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The neutrinos emitted from the proto-neutron star created in a core-collapse supernova must
run through a significant amount of turbulence before exiting the star. Turbulence can modify
the flavor evolution of the neutrinos imprinting itself upon the signal detected here at Earth. The
turbulence effect upon individual neutrinos, and the correlation between pairs of neutrinos, might
exhibit sensitivity to the power spectrum of the turbulence and recent analysis of the turbulence
in a two-dimensional hydrodynamical simulation of a core-collapse supernova indicates the power
spectrum may not be the Kolmogorov 5/3 inverse power law as has been previously assumed. In
this paper we study the effect of non-Kolmogorov turbulence power spectra upon neutrinos from
a point source as a function of neutrino energy and turbulence amplitude at a fixed post-bounce
epoch. We find the two effects of turbulence upon the neutrinos - the distorted phase effect and the
stimulated transitions - both possess strong and weak limits in which dependence upon the power
spectrum is absent or evident respectively. Since neutrinos of a given energy will exhibit these two
effects at different epochs of the supernova each with evolving strength, we find there is sensitivity
to the power spectrum present in the neutrino burst signal from a Galactic supernova.

PACS numbers: 47.27.-i,14.60.Pq,97.60.Bw

I. INTRODUCTION

There is now ample evidence from both observations
and numerical simulations for the multi-dimensional na-
ture of core-collapse supernovae. The high-velocity “jets”
of sulfur-rich material - which presumably originated
deep in the stellar mantle - seen in the supernova rem-
nant Cassiopeia A [1], the double-peaked structure of the
Oxygen and Magnesium nebular lines in observations of
SN 2003jd [2], and the spectropolarimetric observations
of stripped-envelope core-collapse supernovae [3] can all
be explained if the explosions were aspherical. Aspheric-
ity in the hydrodynamical simulations of core collapse
supernovae is seen to emerge even when the progenitor is
spherically symmetric [4–13]. If the asphericity is indeed
generated deep with the star during the earliest epochs
of the explosion then one would naturally expect the gen-
eration of turbulence in the fluid. The turbulence, which
some have argued is crucial for achieving an explosion
[14], would, in turn, alter the flavor evolution of neutri-
nos racing through the stellar mantle from the cooling
proto-neutron star formed at the core.

Finding the consequence of the turbulence upon the
neutrinos is vital for interpreting the signal from the next
supernova in the Galaxy. This need has long been rec-
ognized and various authors have examined the effect of
turbulence upon neutrinos [15–24]. From these studies it
has emerged that turbulence can affect the neutrinos in
two different ways. The first, more direct effect of the
turbulence is to ‘stimulate’ transitions between the in-
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stantaneous neutrino eigenstates [22–24] while the neu-
trino is propagating through the turbulent region. Al-
though this effect depends upon a number of factors,
typically noticeable turbulence effects require the den-
sity fluctuations to be present in the region of the super-
novae mantle where neutrinos experience the Mikheyev,
Smirnov and Wolfenstein (MSW) resonances [25, 26] and
their amplitude must be of order a few percent. That
said, the description of the stimulated transition effect
of turbulence is not in terms of MSW resonances and
MSW resonances are not required for the effect to ap-
pear. The second, more subtle effect of turbulence occurs
when the neutrino transition probabilities exhibit phase
effects [27, 28]. In order to observe phase effects and this
second, indirect, sensitivity to turbulence we require at
least two semi-adiabatic MSW resonances and/or density
discontinuities in the profile. Even then, it is sometimes
possible to reduce the imprint of this second effect by
carefully selecting the profile and neutrino energy. In
more general circumstances we find both effects simulta-
neously though the second effect of turbulence becomes
most obvious when the amplitude is small because the
direct effect is usually negligible in this limit [19].

While the basic effects of turbulence upon the neutri-
nos have been determined, it is not apparent to what
extent they might operate in a supernova due to the lack
of suitable three-dimensional, high resolution, long du-
ration hydrodynamical simulations. In their absence au-
thors have been forced to model the turbulence in a su-
pernova by adopting a turbulence-free profile and then
inserting turbulence into it in the form of a random
field with assumed properties. The problem with this
approach is that the validity of these prescriptions for
the turbulence in supernovae are unknown. That sit-
uation changed recently with the study by Borriello et
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al. [29] of the turbulence in a two-dimensional simu-
lation from Kifonidis et al. [30] which approached the
necessary resolution and duration. Borriello et al. fit-
ted the power spectrum for the turbulence along each
radial sliceof the simulation with a broken inverse-power
law defined by four parameters. Two of these parame-
ters correspond to spectral indices which they called p1
and p2: p1 is the index for the longer wavelengths and
the other, p2, for the shorter. The other two parameters
are the amplitude and the break wavenumber defined in
terms of a multiple of the long wavelength cutoff scale.
The short wavelength index was found to have a mean
and 1 − σ error of around p2 = 3.04+0.57

−0.63 while the in-
dex for the longer wavelengths was found to have a mean
and 1 − σ error of p1 = 1.85+0.54

−0.77. The analysis by Bor-
riello et al. is a welcome addition to the literature but
the well-known differences between the properties of tur-
bulence in two and three spatial dimensions means it is
not clear which results can be safely carried over to 3D.
For example, in the inertial range of wavenumbers for 2D
turbulence one may observe a Kraichnan inverse enstro-
phy cascade which funnels turbulent power into the long
wavelength modes, a Kolmogorov energy cascade in the
opposite direction, and even double cascades [31] where
turbulence is injected at some given scale and cascades
to both longer and shorter wavelengths. The turbulence
seen by Borriello et al. appears to be of this double cas-
cade type because they find broken power laws similar
to a Nastrom-Gage spectrum [32]. If the presence of the
‘break wavenumber’ and a short wavelength index p2 is
due to the 2D nature of the turbulence and if the ampli-
tude they obtain is similarly contaminated by the inverse
cascade effect, this leaves, perhaps, just the long wave-
length index p1 as being transferable to a 3D study. Thus,
the most conservative conclusion to draw from the study
is that the long wavelength spectral index has a mean
of p1 ∼ 5/3 and the fact it has a range appears to indi-
cate the turbulence is also not always ‘fully developed’
justifying the exploration of something other than a Kol-
mogorov, 5/3, power spectrum in the prescriptions for
turbulence in 3D which has heretofore been the default.
Changing the power spectrum will alter the evolution of
individual neutrinos passing through the turbulence and
the correlation between pairs of neutrinos sent along par-
allel rays [33].

The analytic results of Friedland & Gruzinov [17] and
Patton, Kneller & McLaughlin [23, 24] can be used to
predict the effect of changing the spectral index for the
direct, stimulated transition, effect of turbulence. They
indicate that a lowering of the index (hardening) of the
power spectrum should increase the stimulated transi-
tion effect upon the neutrinos by i) increasing the ampli-
tude of the turbulence modes which lead to transitions
between the neutrino states, ii) permitting more combi-
nations of modes to drive transitions without a severe si-
multaneous narrowing of the resonance, and iii) lowering
the amplitude of the modes which suppress those transi-
tions. However the precise amount by which the direct

turbulence effect alters the neutrino transition properties
as the power spectrum changes has not been determined,
and nothing exists in the literature for the indirect tur-
bulence effect of distorted phase. It is the filling of these
holes which is the goal of this paper. We begin by describ-
ing the calculations we have performed paying particu-
lar attention to the turbulence power spectrum we use
and other details. The section following demonstrates
the two effects of turbulence and the two descriptions
which we shall use to make predictions and understand
our results. Our results for the change in the ensem-
bles for single neutrinos at three different energies and
a wide range of turbulence amplitudes as a function of
the power spectral index are then presented and we finish
with a summary and our conclusions where we attempt
to construct a coherent description of turbulence effects
in supernova neutrinos.

