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Abstract

The realization that first- and second-generation Yukawa couplings can be probed by decays

of the Higgs boson to a meson in association with a photon has renewed interest in such rare

exclusive decays. We present here a detailed study of the rare Z-boson processes Z → J/ψ + γ,

Z → Υ+γ, and Z → φ+γ that can serve as benchmarks for the analogous Higgs-boson decays. We

include both direct-production and fragmentation contributions to these decays, and consider the

leading QCD corrections and the relativistic corrections to the J/ψ and Υ processes. We present

numerical predictions for the branching ratios that include a careful accounting of the theoretical

uncertainties.
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I. INTRODUCTION

A primary goal of Run II of the LHC will be the further investigation of the Higgs boson

discovered in 2012. Current measurements by the ATLAS and CMS collaborations indicate

that the couplings of this new state agree with Standard Model (SM) predictions at the

20–30% level [1, 2]. These measurements so far only provide information about the Higgs

couplings to electroweak gauge bosons and to third-generation fermions. The Higgs Yukawa

couplings to first- and second-generation quarks are currently unknown. It is extremely

difficult to experimentally access these couplings. They are predicted to be small in the SM,

and the inclusive decays of the Higgs to these states are swamped by large QCD backgrounds.

These couplings are indirectly constrained weakly by the inclusive Higgs production cross

section [3]. Such constraints only probe the simultaneous deviation of all Yukawa couplings.

They do not allow the separate Yukawa couplings of the various quarks to be determined.

It was discovered recently that it is possible to explore these couplings using rare exclusive

decays of the Higgs boson to mesons in association with a photon. The first manifestation of

this idea was the suggestion that the Higgs coupling to charm quarks could be probed using

the exclusive decay H → J/ψ+γ [4]. The enhancement of the branching ratio for this mode

compared to initial expectations came from the realization that two distinct production

mechanisms give rise to this process:

• the direct contribution in which the Higgs boson decays into a cc̄ pair, one of which

radiates a photon before forming a J/ψ;

• the indirect or fragmentation contribution, in which the Higgs boson decays to a γ and

an off-shell γ∗, with the γ∗ then fragmenting into a J/ψ.

Initial considerations of this process [5] studied only the direct production mechanism. The

indirect production amplitude is larger, and its interference with the direct mode renders

this decay measurable at the LHC and sensitive to the Hcc̄ coupling. Although this coupling

can possibly be accessed at the LHC using charm tagging [6], its phase can only be studied

using processes such as this rare decay that involve quantum interference effects. It was

later realized that other exclusive decays of the Higgs boson to light mesons in association

with either a photon or a heavy electroweak gauge boson can similarly be used to probe

the Yukawa couplings of the other first- and second-generation quarks [3]. Decays to light
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mesons together with a heavy gauge boson may also be used to probe the structure of the

Higgs couplings to electroweak gauge bosons [7]. The study of these rare decays at the

high-luminosity LHC offers potentially the only way to directly study these couplings in the

foreseeable future. Their predicted rates at planned future e+e− machines are too small.

Only the LHC and future very high-energy hadron colliders produce enough Higgs bosons

to allow observation of these decays.

Initial experimental studies of these channels have begun and appear promising. One

topic needed to further assist these investigations is a set of experimental benchmarks be-

sides the Higgs decays that can be used to refine and validate search techniques. Obvious

candidates are rare decays of the Z-boson. Its mass is not too much smaller than the Higgs

mass, and it is also produced primarily at the LHC as an s-channel resonance. The set of

rare Higgs boson decays outlined in Refs. [3, 4] can be divided into two broad categories

based on their experimental signatures:

• the decays H → V +γ where V = J/ψ or Υ feature the final state l+l−γ after leptonic

decays of the vector quarkonium are required;

• decays of the Higgs boson to a light meson such as the φ plus a photon. In this case

the φ decays hadronically, and a track-based trigger must be developed.

We focus in this manuscript on the decays Z → J/ψ + γ, Z → Υ + γ and Z → φ + γ,

which are representative of these two categories. The decays of the Z-boson to the heavy

quarkonium states J/ψ and Υ were studied in a classic paper by Guberina et al. [8] (GKPR).

In their work GKPR include only the direct production mechanism, and work in the exact

non-relativistic limit. As far as we are aware the decay Z → φ+ γ has not been studied in

the literature.

Our goal in this manuscript is to provide up-to-date theoretical predictions for these

rare Z-boson decays for use in LHC searches. We consider both the indirect and direct

contributions to both decays. For the J/ψ and Υ final states we use the non-relativistic

QCD (NRQCD) framework [9] to perform the calculation. We cross-check our result using

the light-cone distribution amplitude (LCDA) approach [10, 11]. The evaluation of the direct

amplitude using both approaches allows us to include the leading O(αs) QCD corrections

and the leading O(v2) relativistic corrections to the decay. We compute the Z → φ+γ decay

using the LCDA approach, and include the leading-logarithmic QCD corrections that come
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from the evolution of the LCDA from the hard scale MZ down to the phi mass scale, mφ.

We perform a detailed estimate of the remaining sources of theoretical uncertainty affecting

both decays. We find the following final results for the branching ratios:

BSM(Z → J/ψ + γ) = (9.96± 1.86)× 10−8,

BSM(Z → Υ(1S) + γ) = (4.93± 0.51)× 10−8,

BSM(Z → φ+ γ) = (1.17± 0.08)× 10−8. (1)

We define the branching ratios as BSM(Z → M + γ) = Γ(Z → M + γ)/Γ(Z), where Γ(Z)

is the total width of the Z-boson. We use Γ(Z) = 2.4952 GeV from the Particle Data

Group [12].

