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Abstract

The Multi-scale Entanglement Renormalization Ansatz (MERA) is a tensor network that pro-

vides an efficient way of variationally estimating the ground state of a critical quantum system. The

network geometry resembles a discretization of spatial slices of an AdS spacetime and “geodesics”

in the MERA reproduce the Ryu–Takayanagi formula for the entanglement entropy of a bound-

ary region in terms of bulk properties. It has therefore been suggested that there could be an

AdS/MERA correspondence, relating states in the Hilbert space of the boundary quantum system

to ones defined on the bulk lattice. Here we investigate this proposal and derive necessary condi-

tions for it to apply, using geometric features and entropy inequalities that we expect to hold in the

bulk. We show that, perhaps unsurprisingly, the MERA lattice can only describe physics on length

scales larger than the AdS radius. Further, using the covariant entropy bound in the bulk, we show

that there are no conventional MERA parameters that completely reproduce bulk physics even on

super-AdS scales. We suggest modifications or generalizations of this kind of tensor network that

may be able to provide a more robust correspondence.
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I. INTRODUCTION

The idea that spacetime might emerge from more fundamental degrees of freedom has

long fascinated physicists. The holographic principle suggests that a (D + 1)-dimensional

spacetime might emerge from degrees of freedom in a D-dimensional theory without gravity

[1, 2]. While a completely general implementation of this idea is still lacking, the AdS/CFT

correspondence provides a specific example in which to probe the holographic emergence
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of spacetime. AdS/CFT is a conjectured correspondence between D-dimensional conformal

field theories (CFTs) in Minkowski space and (D + 1)-dimensional asymptotically anti-de

Sitter (AdS) spacetimes [3–5]. An intriguing aspect of this duality is the Ryu–Takayanagi

formula [6, 7], according to which the entanglement entropy of a region B on the boundary

is proportional to the area of a codimension-two extremal surface B̃ embedded in the bulk

curved spacetime whose boundary is B:

S(B) =
area(B̃)

4G
+ corrections. (1)

In other words, given a CFT state, one may think of bulk distance and geometry (at least

near the boundary) as being charted out by the entanglement properties of the CFT state.

A central question in this picture of spacetime emerging from entanglement is: What is

the precise relationship between bulk degrees of freedom and boundary degrees of freedom?

Expressed in a different way, what is the full map between states and operators in the

boundary Hilbert space and those in the bulk? While investigations of AdS/CFT have

thrown a great deal of light on this question, explicit simple models are still very helpful for

studying it in more detail.

Meanwhile, from a very different perspective, tensor networks have arisen as a useful way

to calculate quantum states in strongly-interacting many-body systems [8]. One significant

example is the Multi-scale Entanglement Renormalization Ansatz (MERA) [9], which is

relevant for critical (gapless) systems, i.e., CFTs. Starting from a simple state in a low-

dimensional Hilbert space, acting repeatedly with fixed tensors living on a network lattice

produces an entangled wave function for the quantum system of interest; varying with respect

to the tensor parameters efficiently computes the system’s ground state.

Working “backwards” in the MERA, starting with the ground state and gradually re-

moving entanglement, produces a set of consecutively renormalized quantum states. This

process reveals a renormalization direction along the graph, which may be thought of as an

emergent radial direction of space. As pointed out by Swingle [10], the MERA graph can

serve as a lattice discretization of spatial slices of AdS. Furthermore, one can use the MERA

to calculate the entanglement entropy of regions of the original (boundary) critical system;

this calculation amounts to tracing over bonds in the tensor network that cross the causal

cone of the boundary region. The causal cone is a sort of extremal surface for the MERA,
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motivating comparison to the Ryu–Takayanagi formula.

It is therefore natural to conjecture that the MERA provides a concrete implementation

of the emergence of spacetime, in the form of a correspondence between boundary and

bulk regions reminiscent of AdS/CFT [10]. Such an AdS/MERA correspondence would be

extremely useful, since the basic building blocks of the MERA are discrete quantum degrees

of freedom from which quantities of physical interest may be directly calculated. Some

specific ideas along these lines have recently been investigated [11–14].

In this paper, we take a step back and investigate what it would mean for such a cor-

respondence to exist and the constraints it must satisfy in order to recover properties we

expect of physics in a bulk emergent spacetime. After reviewing the MERA itself and pos-

sible construals of the AdS/MERA correspondence in the next section, in Sec. III we then

derive relationships between the MERA lattice and the geometry of AdS. We find that the

MERA is unable to describe physics on scales shorter than the AdS radius. In Sec. IV we

explore constraints from calculating the entanglement entropy of regions on the boundary,

in which we are able to relate MERA parameters to the central charge of the CFT. Finally,

in Sec. V we apply the covariant entropy (Bousso) bound to regions of the bulk lattice. In

the most näıve version of the AdS/MERA correspondence, we find that no combination of

parameters is consistent with this bound, but we suggest that generalizations of the tensor

network may be able to provide a useful correspondence.

