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34École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015

35Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
36Luther College, Decorah, Iowa 52101
37University of Maribor, 2000 Maribor

38Max-Planck-Institut für Physik, 80805 München
39School of Physics, University of Melbourne, Victoria 3010

40Moscow Physical Engineering Institute, Moscow 115409
41Moscow Institute of Physics and Technology, Moscow Region 141700
42Graduate School of Science, Nagoya University, Nagoya 464-8602

43Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
44Nara Women’s University, Nara 630-8506

45National Central University, Chung-li 32054
46National United University, Miao Li 36003

47Department of Physics, National Taiwan University, Taipei 10617
48H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342

49Niigata University, Niigata 950-2181
50Osaka City University, Osaka 558-8585

51Pacific Northwest National Laboratory, Richland, Washington 99352
52Peking University, Beijing 100871

53Punjab Agricultural University, Ludhiana 141004
54University of Science and Technology of China, Hefei 230026

55Seoul National University, Seoul 151-742
56Soongsil University, Seoul 156-743

57University of South Carolina, Columbia, South Carolina 29208
58Sungkyunkwan University, Suwon 440-746

59School of Physics, University of Sydney, NSW 2006
60Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451

61Tata Institute of Fundamental Research, Mumbai 400005
62Excellence Cluster Universe, Technische Universität München, 85748 Garching

63Toho University, Funabashi 274-8510
64Tohoku University, Sendai 980-8578

65Department of Physics, University of Tokyo, Tokyo 113-0033
66Tokyo Institute of Technology, Tokyo 152-8550

67University of Torino, 10124 Torino
68CNP, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

69Wayne State University, Detroit, Michigan 48202
70Yamagata University, Yamagata 990-8560

71Yonsei University, Seoul 120-749

We report on the first observations of B̄0 → D1(2430)
0ω, B̄0 → D1(2420)

0ω and B̄0 →
D∗

2(2460)
0ω decays. The B̄0 → D∗+ρ(1450)− decay is also observed. The branching fraction

measurements are based on (771.6 ± 10.6) × 106 BB̄ events collected at the Υ(4S) resonance
with the Belle detector at the KEKB asymmetric-energy e+e− collider. The fractions of longi-
tudinal polarization of the D∗∗ states as well as partial wave fractions of the D1(2430)

0 are ob-
tained. We also set a 90% confidence level upper limit for the product of branching fractions of
B(B̄0 → D∗+b1(1235)

−) × B(b1(1235)
− → ωπ−). The measurements show evidence of nontrivial

final-state interaction phases for the ρ-meson-like amplitudes.

PACS numbers: 13.25.Hw, 14.40.Lb, 14.40.Be

I. INTRODUCTION

Orbitally excited states of the D meson (D∗∗ states)
provide a good opportunity to test Heavy Quark Ef-
fective Theory (HQET) [1] and QCD sum rule predic-
tions [2]. The simplest system consists of a charm quark
and a light antiquark in an orbital angular momentum

L = 1 (P -wave) state. Four such states are expected
with spin-parities JP = 0+ (j = 1/2), 1+ (j = 1/2),
1+ (j = 3/2) and 2+ (j = 3/2), where j is the sum
of the light quark spin and angular momentum L. All
these states have been discovered [3]. They areD∗

0(2400),
D1(2430), D1(2420) and D

∗
2(2460). The conservation of

parity and angular momentum in strong interactions im-
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poses constraints on the decays of D∗∗ states to D(∗)π.
The j = 1/2 states are predicted to decay mainly through
an S-wave: D∗

0(2400) → Dπ and D1(2430) → D∗π. The
j = 3/2 states are expected to decay mainly through aD-
wave: D1(2420) → D∗π and D∗

2(2460) → Dπ and D∗π.
The j = 1/2 states with L = 1 are expected and proven to
be broad (hundreds of MeV/c2), while the j = 3/2 states
are expected and proven to be narrow (tens of MeV/c2).
The BaBar [4] and LHCb [5] collaborations have discov-
ered other excited D mesons interpreted as nL = 2S and
nL = 1D states as well as a possible superposition of
several nL = 1F states, where n is the radial quantum
number.

Since HQET is violated, the physical D∗∗ state with
JP = 1+ can contain admixtures of the states with j =
1/2 and j = 3/2 [6].

A similar spectroscopy exists for the DsJ states [3].
However, the observed masses for the D∗

s0(2317) and
Ds1(2460) resonances with j = 1/2 are significantly
smaller than predicted [7]. The Ds1(2536) andDs1(2460)
states with JP = 1+ can mix with each other. This effect
is observed in an angular analysis of the Ds1(2536)

+ →
D∗+K0

S decay [8].

Precise knowledge of the properties of the D∗∗ states is
important to reduce uncertainties in the measurements of
the semileptonic decays and thus in the determination of
the Cabibbo-Kobayashi-Maskawa matrix elements |Vcb|
and |Vub| [9].
The D∗∗ mesons have been observed in both semilep-

tonic [10] and hadronic B decays [11–14]. The recent
LHCb study [14] shows the first observation of the B̄0 →
D∗

3(2760)
+π− decay as well. The dynamic properties of

D∗∗ production are determined by the Wilson operator
product expansion [15]. In color-favored B̄0 → D∗∗+π−

decays [11], dominance of the narrow D∗∗ states over
the broad ones is observed. A study of B− → D∗∗0π−

decays [12] with the color-favored and color-suppressed
possibilities shows approximately equal production of the
broad and narrow D∗∗ mesons. It can be explained by a
significant suppression of the narrow states in the color-
suppressed channel. Calculations based on HQET and
quark models [16] predict such suppression.

In this paper, we perform an amplitude analysis of the
B̄0 → D∗+ωπ− decay to measure the decay fractions
to D∗∗ states produced via the color-suppressed channel
(Fig. 1a) and to study the D∗∗ properties.

This decay is sensitive not only to the vectorD1(2430)
0

and D1(2420)
0 states but also to the tensor D∗

2(2460)
0

state. Although the B̄0 decay to D∗
2(2460)

0ω is prohib-
ited under the naive factorization hypothesis, it can nev-
ertheless be produced via final-state interactions (FSI)
and/or non-factorizable contributions. In soft-collinear
effective theory (SCET), color-suppressed decays to the
D∗

2(2460)
0 state can receive a factorizable contribution at

the leading order in Λ/mB [17]. This mechanism leads to
the equality of branching fractions and strong phases in
the decays B̄0 → D∗

2(2460)
0M and B̄0 → D1(2420)

0M ,
where M is a light meson. Possible deviations from this

equality can be attributed to subleading effects [17]. A
discussion of D∗∗ production in hadronic B decays can
be found in Ref. [18].
The color-favored mode of the studied decay (Fig. 1b)

is saturated by light ωπ resonances. Hadronic weak cur-
rents can be classified as either first- or second-class, [19]
depending on the combination of spin J and the P - and
G-parities of the ωπ system. In the Standard Model,
first-class currents (FCC) have JPG = 0++, 0−−, 1+− or
1−+ and are expected to dominate. Second-class currents
(SCC) have JPG = 0+−, 0−+, 1++ or 1−− and are asso-
ciated with a decay constant proportional to the mass
difference between the up and down quarks. Thus, they
are expected to vanish in the limit of perfect isospin sym-
metry. The decay B̄0 → D∗+ωπ− is expected to proceed
predominantly through the FCC, mediated by ρ-meson-
like resonances, such as off-shell ρ(770)− and ρ(1450)−.
In contrast, the SCC may be mediated by b1(1235)

−.
SCC searches have been performed extensively in nuclear
β decays [20] and τ decays [21], with no evidence found.
The structure of the ρ-meson-like states is not yet com-

pletely clear. The ρ(1450) has a mass consistent with
that of a radial 2S excitation [22] but its decays show
characteristics of hybrids [23] and suggest that this state
may be a 2S-hybrid mixture [24]. The observation of the
ρ(1450) in B-meson decays and the study of its interfer-
ence with the ρ(770) would lead to a better understand-
ing of the properties of the ρ-meson-like states.
Another aim of this study is a test of the factorization

hypothesis in the D∗∗ production region. The factoriza-
tion hypothesis, widely used in heavy-quark physics for
hadronic two-body decays, assumes that two hadronic
currents may be treated independently of each other, ne-
glecting FSI. The factorization can be tested by examin-
ing the polarization in B-meson decays into two vector
mesons. The idea is that, under the factorization, certain
hadronic decays are analogous to similar semileptonic de-
cays evaluated at a fixed value of the momentum transfer,
q2 = M2

lν̄ [25]. Based on the polarization measurements
of the decays B̄0 → D∗0ω [26] and B → φK∗ [27], we
can conclude that non-factorizable QCD effects are es-
sential in color-suppressed decays. The significant trans-
verse polarizations measured in these decays may arise
from the existence of effects from non-trivial long dis-
tance contributions, as predicted by SCET studies [28].
The polarizations of similar decays B̄0 → D1(2430)

0ω,
B̄0 → D1(2420)

0ω and B̄0 → D∗
2(2460)

0ω are measured
in our study.
The studied decay has been first observed by the

CLEO [29] and BaBar [30] collaborations, the latter find-
ing an enhancement in the D∗π mass broadly distributed
around 2.5 GeV/c2.

II. EXPERIMENT AND DETECTOR

This study uses a data sample containing 771.6± 10.6
million BB̄ events collected at the Υ(4S) resonance
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Figure 1: (color online). (a) Color-suppressed and (b) color-favored tree diagrams for the production of D∗∗ and ωπ states in
B̄0 → D∗+ωπ− decays, respectively.

with the Belle detector at the KEKB asymmetric-energy
e+e− collider [31]. The Belle detector, which is a large-
solid-angle magnetic spectrometer based on a 1.5 T su-
perconducting solenoid magnet, consists of several sub-
detectors.
Charged particle tracking is provided by a 4-layer sil-

icon vertex detector (SVD) and a 50-layer central drift
chamber (CDC). The charged particle acceptance covers
laboratory polar angles between θ = 17◦ and 150◦, cor-
responding to about 92% of the total solid angle in the
e+e− center-of-mass (c.m.) frame.
Charged hadron identification is provided by the ion-

ization energy-loss dE/dx measurements in the CDC, an
array of aerogel threshold Cherenkov counters (ACC),
and a barrel-like arrangement of time-of-flight scin-
tillation counters (TOF). The information from these
three sub-detectors is combined to form likelihood ratios
(PID), which are then used for pion, kaon and proton
discrimination. An electromagnetic calorimeter (ECL),
comprised of 8736 CsI(Tl) crystals and covering the same
solid angle as the charged particle tracking system, serves
for the detection of electrons and photons. Electron iden-
tification is based on a combination of dE/dx measure-
ments in the CDC, the response of the ACC and energy-
to-momentum ratio of an ECL shower with a track as
well as a transverse shape of this shower. An iron flux-
return located outside of the coil (KLM) is instrumented
to detectK0

L mesons and to identify muons. The detector
is described in detail elsewhere [32].
The EvtGen event generator, [33] with PHOTOS [34]

for radiative corrections and a GEANT-based Monte
Carlo (MC) simulation [35] to model the response of the
detector and determine the acceptance, are used in this
analysis. The MC simulation includes run-dependent de-
tector performance and background conditions.