Although small, it is possible that the heavy quarkonium branching ratios will be acces-

sible in Run II measurements [13]. Compared to the analogous Higgs-boson decays [3, 4],

the J/ψ and φ branching ratios are smaller by 1-2 orders of magnitude. This is due primar-

ily to the suppression of the indirect amplitude in the Z-boson decays as compared to the

Higgs decays. This amplitude proceeds through the Zγγ∗ effective coupling, which receives

contributions from Standard Model anomaly diagrams. It was previously suggested in the

literature that the indirect amplitude could give large contributions to the similar process

of a Z-boson decaying to a pseudoscalar meson and a photon [14]. We show here that there

is no such enhancement for this process. The indirect amplitude depends on the difference

between fermion masses within a generation, and goes to zero for heavy fermions such as the

top quark. The only numerically-relevant contributions therefore come from the tau lepton,

the charm quark and the bottom quark. Since these fermion masses are small, the indirect

amplitude is small for this process. Furthermore, the Landau-Yang theorem [15] prevents

the decay of the Z-boson to two on-shell photons, and therefore requires that the indirect

amplitude for the process considered here vanishes in the limit mJ/ψ → 0. This implies that

there can be no enhancement with respect to the direct amplitude by the ratio m2
H/m

2
J/ψ,

as there is for the analogous Higgs decays. These effects leads to an indirect amplitude with

a magnitude less than 1% of the direct-amplitude magnitude.

Our paper is organized as follows. In Section II, we derive the amplitude for the Z →
J/ψ + γ decay. The Υ decay calculation is identical. We discuss our evaluation of both the

direct and indirect contributions, and our evaluation of the leading QCD and relativistic

corrections. In Section III we describe our calculation of the Z → φ + γ process using
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the LCDA approach. We present our numerical results and describe our estimates of the

theoretical uncertainties in Section IV. We conclude in Section V.

II. THE DECAY Z → J/ψ + γ

We begin by discussing the decay Z → J/ψ + γ. Since the calculation of the Υ decay is

identical to the J/ψ we do not present it explicitly. We give numerical results for both modes

in a later section. This process receives contributions from both a direct amplitude and an

indirect amplitude. These are shown respectively in the left and right panels of Fig. 1. We

calculate the direct-amplitude contribution to this process using the non-relativistic QCD

(NRQCD) framework [9]. We include the velocity corrections through O(v2). In addition,

we include the leading O(αs) corrections using the light-cone distribution amplitude (LCDA)

approach [10, 11]. The indirect amplitude proceeds through the loop-induced Zγ∗γ effective

vertex, which can be calculated in perturbation theory. The subsequent γ∗ → J/ψ transition

can be obtained from data.

We perform our calculation to leading-order in the ratio m2
J/ψ/M

2
Z . The corrections from

the higher-order terms in this expansion are expected to be at the 0.1% level, far below any

other source of theoretical error we consider. We have checked that a certain class of these

corrections which we can easily obtain (those coming from the final-state phase space and

from the direct amplitude) have no effect on our numerical results.

A. The direct amplitude in the non-relativistic limit

We begin by calculating the direct amplitude in the non-relativistic v = 0 limit. We have

reproduced and have found agreement with the result in GKPR [8]. We briefly sketch the

derivation here.

We define the partonic process leading to J/ψ production as

Z(P ) → c(p1)c̄(p2) + γ(pγ). (2)

We introduce the relative momenta between the c and c̄ as q = (p1 − p2)/2, and the total

momentum of the J/ψ as pV = 2p = p1 + p2. We then have the following relations among
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FIG. 1. Representative Feynman diagrams contributing to the direct amplitude (left panel) and

indirect amplitude (right panel) for Z → J/ψ+ γ. Similar diagrams lead to the process Z → φ+ γ

and Z → Υ+γ. We note that the direct amplitude receives contributions from two diagrams. The

second diagram is obtained by reversing the fermion flow in the diagram shown here.

the momenta:

p1 = p+ q, p2 = p− q, p · q = 0,

p21 = p22 = m2
c , p2 = E2, q2 = m2

c − E2 = −m2
cv

2. (3)

In order to produce a J/ψ the cc̄ pair must be produced in a spin-triplet, color-singlet final

state. We use a projection operator [8, 16] to enforce the production of this final state:

iMdirect =
√
2mJφ0(J)Tr[(iMcc̄γ)Π1(p, q, ǫ

∗)], (4)

where the projector is given by

Π1(p, q, ǫ
∗) =

1

8
√
2E2(E +mc)

(/p2 −mc)/ǫ
∗(/p1 + /p2 + 2E)(/p1 +mc)⊗

1√
Nc

. (5)

The amplitude Mcc̄γ is obtained by directly calculating the Feynman diagrams from the left

panel of Fig. 1 in QCD perturbation theory. Summing the two diagrams which contribute

to the direct amplitude yields

iMcc̄γ = (igZ/εZ(g
c
V − gcAγ5))

i(−/p2 − /pγ +mc)

(p2 + pγ)2 −m2
c

(−ieQc)/ε
∗
γ

+ (−ieQc)/ε
∗
γ

i(/p1 + /pγ +mc)

(p1 + pγ)2 −m2
c

(igZ/εZ(g
c
V − gcZγ5)). (6)

The external spinors associated with the quark and anti-quark appearing in the partonic

amplitude have been removed from this expression; they are replaced by the projector of
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Eq. (5) when performing the trace indicated in Eq. (4). We have included the NRQCDmatrix

element to convert this into the J/ψ amplitude in Eq. (4), resulting in the appearance of

φ0(J), the J/ψ wave-function at the origin. The trace is over both the Dirac and color

indices.