II. DESCRIPTION OF THE CALCULATIONS

In order to study the effect of the supernova turbulence
upon the neutrinos we compute the set of probabilities
that a neutrino initially in some state νj is later detected
in some other state νi at a different location - the tran-
sition probabilities. These quantities are denoted as Pij

for neutrinos and P̄ij for the antineutrinos. The transi-
tion probabilities can be computed from the elements of
the evolution matrix S which links the initial and final
neutrino states, that is Pij = |Sij |2, and the evolution
matrix is computed by solving the Schrodinger equation

ı
dS

dλ
= H S (1)

where H is the Hamiltonian and λ the affine parameter
along the neutrino trajectory. The transition probabil-
ities we report in this paper are for the ‘matter’ basis
states. The matter basis states are related to the fla-
vor basis states by the matter mixing matrix Ũ which
is defined so that the flavor basis Hamiltonian H(f) and
its eigenvalue matrix K̃ are related via H(f) = ŨK̃Ũ †

[34, 35]. In our case the Hamiltonian possesses two con-
tributions: the first, H0, is from the vacuum and the
second, HMSW comes from the effect of the matter upon
the neutrino [25, 26]. We do not include the contribu-
tion to H from ‘collective’ effects: see Duan, Fuller &
Qian [36] for a review of this fascinating subject. The
vacuum Hamiltonian for a neutrino of a given energy E
is defined by the two independent mass squared differ-
ences δm2

ij = m2
i − m2

j of δm2
32 and δm2

21. It is diag-
onal in the ‘mass’ basis which is related to the flavor
basis by the Maki-Nakagawa-Sakata-Pontecorvo [37, 38]
unitary ‘mixing’ matrix U . The mixing matrix can be
written in terms of three vacuum mixing angles, θ12, θ13
and θ23, a CP phase δ, and two Majorana phases though
the two Majorana phases do not influence the evolution
[35, 39]. Throughout this paper we adopt numerical val-
ues of δm2

21 = 7.5×10−5 eV2, δm2
32 = 2.32×10−3 eV2 (a
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normal hierarchy), θ12 = 33.9◦, θ13 = 9◦ and θ23 = 45◦

which are consistent with the values from the Particle
Data Group [38]. The CP phase is set to zero.

The MSW potentialHMSW is diagonal in the flavor ba-
sis because matter interacts with neutrinos based on their
flavor. The matter affects the neutrinos via both neutral
and charged current channels but the neutral current con-
tribution to HMSW may be ignored because it leads to
an unobservable global phase. In contrast, the absence
of mu and tau leptons in the matter means the charged
current potential affects the electron flavor neutrino and
antineutrinos only. The charged current potential for the
electron flavor neutrinos and antineutrinos is given by
Vee = ±

√
2GFne(r) where GF is the Fermi constant and

ne(r) the electron density. The plus sign applies to the
electron neutrinos, the minus sign for the electron an-
tineutrinos. This potential is the ‘ee’ element of HMSW .
The tiny radiative µτ potential [40, 41] is ignored since
it is a factor of ∼ 10−5 smaller than the potential affect-
ing the electron flavor in the standard model (but may
be two or three orders of magnitude bigger if supersym-
metric contributions are included [42]). It is through the
electron density ne(r) that the turbulence enters HMSW .
As noted in the Introduction, the ideal would be to use
density profiles taken from high resolution, long duration,
three-dimensional simulations of supernovae in order to
study the effect of turbulence. These are not available so
one is forced to adopt a profile from a one-dimensional
simulation and add turbulence to it. We shall introduce
the turbulence in such a way that the profile from the 1D
simulation is also the mean electron density 〈ne(r)〉, the
average here being over realizations of the turbulence.
The profile we use for 〈ne(r)〉 is the t = 3 s postbounce
snapshot from the 10.8 M⊙ simulation by Fischer et al.

[43]. The MSW potential for this profile is shown in fig-
ure (1) and was chosen so that neutrinos with the MSW
resonance of the three energies we shall use throughout
this paper, 5 MeV, 15 MeV and 45 MeV, intersect the
profile in the region where we shall place the turbulence.
As we shall discover, these energies are representative in
the sense that each will be affected by the turbulence
to differing degrees because the region where we place
the turbulence will have a different relation to the MSW
densities of these three neutrino energies. Since we are
considering different neutrino energies it is not necessary
for us to consider snapshots at other epochs from this
simulation because, to first order, the profile epoch and
the neutrino energy are degenerate: what occurs to lower
energy neutrinos at early times will occur for higher en-
ergies at later times. For this profile we may regard the
45 MeV neutrinos as representing what we expect at the
epoch when turbulence is just beginning to affect the
neutrinos of a given energy, the 15 MeV as represent-
ing the effect when the H resonant channel is strongly
affected, and the 5 MeV neutrinos as representing what
we expect when the turbulence begins to affect both H
and L resonant channels. Fixing the neutrino energy and
changing the snapshot time would be an alternative way
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FIG. 1: The MSW potential for the snapshot at t = 3 s
post-bounce of the M = 10.8 M⊙ simulation from Fischer et

al. [43] as a function of distance. From the inside out, the
three discontinuities in the profile are the reverse shock at
rr = 1, 734 km, the contact discontinuity at rc = 12, 348 km,
and the forward shock at rf = 30, 323 km. From top to bot-
tom, the horizontal dashed lines are the two-flavor resonance
potential for a neutrino with E = 5 MeV, E = 15 MeV,
and E = 45 MeV respectively using mixing parameters
δm2 = 2.32 × 10−3 eV2 and θ = 9◦ while the the hori-
zontal dot-dashed lines are the two-flavor resonance poten-
tial for a neutrino with E = 5 MeV, E = 15 MeV, and
E = 45 MeV from top to bottom respectively using mixing
parameters δm2 = 7.5× 10−5 eV2 and θ = 33.9◦.

to explore this dependence between the turbulence ef-
fects and MSW densities. Also, the actual shape of the
underlying one-dimensional profile is not very important
to the turbulence effects so changing the simulation will
not lead to qualitatively different results - the reader is
referred to Lund & Kneller [22] where turbulence was
put into this same M = 10.8 M⊙ simulation from Fis-
cher et al. at multiple post-bounce epochs and compared
with results for turbulence inserted into two other two
simulations, a M = 8.8 M⊙ and a M = 18 M⊙, by the
same authors. Returning to figure (1), the reader will
observe there are three discontinuities within the profile:
the reverse shock at rr = 1, 734 km, the contact dis-
continuity at rc = 12, 348 km and the forward shock at
rf = 30, 323 km. These features were steepened by hand
from the original simulation data: see Lund & Kneller
[22] for a discussion of why this steepening was neces-
sary.

The evolution of neutrinos and antineutrinos with en-
ergies 5 MeV, 15 MeV and 45 MeV and the given set of
mixing parameters through the base profile are shown in
figure (2). For the neutrinos the mixing between ν2 and
ν3 dominates and note that the sudden discontinuities
in the transition probability P23 occur at the disconti-
nuities in the profile and not at the MSW resonances
(unless the two coincide). For 5 MeV neutrinos there
is a noticeable change in both P12 and P13 at the for-
ward shock; for the 15 MeV the change in the same
probabilities at the same location is much smaller and
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FIG. 2: In the left figure we show the evolution of the neutrino transition probability P12 (dashed dot), P13 (dashed) and P23

(solid) with energies of 5 MeV (top panel) 15 MeV (middle panel) and 45 MeV (bottom panel) through the profile shown in
figure (1). The right figure we show the evolution of the antineutrino transition probabilities P̄12 (dashed dot), P̄13 (dashed)
and P̄23 (solid) with energies of 5 MeV (top panel) 15 MeV (middle panel) and 45 MeV (bottom panel) through the same
profile.)

by 45 MeV the change in P12 and P13 are minuscule.
In the antineutrinos we again see a noticeable jump in
P̄12 at the forward shock of similar size to the change
of P12 for neutrinos of the same energy while the jump
in P̄12 at higher energies is much smaller; any jump in
P̄23 is very small at all antineutrino energies (the mixing
in this channel is suppressed if the mixing in ν2 − ν3 is
strong); and similarly the jumps in P̄13 are small for all
energies. For future reference, the values of the transition
probabilities {P12, P13, P23} and {P̄12, P̄13, P̄23} through
this profile for 5 MeV neutrinos are {0.0918, 0.189, 0.548}
and {0.120, 7.09 × 10−5, 3.12 × 10−5} respectively, for
15 MeV neutrinos they are {7.13 × 10−3, 0.0308, 0.696}
and {0.0353, 5.36× 10−3, 1.35× 10−4}, for 45 MeV neu-
trinos they are {2.22 × 10−3, 6.73 × 10−4, 0.194} and
{2.81× 10−3, 3.68× 10−3, 1.85× 10−5}. The evolution of
the neutrinos and antineutrinos through the underlying
base profile will determine the extent to which turbulence
is able to modify the emerging probabilities. In general
we find that if Pij is close to the limits of zero or unity
then the effect of turbulence tends to be smaller, every-
thing else being equal. Thus we should expect big effects
in P23 even at small turbulence amplitudes while effects
in P12, P13 and the antineutrinos will require somewhat

larger density fluctuations.
It is in the region between the forward and re-

verse shocks that strong turbulence is seen in multi-
dimensional simulations [29, 44, 45] so that is where we
shall modify the profile to insert the turbulence. As in
Lund & Kneller [22], we use two random field realiza-
tions: one for the zone between the forward shock and
the contact discontinuity, and a second between the con-
tact discontinuity and the reverse shock. Realizations
are generated by multiplying 〈ne(r)〉 by a factor 1+F (r)
where F (r) is a Gaussian random field with a power spec-
trum E. Quite generally we may write the random field
F (r) within the region r< to r> as a Fourier series of the
form

