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We study deformations of the Klebanov-Strassler background parametrized by the size of a dim-6
VEV. In the UV, these solutions describe the usual duality cascade of Klebanov-Strassler, however
below the scale ρ∗ set by the dim-6 VEV they exhibit hyperscaling violation over a range of the
radial coordinate. Focusing on the spectrum of scalar glueballs, we find a parametrically light state,
the mass of which is suppressed by ρ∗, becoming massless in the limit of ρ∗ → ∞. Along the way,
we clarify the choice of IR and UV boundary conditions for the fluctuations in the bulk, and find
agreement with previous calculations for the spectrum of Klebanov-Strassler.

I. INTRODUCTION

Gauge-gravity duality allows for the analytical study of strongly coupled quantum field theories. Since its original
inception [1] which relates N = 4 SYM to Type IIB string theory on AdS5 × S5, it has been extended to numerous
examples, including cases where conformal symmetry is broken and the field theory confines [2–4]. It is interesting
to consider field theories with one or more characteristic scales in addition to that of confinement, thus allowing for
more complex dynamics.
One possible application of such multi-scale dynamics is within the context of Technicolor [5, 6], the idea that

electroweak symmetry is broken by the dynamics of a strongly coupled field theory. In particular, Walking Technicolor
models [7, 8] posit the existence of an energy regime, above the confinement scale, in which the theory is nearly
conformal as well as strongly coupled. An attractive feature of such models is that they could potentially contain
a light scalar in the spectrum due to the spontaneous breaking of approximate scale invariance [8, 9], and that this
so-called techni-dilaton would couple to the Standard Model in a similar way as the Higgs [10–13]. Given that a boson
with mass 126 GeV has been observed at the LHC [14, 15], it is of great interest to find specific examples of strongly
coupled field theories with walking dynamics, and to study whether a composite light dilaton exists in their spectra.
This has been the subject of a number of studies within the context of holographic models from string theory [16–21],
as well as studies on the lattice [22]. While an elementary Higgs certainly is consistent with current experimental
data, it is still a possibility that the newly observed particle is a techni-dilaton [23].
A string dual of a theory with walking dynamics was found in [16] by considering a system of wrapped D5-branes,

in the sense that a suitably defined 4d gauge coupling [24] stays nearly constant in an intermediate energy region. The
length of this walking region is related to the size of a dim-6 VEV. Below the scale given by the VEV, the metric is
hyperscaling violating with exponent θ = 4. In the case where the UV is given by the asymptotics of Maldacena-Nunez
(MN) [4], the spectrum of scalar glueballs can be computed and contains a light state [17, 18], the mass of which is
suppressed by the length of the walking region, thus suggesting that it is a dilaton.
There exists a class of solutions that interpolates between Klebanov-Strassler (KS) and MN [25]. The relevant

parameter is the size of a dim-2 VEV, which is equal to zero for KS, and which for non-zero values takes the theory
out on the baryonic branch of KS. Since we know that MN can be deformed by the dim-6 VEV linked to walking
dynamics, it is natural to ask whether this also is possible on the baryonic branch of KS. Such solutions were found in
[19] by applying a solution-generating technique [26] to the previously mentioned walking solutions of the D5 system
of [16]. Building on the work of [26, 27], one can understand the field theory of the new solutions that are generated
as follows. In the UV, the duality cascade of KS continues down to a certain scale at which the theory is Higgsed to
a single gauge group. Below this scale, the dynamics become the same as that of the original wrapped-D5 solutions
from which the new solutions were generated.
In this paper, we consider the case where the dim-2 VEV is turned off, while the dim-6 VEV is turned on. This

means that the UV is that of KS deformed by the dim-6 VEV, while below the scale set by this VEV the metric
becomes hyperscaling violating, again with the exponent θ = 4. This solution was originally given in [19], and similar
deformations have been considered previously in [28] (see also [29]). It has the advantage of being simpler than the
more general walking solutions on the baryonic branch of KS, while at the same time having a UV that is better
behaved than that of the deformations of MN.1

