local

three-quark operators:

〈0|ǫijk(uiC/nuj)(0)γ5/ndk(0)|N∗(P )〉
= fN∗(pn)γ5/nuN∗(P ),

〈0|ǫijk(uiCγµuj)(0)γ5γµdk(0)|N∗(p)〉
= λN

∗

1 mN∗γ5uN∗(P ),

〈0|ǫijk(uiCσµνuj)(0)γ5σµνdk(0)|N∗(P )〉
= λN

∗

2 mN∗γ5uN∗(P ). (A.35)

Appendix B: Parametrization of coefficient functions

For convenience we provide a simple parametrization for

the coefficient functions fnk
1,2, gnk1,2 appearing in (11), (12), for

the range 2 < Q2 < 12 GeV2:

fnk
1,2(Q

2) = D(Q2)
4∑

p=0

bnkp;1,2

(
m2

N∗

Q2

)p

,

gnk1,2(Q
2) = D(Q2)

4∑

p=0

ankp;1,2

(
m2

N∗

Q2

)p

, (B.1)

where D(Q2) is the dipole form factor (13). The coefficients

ankp;1, ankp;2, bnkp;1 and bnkp;2 are collected in Table II.
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a00
p;1 a10

p;1 a11
p;1 b00p;1 b10p;1 b11p;1 b20p;1 b21p;1 b22p;1

p = 0 0.0147491 0.251939 0.0256977 0.00716919 0.192078 -0.0271761 -0.340351 -0.653521 0.00864077

p = 1 0.773867 -6.0864 0.646869 -0.307557 -1.94975 -0.706607 4.61356 3.7677 0.112153

p = 2 -0.18913 5.62993 0.0535879 -0.242484 0.246661 5.43478 -1.81907 -2.25019 -0.258147

p = 3 0. -1.88333 0. 0. 0. -5.79459 -2.75613 0. 0.0954517

p = 4 0. 0. 0. 0. 0. 1.99163 1.67516 0. 0.

a00
p;2 a10

p;2 a11
p;2 b00p;2 b10p;2 b11p;2 b20p;2 b21p;2 b22p;2

p = 0 0.0469231 -0.365146 -0.0498471 0.13253 0.210365 0.763116 -0.898009 0.978028 -0.408284

p = 1 -1.35098 10.1647 1.78846 -1.41541 0.1675 -2.84988 23.7579 19.1668 7.37946

p = 2 1.30792 -16.9382 -3.92016 0.522203 -3.43005 1.08085 -50.8692 -47.2691 -14.8858

p = 3 -0.450538 12.7283 3.3271 0. 2.01318 0. 46.6823 43.7722 12.2449

p = 4 0. -3.67258 -1.03533 0. 0. 0. -16.0002 -14.5341 -3.76771

TABLE II: Coefficient functions in the LCSRs for N∗(1535) production
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