F (r) = C⋆ tanh

(

r − r<
λ⋆

)

tanh

(

r> − r

λ⋆

)

×
Nq
∑

a=1

√

Va {Aa cos (qa r) +Ba sin (qa r)} .
(2)

The purpose of the two tanh functions is to damp the
fluctuations close to r< and r> and the parameter λ⋆ is
the damping scale which we set to λ⋆ = 100 km. The
parameter C⋆ is the root-mean-square amplitude of the
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field and we shall use the same value of C⋆ for the two
realizations for simplicity. The set of co-efficients {A}
and {B} are independent standard, zero-mean Gaussian
random variates (which ensures the mean value of F is
zero), the wavenumbers for the Fourier modes are qa and
the quantities Va are ‘volume’ co-efficients. The method
for generating a realization of the turbulence is the same
‘variant C’ of the Randomization Method described in
Kramer, Kurbanmuradov, & Sabelfeld [46] and used in
Kneller & Mauney [47]. The space of wavenumbers is
divided into Nq regions and from each region we select
a random wavenumber q using the normalized power-
spectrum, E(q), as a probability distribution. The vol-
ume parameters Va are the integrals of the power spec-
trum over each region. In order to produce random fields
that affect the neutrinos we must cover a sufficiently large
dynamic range of scales. Given the size of the turbulence
regions shown in figure (1) and the neutrino oscillation
lengthscale of ∼ 10 km at these densities, the dynamic
range is found to be of order 40-50 decibels which re-
quires at a minimum that Nq also be in the range 40-50
[33].

The power spectrum of the random field is taken to be
an inverse power law of the form

E(q) =
(α− 1)

2 q⋆

(

q⋆
|q|

)α

Θ(|q| − q⋆). (3)

Here α is the spectral index and q⋆ is the long wave-
length, small wavenumber, cutoff. The parameter q⋆ is
sometimes called the ‘driving scale’ since it is the longest,
non-zero turbulence wavelength. In our case this wave-
length is twice the size of the turbulence domains, that
is, 1/q⋆ = 2 (r> − r<). The assumption that the power
spectrum E has no spatial dependence is the simplest
choice we can make but it’s an assumption that should
be examined further. Though there is evidence that the
power spectrum of the angular kinetic energy during the
accretion phase does show radial dependence [4, 48], that
does not automatically mean we should find radial de-
pendence in the turbulence power spectrum during the
cooling phase when the turbulence is far out in the stel-
lar mantle. Similarly we know of no evidence that the
turbulence power spectrum in a three dimensional simu-
lation of a supernova at the appropriate epoch over the
range of lengthscales we require is anything other than a
single inverse power law: the broken power law found by
Borriello et al [29] is relic of the two dimensional nature
of the simulation they analysed.

With the Hamiltonian including turbulence con-
structed our plan is to generate multiple realizations of
the turbulence and then solve equation (1) for the evolu-
tion matrix for each realization. This approach will allow
us to construct ensembles of results which we can then
characterize with frequency distributions or with distri-
bution moments.
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FIG. 3: The evolution of P23 as a function of distance r for
a 15 MeV neutrino. The dashed line is the evolution through
the underlying profile and the solid line is the evolution with
a single realization of turbulence with spectral index α = 5/3.
In the top panel C⋆ = 10%, in the middle C⋆ = 1% and in
the bottom C⋆ = 0.1%

III. THE TWO EFFECTS OF TURBULENCE

Before presenting the results from our numerical calcu-
lations, we first take time to demonstrate the two effects
of turbulence. As we previously stated, the first effect
is the modification of the neutrino transition probability
evolution in the region of the turbulence due to direct
stimulation between the states, and the second is the
modification of the transition probabilities of the neu-
trino as it emerges from a turbulent region if the transi-
tion probabilities are subject to phase effects. The two
effects are neatly shown in figure (3) where we see the
evolution of the transition probability P23 as a function
of distance through the profile shown in figure (1) for a
E = 15 MeV neutrino. In the top panel where C⋆ = 0.1
we see the first case: the evolution of the transition prob-
ability with turbulence differs from the evolution without
turbulence as soon as the neutrino enters the turbulence
region. In the middle panel where C⋆ = 10−2 we see a
small differences between the evolution with and with-
out turbulence as soon as the neutrino enters the turbu-
lence but the jumps at the discontinuities are significantly
larger. In the bottom panel where C⋆ = 10−3 there is no
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apparent difference between the evolution with and with-
out turbulence until the contact discontinuity. Beyond
that point the two curves are different but exhibit no
relative change until the neutrino passes through the for-
ward shock where another large change occurs. In these
bottom two panels the change in the evolution is mainly
due to a change in the phase effects; phase effects do oc-
cur in the top panel but are subordinate. But note well
that that even though the turbulence amplitude differs
by two orders of magnitude between the three calcula-
tions, the value of P23 that emerges is very similar in
each case.
In addition to the visual distinction between the two

effects, it is possible to understand these two effects in
more analytic terms. These analytic descriptions will
prove useful because they allow us to construct expecta-
tions for, and thus interpret, the results from ensembles
of realizations of the turbulence which we shall present
in section §IV.

A. Phase effect distortion

Let us first concentrate on the distortion of the phase
effect. We shall use a two-flavor model and a profile
with two discontinuities which will be found to both ade-
quately describe our results and to understand the effect.
In the matter basis in which we work, figure (3) indi-
cates that when the turbulence amplitude is small the
neutrino passes through a set of discontinuities at the
entrance and exit of the turbulent regions but evolves
adiabaticaly in the turbulence region between the dis-
continuities. We can construct an evolution matrix which
describes this evolution and from it derive the transition
probability. First, the matter basis evolution matrix de-
scribing the evolution across a discontinuity located at
r is S(r+, r−) = Ũ †(r+)Ũ

†(r−) where Ũ is the matter
mixing matrix ,r− is a point immediately before the dis-
continuity and r+ a point immediately after. Adiabatic
evolution of the neutrino between discontinuities means
the evolution matrix must be of the form

S(rb, ra) =

(

exp(−ıφ1) 0
0 exp(−ıφ2)

)

(4)

where

φj =

∫ rb

ra

k̃j(r) dr (5)

and k̃j(r) is the instantaneous eigenvalue for matter state
j. Thus the evolution matrix describing the neutrino evo-
lution through a profile with two discontinuities, located
at ra and rb is

S ∼ Ũ †(rb+)Ũ
†(rb−)

(

exp(−ıφ1) 0
0 exp(−ıφ2)

)

×Ũ †(ra+)Ũ
†(ra−) (6)

where we have omitted the evolution up to ra− and be-
yond rb+ assuming it to be adiabatic. If we denote by Pa

and Pb the crossing probabilities through the discontinu-
ities separately, we find the crossing probability for the
neutrino after passing through the entire profile is

P = Pa (1 − Pb) + (1− Pa)Pb

+2
√

Pa Pb (1− Pa)(1− Pb) cos(Φ). (7)

where Φ = φ1−φ2+ constant. Note well that Pa and Pb

are constants and not changed when we insert turbulence
into the profile and that Pa ∝ |Ũ⋆

e1(ra+)Ũe2(ra−)|2 and

Pb ∝ |Ũ⋆
e1(rb+)Ũe2(rb−)|2. This dependence of P upon

the matter mixing matrix elements indicates the cross-
ing probability P is most sensitive to the turbulence via
the distorted phase effect when the the MSW resonance
density is similar to one of the densities on either side of
the discontinuity.
The place where the turbulence enters equation (7) is

via the phase difference Φ. Every realization of the tur-
bulence will give a different value for the phase difference
and if we generate many realizations then we generate a
distribution of phase differences. Thus we can model the
effect of the turbulence by treating the phase difference
Φ as a random variate drawn from a distribution f(Φ).
The model we adopt for the distribution of Φ is the von
Mises distribution which is of the form

f(Φ) =
exp(κ cos(Φ− Φ0))

2πI0(κ)
(8)

where Φ0 is the mean value of Φ and κ is the concen-
tration. If we define P⋆ = Pa (1 − Pb) + (1 − Pa)Pb and

∆ = 2
√

Pa Pb (1− Pa)(1− Pb) and note that |dP/dΦ| =
∆sinΦ then we derive the distribution for P must be

f(P ) =
1

2πI0(κ)
√

∆2 − (P − P⋆)2

× exp

(

κ cos

[

cos−1

(

P − P⋆

∆

)

− Φ0

])

(9)

on the interval P⋆ − ∆ ≤ P ≤ P⋆ + ∆. In the limit
where κ → 0, the distribution of Φ is rectangular and
the probability distribution for P becomes the arcsine
distribution i.e.