II. ADS/MERA

Let us begin by recalling the definition and construction of the MERA. We will then

introduce the AdS/MERA correspondence and discuss the motivation for and consequences

of this proposal.

A. Review of the MERA

The MERA is a particular type of tensor network that provides a computationally efficient

way of finding the ground states of critical quantum many-body systems, i.e. CFTs, in D

dimensions. (For a recent review of tensor networks in general, see Ref. [8]. Detailed analyses

of the MERA are given in [9, 15, 16] and references therein.) In this work, we restrict our
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FIG. 1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The squares

represent disentanglers: unitary maps that, from the moving-upward perspective, remove entan-

glement between two adjacent sites. (c) The triangles represent isometries: linear maps that, again

from the moving-upward perspective, coarse-grain two sites into one. Moving downward, we may

think of isometries as unitary operators that, in the MERA, map a state in V ⊗ |0〉 into V ⊗ V .

The i and j labels in (b) and (c) represent the tensor indices of the disentangler and isometry.

attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 1. The quantum system being modeled by

the MERA lives at the bottom of the diagram, henceforth “the boundary” in anticipation of

the AdS/MERA connection to be explored later. We can think of the tensor network as a

quantum circuit that either runs from the top down, starting with a simple input state and

constructing the boundary state, or from the bottom up, renormalizing a boundary state via

coarse-graining. One defining parameter of the MERA is the rescaling factor k, defining the

number of sites in a block to be coarse-grained; in Fig. 1 we have portrayed the case k = 2.

The squares and triangles are the tensors: multilinear maps between direct products of vector

spaces. Each line represents an index i of the corresponding tensor, ranging over values from

1 to the “bond dimension” χ. The boundary Hilbert space Hboundary = V ⊗Nboundary is given

by a tensor product of Nboundary individual spaces V , each of dimension χ. (In principle
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the dimension of the factors in the boundary could be different from the bond dimension of

the MERA, and indeed the bond dimensions could vary over the different tensors. We will

assume these are all equal.)

As its name promises, the MERA serves to renormalize the initial boundary state via

coarse-graining. If we were to implement the MERA for only a few levels, we would end

up with a quantum state in a smaller Hilbert space (defined on a fixed level of the tensor

network), retaining some features of the original state but with some of the entanglement

removed. However, we can also run the MERA backwards, to obtain a boundary state from

a simple initial input. By varying the parameters in the individual tensors, we can look for

an approximation of the ground state of the CFT on the boundary. Numerical evidence

indicates that this process provides a computationally efficient method of constructing such

ground states [16, 17].

The tensors, or gates, of the MERA come in two types. The first type are the disen-

tanglers, represented by squares in Fig. 1. These are unitary maps U : V ⊗ V → V ⊗ V, as

in Fig. 1b. The name comes from thinking of moving upward through the network, in the

direction of coarse-graining, where the disentanglers serve to remove local entanglement; as

we move downward, of course, they take product states and entangle them. The second

type of tensors are the isometries, represented by triangles. From the moving-downward

perspective these are linear maps W : V → V ⊗ V; moving upward, they implement the

coarse-graining, see Fig. 1c. The isometries are subject to the further requirement that

W †W = IV , where IV is the identity map on V , and WW † = PA , where PA is a projector

onto some subspace A ⊂ V ⊗ V. From the top-down perspective, we can also think of the

isometries as bijective unitary operators WU : V ⊗ V → V ⊗ V, for which a fixed “ancilla”

state (typically the ground state |0〉) is inserted in one of the input factors, as shown in

Fig. 1c. More generally, isometries could map k sites onto q < k sites, W : V ⊗k → V ⊗q.

The MERA is not the simplest tensor network which implements coarse-graining. For

instance, the tree tensor network [18] (also considered in a holographic context in Ref. [11]),

similar to MERA but without any disentanglers, also implements coarse-graining. How-

ever, tensor networks without disentanglers fail to capture the physics of systems without

exponentially-decaying correlations, and consequently cannot reproduce a CFT ground state.

An example that invites analysis with a MERA is the transverse-field Ising model [19].