1 A consequence of the UV asymptotics being that of MN is that the spectrum contains a cut, leading to an infinite tower of states
converging on m = 1 and a continuum above m > 1 (m is the mass given in suitably defined units).
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In order to compute the spectrum of scalar glueballs, we make use of the gauge invariant formalism developed
in [30] and generalized in [31]. Given a consistent truncation to a non-linear sigma model of scalars coupled to
five-dimensional gravity, this formalism allows one to systematically study the fluctuations of the metric as well as
the scalars in a given background. Suitable boundary conditions [32] are applied at IR and UV cutoffs which are
eventually dispensed with by taking the appropriate limits. In particular, we impose Dirichlet boundary conditions
on the fluctuations of the scalar fields in the IR and UV. We find that in addition to a series of towers of states, the
spectrum contains a light scalar, the mass of which is suppressed by the size of the dim-6 VEV. This is the main
result of this paper.
All the backgrounds mentioned that have the dim-6 VEV turned on suffer from a singularity in the IR. This

singularity is of a mild type, in the sense that while (the ten-dimensional) R2
µνρσ blows up, R2

µν and R stay finite.
Furthermore, in the cases that the Wilson loop has been studied, it is well-behaved [19, 33]. Still, the singular behavior
is cause for some concern, in particular with regard to the form of the boundary conditions imposed on the fluctuations
in the IR. We show that with our prescription the spectrum converges as the IR cutoff is taken closer and closer to
the singularity.
The structure of this paper is as follows. In Section II, we review the gauge invariant formalism for the holographic

computation of glueball spectra. In Section III, we review the Papadopoulos-Tseytlin ansatz and the relevant 5d
truncation. In section IV, we present the backgrounds that are the topic of this paper, and find that for large dim-6
VEV there exists a good analytical approximation. Section V contains the numerical study of the scalar glueball
spectrum, first of KS as a consistency check, and later of the deformations thereof by the dim-6 VEV. In the final
Section VI, we conclude with a discussion of the implications of our results as well as suggestions for future directions
of research.

II. FORMALISM

In this section, we review and summarize the gauge invariant formalism for studying linearized fluctuations in
non-linear sigma models consisting of a number of scalars coupled to gravity (for further details see [30, 32]). We
focus on the scalar sector of the fluctuations, and write down a particularly simple version Eq. (14) of their boundary
conditions in the IR and UV.

A. Action and backgrounds

We start with a d + 1-dimensional non-linear sigma model consisting of n scalars Φa (a = 1, · · · , n) coupled to
gravity, whose action is given by

S =

∫

ddx

∫ r2

r1

dr
√−g

(

R

4
− 1

2
gMNGab(Φ)∂MΦa∂NΦb − V (Φ)

)

−
∫

ddx
√

−g̃
(

K

2
+ λ1(Φ)

)

∣

∣

∣

∣

∣

r1

+

∫

ddx
√

−g̃
(

K

2
+ λ2(Φ)

)

∣

∣

∣

∣

∣

r2

.

(1)

In the bulk part of the action, gMN is the d + 1-dimensional metric, Gab(Φ) is the non-linear sigma model metric,
and V (Φ) is the potential for the scalars. The parts of the action localized at the boundaries ri (i = 1, 2) contain the
induced metric g̃µν , the extrinsic curvature K that appears in the Gibbons-Hawking terms, and boundary potentials
λi(Φ) for the scalar fields that end up determining the boundary conditions for the background and fluctuations
around it.
We are interested in backgrounds that only depend on the radial coordinate r, and for which the metric has the

form of a domain wall

ds2d+1 = dr2 + e2A(r)dx21,d−1. (2)

These satisfy the equations of motion

Φ̄′′a + dA′Φ̄′a + Ga
bcΦ̄

′bΦ̄′c − V a = 0,

d(d− 1)A′2 − 2Φ̄′aΦ̄′
a + 4V = 0,

(3)

where Gabc = 1
2 (∂bGca + ∂cGab − ∂aGbc), V

a = GabVb = Gab ∂V
∂Φb , Φ̄

′
a = GabΦ̄

′b, and prime denotes differentiation
with respect to r. The second equation is the Hamiltonian constraint.
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In certain cases, there exists a superpotential W such that

V =
1

2
W aWa −

d

d− 1
W 2, (4)

and solutions can then be found by solving the first order equations

Φ̄′a =W a,

A′ = − 2

d− 1
W.