f(P ) =
1

2π
√

∆2 − (P − P⋆)2
(10)

which has a mean of P⋆ and variance of V (P ) = ∆2/2.
Note that in this limit there is no explicit dependence of
f(P ) upon the spectral index α nor C⋆ because P⋆ and
∆ are independent of the turbulence.
In the other limit where the concentration is large we

can expand the phase Φ around Φ0 so that to lowest order
(assuming sinΦ0 6= 0)

P − P0 = −∆sin(Φ0) (Φ− Φ0) (11)

where P0 = P⋆ + ∆cosΦ0. This equation shows P and
Φ are linearly related in this limit and so the standard
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deviation of P is proportional to the the standard devia-
tion of Φ: σP ∝ σΦ. The phase difference Φ between two
discontinuities is given by

Φ ∝
∫ rb

ra

(

k̃i(r) − k̃j(r)
)

dr (12)

and for neutrinos far from a MSW resonance - such as
the 45 MeV neutrinos in the ν2−ν3 mixing channel - the
difference between k̃2 and k̃3 is approximately the MSW
potential 〈V 〉(1 + F ) in the region where we place the
turbulence. This means we can write an expression for
the variance of Φ which is

〈(Φ− Φ0)
2〉 ≈ 〈

(
∫ rb

ra

〈V 〉(r)F (r) dr

)2

〉 (13)

The integral is dominated by the longer wavelengths, low-
est wavenumbers of the random field F - the integral over
the turbulence modes with wavelengths smaller than the
scale height of the potential will be very small. If we
ignore all the Fourier modes except the lowest then we
predict 〈(Φ − Φ0)

2〉 ∝ 〈A2
1〉 and, since q1 ≈ q⋆, we have

〈A2
1〉 ∝ α− 1. Putting this together with the linear rela-

tionship between P and Φ we conclude

σP ∝
√
α− 1. (14)

This result indicates harder turbulence power spectra
have less effect upon the transition probability than softer
spectra. This makes sense because for phase distortion
the neutrinos are more sensitive to the longest wavelength
of the turbulence and those amplitudes increase with α.
Obviously the distorted phase effect of turbulence re-

quires a phase effect be present in the transition prob-
ability in the absence of turbulence. Glancing at figure
(2) we see only P23 has a strong phase effect with two
or more semi-adiabatic transitions at the three energies
we are using, plus P12 and P̄12 for the 5 MeV neutri-
nos: in all other mixing channels the jumps in Pij at the
discontinuities are too small. Thus we expect to see the
distorted phase effect of turbulence for all three energies
we are using in the ν2 − ν3 mixing channel, and maybe
a small distorted phase effect in ν1 − ν2 and ν̄1 − ν̄2 at
5 MeV.

B. Stimulated transitions

A detailed description of the direct stimulation of tran-
sitions between neutrino states by turbulence can be
found in Kneller, McLaughlin & Patton [21] and the two
papers by Patton, Kneller & McLaughlin [23, 24]. In
this description the effect of the turbulence can be under-
stood as similar to the effect of a laser upon a polarized
molecule. Comparison between numerical and analyti-
cal solutions reveals the description to be very powerful
because it is able to predict the effect of turbulence on
a case-by-case basis. For every pair of neutrino matter

states i and j there is an associated splitting δkij be-
tween two eigenvalues of the Hamiltonian. As equation
(2) indicates, turbulence can be described with a Fourier
series and one finds that transitions between the neutrino
states will be occur if a set of integers {n} can be found,
one for each Fourier mode, such that δkij+

∑

a naqa ≈ 0.
When the condition is exact, known as a parametric res-
onance [49–53], the amplitude of the transition between
states i and j is 100% no matter the amplitudes of each
Fourier mode. Where the amplitudes of the modes enter
is through the distance λ - called the transition wave-
length - over which a neutrino makes the transition from
state i to state j or vice versa. This distance is inversely
proportional to the coupling between the two states i.e.
Ŭei Ŭ

⋆
ej , where Ŭei are elements of the unperturbed mat-

ter mixing matrix, and also inversely proportional to a
product of Bessel functions Jna

(za) where za ∝ Ca/qa
and the integer na is the same integer previously iden-
tified. Ca is the amplitude of the Fourier mode a. In
order for a stimulated transition to occur one must com-
pare λ with the density scale height rρ of the underlying
profile defined to be rρ = ρ/(dρ/dr). Only if λ < rρ
is a transition expected, if λ > rρ then none will occur.
Finally, the only difference when one considers antineu-

trinos is that the splitting δkij and coupling ˘̄Uei
˘̄U⋆
ej are

computed using a Hamiltonian where the MSW potential
switches sign.
At small C⋆ one typically finds the integers are na = 0

for all a except for the mode whose wavenumber is closest
to the eigenvalue splitting δkij [24]. In this limit the
smallness of Ca indicates za for that mode will also be
small so we may use J1 ∼ z for small z. Putting this all
together we find the transition wavelength in the small
amplitude limit goes as

1/λ ∝ CaŬei Ŭ
⋆
ej/qa. (15)

The transition wavelength λ is inversely proportional to
that resonant mode’s amplitude Ca - which depends upon
α and C⋆ - and the product of mixing matrix elements
Ŭei Ŭ

⋆
ej in the region of the turbulence. In order to make

λ small and see stimulated transition we must either in-
crease Ŭei Ŭ

⋆
ej and/or Ca. Increasing Ŭei Ŭ

⋆
ej means the

turbulence must be in the vicinity of the MSW density
because the product takes on its maximal value at that
location. This is the same requirement as in the distorted
phase effect. Since the expectation value of Ca goes as
〈Ca〉2 = C2

⋆(q⋆/qa)
α we see increasing Ca can be achieved

by either increasing C⋆ or decreasing α.
The evolution of the underlying profile means the split-

ting between the neutrino eigenvalues δkij and the cou-

pling Ŭei Ŭ
⋆
ej between the matter states both evolve with

〈V 〉. This means neutrinos experience a parametric res-
onance only at a point and at present it is only possible
to predict where and with what approximate strength
the transitions occur. Phenomenologically one finds the
distributions of the transition probabilities are exponen-
tially distributed with greater widths as C⋆ and Ŭei Ŭ

⋆
ej

increase [19].
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In the limit of large turbulence amplitudes and op-
timally placed turbulence, stimulated transitions occur
essentially continuously in the turbulence region - the
parametric resonance condition is fulfilled many times
through the profile - and in virtually all realizations.
When this occurs one finds the evolution matrix for the
evolution between the discontinuities becomes essentially
random rendering the evolution across the discontinuities
unimportant. In this strong stimulated transition limit
an ensemble of evolution matrices approaches that of an
ensemble of N -flavor circular unitary matrices [54] where
the distribution of every element of the matrices is iden-
tical. This limit is known as depolarization and from the
expectation for the structure of the ensemble of evolution
matrices we can derive the distributions of the transition
probabilities. First, we note that the N real components,
xij , plus the N imaginary components, yij , of the ele-
ments of a row or column in every evolution matrix form
a 2N Euclidean space. The requirement of unitarity of
the evolution matrix is equivalent to the definition that a
vector made from these real and imaginary components
lies upon the surface of a unit sphere in this space. Since
these 2N quantities are identically distributed, the prob-
ability f of a particular set of the elements from a row or
column must be uniform over the surface of the sphere.
For example, if we chose to look at a column j then the
probability that we are located at {x1j , y1j , x2j , y2j , . . .},
must be proportional to the area element dA allowing us
to write

f(x1j , y1j , x2j , y2j , . . .)d
NxdNy ∝ dA

= δ

(

1−
N
∑

i=1

x2
ij −

N
∑

i=1

y2ij

)

N
∏

i=1

dxij

N
∏

i=1

dyij . (16)

If we now change variables so that each of the N inde-
pendent pairs xij , yij are expressed as

x1j =
√

P1j cos θ1j , y1j =
√

P1j sin θ1j , (17)

x2j =
√

P2j cos θ2j , y2j =
√

P2j sin θ2j , (18)

then the Pij ’s are found to be distributed as

f(P1j , . . . PNj)d
NP ∝ δ

(

1−
N
∑

i=1

Pij

)

N
∏

i=1

dPij . (19)

The set of transition probabilities {P1j , . . . PNj} are uni-
formly distributed on the surface of a standard N − 1
simplex. Equation (19) can be integrated over N − 1 of
the Pij ’s and normalized so that we derive the final result
that element Pij must be distributed according to

f(Pij) = (N − 1) (1− Pij)
N−2. (20)

The shape of the distribution is controlled by the number
of flavors N that are involved and nothing else. With the
distribution for Pij found it is a simple task to determine

that the mean and variance are

〈Pij〉 =
1

N
, (21)

V (Pij) = = σ2
ij =

N − 1

N2 (N + 1)
(22)