To obtain the non-relativistic expression, we set q = 0 in Eq. (5). We note that this also

sets v = 0 upon using the kinematic relations in Eq. (3). Since mJ/ψ = 2mc

√
1 + v2, this also

has the affect of enforcing mJ/ψ = 2mc in the non-relativistic limit. After a straightforward

calculation using these relations we arrive at the result

M(0)
J/ψ,direct = i

8
√
NceQcgZg

c
Aφ0(J)

√
mJ/ψ

M2
Z

ǫαµνρε
α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ. (7)

The superscript denotes that neither relativistic corrections nor higher-order perturbative

QCD corrections have been included. As noted earlier, we have kept only the leading term

in the m2
J/ψ/m

2
Z expansion. For the electromagnetic coupling e we use the value at zero

momentum transfer, as appropriate for an on-shell photon. Qc = 2/3 is the charm-quark

charge. gZ denotes the overall coupling strength of the Z-boson to fermions, while gfV,A

denote the vector and axial couplings of the fermion f . We write these as follows:

gZ = 2× 21/4
√

GFMZ , gfV =
If3
2

−Qf sin2 θW , gA =
If3
2
, (8)

where GF is the Fermi constant, sin θW is the sine of the weak-mixing angle, and If3 = ±1/2

for up-type and down-type quarks, respectively. We note that the amplitude is proportional

to the axial coupling of the charm quark. If this quantity was zero, Furry’s theorem would

require that this amplitude was vanishing.

B. Relativistic corrections in NRQCD

To obtain the leading relativistic corrections to this amplitude, we follow the approach

outlined in Ref. [17]. We keep the q-dependence in the projector of Eq. (5), and expand the

result in the parameter v2 introduced in Eq. (3). We keep only the O(v2) correction. This

correction is a ratio of NRQCD matrix elements:

v2n → 〈v2n〉 = 1

m2n
Q

〈V (ǫ)|ψ†(− i
2

↔
∇)2nσ · ǫχ|0〉

〈V (ǫ)|ψ†σ · ǫχ|0〉 . (9)
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We being by evaluating the trace over the projection operator and partonic amplitude in

Eq. (4), and averaging over the spatial direction of the momentum q in the J/ψ rest frame

using the following operation:
∫

q̂

≡
∫

dΩq̂

4π
, (10)

where we have defined q̂ = q/|q|. Doing so, we find the following four auxiliary integrals

over q̂ that are needed for this calculation:

I =

∫

q̂

p · pγ
(p− q) · pγ

, (11)

Iµ =

∫

q̂

p · pγ
(p− q) · pγ

qµ, (12)

Iµν =

∫

q̂

p · pγ
(p− q) · pγ

qµqν . (13)

The analytic expressions for these integrals have been derived in Ref. [17], leading to the

results

I0 = =
1

2δ
log

1 + δ

1− δ
,

Iµ =
4E2(1− I0)

m2
H − 4E2

p̄µγ ≡ I1 p̄
µ
γ ,

Iµν =
E2 −m2

QI0

2

(

−gµν + pµpν

p2

)

+
8E2[(m2

Q + 2E2)I0 − 3E2]

(m2
H − 4E2)2

p̄µγ p̄
ν
γ

≡ I2a

(

−gµν + pµpν

p2

)

+ I2b p̄
µ
γ p̄

ν
γ . (14)

where we have introduced the abbreviations

δ =
v√

1 + v2
, p̄γ = pγ −

pγ · p
p2

p. (15)

We note that the kinematic relations in Eq. (3) have been used in arriving at the expression

for δ. Since we are expanding our amplitude in both v2 and m2
c/M

2
Z , we need to obtain only

the leading terms in these small quantities. We find

I0 = 1 +
v2

3
+O(v4), I1 = −4

3
v2
m2
c

M2
Z

+O(v4, m4
c/M

4
Z),

I2a =
1

3
v2m2

c +O(v4), I2b = O(v4, m4
c/M

4
Z). (16)

We arrive at the following result for the direct amplitude of Eq. (4) expanded to O(v2) in

terms of these quantities:

Mv2

J/ψ,direct = i
8
√
NceQcgZg

c
Aφ0(J)

√
mJ/ψ

M2
Z

ǫαµνρε
α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ

[

I0

(

1− 3v2

8

)

+
5

8

I2a
m2
c

]

+O(v4, m2
c/M

2
Z).

(17)
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We next use the replacement of Eq. (9) to convert the v2 appearing in this result into a

ratio of NRQCD matrix elements, whose numerical values are known. Incorporating this

replacement and the integrals of Eq. (16) yields our final result:

Mv2

J/ψ,direct = i
8
√
NceQcgZg

c
Aφ0(J)

√
mJ/ψ

M2
Z

ǫαµνρε
α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ

(

1 +
〈v2〉
6

)

. (18)

Although we will discuss numerics in more detail later in our draft, we note that 〈v2〉 = 0.20,

leading to a 3% increase in the direct amplitude from relativistic corrections.