III. EVENT SELECTION

Candidate B̄0 → D∗+ωπ− events as well as charge-
conjugate combinations are selected. The D∗+ candi-
dates are reconstructed in the D∗+ → D0π+ mode.
The D0 candidates are selected using the D0 → K−π+

mode. Other D0 decay modes, which lead to signifi-

cantly smaller signal-to-noise ratios, are not used in this
analysis. The ω candidates are reconstructed in the
ω → π+π−π0 mode.
Charged tracks are selected with a set of track quality

requirements based on the average hit residuals and im-
pact parameters to the interaction point. To reduce the
low momentum combinatorial background, we also re-
quire that the track momentum transverse to the beam
direction be greater than 100 MeV/c for all tracks except
for the slow pion candidate in the D∗+ → D0π+ decay,
for which we apply a looser cut of 50 MeV/c.
A PID requirement is applied for kaon candidates but

not for pion candidates. The kaon identification efficiency
is about 90% and the pion misidentification rate is less
then 10%. All tracks that are positively identified as
electrons are rejected.
Photons are identified as ECL clusters that are not as-

sociated with charged tracks and have a minimum energy
of 70 MeV in both the barrel and endcap regions.
D0 candidates are reconstructed from K−π+ combi-

nations with an invariant mass within 15 MeV/c2 of the
nominal D0 mass [3]. This window corresponds to ap-
proximately ±3 times the mass resolution. D∗+ candi-
dates are selected by combining D0 candidates with an
additional track, assumed to be a π+. The mass differ-
ence mDπ − mD0 is required to be within 2 MeV/c2 of
its nominal value; the resolution of this quantity is about
0.5 MeV/c2.
Neutral pion candidates are formed from photon pairs

that have an invariant mass within 11.25 MeV/c2 of the
nominal π0 mass, which corresponds to about ±2.5 times
the reconstructed mass resolution. To reduce the combi-
natorial background, the total energy of the photons is
required to be greater than 250 MeV.
The ω candidates are formed from a pair of oppositely-

charged tracks, assumed to be a π+π− pair, and a π0.
The invariant mass of the π+π−π0 combinations is re-
quired to be within 73.5 MeV/c2 of the nominal ω mass.
This very loose cut retains sideband candidates for back-
ground estimation. The instrumental resolution on the
ω candidates is about 7.3 MeV/c2.
To reduce the number of false ω candidates formed

from random combinations of pions, we impose an ad-
ditional requirement in the ω Dalitz plane, motivated
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by the ω decay dynamics and spin-parity in the B̄0 →
D∗+ωπ− decay [36]. We define two orthogonal coordi-

nates X = 3T0/Q− 1 and Y =
√
3(T+ − T−)/Q, where

T±,0 are the kinetic energies of the pions in the ω rest
frame and Q = T0 + T− + T+ is the energy release in the
ω decay. Further we define a variable r properly scaled
to the kinematic limit as

r =

√
X2 + Y 2

rb
, (1)

where rb is the distance from (0, 0) to the boundary in the
direction of (X,Y ). Since the Dalitz plot density peaks
at r = 0 for the ω signal, we impose the requirement
r < 0.75. This requirement eliminates about 41% of the
background while retaining about 84% of the signal. In
Fig. 2 we show the simulated (X,Y ) Dalitz plane of the
ω signal events and the restriction on r variable.

-1
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Figure 2: (color online). Simulated (X,Y ) Dalitz distribution
of the ω signal events. The curve bounds the area selected for
further study.

B candidates are reconstructed by combining a D∗+

candidate, an ω candidate, and an additional negatively
charged track. All B candidates are identified using
two kinematic variables: the energy difference ∆E =
∑

i

√

|p∗
i |2c2 +m2

i c
4 − E∗

beam and the beam-constrained

massMbc =
√

E∗2
beam/c

4 − |
∑

i p
∗
i |2/c2, where the sum-

mation is over all particles forming the B candidate, p∗
i

andmi are their three-momenta and masses, respectively,
and E∗

beam is the beam energy. All quantities are defined
in the e+e− c.m. frame. We select events with a tight cut
onMbc of 5.2725GeV/c2 < Mbc < 5.2845GeV/c2, cor-
responding to about ±2 times the mass resolution, and a
loose cut on ∆E of |∆E| < 0.22GeV. To suppress possi-
ble continuum events (e+e− → qq̄, where q = u , d , s , c),
we limit the angle between the thrust of the B can-

didate and that of the rest of the event by requiring
| cosΘthrust| < 0.8 [37].

In this study, we perform an amplitude analysis that
accounts for the kinematic properties of the decay ma-
trix element. The matrix element should be symmetrized
relative to the exchange of two identical particles in the
final state (two π− mesons in our decay mode [38]) ac-
cording to the identity principle. Such symmetrization
leads to an interference term in the squared matrix ele-
ment. This term consists of two ω decay amplitudes with
different π+π−π0 combinations in the D∗+π+π−π0π− fi-
nal state. Since the ω is a relatively narrow resonance,
the interference term is essential only in the overlapping
region of the π+π−π0 invariant masses, which is of the
order of the ω width. To correctly describe the angu-
lar distributions in this interference region, the internal
degrees of freedom of the ω decay should be taken into
account [36]. However, due to lack of statistics, which
prevents a full analysis in such a case, we exclude this
interference region without significant loss of statistical
power.

In order to reduce smearing from detector resolution,
a simultaneous fit constraining the γγ, K−π+, D0π+

and D∗+ωπ− invariant masses to match the known π0,
D0, D∗+ and B̄0 masses, respectively, is performed. The
π+π−π0 invariant mass is not constrained to the ω mass
in the fit because of the non-negligible width of the ω
meson.

There are events for which two or more candidates pass
all the selection criteria. According to MC simulation,
this occurs primarily because of the mis-reconstruction
of one of the pions from the ω → π+π−π0 decay. To en-
sure that no B decay is counted more than once, a best-
candidate selection is performed based on a χ2 defined as
the sum of three terms. The first determines the devia-
tion of the π0 invariant mass from its nominal value, the
second represents the deviation ofMbc from the nominal
B̄0 mass and the third uses the distribution of the differ-
ence between the z coordinate at the interaction point of
the track corresponding to the primary pion (π−) from
the B̄0 signal decay and the average z coordinate for the
tracks corresponding to the decay products (K− and π+)
from the D0 meson decay. We retain only the z coordi-
nate information because B mesons are boosted along
z and the vertex resolution is worse in that direction.
We omit the ω candidate mass in this procedure in or-
der to avoid any bias in the ω mass distribution since
this distribution is used extensively for the background
description.

The signal sample is composed of two components —
correctly reconstructed (CR) and self cross-feed (SCF) —
that are distinguished by whether or not the kinematic
variables of the D∗+ωπ− decay are well reconstructed.
MC simulation shows that the SCF component predom-
inantly occurs due to the combinatorial background for
the ω. To define the CR and SCF components, we use
the following χ2 describing the deviation of the recon-
structed momenta of the final particle system (rec) from
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the generated momenta (gen):

χ2 =
∑

i

3
∑

k=1

(x
(i)
k gen − x

(i)
k rec)

2

σ2(x
(i)
k gen)

, (2)

where x
(i)
1,2,3 = (p(i), θ(i), ϕ(i)) are the spherical momen-

tum coordinates of the i-th particle in the final state,

σ(x
(i)
k ) is the corresponding detector resolution, and the

summation is over all tracks and π0 forming the B candi-
date. We choose to define the CR (SCF) component by
the condition χ2 < C (χ2 > C). The value of C = 300 is
determined by examining the shapes of the distributions
of the difference between the reconstructed and gener-
ated kinematic variables. Variations of the value of C
are considered as a source of systematic uncertainty.
Figure 3 shows the distribution of the selected events in

the (∆E,M(π+π−π0)) plane, where we define the follow-
ing four regions to distinguish between signal and back-
ground:
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Figure 3: Distribution of ∆E versus M(π+π−π0) for the se-
lected B̄0 → D∗+ωπ− candidates. The signal Region (I) and
sideband Regions (II, III and IV) are shown. A clear correla-
tion between the variables is seen in Region I.

I → |∆E| < 34MeV;

|M(π+π−π0)−mω| < 21.25MeV/c2,

II → 66MeV < |∆E| < 198MeV;

|M(π+π−π0)−mω| < 21.25MeV/c2,

III → |∆E| < 34MeV;

|M(π+π−π0)−mω| ∈ [34; 68]MeV/c2,

IV → 66MeV < |∆E| < 198MeV;

|M(π+π−π0)−mω| ∈ [34; 68]MeV/c2.

Here mω is the nominal ω mass. Region I is the signal
region while the others are sideband regions. A clear

correlation between the ∆E and M(π+π−π0) variables
is seen in Region I due to the experimental resolution.
The signal window for the ω invariant mass corresponds
to ±2.5 times the world-average ω width of 8.5 MeV/c2.
Figure 4 shows the M(π+π−π0) distributions in the

∆E signal and sideband regions defined above. The curve
corresponds to the sum of a Voigtian function (the convo-
lution of a Breit-Wigner function with a Gaussian func-
tion) and a linear background function. The ω mass,
the Gaussian resolution σ, and the parameters of the
linear function are free in the fit but the Breit-Wigner
width is fixed to the world-average decay width of the
ω [3]. The difference between the number of observed
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Figure 4: M(π−π+π0) distribution of the B̄0 → D∗+ωπ−

candidates in the ∆E signal region (points with error bars)
and sideband (hatched histogram). The sideband distribu-
tion is normalized to the size of the ∆E signal region. The
M(π+π−π0) signal region and sideband are indicated by the
vertical lines. The curve is the result of the fit described in
the text.

events away from the M(π+π−π0) peak and the number
of events predicted from the ∆E sideband is explained by
the ∆E peaking background component, corresponding
to B̄0 → D∗+π+π−π0π− decays.

IV. TOTAL BRANCHING FRACTION

The signal yield is obtained from a binned χ2 fit to
the ∆E distribution using a function describing the CR
and SCF components together with a smooth combinato-
rial background. Since the B̄0 → D∗+π+π−π0π− events
observed in Fig. 3 produce a peak in ∆E, the fit is per-
formed separately in the M(π+π−π0) signal and side-
band regions defined above on the (∆E,M(π+π−π0))
plane. MC simulation shows that these events have the
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same shape as the CR component. In the fit, the CR
component is described by a double-Gaussian function
with distinct means and widths, the SCF component
is described by the sum of a Gaussian function and a
second-order polynomial, and the combinatorial back-
ground is described by another second-order polynomial.
The means, widths and relative normalizations of the CR
and SCF functions are fixed to the values obtained from
the signal MC simulation, while the signal normaliza-
tion and the parameters of the polynomial background
function are treated as free parameters. The differences
between MC and data values for the fixed parameters in
the fit are found to be within MC statistical errors. The
fit results are shown in Fig. 5 in both the M(π+π−π0)
signal and sideband regions. The fitted signal yield is
found to be 919 ± 37 for the M(π+π−π0) signal region
and 157 ± 21 for the sideband region. The final yield
NS = 821 ± 39 is computed as the difference between
these two yields, taking into account the ratio of 5/8 be-
tween the widths of theM(π+π−π0) signal and sideband
regions.
The fraction of neutral B mesons decaying to the stud-

ied final state is expressed as

B =
NS

ǫSηNBBsec
, (3)

where ǫS = (2.11 ± 0.02)% is the detection efficiency
determined from a MC simulation that uses a Dalitz
plot distribution generated according to the signal model
described below, η = 0.941 ± 0.029 is the efficiency
correction factor that accounts for the difference be-
tween data and MC and obtained from the momentum-
dependent corrections for the π0 and slow pion from
the D∗ decay and the PID corrections for the kaon,
NB = (771.6± 10.6)× 106 is the total number of neutral
B mesons in the data [39] and Bsec = (2.32 ± 0.04)% is
the product of the secondary branching fractions. Using
Eq. (3), we obtain

B = (2.31± 0.11 (stat.)± 0.14 (syst.))× 10−3,

which is consistent with the CLEO value [29] within 1.2σ
and the BaBar value [30] within 1.5σ. The total system-
atic error of 6.1% summarized in Table I arises from the
following sources:

• An uncertainty of 1.3% due to the choice of the
signal window for the M(π+π−π0) invariant mass
is estimated by reducing the size of the window
from 21.25 to 12.75 MeV/c2. The reduced window
corresponds to 1.5 times the world average ω width.