For the specific case of N = 2 the distribution is uniform
with mean 1/2 and variance 1/12: for N = 3 the dis-
tribution is triangular with mean 1/3 and variance 1/18.
Note that the depolarized limits do not explicitly depend
upon any property of the turbulence, they are functions
only of the appropriate number of flavors involved. It is
via N that the turbulence amplitude and spectral index
will enter because the appropriate value of N will change
as C⋆ and α are varied.
Since there are three flavors of neutrino it would seem

we should use the N = 3 case but in practice whether
3-flavor depolarization is actually reached depends upon
the placement of the turbulence in the profile in relation
to the H and L resonance densities for a given energy. If
not located in the appropriate place in the profile for a
given neutrino energy, two flavor depolarization may be
more appropriate. As we stated, the distance over which
a neutrino makes the transition from matter state j to
matter state i is proportional to the product of instanta-
neous mixing matrix elements ŬeiŬ

⋆
ej . This product has

its maximal value at the resonance between states i and
j. Figure (1) shows that the H resonance density for the
E = 45 MeV neutrinos is below the densities where we
place the turbulence by a factor & 3, the L resonance
density is lower by a factor & 300. For E = 45 MeV
neutrinos we should expect some difficultly stimulating
transitions between matter states ν1 and ν2 but it should
be somewhat easier for mixing between states ν2 and ν3.
For the lower energy of 15 MeV the H resonance density
is very similar to the density of the profile between the
reverse shock and the contact discontinuity which would
lead us to expect a strong stimulated transition effect in
this channel for this energy. The L resonance for this
same energy again lies below the density of the profile
meaning the product of mixing matrix elements Ŭe1Ŭ

⋆
e2

will be small again suppressing stimulated transitions be-
tween ν1 and ν2. Finally, the H resonance density for the
5 MeV neutrinos is similar to the density of the profile
between the contact discontinuity and the reverse shock
and the difference between the L resonance density and
the profile density between the reverse shock and the con-
tact discontinuity is only of order a factor of a few. Thus
of the three energies we are considering, the 5 MeV neu-
trinos have the best prospect of exhibiting stimulated
transitions between all three states and reaching 3 fla-
vor depolarization, the E = 15 MeV and E = 45 MeV
neutrinos should show evidence for stimulated transition
only between two states.
The stimulated transitions work between the disconti-

nuities in the profile while the evolution across the discon-
tinuities themselves is still given by Ũ †(r+)Ũ

†(r−). Thus
stimulated transitions and distorted phases do not work
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FIG. 4: The mean values of P12 (top row), P13 (middle row) and P23 (bottom row) as a function of the power spectral index.The
leftmost column is for 5 MeV neutrinos, the middle for 15 MeV and the rightmost is 45 MeV. In all panels the curves correspond
to C⋆ = 0.5 (filled circles), C⋆ = 0.3 (filled squares), C⋆ = 0.1 (filled diamonds), C⋆ = 10−2 (filled triangles), C⋆ = 10−3 (open
circles), C⋆ = 10−4 (open squares) and C⋆ = 10−5 (open diamonds). For the sake of clarity, not all lines appear in each panel;
where a line is missing it should be taken to be negligibly different from the smallest value of C⋆ shown in the panel.

separately, they work in tandem. The essential differ-
ence between the two is for stimulated transitions one re-
places the central evolution matrix in equation (6) which
describes adiabatic evolution between the discontinuities
with a matrix that may or may not have non-zero off di-
agonal elements depending upon whether there were any
stimulated transitions in the turbulence region. Even if
there are no stimulated transitions in the turbulence re-
gion, at a minimum the turbulence will distort the phase.
For this reason we often find circumstances where the
distributions for the transition probabilities in a given
channel are not completely described by a distorted phase
model nor solely described by stimulated transitions but
rather exhibit contributions from both. These situations
arise because stimulated transitions are often found to be
‘all-or-nothing’. Thus the frequency distributions of the
transition probabilities in these circumstances are seen
to be mixtures of two distinct, more fundamental, distri-
butions - see for example figure (12) in Kneller & Volpe

[19] - which can cause difficulty with interpretation of re-
sults. Mixing between distributions will shift the means
and variances of the total distribution from the expected
values of the two, more fundamental, components. If the
distribution Type A, with mean transition probability
〈P 〉A and variance σ2

A, contributes a fraction f to the
total distribution, and a different distribution, Type B,
with mean transition probability 〈P 〉B and variance σ2

B

contributes 1 − f , then the mean transition probability
of the total distribution is 〈P 〉 = f 〈P 〉A + (1 − f) 〈P 〉B
and similarly the variance is also σ2 = f σ2

A+(1− f)σ2
B.

One should expect the fraction f to depend upon the neu-
trino energy and snapshot time as well as the turbulence
amplitude C⋆ and the spectral index α. Knowing f is
useful if one wants to, say, simulate supernova neutrino
signals using Monte Carlo methods. The neutrinos we
receive at a given instant from the next supernova in our
galaxy will all have traveled through similar turbulence
as they traversed the mantle of the star which has the
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FIG. 5: The standard deviation of P12 (top row), P13 (middle row) and P23 (bottom row) as a function of the power spectral
index.The leftmost column is for 5 MeV neutrinos, the middle for 15 MeV and the rightmost is 45 MeV. In all panels the
curves correspond to C⋆ = 0.5 (filled circles), C⋆ = 0.3 (filled squares), C⋆ = 0.1 (filled diamonds), C⋆ = 10−2 (filled triangles),
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shown in the panel.

consequence that the transition probabilities of the neu-
trinos of a given energy will be very strongly correlated -
the size of the proto-neutron in not sufficient to wash this
correlation out unless the turbulence is very anisotropic
[33]. This means that the neutrino signal will not have
sampled the ensemble of realizations of the turbulence,
we receive neutrinos which have been affected by essen-
tially just one realization. The probability this realiza-
tion gives transition probabilities distributed according
to distribution Type A is the fraction f ; the probability
the transition probabilities are distributed according to
distribution Type B is 1− f .

IV. RESULTS

A. Neutrinos

In figures (4) and (5) we show the mean values and
standard deviation of the distributions of the neutrino
transition probabilities P12, P13 and P23 as a function of
the spectral index and the turbulence amplitude for the
three representative energies we are using. Even a cur-
sory glance indicates there is a great deal of rich behavior
as a function of the three parameters we have varied to
generate the figures. Before diving into the results in
depth to try and understand why we see the trends we
do, let us summarize them:

• E = 45 MeV. When C⋆ = 50%, α ≤ 7/3 and
C⋆ = 30%, α ≤ 5/3, the ν2-ν3 mixing channel
reaches 〈P23〉 = 0.5 and σ23 = 0.28. At these
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FIG. 6: Frequency distribution of the transition probability
P23 for the case of a 45 MeV neutrino. The spectral index
is set to α = 5/3 and, from top to bottom, the turbulence
amplitude is C⋆ = 10−3, C⋆ = 10−4 and C⋆ = 10−5.

same large amplitudes but larger α we see the
mean and standard deviation, 〈P23〉 and σ23 respec-
tively, both fall with increasing α. In the range
0.1% . C⋆ . 10% it appears 〈P23〉 is fixed at
〈P23〉 = 0.44 independent of α and C⋆ and simi-
larly the standard deviation σ23 is also independent
of α and C⋆ fixed at σ23 ≈ 0.18. These same two
values appear to be the asymptotic limits of 〈P23〉
and σ23 for C⋆ = 50% and C⋆ = 30% for large α.
At very small turbulence amplitudes, C⋆ . 0.01%,
a dependence of 〈P23〉 and σ23 upon C⋆ and α re-
emerges and it appears both 〈P23〉 and the standard
deviation σ23 increase as the power spectrum be-
comes softer. In 〈P12〉, 〈P13〉, σ12 and σ13 we only
see a difference from turbulence free results when
C⋆ = 50% and C⋆ = 30% with little dependence
upon α.

• E = 15 MeV. For this energy the mean value of
P23 is approximately 〈P23〉 = 0.5 at α = 3 for
all turbulence amplitudes above C⋆ = 0.1%. Ex-
cept for the case of C⋆ = 0.5, there is no appar-
ent running of 〈P23〉 with α or C⋆ in this range
of amplitudes: in σ23 the trend appears to be a
small increase in σ23 with α from σ23 = 0.28 at

α = 4/3 to σ23 = 0.3 at α = 3 and we observe that
at fixed α, as C⋆ decreases the standard deviation
increases. For C⋆ = 0.5 the increase of 〈P23〉 and
σ23 with increasing α is more obvious and we note
that 〈P12〉, 〈P13〉, σ12 and σ13 are noticeably dif-
ferent at C⋆ = 0.5 from even the case of C⋆ = 0.3.
For C⋆ . 0.1% the evolution of the standard devi-
ation σ23 with C⋆ reverses and now σ23 decreases
with C⋆. However, as with the E = 45 MeV neu-
trinos, the trend appears to be at very small tur-
bulence amplitudes there is an increase of σ23 and
larger difference between the turbulence -free result
of 〈P23〉 with increasing α.