In 1 + 1 dimensions, the model describes a chain of spins with nearest-neighbor interactions
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subject to a transverse magnetic field. Its Hamiltonian is

Ĥ = −J
∑
i

σ̂z
i σ̂

z
i+1 − h

∑
i

σ̂x
i , (2)

where σ̂z
i and σ̂x

i are Pauli operators and where J and h set the strength of the nearest-

neighbor interactions and the magnetic field, respectively. Notably, the system achieves

criticality at J = h, where a quantum phase transition occurs between ordered (J > h)

and disordered (J < h) phases. In this example, the open legs at the bottom of the MERA

describe the state of the one-dimensional lattice of spins. A single application of disentanglers

and isometries can be thought of as a true real-space renormalization, producing a lattice

of spins that is less dense than the preceding lattice by a factor of q/k.

In general, much information is required to describe an arbitrary MERA. In principle, the

Hilbert spaces, the disentanglers, and the isometries could all be different. Also, for k > 2,

there is no canonical way of laying out the disentanglers and isometries; the circuit itself must

be specified. We will restrict ourselves to the case q = 1, so that isometries have 1 upward-

going leg and k downward-going legs. Further, without loss of generality, we take the same

vector spaces, disentanglers, and isometries everywhere in the MERA, a simplification that

is enforced by the symmetries of the boundary ground state. These symmetries — namely,

translation- and scale-invariance — dictate that the MERA parameters and structure be

homogeneous across the whole tensor network.

For geometric considerations, it is useful to abstract away all of the information about

unitary operators and to draw a MERA as a graph as shown in Fig. 2. In such a graph,

we only indicate the connectivity of sites at any given level of coarse-graining as well as the

connectivity of sites under renormalization group flow.

B. An AdS/MERA Correspondence?

The possibility of a correspondence between AdS and the MERA was first proposed

by Swingle in Ref. [10], where it was noted that the MERA seems to capture certain key

geometric features of AdS. At the most basic level, when viewed as a graph with legs of fixed

length, a MERA may be thought of as a discretization of the hyperbolic plane, which is a

spatial slice of AdS3. In this discretization, the base of the MERA tree lies on the boundary
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FIG. 2. (a) A k = 2 MERA, and (b) the same MERA with its disentanglers and isometries

suppressed. The horizontal lines in the graph on the right indicate lattice connectivity at different

renormalization depths, and the vertical lines indicate which sites at different depths are related

via coarse-graining due to the isometries. Each site, represented by a circle, is associated with a

Hilbert space V with bond dimension χ. In the simplest case, a copy of the same Hilbert space

is located at each site. When assigning a metric to the graph on the right, translation and scale

invariance dictate that there are only two possible length scales: a horizontal proper length L1 and

a vertical proper length L2.

of the AdS slice and the MERA lattice sites fill out the bulk of the slice [10, 20].

Interestingly, the structure of a MERA is such that it seems to go beyond a simple dis-

cretization of the hyperbolic plane. Certain discrete paths in the MERA naturally reproduce

geodesics of the hyperbolic plane [10, 21]. Moreover, this phenomenon makes it possible to

understand the computation of CFT entanglement entropy using a MERA as a discrete

realization of the Ryu–Takayanagi formula [22]. These and other examples [10, 21] seem to

suggest that a MERA may in fact be elucidating the structural relationship between physics

on the boundary of AdS and its bulk.

In this work we take the term “AdS/MERA correspondence” to mean more than simply

a matching of graph geometry and continuous geometry. In the spirit of the AdS/CFT cor-

respondence, we suppose that (at least some aspects of) both boundary and bulk physics are

described by appropriate Hilbert spaces Hboundary and Hbulk respectively, which must have

equal dimensions. A full AdS/MERA correspondence would then be a specification of these
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Hilbert spaces, as well as a prescription which makes use of the MERA to holographically

map states and operators in Hboundary to corresponding states and operators in Hbulk and

vice-versa. To preserve locality in the bulk and the symmetries of AdS, it is natural to

identify Hbulk with the tensor product of individual spaces Vbulk, each located at one site

of the MERA. If it exists, this correspondence provides a formulation of bulk calculations

in terms of the MERA. An AdS/MERA correspondence should allow us to, for example,

calculate bulk correlation functions, or bulk entanglement entropies using tools from or the

structure of the MERA.

There is one straightforward way to construct such a map Hboundary ↔ Hbulk. We have

noted that the isometries W : V → V ⊗V can be thought of as unitaries WU : V ⊗V → V ⊗V

by imagining that a fixed ancillary state |0〉 is inserted in the first factor; for a k-to-one

MERA, one would insert k−1 copies of the |0〉 ancilla at each site to unitarize the isometries.

From that perspective, running upwards in the tensor network provides a map from the

MERA ground state on the boundary to a state |0〉⊗(k−1)Nbulk ∈ V ⊗(k−1)Nbulk , where at

each isometry there is a copy of V ⊗(k−1) and Nbulk denotes the number of bulk lattice

sites, excluding the boundary layer. As we ultimately show in Sec. V, one has Nboundary =

(k − 1)Nbulk. We can then identify Hboundary = Hbulk = V ⊗Nboundary and think of the tensor

network as a quantum circuit providing a map between arbitrary states Hboundary → Hbulk.