C. The LCDA approach to the Z → J/ψ + γ decay

We note that since MZ ≫ mJ/ψ, this process consists of a photon recoiling against an

energetic J/ψ, with both the c and c̄ moving along the light-cone direction defined by the

J/ψ momentum. This picture allows us to use LCDA techniques [10, 11] to calculate the

direct amplitude to leading order in m2
J/ψ/M

2
Z . The advantage of this approach is that

the leading O(αs) QCD corrections are known in the LCDA approach, and can be used to

improve our prediction. Furthermore, the LCDAs satisfy an evolution equation that can be

used to sum the leading-logarithmic corrections arising from collinear gluon emission. Since

we find that the QCD corrections are small, we do not included this renormalization-group

improvement in our result.

We begin by introducing the following light-cone momentum directions:

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,−1). (19)

We align n to lie along the J/ψ direction, and n̄ to lie along the photon direction. We can

express all momenta in terms of these directions:

pµγ =
M2

Z −m2
J/ψ

2MZ
n̄µ, pµV =

MZ

2
nµ +

m2
J/ψ

2MZ
n̄µ, (20)

pµ1 = u
MZ

2
nµ +

m2
c

2uMZ
n̄µ, pµ2 = ū

MZ

2
nµ +

m2
c

2ūMZ
n̄µ. (21)

We have introduced the light-cone momentum fractions u and ū that parameterize the

fractions of the J/ψ light-cone momentum carried by the c and c̄, respectively. We note

that ū = 1− u. These quantities satisfy the relation m2
J/ψ = m2

c/(uū).
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To proceed with the LCDA approach, we expand these kinematic relations to leading

order in the ratios m2
J/ψ/M

2
Z and m2

c/M
2
Z , leading to the simplified expressions

pµγ ≈ MZ

2
n̄µ, pµV ≈ MZ

2
nµ, pµ1 ≈ u

MZ

2
nµ, pµ2 ≈ ū

MZ

2
nµ. (22)

The momentum fraction u takes on values in the range [0, 1]. We then compute the diagrams

corresponding to the direct amplitude in Fig. 1 using standard Feynman rules. We then use

projection operators [18] to extract the amplitude for J/ψ production in terms of the appro-

priate LCDAs. There are two relevant projection operators to consider: one which describes

the production of a transversely-polarized J/ψ, and one which describes the production of

a longitudinally polarized J/ψ. We find that the production of a transversely-polarized J/ψ

vanishes to leading order in m2
J/ψ/M

2
Z . The production rate of a longitudinally polarized

J/ψ is not similarly suppressed. This agrees with the intuition that the production of lon-

gitudinal particles should be enhanced in the high-energy limit. The appropriate projection

operator that converts the partonic amplitude for cc̄γ production into the production of a

J/ψ and a photon is the following [18]:

MLCDA
J/ψ,direct = −fJ/ψ

4

mJ/ψ

EJ/ψ

∫ 1

0

duTr[(Mcc̄γ)/pJ/ψv · ε
∗
J/ψ], (23)

where v = (n + n)/2, fJ/ψ is the decay constant of the J/ψ and φ‖(u) is the twist-2 LCDA

of the J/ψ. We have neglected higher-twist contributions to this projection operator. The

detailed algebraic steps indicate how the expression in Eq. (23) is converted into its final

form:

MLCDA
J/ψ,direct =

∫ 1

0

du
−eQcgZ

ū(M2
Z −m2

J/ψ)
(−fJ/ψmJ/ψ

4EJ/ψ
)(v · ε∗J/ψ)

× Tr
[

/εZ(g
c
V − gcAγ5)(ū/pJ/ψ + /pγ −mc)/ε

∗
γ/pJ/ψ

]

+

∫ 1

0

du
eQcgZ

u(M2
Z −m2

J/ψ)
(−fJ/ψmJ/ψ

4EJ/ψ
)(v · ε∗J/ψ)

× Tr
[

/ε∗γ(u/pJ/ψ + /pγ +mc)/εZ(g
c
V − gcAγ5)/pJ/ψ

]

=
ieQcgZg

c
AfJ/ψmJ/ψ

M2
Z

∫ 1

0

du

[

φ‖(u)

ū
+
φ‖(u)

u

]

ǫαµνρε
α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ

=
ieQcgZg

c
AfJ/ψmJ/ψ

M2
Z

∫ 1

0

du
φ‖(u)

uu
ǫαµνρε

α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ. (24)

In the second and fourth line, we use the relations p1 = upJ/ψ and p2 = ūpJ/ψ valid in the
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limit MZ ≫ mJ/ψ. In the fifth line, we use the relation

(v · ε∗J/ψ)ǫαµνρεαZε∗µγ pνJ/ψpργ ≃
MZ

2
ǫαµνρε

α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ (25)

also valid in the limitMZ ≫ mJ/ψ. Before proceeding we make a few comments on the region

of validity of this result. We have performed a light-cone expansion of all momenta appearing

in the problem. For example, p1 and p2 are assumed to lie along n, and components along

n̄ and perpendicular components are neglected. We have also neglected higher-twist wave-

functions in the projector of Eq. (23). Both effects are suppressed by powers of m2
J/ψ/M

2
Z .

We have not yet used the fact that the quarks making up the J/ψ are non-relativistic

in the J/ψ rest frame. This fact implies a connection between the decay constant fJ/ψ,

the integral over φ‖(u) and the relativistic corrections found in the previous section. This

connection was derived in detail in Refs. [19, 20]. Converting the results of this reference

into our notation, we have

fJ/ψ = 2

√

Nc

mJ/ψ
φ0(J)

(

1− 〈v2〉
6

+O(v4)

)

,

∫ 1

0

du
φ‖(u)

uu
= 4

(

1 +
〈v2〉
3

+O(v4)

)

. (26)

Only the non-relativistic limit of this expression is given in Ref. [19, 20]. We have reproduced

this limit and also have derived the O(v2) correction following the technique of Ref. [17].