• An uncertainty of 0.9% related to the definition
of the SCF and CR components is estimated by
changing the requirement on the χ2 defined in
Eq. (2) to C = 200 or C = 400.

• An uncertainty of 2.2% related to the ∆E shape
description is estimated by varying the shape pa-
rameters fixed from MC simulation in accordance
with their MC statistical errors.

Table I: Sources of relative systematic error in the branching
fraction measurement.

Source Error (%)

Signal yield, NS

—M(π+π−π0) signal region 1.3

—Definition of SCF and CR components 0.9

—∆E signal shape 2.2

—∆E background shape 1.3

Signal efficiency, ǫS
—Track reconstruction efficiency 3.9

—π0 reconstruction efficiency 2.3

—Kaon identification efficiency 0.9

—B̄0 signal decay model 1.1

—MC statistics 0.8

Number of neutral B mesons, NB 1.4

Secondary branching fractions, Bsec 1.7

Quadratic sum 6.1

• An uncertainty of 1.3% due to the background de-
scription in the ∆E shape is estimated by adding
higher-order polynomial terms or keeping a linear
term only.

• A dominant uncertainty of 3.9% is assigned to the
total reconstruction efficiency of all charged tracks
in the decay. For a single track, this uncertainty de-
pends on the transverse momentum pT of the track
[40]. For low momentum tracks (with pT < 200
MeV/c), it is estimated using the decays B0 →
D∗−π+ and B+ → D̄∗0π+; for high momentum
tracks, a study of the tracking efficiency is based on
partially reconstructed D∗+ → D0(K0

Sπ
+π−)π+

decays. The total tracking error is the linear sum of
the errors corresponding to the individual tracks.

• An uncertainty of 2.3% in the reconstruction ef-
ficiency of neutral pions is estimated using the
τ− → π−π0ντ branching fraction and events where
the other τ decay is tagged [41].

• An uncertainty of 0.9% in the efficiency of the kaon
particle identification requirement is obtained using
a control sample of D∗+ → D0(K−π+)π+ decays
[42].

• An uncertainty of 1.1% is assigned due to the model
dependence of the signal reconstruction efficiency.
The signal model with the best description of the
data is constructed in Sections V.B and V.C in the
frame of the amplitude analysis. The model pa-
rameters obtained from the fit in Section V.C have
statistical uncertainties. These are propagated as
a systematic uncertainty on the signal efficiency,
taking into account the full covariance matrix.

• A binomial uncertainty of 0.8% due to the limited
Monte Carlo sample size arises in the efficiency cal-
culation.
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Figure 5: ∆E distributions of the B̄0 → D∗+ωπ− candidates in the (a) signal and (b) sideband regions of M(π+π−π0). The
hatched histogram in (a) represents theM(π+π−π0) sideband normalized to the size of the signal region. The ∆E signal region
and sideband are indicated by the vertical lines. The curves are the results of the fit described in the text.
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Figure 6: (color online). Kinematics of a B̄0 → D∗+ωπ− decay mediated by an ωπ− intermediate resonance. The diagram
in (a) defines two polar angles ξ1 and β1 and one azimuthal angle ψ1. The diagram in (b) defines one polar angle θ1 and one
azimuthal angle φ1. The direction nω in (b) corresponds to the vector normal to the ω decay plane.

• An uncertainty of 1.4% in the number of B mesons
is estimated from Ref. [43].

• An uncertainty of 1.7% is associated with the mea-
sured branching fractions of the D∗, D and ω [3].
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V. AMPLITUDE ANALYSIS

To study the resonant structure of the B̄0 → D∗+ωπ−

decay, we perform an amplitude analysis. Using an un-
binned likelihood method, we simultaneously fit the data
in the six-dimensional phase space according to Ref. [36].
We define two sets of kinematic variables: [M2(ωπ),

cos θ1, φ1, cosβ1, ψ1 and cos ξ1] and [M2(D∗π), cos θ2,
φ2, cosβ2, ψ2 and cos ξ2], corresponding to the ωπ and
D∗∗ productions (color-favored and -suppressed diagrams
of Fig. 1), respectively.
The masses M(ωπ) and M(D∗π) are the invariant

masses of the ωπ and D∗π combinations. The angular
variables, [cos θ1, φ1, cosβ1, ψ1 and cos ξ1], describing
ωπ production, are defined in Fig. 6. The polar and az-
imuthal angles, θ1 and φ1, defined in the ω rest frame,
are the angle between the normal nω to the ω decay plane
and the ωπ direction, and the angle between the B-decay
plane and the plane formed by the nω and ωπ directions,
respectively. The polar and azimuthal angles, β1 and ψ1,
defined in the D∗ rest frame, are the angle between the D
and the ωπ flight directions, and the angle between the
B- and D∗-decay planes, respectively. The polar angle
ξ1 is the angle between the D∗ and ω flight directions in
the ωπ rest frame.
The angular variables, θ2 and φ2 as well as β2 and ψ2,

describing the D∗∗ production, are defined in the same
manner as angles for the ωπ production but with the
D∗π flight direction instead of the ωπ. The polar angle
ξ2 corresponds to the angle ξ1 but in the D∗π rest frame.
The cos ξ1 variable is related to M2(D∗π) whereas the
cos ξ2 is related to M2(ωπ).
Each set of variables (denoted below with the six-

dimensional vector ~x) fully defines the kinematics of the
decay chain, either in the color-favored or the color-
suppressed channel [36]. The probability density func-
tion (PDF) in the signal region, which is the sum of sig-
nal and background components, is constructed in such a
way that the kinematic dependence of the efficiency can
be omitted in the minimization [12]:

PDF(~x,~a) =
ǫ(~x)

ns +
∑

j nbkg j
×







ns
|M(~x,~a)|2
ǫs(~a)

+
∑

j

nbkg j
Bj(~x)

ǫbkg j







, (4)

where the sum is over the background components esti-
mated in the sideband Regions II, III and IV (see Fig. 3),
and the efficiencies ǫs and ǫbkg j correspond to average sig-
nal and background efficiencies, respectively, in the signal
Region I integrated over the phase space. In Eq. (4), ~a is
the vector of parameters determined from the unbinned
likelihood fit; ns is the expected number of the signal
events in the signal Region I distributed according to
the matrix element squared |M(~x,~a)|2; ǫ(~x) is the recon-
struction efficiency for the B̄0 → D∗+ωπ− CR events in
Region I depending on the decay kinematics and slowly

varying within the scale of resolution of the observables;
and nbkg j is the expected number of background events
in the signal Region I distributed according to the func-
tion Bj(~x). We neglect the convolution with the resolu-
tion function in Eq. (4) due to the small invariant mass
resolutions (4 MeV/c2 for ωπ and 3 MeV/c2 for D∗∗) in
comparison with the resonance widths (more than 150
MeV/c2 for the ρ-meson-like resonance and more than
25 MeV/c2 for the D∗∗ states).
An unbinned likelihood fit to the B̄0 → D∗+ωπ−

phase space is performed to minimize the negative log-
likelihood function L(~a):

L(~a) = −
∑

events

ln PDF +

(ns +
∑

j nbkg j − ntot)
2

2(ntot + σ2
bkg)

, (5)

where ntot is the total number of events in the signal Re-
gion I and σbkg is the uncertainty of the total number of
background events

∑

j nbkg j . The second term in Eq. (5)
takes into account our knowledge of the background con-
tribution in the signal region.
The function L(~a) does not incorporate the interfer-

ence between the D∗4π peaking background and the
D∗ωπ signal. This effect is expected to be small (see
Section V.E).

A. Background description

The background components of Eq. (4) can be
addressed using the (∆E,M(π+π−π0)) scatter plot
(Fig. 3). The combinatorial background with misre-
constructed ω candidates saturates Region IV. The
B̄0 → D∗+π+π−π0π− events without ω in the intermedi-
ate state can be found in Region III. The combinatorial
background with a correctly reconstructed ω falls into
Region II. In addition, the SCF events lie in all regions.
We determine the six-dimensional shapes of the

background PDFs Bj(~x) by performing an unbinned-
likelihood fit in the sideband regions. For details, see
Appendix A.
The projections on the M2(ωπ) and M2(D∗π) vari-

ables and the corresponding background fits are shown
in Fig. 7. The result of the unbinned-likelihood fit in
Region IV determining the function BIV(~x) is shown in
Figs. 7 (a) and (b). Figures 7 (c) and (d) correspond to
Region III. The backgrounds in this region are described
by the function BIII(~x) plus a contribution components
described by BIV(~x). In a similar way, Region II in-
cludes the background components described by BIV(~x)
and BII(~x); these components are shown in Figs. 7 (e)
and (f).
The M2(ωπ) and M2(D∗π) distributions of the back-

ground in the signal Region I are shown in Fig. 8. These
distributions are the sum of the SCF distribution in Re-
gion I obtained from the MC study and the distributions
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Figure 7: M2(ωπ) and M2(D∗π) distributions of the B̄0 → D∗+ωπ− candidates in the (∆E,M(π+π−π0)) sideband regions
(a,b) IV, (c,d) III and (e,f) II. Points with error bars are data; hatched histograms correspond to the contribution from BIV(~x);
dotted histograms represent the component described by the function BIII(~x) in (c) and (d) and BII(~x) in (e) and (f); open
histograms correspond to the total fit results in Regions III and II.
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describing the backgrounds defined above. The latter dis-
tributions are the differences between the BII(~x), BIII(~x)
and BIV(~x) distributions and the SCF distributions in
Regions II, III and IV, respectively. Figure 8 illustrates
the dominant contribution due to the combinatorial back-
ground with a misreconstructed ω. The D∗+π+π−π0π−

component estimated from Region III is also significant in
Region I. The combinatorial background with a correctly
reconstructed ω and SCF component obtained from the
MC study have lower fractions but are also included in
the description.

B. Signal description

The description of the D∗+ωπ− signal events in phase
space is based on the study of Ref. [36]. Since charge con-
jugation is taken into account, the total matrix element
is calculated as:

M =
1 +Q

2
M+ +

1−Q

2
M−, (6)

where Q = +1 (−1) for B̄0 (B0) decays and M− differs
from M+ by the sign of the P-violating terms. Following
the isobar model formulation [44] with quasi-two-body
resonant amplitudes, the matrix elementM± is given by:

M± =
∑

R

aRe
iφRMR±, (7)

where aR and φR are relative amplitudes and phases of
the intermediate resonances and R is an index number-
ing all the ωπ and D∗∗ resonances. The full description
of the resonant matrix elements MR± can be found in
Appendix B. The parameterization of the form factors
used in the matrix elements MR± is presented in Ap-
pendix C. The fraction fR of the total three-body signal
attributed to a particular quasi-two-body intermediate
state is defined as

fR =

∫

a2R|MR±(~x)|2ρ(~x)d~x
∫

|M±(~x)|2ρ(~x)d~x
, (8)

where ρ(~x) is the phase space density of events deter-
mined from the kinematic conditions of the decay [36].
The sum of the fit fractions for all components is not
necessarily unity because of interference effects.
The fraction fL

R of resonance R produced in partial
wave L is determined as

fL
R =

∫

|ML
R±(~x)|2ρ(~x)d~x

∫

|MR±(~x)|2ρ(~x)d~x
, (9)

whereML
R± is the matrix element describing the produc-

tion of resonance R in partial wave L and the sum
∑

L f
L
R

is unity by definition.
The observable determined from the amplitude anal-

ysis is the longitudinal polarization PR of resonance R.

This variable is calculated as

PR =
|H0|2

|H0|2 + |H+|2 + |H−|2
, (10)

where H0, H+ and H− represent three complex helic-
ity amplitudes which can be expressed via invariant and
partial wave form factors (see Appendix C).