In this construction, the MERA ground state on the boundary gets mapped to the factorized

bulk state |0〉⊗(k−1)Nbulk , but other boundary states will in general produce entangled states

in the bulk (keeping the tensors themselves fixed).

Something very much like this construction was proposed by Qi [11], under the name

“Exact Holographic Mapping” (EHM). That work examined a tensor network that was not

quite a MERA, as no disentanglers were included, only isometries. As a result, while there

is a map Hboundary → Hbulk, the boundary state constructed by the tensor network does not

have the entanglement structure of a CFT ground state. In particular, it does not seem

to reproduce the Ryu–Takayanagi formula in a robust way. Alternatively, we can depart

from Qi by keeping a true MERA with the disentanglers left in, in which case the bulk

state constructed by the quantum circuit has no entanglement: it is a completely factorized

product of the ancilla states. Such a state doesn’t precisely match our expectation for what a

bulk ground state should look like, since there should be at least some entanglement between

nearby regions of space.
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Therefore, while it is relatively simple to imagine constructing a bulk Hilbert space and a

map between it and the boundary Hilbert space, it is not straightforward to construct such

a map that has all of the properties we desire. It might very well be possible to find such a

construction, either by starting with a slightly different boundary state, or by adding some

additional structure to the MERA.

For the purposes of this paper we will be noncommittal. That is, we will imagine that

there is a bulk Hilbert space constructed as the tensor product of smaller spaces at each

MERA site, and that there exists a map Hboundary → Hbulk that can be constructed from the

MERA, but we will not specify precisely what that map might be. We will see that we are

able to derive bounds simply from the requirements that the hypothetical correspondence

should allow us to recover the properties we expect of bulk physics, including the background

AdS geometry and features of semiclassical quantum gravity such as the Bousso bound on

bulk entropy.

III. MERA AND GEOMETRY

If a MERA is a truly geometrical object that describes a slice of AdS, then the graph

geometry of a MERA should give the same answers to geometric questions as the continuous

geometry of a slice of AdS. Here, we reconsider the observation by Swingle [10, 21] that

certain trajectories on the MERA coincide with trajectories in AdS and we investigate the

constraints that this correspondence places on the graph metric of the MERA. We find that

a MERA necessarily describes geometry on super-AdS length scales, moreover, there is no

redefinition of the MERA coordinates that results in the proper distance between MERA

sites mapping to any sub-AdS length scale.

A. Consistency conditions from matching trajectories

In order to speak of graph geometry, one must put a metric on the MERA graph, i.e.,

one must assign a proper length to each bond in the graph of Fig. 2. Presumably, the metric

should originate from correlations between the sites in the MERA. In the absence of an

explicit identification of the origin of the graph metric, however, at least in the case of a

MERA describing the ground state of a CFT, it is sensible to identify two length scales.
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Explicitly, we must assign a proper length L1 to horizontal bonds and a proper length L2

to vertical bonds. Indeed, translational and conformal invariance guarantee that these are

the only two length scales in any graph metric one can assign to a MERA for which an

AdS/MERA correspondence exists. In particular, the ground state of a CFT is translation

invariant, so each horizontal bond in the finest (UV-most) lattice should have the same

proper length so as to respect this symmetry. Self-similarity at all scales then requires that

any horizontal bond at any level of renormalization have this same proper length. There is

no a priori reason why the vertical bonds should share the proper length of the horizontal

bonds and indeed we will see that their proper length will be different. However, again

by self-similarity and translation invariance, all vertical bonds must be assigned the same

proper length.

The observation in Ref. [10] that certain paths in the MERA graph coincide with cor-

responding paths in slices of AdS is what established the possibility of an AdS/MERA

correspondence. Here we will carefully examine these paths and determine what constraints

the requirements that they match place on MERA parameters, i.e., on the bond lengths L1

and L2 and on the rescaling factor k.

Consider a constant-time slice of AdS3 with the following metric:

ds2 =
L2

z2
(dz2 + dx2). (3)

We will compare the proper lengths of straight horizontal lines and geodesics in the AdS

slice to the proper lengths of the corresponding paths in the MERA graph. In the AdS slice,

let γ1 be a straight horizontal line (dz = 0) sitting at z = z0 with coordinate length x0.