Inserting this result into Eq. (24), we reproduce both the non-relativistic limit and leading

v2 correction of Eq. (18).

The usefulness of considering the LCDA approach is that the O(αs) corrections to the

direct amplitude have been calculated in Ref. [19, 20] in the non-relativistic limit, and can

be included in our calculation. The correction factor is given by

∆QCD(µ, µ0) =
αs(µ)

4π
CF

[

(3− 2 ln 2)

(

ln
µ2

µ2
0

− iπ

)

+ ln22− ln 2− 9− π2

3

]

. (27)

The central values for the scales µ and µ0 are µ ∼Mz, µ0 ∼ mc. The logarithm comes from

collinear-gluon emission. The hard scale for this logarithm is the hard scale of the process,

µ, while the low scale µ0 denotes where the collinear emissions are cut off. If desired, these

logarithms could be resummed using the evolution equation satisfied by the LCDA. We note

that the leading logarithmic correction in Eq. (27) gives a 17% correction to the amplitude.

We can estimate the effect of higher-order logarithmic corrections by exponentiating this
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correction. This leads to an additional 1.5% shift beyond what has already been calculated.

Since this estimate turns out not to be large, we do not include this resummation here.

Using this next-to-leading order QCD correction, we can write down our final expression

for the direct amplitude, including both relativistic and O(αs) improvements:

MJ/ψ,direct = M(0)
direct

[

1 +
〈v2〉
6

+ ∆QCD(µ, µ0)

]

. (28)

We note that we have not included any mixed corrections of the form O(αsv
2) in this

expression. We will estimate later the theoretical uncertainty arising from these missing

terms, as well as from other sources of error. To summarize, this expression includes all

O(αs) and O(v2) corrections. All terms of O(m2
J/ψ/M

2
Z), O(α2

s), O(v4) and O(αsv
2) are

neglected.

D. The indirect amplitude

We now consider the indirect contribution to the J/ψ channel which arises through the

diagrams in the right panel of Fig. 1. We begin by deriving the effective Zγγ∗ vertex which

mediates this process. This coupling is loop-induced. It was first considered for arbitrary

fermions propagating in the loop in Ref. [21]. In our notation, the amplitude for a given

internal fermion f is

Mf
αµν(Z

α → γµ(pγ)γ
∗ν(pV )) = [−ie2Q2

fgZg
f
AN

f
c ]
p2V
π2
I(mf , mJ/ψ,MZ)ǫαµνρp

ρ
γ, (29)

where Nf
c denotes the number of colors for the fermion f . I(mf , mJ/ψ,MZ) denotes the

parametric integral

I(mf , mJ/ψ,MZ) = −
∫ 1

0

dx

∫ 1−x

0

dy
−y + y2 + xy

m2
f − y(1− y)m2

J/ψ − xy(M2
Z −m2

J/ψ)
. (30)

This function depends on the internal-fermion mass mf , and on mJ/ψ and MZ . We use

directly this parametric integral in our numerical results. The analytic expression for

I(mf , mJ/ψ,MZ) is given in Ref. [21]; we do not reproduce it here, although we have re-

derived and confirmed it in several limits. As one check, we have confirmed that our numer-

ical result reproduces the following analytic expression in the limit of zero internal fermion

mass:

I(0, mJ/ψ,MZ) =
1

M2
Z −m2

J/ψ

[

1 +
M2

Z

M2
Z −m2

J/ψ

ln

(

m2
J/ψ

M2
Z

)]

. (31)
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We note that in the limit of degenerate fermion masses within an entire generation of

fermions, the amplitude becomes proportional to

∑

f

Mf
αµν(Z → γ(pγ)γ

∗(pV )) ∝
∑

f

Q2
fg

f
AN

f
c = 0. (32)

This expression vanishes because of anomaly cancellation in the Standard Model.

To obtain the indirect amplitude for Z → J/ψ+ γ, we combine the Zγγ∗ result with the

transition amplitude for γ∗ → J/ψ. This transition proceeds through the following matrix

element:

iMµ
JV

= −ie〈J/ψ(ǫ)|JµV (x = 0)|0〉 = −iegJ/ψγǫµ∗, (33)

where JV is the electromagnetic current,

JµV (x) =
∑

q

Qq q̄(x)γ
µq(x). (34)

In Eq. (34), the sum is over all quark flavors. We can solve for the magnitude of the effective

coupling gJ/ψγ using the decay width of the J/ψ into leptons:

Γ[V → l+l−] =
4πα2g2V γ
3m3

V

. (35)

In order to determine the phase of gV γ, we follow Ref. [4] and note that to leading order in

αs and v we have

gJ/ψγ = −Qc

√

2Nc

√

2mJ/ψ φ0(J). (36)

This indicates that gJ/ψγ is negative1. We find the following expression for the indirect

amplitude:

MJ/ψ,indirect =
ie3gZgJ/ψγ

π2
ǫαµνρε

α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ

∑

f

Q2
fg

f
AN

f
c I(mf , mJ/ψ,MZ). (37)

The sum is over all fermions in the Standard Model. We will study the numerical im-

pact of this contribution in a later section, but we make a few comments here. Since the

contributions are proportional to the mass splittings within a generation, we find that the

first generation gives a negligible result. The integral I(mf , mJ/ψ,MZ) goes like 1/m2
f for

heavy fermions, and the contribution from the top quark is therefore also small. Only the

1 There is a small phase generated by high-order terms in the NRQCD expansion that are negligible given

other theoretical uncertainties.