(5)

B. Equations of motion for fluctuations

Next, we study fluctuations {ϕa, ν, νµ, hTT µ
ν , h,H, ǫ

µ} around the background:

Φa = Φ̄a + ϕa,

gMN =

(

g̃µν νν
νµ 1 + 2ν + νσν

σ

)

,

g̃µν = e2A(ηµν + hµν),

hµν = hTT µ

ν + ∂µǫν + ∂νǫ
µ +

∂µ∂ν
�

H +
1

d− 1
δµνh,

(6)

where hTT µ
ν is transverse and traceless, ǫµ is transverse, � = ηµν∂µ∂ν , and d-dimensional indices µ, ν are raised

and lowered by the boundary metric η. Expanding the equations of motion to linear order, and introducing gauge
invariant variables

a
a = ϕa − Φ̄′ a

2(d− 1)A′
h,

b = ν − ∂r(h/A
′)

2(d− 1)
,

c = e−2A∂µν
µ − e−2A

�h

2(d− 1)A′
− 1

2
∂rH,

d
µ = e−2AΠµ

νν
ν − ∂rǫ

µ,

e
µ
ν = hTT µ

ν ,

(7)

the spin-1 (dµ) and spin-2 (eµν) sectors decouple, and furthermore b and c can be solved for algebraically in terms of
a
a, so that the equations of motion for the scalar sector reduce to n coupled second order differential equations for aa

given by

[

D2
r + dA′Dr + e−2A

�

]

a
a −

[

V a
|c −Ra

bcdΦ̄
′bΦ̄′d +

4(Φ̄′aVc + V aΦ̄′
c)

(d− 1)A′
+

16V Φ̄′aΦ̄′
c

(d− 1)2A′2

]

a
c = 0. (8)

Here, V a
|b =

∂V a

∂Φb + Ga
bcV

c, Ra
bcd = ∂cGa

bd − ∂dGa
bc + Ga

ceGe
bd − Ga

deGe
bc is the Riemann tensor corresponding to the

sigma model metric, while the background covariant derivative is defined as Dra
a = ∂ra

a + Ga
bcΦ̄

′b
a
c.

Explicitly expanding out the background covariant derivatives Dr occurring in Eq. (8), we obtain

∂2ra
a +

(

2Ga
bcΦ̄

′c + dA′δab
)

∂ra
b + e−2A

�a
a−

[

∂bV
a − ∂bGa

cdΦ̄
′cΦ̄′d +

4(Φ̄′aVb + V aΦ̄′
b)

(d− 1)A′
+

16V Φ̄′aΦ̄′
b

(d− 1)2A′2

]

a
b = 0,

(9)

which is sometimes more convenient to use.
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C. Boundary conditions for fluctuations

Boundary conditions for the fields are obtained by varying the action Eq. (1) with respect to the metric and the
scalar fields, and focusing on the boundary contributions. Expanding the boundary potentials λi(Φ) as

λi =

(

−d− 1

2
A′ + Φ̄′

aϕ
a +

1

2
λia|bϕ

aϕb

)

∣

∣

∣

ri
, (10)

where the first and second terms are chosen for consistency at the level of the background itself, and the choice of
λia|b can be thought of as parameterizing the form of the boundary conditions for the fluctuations. In particular, it
enters the boundary conditions for aa as follows:

[

δab +
e2A

�

(

V a − dA′Φ̄′a − λi
a
|cΦ̄

′c
) 2Φ̄′

b

(d− 1)A′

]

Dra
b
∣

∣

∣

ri
=

[

λi
a
|b +

2Φ̄′aΦ̄′
b

(d− 1)A′
+
e2A

�

2

(d− 1)A′

(

V a − dA′Φ̄′a − λi
a
|cΦ̄

′c
)

(

4V Φ̄′
b

(d− 1)A′
+ Vb

)]

a
b
∣

∣

∣

ri
.

(11)

The limit of λi
a
|b → ±∞ (with the sign depending on i = 1, 2), corresponds to Dirichlet boundary conditions for

the scalar fluctuations ϕa

ϕa
∣

∣

∣

ri
= 0. (12)

This is the choice that we will make in the following. In terms of the gauge invariant variables aa, it translates to

−e
2A

�

2Φ̄′a

(d− 1)A′

[

Φ̄′
bDr −

4V Φ̄′
b

(d− 1)A′
− Vb

]

a
b
∣

∣

∣

ri
= a

a
∣

∣

∣

ri
. (13)

We can simplify Eq. (13) further by noticing that the matrix multiplying a
a is of the form Ma

b = δab +XaYb, whose

inverse is given by (M−1)ab = δab − XaYb

1+XcYc
, and hence

e2A�−1Φ̄′aΦ̄′
bDra

b
∣

∣

∣

ri
+

(d− 1)A′

2

(

1 + e2A�−1A
′

2
∂r

(

A′′

A′2

))

a
a
∣

∣

∣

ri
= 0, (14)

where we have also used that

A′

2
∂r

(

A′′

A′2

)

= − 2

d− 1

Φ̄′a

A′

(

Va +
4V

d− 1

Φ̄′
a

A′

)

. (15)

III. PAPADOPOULOS-TSEYTLIN ANSATZ AND 5D TRUNCATION

The Type IIB supergravity backgrounds that we will study fall into the Papadopoulos-Tseytlin ansatz [34] (which
in turn is a truncation of [35]). Furthermore, they can be discussed in terms of a 5-dimensional sigma model that is a
consistent truncation of the original 10-dimensional system, thus lending themselves well to the formalism discussed
in the previous section.