Let γ2 be a geodesic whose endpoints lie near the boundary z = 0 and are separated by a

coordinate distance x0 at the boundary. In this choice of coordinates, such a geodesic looks

like a semicircle (see Fig. 3). It is a straightforward computation to show that the proper

lengths of these curves are

|γ1|AdS =
L

z0

x0 and |γ2|AdS = 2L ln
(x0

a

)
. (4)

Note that there is a UV cutoff at z = a � x0 and that we have neglected terms of order

a/x0.
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FIG. 3. A horizontal line (γ1) and a geodesic (γ2) in a spatial slice of AdS3.

We fix L1 and L2 by comparing γ1 and γ2 to horizontal lines and “geodesics” in the MERA,

respectively. Consider two sites in a horizontal lattice at depth m (i.e., m renormalizations

of the UV-most lattice) and separated by a coordinate distance x0 in the coordinate system

shown in Fig. 2. By fiat, this lattice sits at z0 = kma. The number of bonds between the

two sites at depth m is x0/(k
ma) (see Fig. 2 for the case k = 2). It follows that the proper

length of the line connecting the two points is just

|γ1|MERA = L1 · (number of bonds between endpoints)

= L1
x0

z0

∣∣∣∣
z0=kma

(5)

To have |γ1|AdS = |γ1|MERA, we should therefore set L1 = L.

Similarly, consider two lattice sites on the UV-most lattice separated by a coordinate

distance x0. If we assume that x0 � a, then the shortest path (geodesic) in the MERA

connecting the two lattice sites is the path that goes up in the renormalization direction

and then back down again. The two sites are separated by x0/a bonds on the UV-most

lattice, so logk(x0/a) renormalization steps are needed to make the sites either adjacent or

superimposed. This means that the geodesic that connects the endpoints is made up of

2 logk(x0/a) bonds (as we have to go up and then back down again, giving the factor of 2).

It follows that the proper length of the geodesic is

|γ2|MERA = L2 · (number of bonds in the geodesic)

= 2L2 logk

(x0

a

) (6)

To have |γ2|AdS = |γ2|MERA, we should therefore set L2 = L ln k.
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B. Limits on sub-AdS scale physics

One aspect of the matching of geodesics that is immediately apparent is that the MERA

scales L1 and L2 that parametrize the proper distance between lattice sites are of order the

AdS scale L or larger, as was also noted in Refs. [10, 20]. This runs counter to the typical

expectation that, in a discretization of spacetime, one expects the granularity to be apparent

on the UV, rather than the IR, scale. That is, sub-AdS scale locality is not manifested in

the MERA construction and must be encoded within each tensor factor [21].

One could try to evade this difficulty by attempting to redefine the MERA coordinates

(x, z)MERA (those of Fig. 2) as functions of the AdS coordinates (x, z)AdS (those of Fig. 3)

and taking a continuum limit; above, we assumed that the two sets of coordinates were

simply identified. That is, suppose xMERA = f(xAdS) and zMERA = g(zAdS). (For example,

one could consider f(x) = εx for small ε and imagine taking the continuum limit, with

the aim of making L1 much smaller than the AdS scale.) If a is still the UV cutoff on the

AdS side, then in the MERA we have f(a) as the UV-most lattice spacing and g(a) as the

UV cutoff in the holographic direction. Consider the computation of |γ1|. From the AdS

side, we have |γ1|AdS = LxAdS
0 /zAdS

0 . On the MERA side, the number of sites spanned by

xMERA
0 = f(xAdS

0 ) is xMERA
0 /kmf(a), while the holographic coordinate is zMERA

0 = kmg(a).

Hence,

|γ1|MERA = L1
f(xAdS

0 )

f(a)

g(a)

g(zAdS
0 )

. (7)

Equating |γ1|AdS = |γ1|MERA ≡ |γ1|, we have

g(zAdS
0 )

∂

∂xAdS
0

|γ1| = L1
f ′(xAdS

0 )

f(a)
g(a) = L

g(zAdS
0 )

zAdS
0

. (8)

Since the right side of the first equality only depends on xAdS
0 and the second equality only

depends on zAdS
0 , but we can vary both parameters independently, both expressions must

be independent of both AdS coordinates. Hence, we must have f(x) = εxx and g(z) = εzz

for some constants εx and εz. Plugging everything back into Eq. (7) and comparing with

|γ1|AdS, we again find that L1 = L, so no continuum limit is possible. Similarly, in computing

|γ2|, we note that the number of bonds between the endpoints on the UV-most lattice

level is xMERA
0 /f(a), so the geodesic connecting the endpoints has 2 logk(xMERA

0 /εxa) bonds.