13



charm-quark, bottom-quark, and tau-lepton contributions are numerically important. These

contributions can be expanded in the ratio of the fermion masses overMZ . Since these ratios

are small, the indirect amplitude is small for this process. This is in contrast to the Higgs

decay [4], for which the indirect amplitude gives a sizable contribution. The overall QED

coupling term e3 contains an e2 that comes from the coupling of the off-shell γ∗, and a factor

of e that comes from the on-shell photon. We will therefore replace this factor by the fol-

lowing combination of running coupling constants in the M̄S scheme: e3 → e2(mJ/ψ)×e(0).
We do not assign any theoretical error due to missing higher-order corrections to the indirect

amplitude, since it anyway gives a small contribution to the branching ratio.

E. Summary of the J/ψ mode

To form the entire amplitude for Z → J/ψ+γ, we sum the direct and indirect amplitudes

given in Eqs. (28) and (37):

MZ→J/ψ+γ = MJ/ψ,indirect +MJ/ψ,direct. (38)

We form the partial width for this mode as

ΓZ→J/ψ+γ =
1

3

1

2MZ

M2
Z −m2

mJ/ψ

8πM2
Z

∑

pols

|MZ→J/ψ+γ|2

=
1

48πMZ

∑

pols

|MZ→J/ψ+γ|2. (39)

On the right-hand side of the first equation, the first factor 1/3 comes from the Z-boson

polarization averaging, the second factor comes from the overall flux factor, and the third

factor comes from the phase space, which we have expanded to leading order in m2
J/ψ/M

2
Z .

The sum is over the polarizations of all three particles in the process. We have included

a 1/3 from the Z-polarization averaging in this expression, and have expanded the phase-

space factor to leading order in m2
J/ψ/M

2
Z to maintain consistency with our calculation of the

amplitude. We will discuss our numerical inputs into this partial width in a later section. We

note that the J/ψ states produced are predominantly longitudinally polarized. Transverse

polarizations are suppressed by a factor of m2
J/ψ/M

2
Z .
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III. THE DECAY Z → φ+ γ

In this section we discuss the decay Z → φ+γ. We assume that the φ meson is composed

entirely of an ss̄ pair. In the rest frame of the φ meson the quarks are energetic and boosted

along the direction of the φmomentum. We therefore use the LCDA approach of Section IIC

to calculate the direct amplitude for this process. There is also an indirect contribution that

we calculate similarly as the J/ψ indirect amplitude of Section (IID).

A. The direct amplitude

We begin by discussing the direct amplitude. Denoting the φ momentum as p and the

photon momentum as q1, we expand all momenta around the light-cone directions as we did

for the J/ψ in Eq. (20):

pµγ =
M2

Z −m2
φ

2MZ

n̄µ, pµV =
MZ

2
nµ +

m2
φ

2MZ

n̄µ, (40)

pµ1 = u
MZ

2
nµ, pµ2 = ū

MZ

2
nµ. (41)

We have neglected ms, the strange-quark mass, in writing down the strange and anti-strange

momenta p1 and p2. Since M2
Z ≫ m2

φ, we can further simplify these momenta by dropping

the explicit mφ terms. We next calculate the partonic direct-amplitude diagrams of Fig. 1,

and use a similar projector as in Eq. (23) to convert the partonic amplitude into one for the

φ-meson:

MLCDA
φ,direct = −fφ

4

mφ

Eφ

∫ 1

0

duTr[(Mss̄γ)/pV v · ε
∗
φ], (42)

Here, Mss̄γ is the partonic amplitude for the production of ss̄γ. The transverse projector

again gives zero to leading order in m2
φ/M

2
Z , as for the J/ψ. A straightforward calculation

gives the result

MLCDA
φ,direct =

ieQsgZg
s
Afφmφ

M2
Z

∫ 1

0

du
φ‖(u)

uu
ǫαµνρε

α
Zε

∗µ
γ ε

∗ν
φ p

ρ
γ. (43)

Here, fφ is the φ-meson decay constant, and φ‖(u) is the twist-2 longitudinal LCDA for the

φ-meson. It depends on a renormalization scale µ that we have suppressed.

At this point the calculation differs from the LCDA calculation for the J/ψ. It is not

possible to relate the decay constant and φ‖ to NRQCD matrix elements. fφ can simply
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be taken from data. The twist-2 distribution amplitudes can be expanded in Geigenbaur

polynomials [22]:

φ‖(u) = 6uū

[

1 +
∑

n=2

a‖nC
3/2
n (2u− 1)

]

. (44)

Here, the C
3/2
n are Geigenbauer polynomials. We need the n = 0 and n = 2 results for our

calculation; they are

C
3/2
0 (u) = 1, C

3/2
2 (u) =

15

2
u2 − 3

2
. (45)

We note that the this distribution amplitude is normalized so that

∫ 1

0

du φ‖(u) = 1. (46)

The quantities a
‖
n are scale-dependent. We take their input values at µ = 1 GeV from

Ref. [23]. These values are obtained from an average of sum-rule and lattice determinations.