A. Papadopoulos-Tseytlin ansatz

The Papadopoulos-Tseytlin ansatz is given by

ds2 = e2p−xds25 + (ex+g + a2ex−g)(e21 + e22) + ex−g
(

e23 + e24 + 2a(e1e3 + e2e4)
)

+ e−6p−xe25, (16)

ds25 = dr2 + e2Adx21,3, (17)

F3 = N [−e5 ∧ (e4 ∧ e3 + e2 ∧ e1 + b(e4 ∧ e1 − e3 ∧ e2)) + dr ∧ (∂rb(e4 ∧ e2 + e3 ∧ e1))] , (18)

H3 = −h2e5 ∧ (e4 ∧ e2 + e3 ∧ e1) + dr ∧
[

∂rh1(e4 ∧ e3 + e2 ∧ e1)− (19)

∂rh2(e4 ∧ e1 − e3 ∧ e2) + ∂rχ(−e4 ∧ e3 + e2 ∧ e1)
]

, (20)

F5 = F̃5 + ⋆F̃5, F̃5 = −Ke1 ∧ e2 ∧ e3 ∧ e4 ∧ e5, (21)
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where

e1 = − sin θ dφ , (22)

e2 = dθ , (23)

e3 = cosψ sin θ̃ dφ̃ − sinψ dθ̃ , (24)

e4 = sinψ sin θ̃ dφ̃ + cosψ dθ̃ , (25)

e5 = dψ + cos θ̃ dφ̃+ cos θ dφ, (26)

and with constraints

K = M + 2N(h1 + bh2) , (27)

∂rχ =
(e2g + 2a2 + e−2ga4 − e−2g)∂h1 + 2a(1− e−2g + a2e−2g)∂rh2

e2g + (1− a2)2e−2g + 2a2
. (28)

In addition, there is also the dilaton field φ. The background fields {g, x, p, φ, a, b, h1, h2} as well as the warp factor
A are presumed to depend only on the radial coordinate r. M and N are constants associated with the number of
D3- and D5-branes, respectively.

B. 5d truncation

There exists a consistent truncation to a 5d sigma model consisting of the scalars Φ = {g, x, p, φ, a, b, h1, h2}
appearing in the Papadopoulos-Tseytlin ansatz (now promoted to 5d fields) coupled to gravity, and described by the
action [30]

S =

∫

d5x
√−g

(

1

4
R− 1

2
Gab(Φ)∂MΦa∂MΦb − V (Φ)

)

, (29)

with kinetic terms

Gab∂MΦa∂NΦb =
1

2
∂Mg∂Ng + ∂Mx∂Nx + 6∂Mp∂Np +

1

4
∂Mφ∂Nφ (30)

+
1

2
e−2g∂Ma∂Na+

1

2
N2eφ−2x∂M b∂Nb

+
e−φ−2x

e2g + 2a2 + e−2g(1− a2)2

[

(1 + 2e−2ga2)∂Mh1∂Nh1

+
1

2
(e2g + 2a2 + e−2g(1 + a2)2)∂Mh2∂Nh2 + 2a(e−2g(a2 + 1) + 1)∂Mh1∂Nh2

]

and potential

V = −1

2
e2p−2x

[

eg + (1 + a2)e−g
]

+
1

8
e−4p−4x

[

e2g + (a2 − 1)2e−2g + 2a2
]

+
1

4
a2e−2g+8p +

1

8
N2eφ−2x+8p

[

e2g + e−2g(a2 − 2ab+ 1)2 + 2(a− b)2
]

+
1

4
e−φ−2x+8ph22 +

1

8
e8p−4x [M + 2N(h1 + bh2)]

2
.