C. Fitting the B̄0 → D∗+ωπ− signal

Figure 9 shows the two-dimensional Dalitz distribu-
tions in signal Region I and sideband Regions II, III and
IV. There are 1129 events in the signal region that satisfy
all the selection criteria.
To describe all the features of the Dalitz plot, we

use the following set of resonances: off-shell ρ(770)−,
ρ(1450)−, D1(2430)

0, D1(2420)
0 and D∗

2(2460)
0. A

CLEO analysis [29] showed the dominance of the
ρ(1450)− resonance in this final state. In a BaBar study
[30], a D∗π enhancement was observed that was inter-
preted as a D1(2430)

0 signal. Our data require ad-
ditional resonances. We take into account an off-shell
ρ(770)− contribution, as suggested by the e+e− → ωπ0

data [45]. To improve the description, we also include
the amplitudes of the narrow resonances D1(2420)

0 and
D∗

2(2460)
0. When both resonances are simultaneously

included in the matrix element rather than just one
of them, the statistical significance of the signal, given
by

√

2(LR − L0), where LR (L0) is the negative log-
likelihood value with the signal from the resonance R
fixed at zero (with the nominal signal yield), increases
very significantly (> 5 σ effect). We also include in the
fit a SCC contribution with the b1(1235)

− resonance.
This contribution has a significance below 3.0σ and we
obtain an upper limit for the fraction of the SCC in
B̄0 → D∗+ωπ− decays. To determine the upper limit,
we generate pseudoexperiments (see Section V.D).
The results of the fit are summarized in Table II. To-

gether with the individual decay fractions fR, we show
the FCC fraction fρ+ρ′ , which represents the decay frac-
tion of the coherent sum of the ρ(770)− and ρ(1450)−

states.
We also show the partial wave fractions describing

the ρ(1450)− and D∗∗ production in the specific par-
tial waves and the longitudinal polarizations of these res-
onances. We see that the ρ(1450)− state is produced
dominantly via S wave, but that D1(2430)

0 produc-
tion requires approximately equal fractions of all par-
tial waves. The partial wave fractions of the D1(2420)

0

and D∗
2(2460)

0 are not statistically significant. In our
analysis, the longitudinal polarization and partial wave
fractions of the ρ(1450)− are fixed in part from the re-
quirement on the relative normalizations of the helicity
amplitudes, R1, R2 and ρ2 (see Appendix C), and can be
relaxed in the fit due to the free mass and width of the
ρ(1450)−. Large longitudinal polarizations of the D∗∗
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Table II: Summary of the fit results to the D∗+ωπ− candidates in the signal region. Each column of results corresponds to a
different signal model. The notations ρ′ = ρ(1450), D′

1 = D1(2430), D1 = D1(2420) and D∗
2 = D∗

2(2460) are used. Quoted
uncertainty is statistical only. ∆L = L−L0, where L defined in Eq. (5) corresponds to the signal model for which this variable
is calculated and L0 is the negative log-likelihood function calculated for the signal model with ρ, ρ′, D′

1, D1 and D∗
2 resonances.

Contribution Parameter ρ, ρ′ ρ, ρ′ ρ, ρ′ ρ, ρ′ ρ, ρ′, b1
D′

1 D′
1, D1 D′

1, D
∗
2 D′

1, D1, D
∗
2 D′

1, D1, D
∗
2

ρ(770)−D∗+ Resonance phase 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)

Resonance fraction, % 65.7 ± 10.2 65.2 ± 11.7 61.6 ± 11.9 64.2 ± 10.7 60.6 ± 12.1

ρ(1450)−D∗+ Resonance phase 2.63 ± 0.11 2.55 ± 0.11 2.62 ± 0.11 2.56 ± 0.12 2.54 ± 0.11

Resonance coupling 0.18+0.02
−0.05 0.18+0.02

−0.05 0.20+0.03
−0.06 0.18+0.02

−0.06 0.19+0.03
−0.06

Mass, MeV/c2 1549± 22 1546 ± 23 1543 ± 23 1544 ± 22 1540± 22

Width, MeV/c2 303+30
−50 305+31

−51 316+30
−54 303+31

−52 302+30
−52

R1 1.40 (fixed) 1.40 (fixed) 1.40 (fixed) 1.40 (fixed) 1.40 (fixed)

R2 0.87 (fixed) 0.87 (fixed) 0.87 (fixed) 0.87 (fixed) 0.87 (fixed)

ρ2 0.79 (fixed) 0.79 (fixed) 0.79 (fixed) 0.79 (fixed) 0.79 (fixed)

Resonance fraction, % 46.7+7.9
−11.9 44.5+6.9

−12.0 50.4+10.6
−13.1 46.3+6.0

−13.4 47.5+9.3
−12.1

S-wave fraction, % 76.9+4.2
−1.4 75.3+4.7

−1.9 76.7+4.3
−1.4 75.1+4.4

−2.1 75.3+5.0
−1.8

P -wave fraction, % 12.0 ± 0.7 12.8 ± 1.1 12.2 ± 0.9 12.9 ± 0.9 12.7± 0.8

D-wave fraction, % 11.0 ± 0.4 11.8 ± 0.6 11.0 ± 0.6 11.9 ± 0.5 11.8± 0.6

φ+ phase 0.66 ± 0.33 0.86 ± 0.30 0.67 ± 0.37 0.87 ± 0.29 0.85 ± 0.31

φ− phase −0.14 ± 0.17 −0.02 ± 0.15 −0.15 ± 0.19 −0.02± 0.13 −0.02 ± 0.15

Long. polarization, % 66.4 ± 0.6 66.5 ± 0.6 66.5 ± 0.6 66.5 ± 0.6 66.6± 0.6

FCC fraction, % 79.1 ± 2.5 82.6 ± 2.4 79.0 ± 2.4 82.2 ± 2.2 81.6± 2.3

D1(2430)
0ω Resonance phase 0.91 ± 0.26 1.03 ± 0.28 1.11 ± 0.29 1.24 ± 0.28 1.27 ± 0.35

S-wave phase 0.26 ± 0.20 0.19 ± 0.23 0.14 ± 0.23 −0.05± 0.25 −0.09 ± 0.26

P -wave phase 2.71 ± 0.21 2.41 ± 0.27 2.56 ± 0.24 2.24 ± 0.29 2.23 ± 0.32

Resonance fraction, % 13.6 ± 2.1 11.2 ± 1.8 12.6 ± 1.8 10.8 ± 1.8 11.6± 2.0

S-wave fraction, % 29.7 ± 8.6 33.6 ± 9.5 35.8 ± 10.1 38.9 ± 10.8 38.9 ± 10.5

P -wave fraction, % 37.0 ± 8.6 34.1 ± 9.2 34.0 ± 8.9 33.1 ± 9.5 29.1± 9.1

D-wave fraction, % 33.5 ± 8.8 32.6 ± 9.2 30.5 ± 9.2 28.3 ± 8.9 32.2± 9.2

Long. polarization, % 60.9 ± 8.2 63.4 ± 8.9 63.0 ± 8.2 63.0 ± 9.1 67.6± 9.2

D1(2420)
0ω Resonance phase 1.92 ± 0.34 2.12 ± 0.34 2.16 ± 0.42

S-wave phase −0.06 ± 0.34 −0.07± 0.43 −0.10 ± 0.43

P -wave phase 0.04 ± 0.41 −0.25± 0.46 −0.24 ± 0.49

Resonance fraction, % 3.7± 1.1 2.9 ± 0.8 2.8± 0.8

S-wave fraction, % 35.6 ± 13.2 34.0 ± 13.4 35.8 ± 13.0

P -wave fraction, % 36.6 ± 11.8 31.2 ± 11.4 30.3 ± 11.0

D-wave fraction, % 27.9 ± 11.0 34.9 ± 13.4 34.0 ± 13.1

Long. polarization, % 60.2 ± 12.0 67.1 ± 11.7 67.4 ± 16.1

D∗
2(2460)

0ω Resonance phase 1.69 ± 0.57 2.31 ± 0.50 2.39 ± 0.42

P -wave phase −0.67 ± 0.54 −0.77± 0.62 −0.84 ± 0.52

D-wave phase −1.10 ± 0.71 −1.85± 0.59 −1.96 ± 0.58

Resonance fraction, % 2.1 ± 0.7 1.8 ± 0.6 1.8± 0.6

P -wave fraction, % 34.3 ± 16.6 29.5 ± 16.9 30.0 ± 16.7

D-wave fraction, % 45.7 ± 17.4 40.2 ± 17.7 38.2 ± 17.3

F -wave fraction, % 19.4 ± 15.8 29.4 ± 19.3 31.1 ± 19.2

Long. polarization, % 74.1 ± 16.5 76.0+18.3
−8.5 74.7 ± 16.1

b1(1235)
−D∗+ Resonance phase 0.52 ± 0.42

Resonance fraction, % < 3.1 (90%C.L.)

∆L +33.3 +12.9 +16.4 0 −2.4

Variation, σ 8.2 5.1 5.7 0 2.2
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Figure 8: (a) M2(ωπ) and (b) M2(D∗π) distributions of the background components in the signal region. The histograms are
stacked on top of each other.

states indicate violation of the factorization hypothesis
but the statistical uncertainties are large.

The final-state interaction phases φ+ and φ− defined
in Appendix C are taken into account in the description
of the ρ-meson-like states. The fit gives a nontrivial value
for the φ+ phase.

One must also consider the statistical errors on the fit
fractions, partial wave fractions and longitudinal polar-
izations. These errors are determined with a pseudoex-
periment technique (see Section V.D).

The masses and widths of all resonances except for
the ρ(1450) are fixed at their PDG values [3]. Our mea-
surements for the ρ(1450) shape parameters do not con-
tradict previous experimental observations [3], although
they differ slightly from the CLEO results [29]. This sit-
uation is expected because the broad ρ-meson-like states
overlap strongly with each other and the Breit-Wigner
description is not accurate.

Mixing between the D1(2430)
0 and D1(2420)

0 states is
expected to be small and is therefore neglected. If we take
into account the mixing effect, the mixing angles defined
in Appendix C are found to be ω = −0.03± 0.02 (stat.)
and ϕ = −0.27± 0.75 (stat.). Within errors, these angles
are consistent with the previous Belle measurement [12].

Figures 10 and 11 show the distributions of the kine-
matic variables related to the ωπ and D∗π systems, re-
spectively, for the D∗+ωπ− candidates in the signal re-
gion. The results of the fit with the nominal model are
superimposed. All plots demonstrate a reasonable de-
scription of the data by the fit. A more detailed com-
parison is shown in Figs. 12 and 13 for regions enriched
(cos ξ2 > −0.4) and depleted (| cos θ1| < 0.5) with D∗∗

mesons.

To ensure that our fit results correspond to the global
minimum, we repeat the signal fit 1000 times with ran-
domly selected starting values for the fit parameters.
None of these fits have better likelihoods than those
presented above. For the nominal fit, two local min-
ima are found. One of them, which is 3.3σ away from
the global minimum, corresponds to a very large de-
cay fraction for the ρ(1450), fρ(1450) = (157.3± 23.1)%,
in comparison with the decay fraction for the off-shell
ρ(770), fρ(770) = (87.5 ± 13.1)%, and a relative phase
φρ(1450) = −2.52± 0.05. This result is inconsistent with

the e+e− data [45]. For the other one, all the fit pa-
rameters coincide with the values presented in Table II
within their statistical errors with the exception of the
relative phases in the D1(2430)

0 description: the S- and
D-wave phases are shifted by π/2, whereas the P -wave
phase remains unchanged. Since this second local mini-
mum is more than 3.5σ away from the global minimum,
it is not considered as a second possible solution for the
final results.