In our numerical results we truncate the sum of Eq. (44) at n = 2. The higher n terms are

not known. Since a
‖
2 does not give a large contribution to the amplitude, we expect that

this truncation does not lead to a large error. Given these expressions it is straightforward

to perform the integrals over u in Eq. (43).

In order to include the leading-logarithmic corrections from collinear gluon emission in the

amplitude, we solve the evolution equation for the a
‖
n to evolve them from the input scale of

1 GeV to the hard scale µ ∼MZ of the process. The solutions to the renormalization-group

equation for the coefficients are [22]:

a‖n(µ) =

(

αs(µ)

αs(µ0)

)

γ
‖
n

2β0

a‖n(µ0), (47)

where

γ‖n = 8CF

(

n+1
∑

k=1

1

k
− 3

4
− 1

2(n+ 1)(n+ 2)

)

. (48)

We will use this renormalization-group improved expression in our numerical results.

B. The indirect amplitude

The calculation of the indirect amplitude for Z → φ + γ proceeds identically to the

calculation for Z → J/ψ+ γ presented in Section IID. We simply take over the result from
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Eq. (37), replacing all J/ψ-dependent quantities with their φ analogues. We obtain

Mφ,indirect =
ie3gZmφf

φ
VQs

π2
ǫαµνρε

α
Zε

∗µ
γ ε

∗ν
J/ψp

ρ
γ

∑

f

Q2
fg

f
AN

f
c I(mf , mφ,MZ), (49)

where we have used

〈φ|JµV (0)|0〉 = fφmφε
µ
φ. (50)

There is again no contribution in the limit of degenerate fermion masses propagating inside

the loop. The numerically-relevant contributions come from the tau lepton, charm quark

and bottom quark.

C. Summary for Z → φ+ γ

The final expression for Z → φ+γ amplitude comes from summing the direct and indirect

expressions of Eqs. (43) and (49):

MZ→φ+γ = Mφ,indirect +Mφ,direct. (51)

We form the partial width for this mode as

ΓZ→φ+γ =
1

48πMZ

∑

pols

|MZ→φ+γ|2. (52)

This expression is valid to leading order in m2
φ/M

2
Z , and includes the leading-logarithmic

QCD corrections coming from the evolution of the φ-meson twist-2 LCDA.

IV. NUMERICAL RESULTS

We discuss in this section our numerical results for both the central values and theoretical

errors for the Z → J/ψ + γ, Z → Υ(1S) + γ, and Z → φ + γ decays. We begin with the

J/ψ process. For the direct amplitude, we use the following values for the parameters which

enter the prediction:

α(0) = 1/137.036, φ0(J) = 0.270± 0.020GeV3/2, 〈v2〉 = 0.201± 0.064. (53)

The values for the J/ψ wave-function at the origin, φ0(J), and the matrix element 〈v2〉
are taken from Ref. [17, 24]. We have made the replacement e →

√

4πα(0) in Eq. (7),
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as appropriate for an on-shell photon. When evaluating the QCD correction presented in

Eq. (27), we choose the central scales µ = MZ and µ0 = mc. For numerical consistency

with the results of Ref. [17] which studies Higgs decays, we convert the MS charm mass to

the pole mass at one-loop order. We use the MS mass and error coming from the Particle

Data Group (PDG) [12] as input, and to perform the conversion to the pole mass we use

RunDec [25]. We do the same for the bottom-quark mass, which is needed in the evaluation

of the indirect amplitude. We find the following result for the pole masses:

mc = 1.485± 0.026GeV, mb = 4.579± 0.032GeV. (54)

For the indirect amplitude, we further need to specify gJ/ψγ and the masses of the fermions

that propagate in the loop. The charm and bottom masses are given above. We use the PDG

value for the tau-lepton mass. All other contributions are numerically negligible. For the

coupling gJ/ψγ , we use the result of Eq. (35) and take Γ[J/ψ → l+l−] and its experimental

error from the PDG. We obtain

gJ/ψγ = −0.832± 0.010GeV2. (55)

For all other parameters that appear in the J/ψ amplitude, we use the values from the PDG.

In order to estimate the theoretical errors on the J/ψ branching ratio, we consider the

following sources of uncertainty.

• We study parametric uncertainties arising from φ0(J), 〈v2〉, gJ/ψγ , mc, and mb.

• We estimate the uncertainty coming from uncalculated O(α2
s) corrections by varying

the scale µ in the direct amplitude in the range µ ∈ [MZ/2, 2MZ ].

• We estimate the uncertainty from higher-order terms in the NRQCD expansion by

assigning a relative uncertainty of 〈v2〉2 to such corrections.

• We estimate the uncertainty on mixed O(αsv
2) corrections by assigning a relative

uncertainty of αs/(4π)× 〈v2〉 to these corrections.