Any solution to the equations of motion following from this 5d model can be uplifted to a 10d solution in Type IIB
supergravity.
Finally, note that (as long as N 6= 0) the change of variables

h̃1 =
M

2
+Nh1,

h̃2 = Nh2,

φ̃ = φ+ 2 logN,

(31)

removes all dependence on M and N from the 5d model.
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IV. BACKGROUNDS

In this section, we describe the Type IIB supergravity backgrounds that we will study. They are deformations of
Klebanov-Strassler corresponding to a dim-6 VEV.

A. Klebanov-Strassler and deformations

The backgrounds that we are interested in can be found by further truncating the system as

a =tanh(y),

g =− log(cosh(y)),
(32)

in which case there exists a superpotential

W =
1

2

(

e4p−2x
(

h̃1 + bh̃2

)

− e4p cosh(y)− e−2p−2x
)

. (33)

It is practical to change the radial coordinate from r to ρ defined by

dρ =
1

2
e4pdr, (34)

after which we can write down solutions to the equations of motion Eq. (5) given by

y = 2 arctanh(e−2ρ),

φ̃ = φ̃0,

b =
2ρ

sinh(2ρ)
,

h̃1 = eφ̃0 (2ρ coth(2ρ)− 1) coth(2ρ),

h̃2 = eφ̃0
1− 2ρ coth(2ρ)

sinh(2ρ)
,

p =
1

6
log

(

3

4

f0 − 4ρ+ sinh(4ρ)

sinh2(2ρ)

)

− x

3
,

A = A0 +
φ̃0
2

+
x+ log sinh(2ρ)

3
,

(35)

where φ̃0, f0, and A0 are integration constants, and x satisfies the differential equation

∂ρx+ 2(h̃1 + bh̃2)e
−2x − 2e−2x−6p = 0. (36)

We fix the boundary conditions in the UV so that x matches the solution due to Klebanov-Tseytlin [36]

xKT =
φ̃0
2

+
1

2
log

(

3ρ− 3

8

)

. (37)

Essentially, this corresponds to fixing an integration constant so that the divergence of x in the UV is softened. We
can write solutions to Eq. (36) satisfying this boundary condition as

x =
φ̃0
2

− log 2

6
+

1

3
log (f0 − 4ρ+ sinh(4ρ)) +

1

2
log I,

I(ρ) =
∫ ∞

ρ

dρ̃
4 3
√
2(2ρ̃ coth(2ρ̃)− 1)

(

coth(2ρ̃)− 2ρ̃ csch2(2ρ̃)
)

(f0 − 4ρ̃+ sinh(4ρ̃))
2/3

.

(38)

From the UV expansion (see also Appendix A)

xUV =
φ̃0
2

+
1

2
log

(

3ρ− 3

8

)

+
2 (5f0(40ρ+ 1)− 4(5ρ(80ρ− 31) + 8))

125(8ρ− 1)
e−4ρ +O(e−8ρ), (39)
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we see that there is a characteristic scale ρ∗ ≡ 1
4 log f0 above which the UV expansion is valid, and below which the

solution changes radically.
All these solutions have their end of space in the IR at ρ = 0. The background of Klebanov-Strassler corresponds

to putting f0 = 0, in which case the IR geometry is that of the deformed conifold. Non-zero values of f0 correspond
to turning on a dim-6 VEV,2 in which case there is a curvature singularity in the IR (R2

µνρσ diverges, while R2
µν and

R stay finite).
There exists in the literature various proposals for determining whether a gravity background can be expected to

capture the relevant physics despite having an IR singularity. By considering whether a given background admits
finite temperature generalizations, Gubser [38] arrived at a criterion in terms of the five-dimensional potential V
evaluated on the background, namely that it should be bounded from above in order for a singularity to be ’good’.
In [39], Maldacena and Nunez formulated a criterion in terms of the ten-dimensional metric, the strong version of
which states that gtt should not increase as one approaches the singularity (this was motivated by the interpretation
of the radial coordinate as corresponding to energy scale). The backgrounds considered in this paper satisfy this latter
criterion.