D. Statistical uncertainties

The statistical uncertainties on the fractions of the dif-
ferent intermediate states as well as the upper limit for
the b1(1235) fraction are determined with using a fre-
quency method. Another objective of this procedure is to
estimate how well the nominal signal model describes the
data. Assuming adequate agreement between the data
and the nominal signal model, we generate 1000 statis-
tically independent samples, which are a proper mixture
of signal and background events distributed according to
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Figure 9: Dalitz distributions of the D∗+ωπ− candidates in (a) signal Region I, (b) sideband Region II, (c) sideband Region
III and (d) sideband Region IV.

the PDF of Eq. (4). All the major characteristics such as
the reconstruction efficiency and statistics are taken into
account. The numbers of signal and background events
for each pseudoexperiment are generated according to
distributions by statistics.

We fit the obtained MC samples and determine the
fractions of quasi-two-body channels for each sample.
The distributions of these fractions are then fit with
a Gaussian G(x;µ, σ) or bifurcated Gaussian (Gaussian
with different standard deviation values σ1 and σ2 on left
and right side of the mean value µ) G(x;µ, σ1, σ2). The
standard deviations, σ or σ1 and σ2, are considered as
the statistical errors for the fractions of the correspond-

ing submode. The 90% confidence level upper limit for
the b1(1235)

− contribution is obtained directly from the
distribution of the b1(1235)

− decay fractions in the pseu-
doexperiments.

To measure the goodness of the fit, we utilize two
different approaches. The first operates with a mixed
sample [46] combining the experimental data sample and
pseudoexperiments with ten times higher statistics than
in the experiment. This method allows one to estimate
the consistency of the nominal signal model and data in
the multi-dimensional amplitude analysis with the small
data sample when the χ2 method with binning in the
multi-dimensional phase space is not valid. Following
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Figure 10: (color online). Distribution of the six ωπ variables for D∗ωπ candidates in the signal region (points with error
bars). The histograms represent the results of the fit (black), including the following components: ρ(770) (cyan), ρ(1450) (red),
ρ(770) and ρ(1450) (red dashed), D1(2430)

0 (green), D1(2420)
0 (blue), D∗

2(2460)
0 (magenta) and background (hatched).

the algorithm described in detail in Ref. [46], we conclude
that our nominal model and the data are consistent at
49% confidence level.

For the second technique, we define two χ2 variables
calculated in the ωπ and D∗π bases, respectively. For
each pair of kinematic variables j and k describing the

ωπ (or D∗π) production, we consider 10× 10 = 100 two-
dimensional bins and compute

χ2
j,k =

100
∑

i=1

(Nfit i −Nobs i)
2

Nobs i
. (11)

In Eq. (11), Nfit i is the expected number of events in bin
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Figure 11: (color online). Distribution of the six D
∗

π variables for D∗ωπ candidates in the signal region (points with error
bars). The histograms represent the results of the fit (black), including the following components: ρ(770) (cyan), ρ(1450) (red),
ρ(770) and ρ(1450) (red dashed), D1(2430)

0 (green), D1(2420)
0 (blue), D∗

2(2460)
0 (magenta) and background (hatched).

i based on the PDF of Eq. (4) and Nobs i is the number of
observed events in that bin. Then we obtain the total χ2

as the sum of χ2
j,k over all possible pairs of variables j and

k. In 90% (78%) of the pseudoexperiments this χ2, cal-
culated with the ωπ (D∗π) variables, has a value smaller
than in the data, indicating an acceptable fit quality.

E. Systematic uncertainties

Two types of uncertainties are considered besides the
statistical errors. These are systematic and model uncer-
tainties.

The systematic uncertainty comes from the back-
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Figure 12: (color online). Distribution of three ωπ variables for D∗+ωπ− candidates in two different subregions of the signal
region (points with error bars), defined by cos ξ2 > −0.4 or | cos θ1| > 0.5 (D∗∗ enriched) and | cos θ1| < 0.5 (D∗∗ depleted).
The histograms represent the results of the fit (black), including the following components: ρ(770) (cyan), ρ(1450) (red), ρ(770)
and ρ(1450) together (red dashed), D1(2430)

0 (green), D1(2420)
0 (blue), D∗

2(2460)
0 (magenta) and background (hatched).

ground description and the efficiency of the selection re-
quirements. To estimate the uncertainty in the param-
eterization of the distribution of background events, we
use two alternative parameterizations. The first is deter-
mined in terms of the D∗∗ production variables instead

of the ωπ basis used in the nominal fit. In the second, we
use alternative background functions: a sum of Legendre
polynomials instead of a sum of exponential functions
used in the nominal fit and alternative correlation func-
tions. The full parameterization for the nominal back-
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Figure 13: (color online). Distribution of three D
∗

π variables for D∗+ωπ− candidates in two different subregions of the signal
region (points with error bars), defined by cos ξ2 > −0.4 (D∗∗ enriched) and | cos θ1| < 0.5 (D∗∗ depleted). The histograms
represent the results of the fit (black), including the following components: ρ(770) (cyan), ρ(1450) (red), ρ(770) and ρ(1450)
together (red dashed), D1(2430)

0 (green), D1(2420)
0 (blue), D∗

2(2460)
0 (magenta) and background (hatched).

ground fit is presented in Appendix A. The uncertainty
related to the efficiency of the definition of the selection
requirements is dominated by the variation of the signal
region in the (∆E,M(π+π−π0)) plane. To estimate this
uncertainty, we modify the signal region shape from the

rectangle to an ellipse, taking into account the correla-
tion between ∆E and M(π+π−π0). This modification
increases the signal-to-background ratio by a factor of
about 1.5. The contributions to the uncertainty from the
background description and the reconstruction efficiency
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are added in quadrature to obtain the overall systematic
uncertainty.

The uncertainties in the parameterization of the sig-
nal matrix element determine the model error. There
are three sets of such uncertainties. The first is related
to the number of contributions to the matrix element.
We include an additional non-significant b1(1235)

− am-
plitude described in Appendix B and then try several
fits: first, we modify the b1(1235)

− model by removing
the D-wave contribution to the decay b1(1235)

− → ωπ−;
then we consider the relative helicity phases φ± as free
parameters during the fit, independent of the values of
the helicity phases defined in the ρ(770) and ρ(1450) am-
plitudes. The model error due to the b1(1235) contri-
bution is assigned as the maximum difference between
the values obtained from these fits and the nominal one.
Furthermore, we include in the signal model the contribu-
tions from ρ(1700)−, off-shell D0 resonances and S-wave
non-resonant amplitudes. All of them are non-significant.
The second set of errors arises due to the assumption of
the signal shape. We take into account the mixing effect
between the D1(2430)

0 and D1(2420)
0 states. Moreover,

we modify the transition form factors in the matrix ele-
ment: we substitute the effective form factor A(q2), de-
scribing the ρ(770)− → ωπ− transition for the P -wave
Blatt-Weisskopf factor BP (q

2) (see Appendix B) and we
modify the shape of the Isgur-Wise function h(w) de-
scribing the production of the ρ-meson-like states (see
Appendix C). For the latter, we apply the parameteriza-
tion that corresponds to the requirements of analyticity
and is used in the BaBar B̄0 → D∗+e−ν̄e analysis [47].
The third set of errors is related to the model param-
eters that are fixed in the fit. We vary the mass and
the width of each resonance (except the ρ(1450)) within
their known PDG uncertainties [3]. We also vary the
parameters R1 , R2 and ρ2 of the invariant form factors
describing the ρ-meson-like amplitudes (see Appendix C)
within their uncertainties obtained by the BaBar collab-
oration [47]. Moreover, we vary the parameter r = 1.6
(GeV/c)−1 used in the Blatt-Weisskopf factors and the
form factor A(q2) (see Appendix B) in the range from
0.8 to 2.5 (GeV/c)−1.

The total model error is obtained by adding all model
errors in quadrature. The sources of systematic and dom-
inant model uncertainties that affect the results of the
amplitude analysis are summarized in Table III.

To account for the systematic and model uncertainties
in the upper limit of the b1(1235)

−, we determine the
b1(1235)

− contribution with all above described sources
of errors (including the b1(1235) mass and width vari-
ation) and use the largest value to evaluate the upper
limit. The main effect is due to the removal of the D
wave in the b1(1235)

− → ωπ− decay.

An additional effect appears due to the interference be-
tween D∗+π+π−π0π− background events and D∗+ωπ−

signal events. Figure 8 (a) shows that most of the D∗4π
events lie in the range M(4π) < 2GeV/c2. The investi-
gation of e+e− annihilation into a 4π system [48] at these

energies as well as the study of the resonant structure in
the decay τ → 3ππ0ντ [49] demonstrate the dominance
of the a1(1260)π and ωπ intermediate states. We as-
sume that our D∗4π background is also dominated by
a1(1260)π production. In such a case, the interference
with the ωπ system should be negligible.

VI. DISCUSSION AND CONCLUSION

This analysis is devoted to the study of the three-body
B̄0 → D∗+ωπ− decay. We obtain the total branching
fraction

B = (2.31± 0.11 (stat.)± 0.14 (syst.))× 10−3,

consistent within errors with the CLEO [29] and BaBar
[30] measurements but with a slightly smaller central
value.
A full amplitude analysis of the final state has been

performed. A summary of the results with systematic
and model uncertainties on parameters and statistical
significances of resonant contributions is presented in Ta-
ble IV. This is the first consistent study of the ρ(770) and
ρ(1450) states in B-meson decays. Large signals corre-
spond to the off-shell ρ(770)− meson and ρ(1450)− res-
onance with significances of 10.5σ and 15.0σ calculated
from the negative log-likelihood values and taking into
account systematic effects. However, model uncertainties
are of about 40%. There is no accurate description yet
of the shape of the ρ(1450) resonance. This leads to an
ambiguity in discriminating the ρ-meson-like states and
to large model errors in the definition of their resonance
branching fractions. Nevertheless, the coherent contribu-
tion of these resonances is determined with smaller model
uncertainties. The statistical significance of this fraction
is 29.8σ. This combined decay fraction gives a dominant
contribution to the total branching fraction.
We also measure the relative coupling and the rela-

tive phase between the ρ-meson-like states. Neglecting
final state interactions for ρ-meson-like production, we
can compare this production with the e+e− SND data
[45]. In the SND analysis [45] as well as in our analysis,
a small change of the resonance shape leads to signifi-
cant shifts in the fitted resonance parameters. However,
within the isotopic invariance and CVC fitted ρ-meson-
like resonance parameters are compatible to those ob-
served in processes proceeding through a virtual photon
in e+e− collisions [45, 50].
The phase difference between the ρ(770)− and

ρ(1450)− amplitudes is observed to be close to π as pre-
dicted in Ref. [51]. In the frame of our signal model,
we measure the ρ(1450)− mass and width. Our mea-
surements also show evidence for nontrivial final-state
interaction phases in the helicity amplitudes of the ρ-
meson-like states, off-shell ρ(770)− and ρ(1450)−, with a
significance of 3.3σ. Such effect is observed within the
validity of the factorization at relatively low q2. We re-
strict the description of these resonances by the require-
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Table III: Summary of systematic and dominant model uncertainties in the parameters of amplitude analysis.