• E = 5 MeV. For this energy we observe much
larger turbulent effects in the ν1-ν2 and ν1-ν3 mix-
ing channels than for the other two energies con-
sidered particularly for small α. When C⋆ = 50%
and α ≤ 5/3 the mean values of P12, P13 and P23

all plateau at 〈Pij〉 = 0.33 and the standard de-
viations σ12, σ13 and σ23 all reach σij = 0.23 in
the same range of amplitudes and spectral indices.
For all amplitudes greater than C⋆ & 1% the trend
of 〈P12〉, 〈P13〉 and 〈P23〉 with α is towards a fixed
value with simultaneous decreasing standard devia-
tions σ12, σ13 and σ23. At small amplitudes for the
turbulence, C⋆ . 1%, all three transition probabili-
ties of the 5 MeV neutrinos approach the previously
reported values through the underlying profile. The
convergence is more rapid for softer power spectra:
e.g. at C⋆ = 10% the mean of P12 and P23 are mea-
surably different from the turbulence free values at
α = 5/3 but not so at α = 7/3.

Let us now examine these results in more detail and try to
find explanations of the trends we observe using the two
different descriptions for the effects of turbulence from
section §III.

1. E = 45 MeV

We first examine the E = 45 MeV neutrinos and focus
upon P23. At large amplitudes and hard spectral indices
the ν2-ν3 mixing channel appears to reach the two-flavor
depolarized limit since 〈P23〉 = 0.5 and σ23 = 0.28 when
C⋆ = 50% and α ≤ 7/3 and C⋆ = 30% and α ≤ 5/3.
The decrease of 〈P23〉 and σ23 for the same large am-
plitudes but larger α is again in line with what we ex-
pect from stimulated transitions. The reduced amplitude
of the modes that have wavelengths of order the eigen-
value splittings mean the stimulated transitions are not
as strong and the distribution of P23 will no longer be
uniform.
At smaller turbulence amplitudes our explanation for

the results changes. In the range 0.1% . C⋆ . 10%
the mean value of P23 and the standard deviation σ23

are independent of α fixed at apparently arbitrary val-
ues. Only if we push further to even smaller turbulence
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amplitudes, C⋆ . 0.01%, do we see the dependence upon
C⋆ and α re-emerge but when it re-emerges the trend
that both 〈P23〉 and the standard deviation σ23 increase

as the power spectrum becomes softer. This behavior of
〈P23〉 and σ23 for C⋆ ≤ 10% must be explained by using
the distorted phase model so let us use this model to try
and predict the actual values found in (4) and (5) for the
E = 45 MeV neutrinos in this amplitude range. From
analyzing the evolution without turbulence - figure (2)
- we find the the transition probabilities for these neu-
trinos at the reverse and forward shocks give Pa = 0.57
and at the second Pb = 0.93. These can be combined
to give P⋆ = 0.44 and ∆ = 0.25. Since the transition
probability in the absence of turbulence is P23 = 0.20
we deduce Φ = 163◦. With this information in hand
we predict the distribution of the transition probability
P23 when we insert the turbulence will lie in the range
of P⋆ − ∆ = 0.19 to P⋆ + ∆ = 0.69. When the con-
centration κ is small we expect an arcsine distribution
for P23 with a mean 〈P23〉 = P⋆ = 0.44 and standard

deviation ∆/
√
2 = 0.18. These predictions match the

data well so we interpret our results as meaning that in
the range 0.1% . C⋆ . 10% the 45 MeV neutrinos are
experiencing a strong distorted phase effect. At smaller
turbulence amplitudes when the concentration κ is larger
the distribution will be like a half-Gaussian because the
turbulence-free value of P23 = 0.20 is close to the lower
limit of the distribution.

The frequency distribution of P23 for 45 MeV neutri-
nos at C⋆ = 10−3, C⋆ = 10−4 and C⋆ = 10−5 is shown
in figure (6) and these expected shapes of the distribu-
tions is seen in the numerical results. At C⋆ = 10−3 the
distribution is symmetric around P23 = 0.44 peaking at
the extremes P23 = 0.19 and P23 = 0.69 as an arcsine
distribution should. At C⋆ = 10−4 and C⋆ = 10−5 the
symmetry is lost and the distribution looks more like an
exponential or half-Gaussian. The running of 〈P23〉 and
σ23 with α for the E = 45 MeV neutrinos and smaller
turbulence amplitudes is also in line with our expecta-
tions from the distorted phase model because we see σ23

increase with α e.g. C⋆ = 10−4.

Let us now consider the other mixing channels at this
same energy. Compared to P23, the mean of the transi-
tion probabilities 〈P12〉 and 〈P13〉 for the E = 45 MeV
neutrinos appear quite unremarkable differing from the
turbulence free limit only when C⋆ = 0.5 and then pos-
sessing only a soft dependence upon α. The standard
deviations σ12 and σ13 evolve similarly. At this energy
the distorted phase effect of turbulence does not oper-
ate in these channels because the jumps in P12 and P13

across the discontinuities are small. The sensitivity to
the turbulence is entirely through the stimulated transi-
tion mechanism. But as previously mentioned, the large
separation between the turbulence densities and the L
resonance MSW density at this energy means not every
realization will cause a stimulated transition to occur in
these channels so it is quite natural to expect the ensem-
ble to be divided into two subsets. When we look we
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FIG. 7: The frequency distribution of P23 for 15 MeV neutri-
nos at α = 5/3. In the top panel C⋆ = 10%, in the middle
panel C⋆ = 1%, and in the bottom panel C⋆ = 0.1%,

find this is exactly the case. The frequency distribution
of the P12 and P13 transition probabilities are mixtures
of a very narrow distribution which peaks at zero - the
neutrinos unaffected by the turbulence - and an exponen-
tial distribution - the subset where stimulated transitions
occurred.

2. E = 15 MeV

We now consider the energy E = 15 MeV. For this
energy the evolution of the distributions of P23 is again
explained by a transition from stimulated transitions at
large C⋆/small α to the distorted phase effect at smaller
C⋆/ larger α. The frequency distributions of P23 for
15 MeV neutrinos at fixed α = 5/3 as several ampli-
tudes C⋆ are shown figure (7). In all three cases shown
the mean value of P23 is approximately the same, around
〈P23〉 ≈ 0.5, but the distributions are clearly different de-
pending upon C⋆: for the large amplitude C⋆ = 0.1 the
distribution is almost uniform - the bin 0.95 ≤ P23 ≤ 1
appears low - whereas the distribution for C⋆ = 0.001 has
a very peculiar shape with the extreme values of P23 more
common than the mean. These distributions reflect the
two different mechanisms by which the turbulence affects
the neutrinos - the top panel is what we would expect
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FIG. 8: The frequency distribution of the neutrino transition
probability P12 when E = 15 MeV and C⋆ = 0.3. In the top
panel α = 4/3, in the middle α = 5/3, and in the bottom
panel α = 2.

from stimulated transitions in the depolarized limit with
two flavors whereas the distribution in the lower panels
is the indirect, distorted phase effect since they are con-
sistent with an arcsine distribution, similar to that seen
in the top panel of figure (6), albeit on the interval of
zero to unity.

The mean values of P12 and the standard deviations
σ12 shown in figures (4) and (5) do not match the ex-
pected values from the our model distributions and this
is because, as with the E = 45 MeV neutrinos, we find
the ensembles are mixtures of distributions. At C⋆ = 0.5
inspection indicates the mixing distributions in ν1 − ν2
for this energy are a sharp distribution which peaks at
zero - the neutrinos with no turbulence effects - and a
three flavor depolarized distribution which are the neu-
trinos that experienced stimulated transitions. But when
we consider a slightly smaller value of C⋆ = 0.3 we find
the mixing distributions for P12 are the same narrow dis-
tribution peaked at zero but the second distribution is
now an exponential. The frequency distributions of P12

at C⋆ = 0.3 and E = 15 MeV at three values of α are
shown in figure (8) and in the figure we observe a flat-
tening of the exponentially distributed component as α
increases.
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FIG. 9: The frequency distribution of the transition proba-
bilities P12, P13 and P23 for the case of a 5 MeV neutrino.
The spectral index is α = 4/3 and the turbulence amplitude
is C⋆ = 0.5.