B. Approximate solutions

For ρ≪ ρ∗, we can approximate I appearing in Eq. (38) as

I(1)
approx = 4

3
√
2e−

8ρ∗
3

[

I0 − ρ2 coth2(2ρ) + ρ coth(2ρ) +O(e−4(ρ∗−ρ))
]

, (40)

where I0 is an integration constant to be determined in a moment. On the other hand, for ρ ≫ 1 we can make the
approximation

∂ρI =
8(1− 2ρ)e−

8ρ∗
3

(

2 + e4(ρ−ρ∗)
)2/3

+O(e−4ρ− 8

3
max(ρ,ρ∗)), (41)

which gives

I(2)
approx = e−8ρ/3

[

9

4
3F2

(

2

3
,
2

3
,
2

3
;
5

3
,
5

3
;−2e4(ρ∗−ρ)

)

+ 3(2ρ− 1) 2F1

(

2

3
,
2

3
;
5

3
;−2e4(ρ∗−ρ)

)

]

. (42)

For ρ∗ ≫ 1, these two approximations overlap in the region 1 ≪ ρ≪ ρ∗. Matching gives

I0 = ρ2∗ +
1

2
ρ∗

[

− 2− γ + log(2)− ψ(0)

(

2

3

)

]

+
1

64

[

π2 + 9 log2(3)− 8γ(log(2)− 2)

−
√
3π log(9) + 16ψ(0)

(

2

3

)

+ 4ψ(1)

(

2

3

)

+ 4 log(2)

(

−4 + log(2)− 2ψ(0)

(

2

3

))

]

.

(43)

Using this, let us examine how good the approximation I(2)
approx is in the region 0 ≤ ρ ∼ 1. Expanding for large ρ∗,

we obtain

I(2)
approx = I(1)

approx + 4
3
√
2e−

8ρ∗
3 ρ(coth(2ρ)− 1)(ρ+ ρ coth(2ρ)− 1) +O(e−

20ρ∗
3 ). (44)

Since I(1)
approx is of order O(ρ2∗e

− 8ρ∗
3 ), I(2)

approx as given by Eq. (42) is actually a good approximation all the way to ρ = 0
(as long as ρ∗ is moderately large), and hence for all values of ρ. We illustrate the accuracy of the two approximations

I(1)
approx and I(2)

approx in Figure 1.

2 The field theory operators corresponding to the various fields in the bulk can be found in [37], and in particular the dim-6 VEV under
consideration is for the operator TrW2W̄2.
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FIG. 1: The black lines are x obtained numerically for a few values of ρ∗, whereas the dotted blue and red lines are x evaluated

using the approximations I
(1)
approx and I

(2)
approx, respectively.

C. Hyperscaling violating region

A background whose metric transforms as

ds2d+1 → λ
2θ

d−1 ds2d+1 (45)

under scale transformations is said to be hyperscaling violating with hyperscaling violation exponent θ.
Consider the region ρ≪ ρ∗. The metric can be approximated as

ds25 = 4e−8pdρ2 + e2Adx21,3 ≈ e
4φ̃0

3

[

16 22/3ρ
8/3
∗

3 3
√
3

e
16

3
(ρ−ρ∗)dρ2 + ρ

2/3
∗ e2A0+

4ρ
3 dx21,3

]

, (46)

which under the scale transformation

x→ λx,

ρ→ ρ+
1

2
logλ,

(47)

transforms as ds25 → λ
8

3 ds25. Hence, in this region the metric is hyperscaling violating with θ = 4, which is the same
as found for the backgrounds of [16–18]. Notice the fact that the rescaling of the metric can be compensated by

simultaneously transforming φ̃0 as

φ̃0 → φ̃0 − 2 logλ. (48)

V. SPECTRA

In this section, we numerically compute the spectrum of scalar glueballs first for Klebanov-Strassler as a warm-up
exercise, and then for the deformations thereof. This is done by studying fluctuations of the scalar fields and the
metric in the bulk, using the gauge-invariant formalism explained in Section II. In particular, after imposing the
boundary conditions Eq. (14) in the IR and UV, there are only certain values of m2 = � for which the equations of
motion Eq. (8) for the fluctuations can be satisfied. These m give us the spectrum. It is practical to use the so-called
midpoint determinant method outlined in [40] to study this problem numerically.
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In principle, the spectrum depends on the three integration constants φ̃0, f0, and A0. However, A0 simply sets an
overall scale, and since we are only interested ratios of masses, it drops out. Furthermore, the spectrum does not
depend on φ̃0. The way to see this is that in the 5d sigma model, combinations of A, x, p, φ̃, h̃1, and h̃2 always appear
in such a way that φ̃0 can be eliminated from Eq. (8) and Eq. (14) after rescaling the fluctuations corresponding to

h̃1 and h̃2 by a factor eφ̃0 .3 Therefore, the only interesting variable on which the spectrum depends is f0 = e4ρ∗ .