Contribution Parameter Systematic Dominant model

uncertainties uncertainties

Background Signal A(q2) r Mixing

description region form factor parameter effect

ρ(770)−D∗+ Resonance fraction, % +0.8
−0.1 +4.9 +6.1 +8.7

−24.0 −0.9

ρ(1450)−D∗+ Resonance phase +0.01
−0.02 +0.07 +0.24 +0.22

−0.17 0.00

Resonance coupling ±0.01 −0.02 +0.08 +0.10
−0.01 +0.01

Mass, MeV/c2 ±1 +11 −17 +1
−42 0

Width, MeV/c2 +2
−4 +3 +69 +55

−6 +2

Resonance fraction, % ±1.9 −4.4 +9.9 +17.4
−0.8 +0.7

φ+ phase ±0.05 +0.07 +0.06 ±0.06 0.00

φ− phase −0.02 +0.02 +0.05 ±0.03 −0.01

FCC fraction, % −0.2 −3.6 +0.3 +0.3
−1.8 −0.5

D1(2430)
0ω Resonance phase −0.07 +0.18 −0.29 +0.39

−0.32 +0.03

S-wave phase +0.04 −0.26 +0.04 +0.04
−0.02 −0.05

P -wave phase +0.03
−0.04 −0.26 +0.13 +0.08

−0.05 −0.04

Resonance fraction, % +0.1 +2.7 −0.4 +1.1
−0.2 +1.3

S-wave fraction, % +4.2
−0.7 +0.9 −0.3 −1.0 +1.2

P -wave fraction, % +1.2
−5.5 +2.1 −0.3 +2.9

−0.1 +0.8

D-wave fraction, % −0.8 +3.0 +0.5 +0.2
−2.0 −2.1

Long. polarization, % +4.6
−1.2 −4.4 +0.4 +0.6

−3.5 −1.8

D1(2420)
0ω Resonance phase +0.08

−0.03 +0.08 −0.23 +0.32
−0.27 +0.05

S-wave phase +0.03
−0.17 +0.09 +0.11 +0.05

−0.07 +0.04

P -wave phase +0.07 −0.37 +0.02 +0.02
−0.04 +0.03

Resonance fraction, % +0.2 +0.4 −0.2 +0.0
−0.1 +0.5

Long. polarization, % −3.7 −2.0 −0.9 +2.0 −2.8

D∗
2(2460)

0ω Resonance phase ±0.03 −0.12 −0.24 ±0.30 +0.03

P -wave phase +0.02
−0.11 −0.10 +0.04 +0.02

−0.12 −0.04

D-wave phase +0.01
−0.06 −0.37 +0.08 ±0.07 −0.08

Resonance fraction, % +0.0
−0.1 0.0 0.0 +0.0

−0.1 +0.1

Long. polarization, % +0.2
−2.0 +2.0 +1.5 +1.4

−0.3 −1.5

ment that the helicity phases φ+ and φ− in the am-
plitude of the off-shell ρ(770)− are equal to the corre-
sponding phases in the amplitude of the ρ(1450)−. Sim-
ilar phases were measured by the CLEO collaboration in
B → D∗ρ → D∗ππ decays [52]. Our results as well as
those of CLEO show that φ+ > φ−, although statistical
uncertainties are large.

In addition to the ρ-meson-like states, the b1(1235)
−

resonance could be produced as a possible intermedi-
ate state in the color-favored channel. Such a contri-
bution is generated by SCC and is expected to van-
ish in the limit of perfect isospin symmetry. Our mea-
surements do not require any SCC contribution and an
upper limit for the product of branching fractions of
B(B̄0 → D∗+b1(1235)

−) × B(b1(1235)− → ωπ−) has
been obtained. This result is the first search for SCC
in B-meson decays.

Color-suppressed decays B̄0 → D1(2430)
0ω and B̄0 →

D1(2420)
0ω are observed in our study with significances

of 8.6σ and 5.5σ, taking into account systematic effects.
The measurements show the relative dominance of the
broad D1(2430)

0 production in comparison with the nar-

row D1(2420)
0. Heavy quark symmetry predicts the ab-

sence of D1(2420)
0 signal in the limit ΛQCD/mc → 0

[16], where ΛQCD is the QCD scale and mc is the mass
of the c quark. The production of the D1(2420)

0 state
can be explained by finite corrections of order ΛQCD/mc

in the D1(2420)
0 production. Moreover, the dominance

of broad resonances in the color-suppressed channel can
result in comparable production of the broad and narrow
states in the B− → D∗∗0π− decays [12].

The non-factorizable B̄0 → D∗
2(2460)

0ω decay has
been observed with a statistical significance of 5.0σ. In
SCET theory [17], the equality of branching fractions
and strong phases in the decays B̄0 → D∗

2(2460)
0M and

B̄0 → D1(2420)
0M , whereM = π, ρ,K orM = K∗ with

longitudinal polarization, is predicted. Our result with
M = ω also does not contradict this prediction. How-
ever, our errors on the resonance branching fractions and
phases are large.

In our analysis, we obtain the partial wave fractions for
the intermediate resonances. For the ρ-meson-like states,
we fix the relative normalizations R1, R2 and parameter
ρ2 in the helicity amplitudes at values obtained from the
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Table IV: Summary of the final results of the B̄0 → D∗+ωπ− amplitude analysis. The first error is statistical, the second is
systematic and the third is the model error. The statistical significance, taking into account systematic effects, is given by
√

2(∆L), where ∆L is the difference between the negative log-likelihood values with the signal from resonance fixed at zero
and the nominal signal yield.

Contribution Parameter Value Significance

Total branching fraction, 10−3 2.31 ± 0.11± 0.14

FCC branching fraction, 10−3 1.90 ± 0.11+0.11
−0.13

+0.02
−0.06 29.8σ

SCC branching fraction, 10−4 < 0.7 (90%C.L.)

ρ(770)−D∗+ Resonance phase 0 (fixed)

Resonance coupling 1 (fixed)

Resonance branching fraction, 10−3 1.48 ± 0.27+0.15
−0.09

+0.21
−0.56 10.5σ

ρ(1450)−D∗+ Resonance phase 2.56 ± 0.12+0.07
−0.02

+0.24
−0.17

Resonance coupling 0.18+0.02
−0.06

+0.00
−0.02

+0.10
−0.01

Mass, MeV/c2 1544± 22+11
−1

+1
−46

Width, MeV/c2 303+31
−52

+3
−4

+69
−6

Resonance branching fraction, 10−3 1.07+0.15
−0.31

+0.06
−0.13

+0.40
−0.02 15.0σ

φ+ phase 0.87 ± 0.29+0.12
−0.07 ± 0.06

φ− phase −0.02 ± 0.13 ± 0.02± 0.05

D1(2430)
0ω Resonance phase 1.24 ± 0.28+0.19

−0.07
+0.39
−0.32

S-wave phase −0.05 ± 0.25+0.04
−0.26

+0.04
−0.07

P -wave phase 2.24 ± 0.29+0.03
−0.26

+0.13
−0.06

Resonance branching fraction, 10−4 2.5± 0.4+0.7
−0.2

+0.4
−0.1 8.6σ

S-wave fraction, % 38.9± 10.8+4.3
−0.7

+1.2
−1.1

P -wave fraction, % 33.1± 9.5+2.4
−5.5

+3.0
−4.0

D-wave fraction, % 28.3± 8.9+3.0
−0.8

+3.9
−2.9

Long. polarization, % 63.0± 9.1± 4.6+4.6
−3.9

D1(2420)
0ω Resonance phase 2.12 ± 0.34+0.11

−0.03
+0.33
−0.27

S-wave phase −0.07 ± 0.43+0.09
−0.17

+0.12
−0.08

P -wave phase −0.25 ± 0.46+0.07
−0.37 ± 0.04

Resonance branching fraction, 10−4 0.7± 0.2+0.1
−0.0 ± 0.1 5.5σ

Long. polarization, % 67.1± 11.7+0.0
−4.2

+2.3
−2.8

D∗
2(2460)

0ω Resonance phase 2.31 ± 0.50+0.03
−0.12 ± 0.11

P -wave phase −0.77 ± 0.62+0.02
−0.15

+0.04
−0.15

D-wave phase −1.85 ± 0.59+0.01
−0.37

+0.08
−0.11

Resonance branching fraction, 10−4 0.4± 0.1+0.0
−0.1 ± 0.1 5.0σ

Long. polarization, % 76.0+18.3
−8.5 ± 2.0+2.9

−2.0

semileptonic B → D∗lν analysis [47]. These normaliza-
tions determine the relative partial wave fractions with
the dominant S-wave production (see Table II). Another
effect takes place for the D1(2430)

0 resonance: all par-
tial waves — S, P and D waves — have close probabil-
ities of about 30%. A similar tendency is observed in
the D1(2420)

0 and D∗
2(2460)

0 production. However, the
statistical accuracy is not sufficient to obtain significant
numerical values (see Table II).

We also measure for the first time the longitudinal po-
larization of the ω in case of D∗∗ production. The re-
sults have large errors, but they imply non-trivial non-
factorizable QCD effects in the color-suppressed chan-
nel [55] and can be compared with the measurement of
the polarization in the decay B̄0 → D∗0ω [26], PD∗ =
(66.5 ± 5.0)%. All these polarization results, except for
the D∗

2(2460)
0, show significant deviations from unity.

The D∗
2(2460)

0 result should be considered separately

because this tensor state is generated only due to non-
factorizable contributions.
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APPENDIX A

In this section, we present the procedure of the back-
ground description in the (∆E,M(π+π−π0)) plane.
To describe the combinatorial background without real

ω events, we use Region IV, which includes a SCF com-
ponent. In this region, a negative log-likelihood function
to be minimized is given by

LIV(~a) = −
∑

(IV)

ln

(

BIV(~a, ~x)ǫ(~x)
∑

CRBIV(~a, ~x)

)

, (A.1)

where the sum
∑

(IV) is over the events in Region IV, the

sum
∑

CR is calculated over B̄0 → D∗+ωπ− CR events,
which are uniformly generated over the phase space and
then reconstructed in Region I with the above-described

selection procedure, and ǫ(~x) is the reconstruction effi-
ciency for the B̄0 → D∗+ωπ− CR events in Region I.
After the estimation of BIV, the minimization proce-

dure is performed for events in Region III. In addition
to the events described by the function BIV, this region
includes B̄0 → D∗+π+π−π0π− events without ω in the
intermediate state and another SCF component. The
negative log-likelihood function in Region III is:

LIII(~b) = −
∑

(III)

ln

(

SIII

SIV

NIV

NIII

BIV(~a, ~x)ǫ(~x)
∑

CRBIV(~a, ~x)
+

(

1− SIII

SIV

NIV

NIII

)

BIII(~b, ~x)ǫ(~x)
∑

CRBIII(~b, ~x)

)

, (A.2)

where SIII (SIV) is the size of Region III (IV), NIII (NIV)
is the number of events in Region III (IV), the sum

∑

(III)

is over the events in Region III and the sum
∑

CR is
calculated over CR events. The vector ~a in the function
BIV is obtained from Region IV and fixed in Region III.

The vector ~b is free in Region III.
A similar procedure is performed in Region II. In addi-

tion to the events described by the function BIV, Region
II includes the combinatorial background with a real ω
and another SCF component. The shape function BII

describes these events together with the additional SCF
as in to Region III. The minimization function LII(~c) is

similar to LIII(~b).
Functions BII, BIII and BIV describe specific back-

ground components defined above and SCF events in Re-
gions II, III and IV. All these background contributions
are present in signal Region I. However, the signal re-
gion also includes additional SCF in comparison with the
SCF level obtained from the sideband regions. This ad-
ditional SCF component is determined in MC simulation
that shows the same phase space distribution in ~x for
all SCF events in each region of the (∆E,M(π+π−π0))
plane. We can repeat a fit in any of the sideband Regions
j = II, III or IV, taking into account this contribution,
and thus obtain more precisely the function Bj , which
now describes this SCF and is used in further in the sig-
nal fit. We choose Region II with the function BII.
We use the following empirical parameterization to de-

scribe the distribution of background events:

Bj(~x) =F1(M
2(ωπ), cos ξ1)F2(cos θ1)×

F3(φ1)F4(cos β1)F5(ψ1), (A.3)

where the function F1(M
2(ωπ), cos ξ1) describes the cor-

relation between the M2(ωπ) and cos ξ1 variables:

F1(M
2(ωπ), cos ξ1) = (ec1

√
∆cos ξ1 + c2e

c3
√
∆cos ξ1)((1 − cos ξ1)

3ec4∆ + c5
√

∆(1 + cos ξ1)e
c6∆), (A.4)
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and the functions F2(cos θ1), F3(φ1), F4(cosβ1), F5(ψ1)
describe one-dimensional projections of the other vari-
ables:

F2(cos θ1) = ec7 cos θ1 + c8e
c9 cos θ1 ,

F3(φ1) = 1 + c10 sin
2(φ1),

F4(cosβ1) = ec11 cosβ1 + c12e
c13 cosβ1 ,

F5(ψ1) = 1 + c14 sin
2(ψ1). (A.5)

Here, ci are free parameters, ∆ =M2(ωπ)−M2
0 (ωπ) and

the lower boundaryM2
0 (ωπ) = 0.7 (GeV/c2)2 differs from

the kinematic limit (mω +mπ)
2 because the ω invariant

mass is not constrained to its nominal value.