On the other hand, we have |γ2|AdS = 2L ln(xAdS
0 /a) = 2L ln(xMERA

0 /εxa). That is, in
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equating |γ2|AdS and |γ2|MERA, we must again set L2 = L ln k. We thus also find that no

continuum limit is possible in the holographic direction. That is, we have shown that there

is a constant normalization freedom in the definition of each of the coordinate distances on

the AdS and MERA sides of any AdS/MERA duality, but such a coordinate ambiguity is

unphysical and does not allow one to take a continuum limit. One still finds that the physical

MERA parameters L1 and L2 are AdS scale. This means that there truly is no sense in

which a discrete MERA can directly describe sub-AdS scale physics without the addition

of supplemental structure to replace the individual tensors. This fact limits the ability

of the MERA to be a complete description of the gravity theory without such additional

structure. It might be the case that one needs a field theoretic generalization of the MERA,

such as cMERA [23–25] or some local expansion of the individual tensors into discrete tensor

networks with a different graph structure to describe sub-AdS physics, but such a significant

generalization of the tensor network is beyond the scope of this work and in any case would

no longer correspond to a MERA proper.

IV. CONSTRAINTS FROM BOUNDARY ENTANGLEMENT ENTROPY

Because the MERA can efficiently describe critical systems on a lattice, quantities com-

puted in the MERA on scales much larger than the lattice spacing should agree with CFT

results. In this section, we will compute the entanglement entropy of `0 contiguous sites in

the MERA and exploit known CFT results to obtain constraints on the properties of the

MERA. In particular, we will find an inequality relating the MERA rescaling factor k and

bond dimension χ to the CFT central charge c. This constraint is interesting in its own

right, but it will prove critical in the next section when we begin to compute bulk properties.

A. MERA and CFT Entanglement Entropy

For a (1+1)-dimensional CFT in a pure state, the von Neumann entropy of a finite interval

B, which is typically referred to as the entanglement entropy, is known to be [26, 27]

S(B) =
c

3
ln `0 , (9)
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where the length of the interval is much smaller than the system size. Here, `0 is the length of

the interval in units of the UV cutoff. In the notation of the last section, we have `0 = x0/a.

In the special case that the CFT is dual to AdS in 2 + 1 dimensions, the central charge is

set by the Brown–Henneaux formula [28],

c =
3L

2G
. (10)

Also note that the length of the geodesic that connects the two ends of B (the curve γ2 in

Fig. 3) is given in Eq. (4) by |γ2| = 2L ln `0. The Brown–Henneaux relation allows us to

reproduce the Ryu–Takayanagi formula [6, 29] from the entanglement entropy,

S(B) =
area(B̃)

4G
, (11)

where B̃ = γ2 is the extremal bulk surface with the same boundary as B. For a boundary

with one spatial dimension and a bulk with two spatial dimensions, any simply-connected

region B is an interval, the extremal bulk surface is a geodesic, area(B̃) is a length, and G

has mass dimension −1.

The MERA calculation of the entanglement entropy of `0 sites in the CFT has an anal-

ogous geometric interpretation. Suppose one is given the MERA representation of a lattice

CFT ground state, i.e., one uses a MERA to generate the CFT state. Denote by SMERA(`0)

the entanglement entropy of the resulting state restricted to `0 sites. In Ref. [22], it is shown

that for a specific, optimal choice of `0 sites, for `0 parametrically large, the following bound

is placed on SMERA(`0) for a MERA with k = 2:

SMERA(`0) ≤ 2 log2 `0 lnχ. (12)

Parsing the equation above, this bound essentially counts the number of bonds that the

causal cone of the `0 sites in question crosses (∼ 2 log2 `0) and lnχ is the maximum en-

tanglement entropy that a single bond can possess when the rest of the MERA is traced

out.

The causal cone of a region B consisting of `0 contiguous UV sites in a MERA resembles

a bulk extremal surface for the boundary region B. Given `0 sites in the UV, their causal
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cone is defined as the part of the MERA on which the reduced density matrix (or in other

words, the state) of B depends. An example of a causal cone is illustrated in Fig. 4.

FIG. 4. Causal cone (shaded) for a set of `0 = 6 sites in a MERA with k = 2. The width `m of the

causal cone at depth m is `1 = 4, `2 = 3, `3 = 3, `4 = 3, etc. The crossover scale for this causal

cone occurs at m̄ = 2. Between the zeroth and first layer, ntr
1 = 2 bonds are cut by the causal

cone. Similarly, ntr
2 = 2, ntr

3 = 3, etc.

In particular, note that the number of bonds that a causal cone crosses up to any fixed

layer scales like the length of the boundary of the causal cone up to that layer. It is in this

sense that Eq. (12) is a MERA version of Ryu–Takayanagi. Also note that the width of the

causal cone shrinks by a factor of ∼ 1/k after every renormalization step until its width is

comparable to k. As such, if one denotes the width of the causal cone at a layer m by `m,

then `m is roughly constant for all m greater than some m̄ (see Fig. 4). The scale m̄ is called

the crossover scale.