A. Warm-up: Klebanov-Strassler

The glueball spectrum of Klebanov-Strassler was computed in [40] (see also [41, 42]). There, the boundary conditions
on the fluctuations were obtained by studying the IR and UV behavior of the fluctuations, picking normalizable
solutions in the UV and imposing regularity in the IR. Because of mixing between the fluctuations, this is a complicated
problem. On the other hand, the boundary conditions Eq. (14) can easily be imposed without any detailed knowledge
of the asymptotic behavior of the fluctuations. For a particularly simple example consisting of a single scalar with
quadratic superpotential W , it was argued in [18] that these boundary conditions automatically pick the normalizable
modes in the UV, and (together with the IR boundary condition) lead to physically sensible results. It is not obvious
that this is true in general. Therefore, before we proceed to the more complicated study of the spectrum as a function
of f0, we would like to first see whether the boundary conditions Eq. (14) lead to the same spectrum as computed in
[40] for the case f0 = 0, i.e. the Klebanov-Strassler background.
We specify the boundary conditions Eq. (14) at ρ = ρIR in the IR and at ρ = ρUV in the UV. We can think of

this as introducing IR and UV regulators, which are eventually to be dispensed with by taking the appropriate limits,
thus giving us the physical spectrum. In other words, we want to make sure that the calculation of the spectrum
converges as ρIR approaches the end of space at ρ = 0 while ρUV approaches infinity. Figure 2 and Figure 3 show the
dependence of the spectrum as a function of ρIR and ρUV . For sufficiently small ρIR and large ρUV , the spectrum
becomes the same as that reported in [40]. Notice that, as already pointed out in [40], certain states are degenerate
(the 13th and 14th states, as well as the 16th and 17th states), and that this is easy to discern in the plots as different
states approaching each other asymptotically.

B. Deformations of Klebanov-Strassler

We now turn to the study of the deformations of Klebanov-Strassler by the dim-6 VEV, in other words non-zero
values of f0 = e4ρ∗ . Again, we need to make sure that the spectrum converges in the limit ρIR → 0 and ρUV → ∞.
The difference is that there is now a curvature singularity in the IR, which could potentially ruin the convergence of
the spectrum in this limit. Fortunately, this is not the case, as shown in Appendix B, where we carry out a study of
the dependence of the spectrum as a function of the IR and UV cutoffs.
More interestingly, Figure 4 shows the dependence of the spectrum on ρ∗. As can be seen, for large negative ρ∗ the

spectrum approaches that of Klebanov-Strassler, while for large positive ρ∗, in addition to various towers, there is a
light state whose mass is suppressed by ρ∗. In particular, as Figure 5 shows, for large ρ∗ the mass of this light state
falls off with ρ∗ according to a power law.
Finally, we would like to make a comment about fine-tuning. For special choices of the boundary conditions for the

fluctuations, it is in fact possible to make a light scalar appear in any theory described by the sigma-model action
given in Eq. (1), as pointed out in [32]. More recently in [43], a strongly coupled confining field theory was studied
and the parameter λ of Eq. (11) was varied in order to determine the amount of fine-tuning necessary obtain a light
state, something that turned out to be possible only for a very narrow range of λ. The choice λ → ±∞ adopted in
this paper is in a sense the most conservative one [32]: if a light state is present, it is due to the dynamics of the
strongly coupled field theory rather than due to fine-tuning of the boundary conditions, and as such it is a robust
result.

VI. CONCLUSIONS

We first studied the scalar glueball spectrum of Klebanov-Strassler, and found agreement with the previous study
carried out in [40]. While the boundary conditions used in [40] were obtained by studying the IR and UV asymptotics

3 This was demonstrated for the case f0 = 0 in [40], but can also be shown to be true for general values of f0.
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FIG. 2: Numerical study of the spectrum of scalar glueballs for the Klebanov-Strassler background. The black points show the
masses m (normalized to the mass of the first state) as a function of the IR cutoff ρIR, and with constant UV cutoff ρUV = 11.
The blue lines are the values reported in [40] appropriately normalized.

FIG. 3: Numerical study of the spectrum of scalar glueballs for the Klebanov-Strassler background. The black points show
the masses m (normalized to the mass of the first state) as a function of the UV cutoff ρUV , and with constant IR cutoff
ρIR = 0.001. The blue lines are the values reported in [40] appropriately normalized.

of the fluctuations in the bulk, and imposing regularity and normalizability, respectively, we simply imposed Dirichlet
boundary conditions for the scalar fluctuations ϕa|IR = ϕa|UV = 0. This choice leads to boundary conditions for the
gauge invariant fluctuations a

a given in Eq. (14), and has the advantage that it can easily be implemented without
analyzing the IR and UV asymptotics of the fluctuations. The near perfect agreement with the previous study [40]
suggests that our prescription automatically enforces regularity and normalizability.
The main result of this paper concerns backgrounds which are deformations of Klebanov-Strassler by a dim-6 VEV.