APPENDIX B

In this section, we present all resonant amplitudes
used in the fit. The notations p2 = M2(π+π−π0),
where π+π−π0 is the ω decay product system, and
q2 = M2(ωπ∓) (q2 = M2(D∗±π∓)) for the ρ-meson-like
(D∗∗) production in the B̄0(B0) → D∗±ωπ∓ decay, are
used. The magnitudes of the three-momenta of the ω de-
cay product system and D∗± in the ωπ∓ and D∗±π∓

rest frames are denoted as p3π and pD∗ , respectively.
The magnitude of the ω three-momentum in the ωπ∓

rest frame when M(π+π−π0) is equal to the ω nomi-
nal mass is denoted as pω. The magnitude of the ω
(D∗±) three-momentum in the ωπ∓ (D∗±π∓) rest frame,
whenM(ωπ∓) (M(D∗±π∓)) is equal to the nominal mass
of the ρ-meson-like (D∗∗) resonance and M(π+π−π0) is
equal to the ω nominal mass, is denoted as p0,ω (p0,D∗).
The Blatt-Weisskopf penetration factors BL(p) [56] used
in the resonant matrix element description are defined
for L = S, P , D and F partial waves as

BS(p) = 1,

BP (p) =

√

1 + x20
1 + x2

,

BD(p) =

√

(x20 − 3)2 + 9x20
(x2 − 3)2 + 9x2

,

BF (p) =

√

x20(x
2
0 − 15)2 + 9(2x20 − 5)2

x2(x2 − 15)2 + 9(2x2 − 5)2
, (B.1)

where x = rp, x0 = rp0, r = 1.6 (GeV/c)−1 is the hadron
radius and p and p0 are the magnitudes of the daughter
particle three-momenta in the mother particle rest frame
for the case when the resonance invariant mass squared is
equal to q2 and the nominal mass squared, respectively.

B̄0(B0) → D∗±ρ(770)∓ → D∗±ωπ∓

Since the off-shell ρ(770)∓ has JP = 1−, the pair D∗±

and ωπ∓ can be produced in three partial waves: S, P
and D. S and D waves violate C- and P - parities and

have the additional phase π/2 in comparison with a P
wave. The ω and π∓ pair is produced in a P wave via
the strong decay ρ(770)∓ → ωπ∓.
The resonance matrix element Mρ± describing the

ρ(770)∓ contribution in the B̄0(B0) → D∗±ωπ∓ decay
is

Mρ± =

√

q2p3πA(p3π)

Dρ(q2)

(

fP (q
2)APP ±

ifS(q
2)ASP ± ifD(q

2)ADP

)

, (B.2)

where A(p3π) is the effective form factor describing the
ρ∓ → ωπ∓ transition, fS(q

2), fP (q
2) and fD(q

2) are the
partial wave form factors obtained in Appendix C, ASP ,
APP and ADP are the angular dependencies shown in
Table V that correspond to the definite partial waves in
the B̄0(B0) → D∗±ρ(770)∓ and ρ(770)∓ → ωπ∓ decays,
and Dρ(q

2) is the Breit-Wigner (BW) denominator, de-
scribing the ρ(770)∓ shape:

Dρ(q
2) = q2 −m2

ρ + imρΓρ(q
2). (B.3)

Here, mρ is the ρ(770)∓ mass and Γρ(q
2) is the q2-

dependent width.
The form factorA(p3π) restricts an overly rapid growth

of the matrix element of the decay ρ∓ → ωπ∓ with p3π
and is chosen as [57]

A(p3π) =
1

1 + (rp3π)2
. (B.4)

The width Γρ(q
2) for events with q2 > (mω+mπ)

2, where
mπ is the mass of the charged pion, is parameterized as
[57]

Γρ(q
2) =

mρ
√

q2
k3π
k30,π

B2
P (kπ)Γρ +

g2ωρπA
2(pω)

12π

√

q2

mρ
p3ω.

(B.5)
Here, gωρπ is a coupling constant, which is equal to
16 (GeV/c2)−1 [58], kπ is the magnitude of the momen-
tum of the π∓ in the ρ∓ → π∓π0 decay computed in the
ρ(770)∓ rest frame, k0,π is the same magnitude, when
√

q2 = mρ = (775 ± 1)MeV/c2, and Γρ = (149 ±
1)MeV/c2 is the ρ(770)∓ width [3]. The first term in
Eq. (B.5) corresponds to the dominant ρ(770)∓ decay
mode to the π∓π0 system and the second term describes
the ωρπ interaction. For events with q2 ≤ (mω +mπ)

2,
we use Γρ(q

2) = Γρ.
The magnitude and phase, corresponding to this reso-

nant amplitude, are fixed at values 1 and 0, respectively.
The free parameters are the relative helicity phases φ±
in the form factors fS(q

2), fP (q
2) and fD(q2).

B̄0(B0) → D∗±ρ(1450)∓ → D∗±ωπ∓

The resonant matrix element corresponding to the
ρ(1450)∓ intermediate state has a form similar to
Eq. (B.2) except for the form factor A(p3π) and the width
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Table V: Angular dependencies corresponding to the ωπ∓

quantum numbers JP = 1−. L1 (L2) is the relative orbital
angular momentum between the D∗± and ωπ∓ (ω and π∓).
The notations cα = cosα and sα = sinα are used. The angles
θ, φ, β, ψ, ξ correspond to the ωπ∓ angular basis.

L1 L2 AL1 L2

S P −sθsφcβsξ + sθcφsβsψ − sθsφsβcψcξ

P P sθsφsβsψcξ + sθcφsβcψ

D P 2sθsφcβsξ + sθcφsβsψ − sθsφsβcψcξ

Γρ(q
2). Since the ρ(1450)∓ is on-shell, we use the Blatt-

Weisskopf form factor BP (p3π) instead of A(p3π) [57].
The width Γρ(1450)(q

2) for events with q2 > (mω +mπ)
2

is parameterized as [57]

Γρ(1450)(q
2) =

mρ(1450)
√

q2
k3π
k30,π

B2
P (kπ)

Γρ(1450)

2
+

√

q2

mρ(1450)

p3ω
p30,ω

B2
P (pω)

Γρ(1450)

2
, (B.6)

where kπ is the same as in Eq. (B.5) but computed in
the ρ(1450)∓ rest frame and k0,π is calculated as kπ but

with
√

q2 = mρ(1450). The first term in Eq. (B.6) corre-

sponds to the ρ(1450)∓ → π∓π0 decay while the second
describes the ρ(1450)∓ → ωπ∓ decay. We assume that
the ρ(1450)∓ resonance decays to these final states with
equal probabilities. For events with q2 ≤ (mω + mπ)

2,
we use Γρ(1450)(q

2) = Γρ(1450).
We assume that the relative helicity phases φ± for the

ρ(1450)∓ production are the same as for the off-shell
ρ(770)∓. This assumption does not contradict the com-
mon description of the matrix element because of the
validity of the factorization hypothesis. Since the typi-
cal values of q2 are close to each other for the ρ(770)∓

and ρ(1450)∓, we can neglect the difference between the
appropriate FSI helicity phases for these resonances.
The free parameters for the ρ(1450)∓ amplitude ob-

tained from the fit are the relative magnitude and phase,
the mass and width of the ρ(1450)∓, and the helicity
phases φ±, which are the same as in the ρ(770)∓ ampli-
tude.

B̄0(B0) → D∗±b1(1235)
∓ → D∗±ωπ∓

The b1(1235)
∓ resonance has quantum numbers JP =

1+. As such, its wave function has an additional phase
π/2. The resonant matrix element is written as

Mb1± =
i

Db1(q
2)

[

m2
b1BS(p3π)

(

± fP (q
2)APS +

ifS(q
2)ASS + ifD(q

2)ADS

)

−

aDSe
iφDSP1(p3π)BD(p3π)×

(

± fP (q
2)APD + ifS(q

2)ASD +

ifD(q
2)ADD

)]

, (B.7)

where Db1(q
2) is the BW denominator defined in

Eq. (B.3) and describing the b1(1235)
∓ shape, aDS and

φDS are the parameters describing the admixture of S
and D waves in the amplitude of the b1(1235)

∓ decay
and P1(p3π) is the momentum factor corresponding to
the D wave in the b1(1235)

∓ decay. This factor can be
defined for the intermediate resonance with arbitrary in-
teger spin J as

PJ(p3π) =

√

q2p23π
√

p23π + p2 + J+1
J

√

p2
. (B.8)

The form factors fS(q
2), fP (q

2) and fD(q2) are deter-
mined in Appendix C, and ASS , APS , ADS , ASD, APD

and ADD are the angular dependencies defined in Ta-
ble VI that correspond to the ωπ∓ quantum numbers
JP = 1+.
The parameters aDS and φDS are fixed at the values

measured by the Brookhaven E852 collaboration. There,
the amplitude ratio was found to be |D/S| = 0.269 ±
0.013 and the phase difference φDS = 0.18 ± 0.08 rad
[59]. To relate the parameter aDS to the ratio |D/S|,
the helicity amplitude M++, corresponding to the pos-
itive helicities of the b1(1235)

∓ and the ω in the decay
b1(1235)

∓ → ωπ∓, is written in terms of partial waves:

M++ = MS
++ +MD

++ = S/
√
3 +D/

√
6, (B.9)

whereMS
++ andMD

++ are the terms corresponding to the
S and D waves, respectively. To calculate these terms,
we denote the polarization four-vectors of the b1(1235)

∓

and the ω as εµ and vµ, respectively. In such a case the
terms are written as

MS
++ = m2

b1ε
+
µ v

+∗µ,

MD
++ = −aDSe

iφDSP1(p0,ω)ε
+
µ v

+∗µ, (B.10)

where p2 = m2
ω in P1(p0,ω). Taking into account that

ε+µ v
+∗µ = −1, we have

aDS =
1√
2

m2
b1

P1(p0,ω)

|D|
|S| , (B.11)

and obtain aDS = 5.2± 0.3.
The width Γb1(q

2) for events with q2 > (mω +mπ)
2 is

parameterized via the b1(1235)
∓ → ωπ∓ decay:

Γb1(q
2) =

mb1
√

q2
pω
p0,ω

Γb1 ×
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Table VI: Angular dependencies corresponding to the ωπ∓

quantum numbers JP = 1+. L1 (L2) is the relative orbital
angular momentum between the D∗± and ωπ∓ (ω and π∓).
The notations cα = cosα and sα = sinα are used. The angles
θ, φ, β, ψ, ξ correspond to the ωπ angular basis.