For general k, it is also possible to formulate a bound similar to Eq. (12) for the entan-

glement entropy of `0 sites. For parametrically large `0, we find that

SMERA(`0;B) ≤ 4(k − 1) logk `0 lnχ . (13)

We demonstrate this bound in App. A using techniques that are similar to those developed

in Ref. [22]. In particular, note that we do not allow ourselves to choose the location of the

`0 sites in question. As such, we remind ourselves that SMERA can depend on the location of

the region B (and not only its size) by including it in the argument of SMERA. This is also
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the reason why our Eq. (13) is more conservative than the optimal bound given in Eq. (12).

B. Constraining SMERA

Let us examine Eq. (13) a bit more closely. As discussed in App. A, 4(k− 1) is an upper

bound on the number of bonds that the causal cone could cut at any given depth m below the

crossover scale m̄. (The crossover scale m̄ is attained after roughly logk `0 renormalization

steps.) For a given causal cone, i.e., for `0 sites at a given location with respect to the

MERA, let us parametrize our ignorance by writing

SMERA(`0;B) ≤ 4fB(k) logk `0 lnχ , (14)

where fB(k) grows no faster than (k − 1) and counts the (average) number of bonds cut by

the causal cone at any depth up to the crossover scale. Explicitly,

fB(k) ≡ 1

4m̄

m̄−1∑
m=0

ntr
m , (15)

where ntr
m denotes the number of bonds that the causal cone cuts at the mth level.

Each cut bond contributes at most lnχ to the entropy (the case of maximal entanglement).

As such, it is instructive to introduce a parameter ηB ∈ [0, 1] that describes the degree of

entanglement of the sites in the causal cone. In doing so we may rewrite the inequality (14)

as an equality:

SMERA(`0;B) = 4fB(k) logk `0 · ηB lnχ. (16)

The quantity ηB lnχ is the average entanglement entropy per cut bond in the causal cone

of B. Equivalently, Eq. (16) may be taken as the definition of ηB.

This definition of ηB of course depends on the location of B and only applies to bonds that

are cut by the causal cone of B. In what follows, it will be advantageous to have a notion of

average entanglement entropy per bond that applies to all bonds in the MERA. To this end,

start with a lattice consisting of `tot sites in total and consider the limit in which the size of a

region B is unbounded but where the ratio `0/`tot is held constant (so that B does not grow

to encompass the whole domain of the CFT). In this limit, SMERA(`0;B)→ SMERA(`0) and

fB(k)→ f(k) should be independent of the exact location of B, i.e., SMERA should exactly
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agree with Eq. (9). Let us consequently define the average entanglement entropy per bond

in the MERA:

η lnχ = lim
`0→∞

SMERA(`0)

4f(k) logk(`0)
, (17)

The quantity η is then a property of the MERA itself.

Intuitively, one would not expect each individual bond in the MERA to be maximally

entangled and so it should be possible to constrain η more tightly than η ≤ 1. This expec-

tation is made more precise via the following considerations. To begin, consider a MERA

with k = 2 and examine a pair of isometries at a fixed depth m. As indicated in Fig. 5a, let

ρ2 denote the density matrix of the bonds and ancillae emanating from the two isometries

and let ρ1 denote the density matrix of the four highlighted bonds below the isometries. We

again assume that the ancillae are initialized to the pure product state composed of factors

of |0〉. Taking into account the ancillae, or in other words promoting the isometries to uni-

taries, we see that ρ1 and ρ2 are related by a unitary transformation, so S(ρ1) = S(ρ2). By

assumption, the state of each ancilla is |0〉, so ρ2 = ρ̃2⊗|0〉〈0|⊗|0〉〈0| for some density matrix

ρ̃2. This in turn implies that S(ρ2) = S(ρ̃2) ≤ 2 lnχ. From the definition of η above, the

entanglement entropy of a single bond is asymptotically given by η lnχ, so S(ρ1) ' 4η lnχ.