The size of this VEV determines the length of a region over which the metric exhibits hyperscaling violation with
exponent θ = 4. We found that the spectrum of scalar glueballs contains a light state, whose mass is suppressed by
the size of the dim-6 VEV. This is analogous to what was found for the walking backgrounds of [17, 18] which are
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FIG. 4: Numerical study of the spectrum of scalar glueballs for the deformed Klebanov-Strassler backgrounds. The black points
show the masses m (normalized to the mass of the second state) as a function of ρ∗, and with constant IR cutoff ρIR = 0.001
and UV cutoff ρUV = 13. The blue lines show the spectrum for Klebanov-Strassler.

FIG. 5: Numerical study of the spectrum of scalar glueballs for the deformed Klebanov-Strassler backgrounds. The black points
show the ratio of masses of the first and the second lightest states m1/m2 as a function of ρ∗, and with constant IR cutoff
ρIR = 0.001 and UV cutoff ρUV = 13. The red line is proportional to ρα

∗
with α ≈ −1.6.

deformations of the Maldacena-Nunez background by the same dim-6 VEV. Although it is tempting to interpret the
light scalar as being a dilaton, it is presently unclear whether this is actually the case. In order to clarify this issue,
one would have to determine precisely which fluctuation in the bulk corresponds to the light state, something which
is not immediately clear from the numerical methods used in this paper.
The baryonic branch of Klebanov-Strassler is obtained by turning on a dim-2 VEV. One can view the solutions

of Klebanov-Strassler and Maldacena-Nunez as the opposite ends of this baryonic branch. Hence, together with the
previous studies of [17, 18], the present study shows that at both these extreme ends, turning on the aforementioned
dim-6 VEV gives rise to a light scalar being present in the spectrum. This suggests that such a state should also exist
all along the baryonic branch of Klebanov-Strassler if the dim-6 VEV is turned on as in the solutions of [19]. It would
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be interesting to see whether this is the case.
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Appendix A: UV expansions

Below are the UV expansions of the various scalar fields appearing in the background of KS deformed by the dim-6
VEV corresponding to f0. The radial coordinate z is defined so that r = − 3

2 log z.

φ̃ = φ̃0, (A1)

x =
φ̃0
2

+
1

2
log

(

−3

8
(12 log(z) + 1)

)

+
2 (30 log(z) (10f0 + 120 log(z) + 31)− 5f0 + 32)

125(12 log(z) + 1)
z6 +O

(

z12
)

, (A2)

p = − φ̃0
6

− 1

6
log

(

−3 log(z)− 1

4

)

+
(30 log(z) (30f0 + 60 log(z) + 13) + 135f0 + 61)

375(12 log(z) + 1)
z6 +O

(

z12
)

, (A3)

g = −2z6 +O
(

z18
)

, (A4)

a = 2z3 +O
(

z9
)

, (A5)

b = −6z3 log(z) +O
(

z9
)

, (A6)

h̃1 = −eφ̃0(3 log(z) + 1)− 2eφ̃0(6 log(z) + 1)z6 +O
(

z12
)

, (A7)

h̃2 = 2eφ̃0(3 log(z) + 1)z3 +O
(

z9
)

. (A8)

Appendix B: Dependence of the spectrum on the IR and UV regulators

Figures 6 and 7 show the IR and UV cutoff dependence of the spectrum for the background with ρ∗ = 2. Note that
despite the curvature singularity in the IR, the spectrum converges as the IR cutoff is taken towards the end of space.
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FIG. 6: Numerical study of the spectrum of scalar glueballs for the deformed Klebanov-Strassler background with ρ∗ = 2. The
black points show the masses m (normalized to the mass of the second state) as a function of the IR cutoff ρIR, and with
constant UV cutoff ρUV = 11. The blue lines show the asymptotic values for small IR cutoff.

FIG. 7: Numerical study of the spectrum of scalar glueballs for the deformed Klebanov-Strassler background with ρ∗ = 2. The
black points show the masses m (normalized to the mass of the second state) as a function of the UV cutoff ρUV , and with
constant IR cutoff ρIR = 0.001. The blue lines show the asymptotic values for large UV cutoff.
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