We will see that the indirect amplitude gives a small contribution to the branching ratio,

justifying our neglect of a theoretical error on this term. All of these sources of uncertainty

are added in quadrature separately for both the direct and indirect amplitudes to produce an

uncertainty on each contribution. Both the direct and indirect amplitudes are then allowed
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to vary independently within their allowed errors, and the envelope of these deviations is

then taken to produce a final error on the branching ratio prediction.

Using the prescriptions above, and taking the total width of the Z-boson from the PDG,

we arrive at the following prediction for the J/ψ branching ratio in the Standard Model:

BSM(Z → J/ψ + γ) = (9.96± 1.86)× 10−8. (56)

We make a few comments on this result. If the indirect amplitude were set to zero, the

central value of the branching ratio would instead be 1.00 × 10−7. The indirect amplitude

interferes destructively with the direct amplitude, but leads to only a 0.4% decrease in the

result. The largest correction to the leading non-relativistic result of Eq. (7) comes from

the v2 correction of Eq. (18). If this were turned off, the branching ratio would decrease

by 6%. The relative error on the branching ratio is 18.7%. In order of importance, the

three largest contributions to the error budget are the parametric uncertainty on φ0(J), our

estimate of the missing v4 corrections, and the scale variation in the direct amplitude. If the

error on φ0(J) is removed, the relative uncertainty decreases to only 10.3%. This parametric

uncertainty dominates the error budget. If all three sources of uncertainty are turned off,

the relative uncertainty becomes only 2.1%.

We study next the decay Z → Υ(1S) + γ, which is very similar to the J/ψ mode just

considered. The primary difference in this case is that the quarkonium mass effects that

we have neglected go like m2
Υ/M

2
Z , which reaches the percent level. Since this is still a

small correction, we continue to neglect such effects. We use the following values for the

parameters which enter the direct amplitude:

α(mΥ) = 1/131.87, φ0(Υ) = 0.715± 0.024GeV3/2, 〈v2〉 = −0.00920± 0.00348. (57)

The values for wave-function at the origin and the matrix element 〈v2〉 are taken from

Ref. [17, 24]. For the indirect amplitude, we further need to specify gΥγ. We use the result

of Eq. (35) and take Γ[Υ → l+l−] and its experimental error from the PDG. We obtain

gΥγ = 2.212± 0.015GeV2. (58)

We consider the same sources of uncertainty as for the J/ψ. We arrive at the following

prediction:

BSM(Z → Υ(1S) + γ) = (4.93± 0.51)× 10−7. (59)
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The indirect amplitude again has a sub-1% effect on this branching ratio. The largest sources

of uncertainty are the parametric error on φ0(Υ) and the scale variation.

We now consider the decay Z → φ+ γ. The branching ratio for this process additionally

depends on the decay constant fφ and the coefficient a
‖
2 that appears in the twist-2 LCDA.

We take these quantities from Ref. [23]:

fφ = 0.235± 0.005GeV, a
‖
2(1GeV) = 0.23± 0.08. (60)

For our error estimate we consider parametric uncertainties coming from fφ, a
‖
2, mc, and

mb. We estimate missing higher-order corrections in the direct amplitude by taking µ ∈
[MZ/2, 2MZ ]. We find the result:

BSM(Z → φ+ γ) = (1.17± 0.08)× 10−8. (61)

The indirect amplitude has a small effect on this branching ratio; setting it to zero leads to

a 1% increase in the branching ratio. However, the evolution of a
‖
2 from the input scale of 1

GeV to µ =MZ has a large effect on the rate. Without this effect, the branching ratio would

be 1.51× 10−8, almost 30% larger. The dominant sources of uncertainty are the parametric

errors on fφ and a
‖
2. If these were removed, the remaining estimated error would drop to

the 1.3%.

V. CONCLUSIONS

In this manuscript we have studied the rare decays Z → J/ψ + γ, Z → Υ + γ and

Z → φ+ γ. Our motivation in considering these processes is that they serve as benchmark

processes for similar rare decays of the Higgs boson to mesons that may reveal whether

the Yukawa structure in Nature is indeed that predicted by the Standard Model. We have

performed a detailed study of all contributions which lead to these rare Z-boson decays,

including both the direct and indirect amplitudes. For the heavy quarkonium decays we

utilized the NRQCD framework, and included the leading relativistic and O(αs) corrections.

For the φ decay we used the LCDA approach and included the leading-logarithmic QCD

corrections. In both cases we carefully considered all sources of parametric and theoretical

uncertainties. The dominant uncertainties for both processes are parametric in origin: for

the J/ψ and Υ modes the largest error is from knowledge of the wave-functions, while for
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the φ-meson the two largest sources are the decay constant fφ and the LCDA itself. If

necessary, it may be possible to reduce these in the future with a combination of improved

experimental data and lattice calculations.

Although small, there is a probability that the J/ψ and Υ decays will be observed at

Run II of the LHC. The final state is clean, consisting of two leptons and a photon that

reconstruct to the Z mass peak if a leptonic decay of the quarkonium is demanded. Although

this further reduces the branching ratio, the inclusive Z production cross section at even

the 8 TeV LHC is 34 nb [26]. Almost 109 Z-bosons were produced at the 8 TeV LHC run,

and branching ratios of 10−7 should soon be accessible. The observation of the φ decay

would require a new trigger, since the φ does not have an appreciable leptonic decay. Given

the importance of this mode for the study of Higgs boson properties, we believe that the

development of this trigger it should be pursued by the LHC collaborations. We look forward

to these searches being performed in the coming run of the LHC.
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