3. E = 5 MeV

Finally we switch to the 5 MeV neutrinos. Here nei-
ther the H resonance nor the L resonance are too far
from the densities where we insert the turbulence so the
product of instantaneous mixing matrix elements Ŭei Ŭ

⋆
ej

are not small in any mixing channel. This allows stimu-
lated transitions to occur between all three states simul-
taneously. The simultaneous mixing in all three channels
indicates we might find that at sufficiently large ampli-
tudes and hard spectral indices we could reach three-
flavor depolarization. When we look indeed this is found
for C⋆ & 50% and α = 4/3 shown in figure (9) where we
see the frequency distributions of the transition probabil-
ities are triangular as predicted. Thus figures (4) and (5)
reveal the three-flavor depolarized limit is reached for P12

only for C⋆ = 50% and α ≤ 5/3 whereas the same limit
appears somewhat easier to reach for P23 because even
C⋆ = 10% amplitude turbulence saturates at 〈P23〉 = 1/3
and σ23 = 0.23 for α = 4/3 or at C⋆ = 50% we are able to
relax the spectral index to α = 2. This is not surprising
given the location of the turbulence in the profile with
respect to the ν2 − ν3 mixing resonance density shown
in figure (1). Note also the figures do not indicate there
are combinations of C⋆ and α where we achieve two fla-
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FIG. 10: The frequency distribution of P12 for E = 5 MeV
neutrinos at C⋆ = 0.3. In the top panel α = 5/3, in the
middle α = 7/3, and in the bottom panel α = 3.

vor depolarization instead of three because we do not see
〈P23〉 ≈ 0.5 or σ23 ≈ 0.28 as one would expect in that
limit.
As we move to smaller turbulence amplitudes what we

observe in figures (4) and (5) might seem at first to be
contradictory. The mean transition probability in the en-
sembles is the same as the value in the turbulence free
limit tempting one to conclude that turbulence has no
effect, but the standard deviations do not support this
conclusion because it is not until C⋆ . 0.001% that the
turbulence effect actually disappears. The contradictions
can be resolved when one realizes what the figures are
showing is that between 0.001% . C⋆ . 1% the distribu-
tions of the transition probabilities are simply centered

on the turbulence-free limits. As with the E = 45 MeV
neutrinos, the acute sensitivity to C⋆ is due to the dis-
torted phase effect with the twist that now both P23 and
P12 (and P̄12) are affected.
The distributions of P12 and P23 when 0.001% . C⋆ .

10% are mixtures of an exponential and the distorted
phase distributions and the evolution of 〈P12〉 and 〈P23〉
are actually due to the evolution of the exponentially
distributed subset, not the subset where the turbulence
only distorts the phase. This can be seen in figure (10)
where we show the distributions for P12 for the E =
5 MeV neutrinos at three values of α when C⋆ = 0.3.

Note the similarity of the low end of the distribution for
α = 7/3 and α = 3.

B. Anti-neutrinos

Even though we are considering just a normal hier-
archy, large amplitude turbulence certainly does affect
the antineutrinos. In figures (11) and (12) we show the
results for the means and standard deviations of the en-
sembles of antineutrino transition probabilities. Let us
again try to summarize what we observe in the figures.

• The antineutrino channel which is most sensitive to
the turbulence is P̄12 and this sensitivity is similar
to the sensitivity of P12 seen in figures (4) and (5).
P̄13 and P̄23 are quite different from P13 and P23.

• We also observe that at the largest value of C⋆

shown, the evolution of 〈P̄13〉 and σ̄13 with the
antineutrino energy appears to be counter that of
〈P̄12〉, 〈P̄23〉, σ̄12 and σ̄23.

We now try to understand these results. First, a descrip-
tion of the turbulence effects upon the antineutrinos for
a normal hierarchy in terms of MSW resonances would
obviously not work well because there are no resonances
in the antineutrino mixing channels. Second, except for
P̄12 at E = 5 MeV, the distorted phase effect will not be
prominent because the adiabaticity of the transitions for
the antineutrinos across the discontinuities in the profile
are large. It is this lack of distorted phase effects that
explains the greatly reduced sensitivity of the neutrinos
to the turbulence amplitude. The absence of distorted
phase effects in the majority of the results shown in fig-
ures (11) and (12) makes their interpretation much easier
than the neutrino transition probabilities. The only ex-
planation that applies is that stimulated transitions.
If we look closely we see for the case of P̄12 when E =

5 MeV and E = 15 MeV we see that P̄12 appears to
be as sensitive to the turbulence as the neutrinos in the
P12 channel. This can be explained by the stimulated
transition model. In the turbulent region the eigenvalue
splitting δk12 and δk̄12 are both approximately equal to
the MSW potential Vee and so the coupling between the

states, Ŭei Ŭ
⋆
ej and ˘̄Uei

˘̄U⋆
ej are also approximately equal.

This equivalence means it should be as easy to stimulate
a transition between states ν̄1 and ν̄2 as it is between
ν1 and ν2 so the response to the turbulence will be the
same.
But in all other cases the antineutrinos are not as sen-

sitive to the turbulence as the neutrinos which, again,
can be explained stimulated transition description. The
difficulty of stimulating transitions between antineutrino
states is twofold: first, in the normal hierarchy, the split-
ting between the eigenvalues are larger which means we
require shorter wavelength Fourier modes in order to ful-
fill the parametric resonance condition and, with an in-
verse power law power spectrum, the amplitudes of these
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FIG. 11: The mean values of P̄12 (top row), P̄13 (middle row) and P̄23 (bottom row) as a function of the power spectral
index.The leftmost column is for 5 MeV neutrinos, the middle for 15 MeV and the rightmost is 45 MeV. In all panels the
curves correspond to C⋆ = 0.5 (filled circles), C⋆ = 0.3 (filled squares), C⋆ = 0.1 (filled diamonds), C⋆ = 10−2 (filled triangles).
For the sake of clarity, not all lines appear in each panel.

modes are smaller. Secondly the coupling between the

states, ˘̄Uei
˘̄U⋆
ej , is also generally smaller in the antineu-

trinos. Both smaller amplitudes for the resonance modes
and smaller coupling lengthen the distance λ over which
the transition occurs. Since we need λ to be smaller than
the density scale height rρ in order to see a stimulated
transition, it requires very large C⋆ before stimulated
transitions appear in the antineutrino mixing channels as
figures (11) and (12) indicate. Hardening the spectrum
has the simultaneous effect of raising the amplitude of
the resonance modes and decreasing the amplitudes of
modes which cause suppression so we expect a strong de-
pendence upon α up to the point where the combination
of large amplitude and hardness of the turbulence power
spectrum means the antineutrinos reach depolarization.
Beyond that point, the dependence upon amplitudes and
power spectral indices is lost. From figures (11) and (12)
it appears a two-flavor depolarization is approached in
P̄12 for E = 5 MeV and α . 2 and in P̄13 for E = 45 MeV
and α ∼ 4/3 only when C⋆ = 0.5.

Except in these cases of very large amplitudes and hard
spectra, inspection reveals the distributions of the proba-
bilities clearly posses two components. For example, the
distributions for P̄12 when E = 45 MeV and C⋆ = 0.5
are mixtures of sharp, zero-peaked distribution and an
exponential distribution. When we look closely we often
find the fraction of the distribution affected by stimulated
transitions decreases with α but, simulataneously, the ef-
fect of the stimulated transitions grows with α. This is
seen in figure (13) where we plot the frequency distribu-
tions of P̄12 at the energy of E = 15 MeV and C⋆ = 0.3.
The two mixing distributions are clearly seen in the bot-
tom panel where α = 2. At α = 4/3 the mixing dis-
tributions are a sharp, zero-peaked distribution and an
exponential; at α = 2 this has changed to a sharp, zero-
peaked distribution and a two-flavor depolarized distri-
bution. These distributions can be compared with those
of P12 in figure (8) for the same energy. The mixing
channel P̄13 is also, generally, a mixture of exponential
and narrow distribution which peaks at zero. The two
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lines appear in each panel.

cases shown which do not match this pattern are for the
E = 15 MeV and E = 45 MeV antineutrinos at C⋆ = 0.5
and α . 5/3 where the distribution is very close to uni-
form.

Finally, the one case where distorted phase effects oc-
cur are in P̄12 when E = 5 MeV and E = 15 MeV. This
should be expected because in figure (2) we see that the
changes in P12 and P̄12 are occurring when the density is
between the H and L resonances for the E = 5 MeV and
E = 15 MeV neutrinos.

V. SUMMARY AND CONCLUSIONS

In this paper we have investigated the effect of modify-
ing the turbulence power spectrum inserted into a super-
nova density profile upon the neutrinos and antineutrinos
for three different representative neutrino energies. We
have seen the turbulence alters the transitions probabil-

ities of the neutrinos via two effects: the direct stimu-
lation of transitions between the states via parametric
resonances, and the more subtle effect of changing the
phase between semi-adiabatic resonances and/or discon-
tinuities if they are present. The two effects depend upon
the turbulence power spectrum in different fashions and
whether a dependence upon the spectral index is present
or not for neutrinos of a given energy depends upon the
progenitor structure, the postbounce epoch, the turbu-
lence amplitude and the neutrino energy.