L1 L2 AL1 L2

S S −cθcβcξ + sθcφcβsξ − sθsφsβsψ+

+sθcφsβcψcξ + cθsβcψsξ

P S −cθsβsψsξ + sθsφsβcψ − sθcφsβsψcξ

D S 2cθcβcξ + sθcφcβsξ − sθsφsβsψ+

+sθcφsβcψcξ − 2cθsβcψsξ

S D 2cθcβcξ − 2sθcφcβsξ − sθsφsβsψ+

+sθcφsβcψcξ + cθsβcψsξ

P D 2cθsβsψsξ + sθsφsβcψ − sθcφsβsψcξ

D D −4cθcβcξ − 2sθcφcβsξ − sθsφsβsψ+

+sθcφsβcψcξ − 2cθsβcψsξ

m4
b1
B2

S(pω) + 2a2DSP
2
1 (pω)B

2
D(pω)

m4
b1

+ 2a2DSP
2
1 (p0,ω)

, (B.12)

where mb1(1235) = (1230 ± 3)MeV/c2, Γb1 = (142 ±
9)MeV/c2 [3] and the factor 2 accounts for the normal-
ization of the D wave relative to the S wave. For events
with q2 ≤ (mω +mπ)

2, we use Γb1(q
2) = Γb1 .

Since the typical values of q2 for this resonant decay
is close to the values corresponding to the ρ(770)∓ and
ρ(1450)∓ amplitudes, we assume that the FSI helicity
phases φ± in this decay are the same as for the ρ(770)∓

and ρ(1450)∓ contributions. The free parameters for this
contribution are the relative magnitude and phase.

B̄0(B0) → D1(2430)
0(D̄1(2430)

0)ω → D∗±π∓ω,
B̄0(B0) → D1(2420)

0(D̄1(2420)
0)ω → D∗±π∓ω

The notations D′
1 and D1 for the D1(2430)

0

(D̄1(2430)
0) and D1(2420)

0 (D̄1(2420)
0), respectively,

are used in this subsection.
The observable D′

1 and D1 states are not charge-
conjugation eigenstates but rather the admixtures be-
tween the pure states with JP

j = 1+1/2 and JP
j = 1+3/2,

where the quantum number j is the total angular mo-
mentum of the u quark [6]. Mixing in the jj coupling
scheme is written as

MD1± =
1

DD1
(q2)

(

a1/2e
iφ1/2 sinωM1/2± +

a3/2e
iφ3/2 cosωe−iϕM3/2±

)

,

MD′

1
± =

1

DD′

1
(q2)

(

a1/2e
iφ1/2 cosωM1/2± −

a3/2e
iφ3/2 sinωeiϕM3/2±

)

, (B.13)

where ω and ϕ are the mixing angles, a1/2, a3/2, φ1/2 and
φ3/2 are the relative magnitudes and phases between the
pure matrix elements M1/2± and M3/2±, which corre-

spond to the JP
j = 1+1/2 and JP

j = 1+3/2 quantum num-

bers, respectively.
The pure matrix elements M1/2± and M3/2± are

M1/2± = im2
D′

1
BS(pD∗)[±fP (q2)APS +

ifS(q
2)ASS + ifD(q2)ADS ],

M3/2± = −iP1(pD∗)BD(pD∗)[±fP (q2)APD +

ifS(q
2)ASD + ifD(q2)ADD], (B.14)

where P1(pD∗) is defined in Eq. (B.8) with p2 = m2
D∗ and

the angular dependencies ASS , APS , ADS , ASD, APD

and ADD have the form shown in Table VI except for one
feature: the angular basis (θ, φ, β, ψ, ξ) describes here
the D∗∗ production. The transition form factors fS(q

2),
fP (q

2) and fD(q2) are given in Appendix C. Since the
mixing effect is predicted and confirmed to be small, we
use in Eq. (B.14) the physical mass mD′

1
instead of the

mass of the pure j = 1/2 state.
The q2-dependent widths ΓD1

(q2) and ΓD′

1
(q2) of the

D1 and D′
1 states are parameterized via their decays to

D∗±π∓:

ΓD′

1
(q2) =

mD′

1
√

q2
B2

S(pD∗)
pD∗

p0,D∗

ΓD′

1
,

ΓD1
(q2) =

mD1
√

q2
B2

D(pD∗)
P 2
1 (pD∗)

P 2
1 (p0,D∗)

pD∗

p0,D∗

ΓD1
, (B.15)

where P1(pD∗) and P1(p0,D∗) are defined as in Eq. (B.14),
mD1

= (2421 ± 1)MeV/c2, ΓD1
= (27 ± 3)MeV/c2,

mD′

1
= (2427 ± 36)MeV/c2 and ΓD′

1
= (384 ±

117)MeV/c2 are fixed [3].
The free parameters describing these resonant ampli-

tudes are the mixing angles ω and ϕ, the relative mag-
nitudes and phases a1/2, a3/2, φ1/2 and φ3/2, and the

relative normalizations and phases defined in the fS(q
2),

fP (q
2) and fD(q2) form factors.

B̄0(B0) → D∗
2
(2460)0(D̄∗

2
(2460)0)ω → D∗±π∓ω

The notationD∗
2 for theD

∗
2(2460)

0 (D̄∗
2(2460)

0) is used
in this subsection.
Since the D∗

2 state has the quantum numbers JP = 2+,
the P and F waves describing its production violate P -
and C-parities, and thus have the additional phase π/2
in comparison with the D wave. The resonant matrix
element is:

MD∗

2
± =

p2D∗BD(pD∗)

DD∗

2
(q2)

(

fD(q2)ADD ±
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Table VII: Angular dependencies corresponding to theD∗±π∓

quantum number JP = 2+. L1 (L2) is the relative orbital
angular momentum between theD∗±π∓ and ω (D∗± and π∓).
The notations cα = cosα and sα = sinα are used. The angles
θ, φ, β, ψ, ξ correspond to the D∗∗ angular basis.

L1 L2 AL1 L2

P D cθsβsψs2ξ + sθcφsβsψc2ξ − sθsφsβcψcξ

D D sθsφsβsψ + sθcφsβcψcξ

F D −3/2cθsβsψs2ξ + sθcφsβsψc2ξ − sθsφsβcψcξ

ifP (q
2)APD ± ifF (q

2)AFD

)

, (B.16)

where APD, ADD and AFD are the angular dependencies
describing each partial wave and shown in Table VII, and
the transition form factors fP (q

2), fD(q2) and fF (q
2) are

parameterized in Appendix C.
The q2-dependent width ΓD∗

2
(q2) is determined via de-

cays of the D∗
2 to D∗±π∓ and D±π∓ with the probabili-

ties of 40% and 60%:

ΓD∗

2
(q2) =

2

5

√

q2

mD∗

2

p5D∗

p50,D∗

B2
D(pD∗)ΓD∗

2
+

3

5

mD∗

2
√

q2
k5D
k50,D

B2
D(kD)ΓD∗

2
, (B.17)

where kD is the D±-meson momentum magnitude in the
D∗

2 → D±π∓ decay computed in the D∗
2 rest frame, k0,D

is the same momentum when
√

q2 = mD∗

2
= (2463 ±

1)MeV/c2, and ΓD∗

2
= (49± 1)MeV/c2 [3].

The free parameters, describing this tensor contribu-
tion, are an overall magnitude and phase as well as nor-
malizations and relative phases of the partial wave form
factors in the matrix element.

APPENDIX C

In this section, we obtain full expressions of the partial
wave form factors used in the resonant matrix elements.
The symbols p3π,B and pD∗,B are used in this section
for the magnitudes of the three-momenta of the ω de-
cay product system and D∗± in the B meson rest frame,
respectively.
The partial wave form factors fS(q

2), fP (q
2) and

fD(q2) describing the ωπ∓ resonance production in
Eqs. (B.2) and (B.7) can be expressed in terms of three
helicity amplitudes (H0(q

2) and H±(q
2)), which corre-

spond to three polarization states of the D∗± (one longi-
tudinal and two transverse), and two transverse helicity

phases φ± defined relative to the longitudinal amplitude
H0(q

2):

fS(q
2) =

√

q2

3

H+(q
2)eiφ+ +H−(q

2)eiφ− +H0(q
2)√

3
,

fP (q
2) =

√

q2

2

H+(q
2)eiφ+ −H−(q

2)eiφ−

√
2

,

fD(q2) =

√

q2

6

H+(q
2)eiφ+ +H−(q

2)eiφ− − 2H0(q
2)√

6
.

(C.1)

Here, the additional factors
√

q2/2,
√

q2/3 and
√

q2/6
are introduced to take into account the q2-dependent ver-
tex of the ωπ production in the factorization assumption
and the relative normalization fractions of the angular
dependencies shown in Tables V and VI. The helicity
amplitudes H0(q

2) and H±(q
2) can be written in terms

of three invariant form factors A1(q
2), A2(q

2) and V (q2)
[1, 47]:

H0(q
2) = − (m2

B −m2
D∗ − q2)(mB +mD∗)

2mD∗

√

q2
A1(q

2) +

2p2D∗,Bm
2
B

mD∗

√

q2(mB +mD∗)
A2(q

2),

H±(q
2) = − (mB +mD∗)A1(q

2)±
2pD∗,BmB

mB +mD∗

V (q2). (C.2)

The invariant form factors A1(q
2), A2(q

2) and V (q2) de-
scribe the B̄0(B0) → D∗± transition and can be related
to the Isgur-Wise function h(w) (w is the invariant four-
velocity transfer) under the assumption of heavy quark
symmetry [1, 47]:

A1(q
2) =

(

1− q2

(mB +mD∗)2

)

mB +mD∗

2
√
mBmD∗

h(w),

A2(q
2) = R2

mB +mD∗

√
mBmD∗

h(w),

V (q2) = R1
mB +mD∗

√
mBmD∗

h(w), (C.3)

where R1 and R2 are the relative factors, and the Isgur-
Wise function h(w) can be parameterized as [1, 47]

h(w) = 1− ρ2(w − 1) (C.4)

with

w =
m2

B +m2
D∗ − q2

2mBmD∗

. (C.5)

The values R1, R2 and ρ2 used in our analysis were mea-
sured by the BaBar collaboration in the B̄0 → D∗+e−ν̄e
decay [47]:

R1 = 1.40± 0.06,
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R2 = 0.87± 0.04,

ρ2 = 0.79± 0.06. (C.6)

The partial wave form factors fS(q
2), fP (q

2), fD(q
2)

and fF (q
2) describing the D∗∗ resonance production and

introduced in Eqs. (B.14) and (B.16) contain the momen-
tum dependencies, corresponding to the definite angular
orbital momenta of the decay products in the B meson
rest frame. These dependencies can be explicitly ex-
tracted. The form factors for the D1(2430)

0 (D̄1(2430)
0)

and D1(2420)
0 (D̄1(2420)

0) production can be written as
[36]

fS(q
2) = −RS√

3
m2

BBS(q
2)eiφS ,

fP (q
2) =

RP√
2
mBp3π,BBP (q

2)eiφP ,

fD(q2) =
1√
6
P1(p3π,D∗∗)BD(q2), (C.7)

where RS and RP (φS and φP ) are magnitudes (phases)

of S- and P -wave amplitudes defined relative to D-wave
amplitude, P1(p3π,D∗∗) is defined in Eq. (B.8) and p3π,D∗∗

is the three-momentum magnitude of the ω decay prod-
uct defined in the D∗±π∓ rest frame. Similar expressions
can be written for theD∗

2(2460)
0 (D̄∗

2(2460)
0) production

[36]:

fP (q
2) = −RP√

3

m2
Bp3π,B
mD∗

2

BP (q
2)eiφP ,

fD(q2) =
RD√
2

mBp
2
3π,B

mD∗

2

BD(q2)eiφD ,

fF (q
2) =

P2(p3π,D∗∗)p3π,B
2mD∗

2

BF (q
2), (C.8)

where RP and RD (φP and φD) are magnitudes (phases)
of P - and D-wave amplitudes defined relative to F -wave
amplitude, P2(p3π,D∗∗) is defined in Eq. (B.8) with J = 2
andmD∗

2
is the mass of the D∗

2(2460)
0 (D̄∗

2(2460)
0) state.
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