The two most important factors that determine the ex-
tent to which turbulence affects the neutrinos is the lo-
cation of the turbulence in relation to the neutrino’s res-
onance densities and the turbulence amplitude. Turbu-
lence effects are largest when the turbulence is located in
the profile in the vicinity of the neutrino resonances (both
L and H) because both effects depend upon the mixing
matrix having both large diagonal and off-diagonal en-
tries in the region where the turbulence is located and
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FIG. 13: The frequency distribution of the antineutrino tran-
sition probability P̄12 when E = 15 MeV and C⋆ = 0.3. In
the top panel α = 4/3, in the middle α = 5/3, and in the
bottom panel α = 2.

the MSW resonances are the locations where these en-
tries are equal in magnitude. In this paper we have used
a density profile at a fixed snapshot time and considered
three different neutrino energies in order to demonstrate
this dependence between the turbulence effects and MSW
densities. Fixing the neutrino energy and changing the
snapshot time would produce similar results. In figure
(14) we show the regions of C⋆ and α where we find the
various turbulence effects in the mixing between ν2 and
ν3. To construct the figure we have extracted various con-
tours of σ23 from figure (5). For each energy we find no
effect from turbulence when C⋆ ≤ 10−5 so have set this
as a lower limit in each case. For the E = 45 MeV neutri-
nos the boundary between the weak and saturated phase
effects is taken to be where σ23 = 0.1, the boundary be-
tween saturated phase effects and stimulated transitions
as where σ23 = 0.2.. For the E = 15 MeV neutrinos the
boundary between the weak and saturated phase effects
is taken to be where σ23 = 0.3, and this same value of
σ23 forms the boundary between saturated phase effects
and stimulated transitions. For the boundary between
the depolarization region and the stimulated transitions
we use σ23 = 0.25. Finally, for the E = 5 MeV neutrinos
we do not find a boundary between saturated and weak
phase effects, the boundary between saturated phase ef-
fects and stimulated transitions is where σ23 = 0.1 and

FIG. 14: The regions of the of the C⋆ − α plane where the
different turbulence effects occur in the H resonant channel
P23 for different energies. In the top panel E = 5 MeV, in the
center E = 15 MeV, and in the bottom panel E = 45 MeV
and in each the acronyms stand for depolarization (D), stim-
ulated transitions (ST), saturated phase effects (SPE), weak
phase effects (WPE), and the region where only MSW effects
occur, i.e. no turbulence, is labeled as MSW.

depolarization is taken to occur when σ23 ≥ 0.2. We
caution the reader that these boundaries are somewhat
fuzzy in the sense that on the boundaries the distribu-
tions are often mixtures and furthermore these values of
σ23 have no meaning in themselves. Let us use this figure
to summarize what we have found.
If we optimize the location of the turbulence by careful

selection of the profile, we find the stimulated transition
effects appear in every mixing channel - even antineutri-
nos - when the turbulence amplitude exceeds C⋆ & 1%.
As one expects for the epoch chosen, the turbulence ef-
fects are strongest in the H resonant channel followed by
the mixing in ν1-ν2 and ν̄1-ν̄2. The sensitivity of the H
resonant channel at this epoch is largely the same for all
three energies. The extent to which ν1-ν2 and ν̄1-ν̄2 are
affected at this epoch does depend upon the neutrino en-
ergy because of the difference of the relation between the
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turbulent densities and the L resonance for different ener-
gies. Thus, at this epoch, we see lower energies affected
by turbulence to a greater degree than higher energies
due to the greater coupling between the states ν1 and
ν2. But even though stimulated transition effects may
be present, the neutrinos do not always exhibit a depen-
dence upon the turbulence power spectral index because
stimulated transitions possess a strong limit of depolar-
ization and a weak limit. In the strong limit no α depen-
dence is found because the distributions of the transition
probabilities are depolarized, either two or three flavor;
in the weak limit the distributions are found to be ex-
ponential and are sensitive to α. The boundary between
the two regimes shown in figure (14) depends upon α and
the turbulence amplitude C⋆ with a greater proportion
of depolarization at fixed C⋆ when the power spectrum
is hardened.

Stimulated transitions occur when the product of tur-
bulence amplitude and diagonal/off-diagonal mixing ma-
trix elements is large. When this product is not above
threshold the distorted phase effect of turbulence can be-
come apparent. The boundary between stimulated tran-
sitions and phase effects is the dot-dashed line in figure
(14). In fact, if we optimize the location of the turbulence
then the sensitivity to C⋆ via the distorted phase effect
can be extreme with turbulence amplitudes as small as
C⋆ ∼ 10−4 causing an effect. Note this amplitude is com-
parable with the amplitude of the density fluctuations in
the progenitor [55, 56] and furthermore the boundary
between weak phase effects and the MSW only region
in figure (14) varies with the epoch: at earlier epochs
the boundary lies at much higher values of C⋆ because
the turbulence is far from the H resonant region. Like
stimulated transitions, the distorted phase effect has a
strong and weak limit: in the strong limit the phase dif-
ference between discontinuities is distributed uniformly
leading to arcsine distributions for the transition proba-
bilities. When this occurs the parameters describing the
arcsine distribution are determined by the jumps in the
transition probabilities at the discontinuities and not the
turbulence between them. For this reason the neutrinos
are not affected by changes in the power spectral index.
In the weak limit of the distorted phase effect the sensi-
tivity to the power spectrum re-emerges due to the domi-
nance of the long wavelength modes. Counter-intuitively,
this sensitivity to the longest wavelengths means harder
spectra have less of an effect than soft spectra for a given
C⋆. This difference in the dependence upon α explains
the downward slope of the boundary between strong and
weak distorted phase effects in figure (14).

While the dependence of turbulence effects upon
neutrino energy, turbulence amplitude, spectral index
etc. can be complicated, it is possible to use our results
to piece together the expected evolution of the turbulence
effects that neutrinos of a given energy will experience
as a function of time. For neutrinos of a given energy
there will be no sensitivity to the turbulence during the
early phase of the burst signal because the turbulence

is at densities far from the MSW resonances. This re-
quirement that the turbulence be close to the resonance
density is the reason there were no turbulence effects seen
by Reid, Adams and Seunarine [20] when they put tur-
bulence into the post-shock region in profiles appropriate
for the accretion epoch. As the forward shock and turbu-
lence move out into the star turbulence effects will start
to appear. Initially these are due to distorted phase ef-
fects in the H resonance channel and, remarkably, the
greater the spectral index α the greater the sensitivity to
the turbulence of a given amplitude. As time progresses
the distorted phase effects for a given neutrino energy
will saturate to a limit where the sensitivity to α and C⋆

is lost. As time progresses further stimulated transition
effects will begin to appear if the amplitude is greater
than C⋆ & 1%. Stimulated transitions appear first in
the H resonance channel and again, initially, exhibit a
sensitivity to α but now we find that smaller values of
α lead to greater turbulence effects for a given C⋆. As
time progresses further still, yet again that dependence
upon α and C⋆ may disappear if the turbulence ampli-
tude is sufficiently great to cause depolarization. If that
occurs, turbulence effects will begin to appear in the mix-
ing between other states most prominently between ν1-ν2
and in the antineutrinos in the ν̄1-ν̄2 channel. The mix-
ing in ν1-ν2 and ν̄1-ν̄2 follows the same sequence as the
mixing in the H resonant channel i.e. it starts off as
weak distorted phase effects sensitive to α and C⋆ that
then saturates before stimulated transitions appear if C⋆

is sufficiently large. If stimulated transitions do start to
affect the ν1-ν2 and ν̄1-ν̄2 evolution while mixing in the
H resonant channel is still occurring then it is possible in
a normal hierarchy to transition to three flavor depolar-
ization if α is sufficiently small and C⋆ sufficiently large.
Finally, as the turbulent region sweeps further out into
the star, the turbulence effects will decrease in the H res-
onance channel and concentrate in the mixing between
ν1-ν2 and ν̄1-ν̄2 which will then themselves eventually
fade as the turbulence reaches the very outer edges of the
star. The extent to which the turbulence effects at these
late times are visible will depend upon the exact shape
of the progenitor profile because the rapidly fading neu-
trino luminosity will make the statistics of detection very
poor. This expected sequence of turbulence events allows
us to answer our original question of whether the neutri-
nos exhibit sensitivity to the turbulence power spectrum.
We conclude it indeed appears, in principal, there is sen-
sitivity to the power spectral index in the signal from a
Galactic supernova and further analyses along the lines
of Borriello et al. [29] but for 3D simulations would be
very welcome.
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