It therefore follows that η ≤ 1/2.

b b b

b b b

b b b

ρ2

ρ1

|0〉 |0〉

bb b b

(a)

b
b

b

b b b

b b b

b b b

b

b b b

b b b

b b b

b
b

b

|0〉⊗(k−1) |0〉⊗(k−1)

ρ2

ρ1

b b b

b b b

(b)

FIG. 5. A pair of isometries with their ancillae explicitly indicated for a MERA with (a) k = 2

and (b) general k. The thick bonds below the isometries, the state of which is denoted by ρ1,

are unitarily related to the bonds that exit the isometries and the ancillae, the state of which is

denoted by ρ2.
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For general k, the argument is nearly identical. We again begin by considering a pair of

isometries at a given level m (see Fig. 5b). Analogously with the k = 2 case, let ρ2 denote the

density matrix of the two bonds and 2k− 2 ancillae emanating from the two isometries and

let ρ1 denote the density matrix of the 2k highlighted bonds below the isometries. There is

only one disentangler that straddles both of the isometries in question for any layout of the

MERA. As such, at most k of the lower bonds enter a disentangler from below and the rest

directly enter the isometries. Here as well ρ1 and ρ2 are related by a unitary transformation

so that S(ρ1) = S(ρ2). Similarly, ρ2 = ρ̃2 ⊗ (|0〉〈0|)⊗2k−2 for some density matrix ρ̃2, so

S(ρ2) = S(ρ̃2) ≤ 2 lnχ. The region described by ρ1 always consists of 2k bonds, so we may

again asymptotically write S(ρ1) ' 2kη lnχ. It therefore follows that kη ≤ 1, and since

f(k) ≤ (k − 1), we may write

ηf(k) ≤ k − 1

k
. (18)

We note that, in computational practice, one typically does not use the “worst-case scenario”

construction explored in App. A; a more conventional construction would result in a tighter

bound on f(k) and hence a stricter inequality than Eq. (18). For our purposes, however, we

will remain as conservative as possible and therefore use the inequality (18) in our subsequent

bounds.

C. Matching to the CFT

Finally, we obtain a constraint on k, χ, and η in terms of the central charge c by collecting

the results of this section. Let us work in the limit where the interval is much larger than

the lattice spacing, logk `0 � 1. We have seen that this is precisely the regime in which η

and f(k) are well-defined quantities independent of the choice of B. It is also the regime

in which we can equate the CFT entropy S(`0) = (c/3) ln `0 with the MERA entropy (16).

Doing so, the central charge is given by

c =
3L

2G
= 12η f(k)

lnχ

ln k
. (19)

Then in light of Eq. (18), we find that

c ≤ 12

(
k − 1

k ln k

)
lnχ . (20)
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To recapitulate, given a CFT with central charge c and a MERA representation of its

ground state, a necessary condition for a consistent AdS/MERA correspondence is that the

MERA parameters k and χ satisfy the constraint (20). Importantly, this implies that, for

a well-defined semiclassical spacetime (for which c � 1), the bond dimension χ must be

exponentially large in the size of the AdS scale compared to the Planck scale.

Let us also note that we can still obtain a bound from Eq. (19), albeit a weaker one, with-

out using the result of Eq. (18). Recall that this latter result relies on having unentangled

ancillae in the MERA. This is not necessarily the case for other tensor network bulk con-

structions, as we will subsequently discuss. As such, if we disregard the result of Eq. (18),

we still have by virtue of their definitions that f(k) ≤ k − 1 and η ≤ 1. The following

weaker but more general bound on the central charge therefore follows from Eq. (19) for

such generalized tensor networks:

c ≤ 12

(
k − 1

ln k

)
lnχ. (21)

V. CONSTRAINTS FROM BULK ENTANGLEMENT ENTROPY

In addition to the compatibility conditions from geodesic matching and boundary en-

tanglement entropy, it is well-motivated to seek out any other possible quantities that can

be computed in both the MERA and AdS/CFT frameworks, so as to place further con-

straints on any AdS/MERA correspondence. One important example of such a quantity is

the entropy associated with regions in the bulk, as opposed to on the boundary.

A. The Bousso Bound

The notion of placing bounds on the entropy of regions of spacetime in a quantum gravity

theory has been explored for many years, first in the context of black hole thermodynamics

[30] and the Bekenstein bound [31] and later in more general holographic contexts, culmi-

nating in the covariant entropy bound, i.e., the Bousso bound [32, 33].

The statement of the Bousso bound is the following: given a spacelike surface B of area

A, draw the orthogonal null congruence on the surface and choose a direction in which the

null generators have non-positive expansion. Let the null geodesics terminate at caustics,
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singularities, or whenever the expansion becomes positive. The null hypersurface swept

out by these null geodesics is called the lightsheet. Then the entropy S going through the

lightsheet is less than A/4G.

Let our spacelike surface B be a 2-ball of area A on a spacelike slice of AdS and choose

as the lightsheet the ingoing future-directed null congruence. This lightsheet will sweep out

the entire interior of B and will terminate at a caustic at the center of B. Since the system

is static, the entropy S passing through this lightsheet is the entropy of the system on B,

which by the Bousso bound satisfies

S(B) ≤ A

4G
. (22)

It is natural to cast the Bousso bound as a constraint on the dimension of the bulk Hilbert

space. As argued in Ref. [34], the thermodynamic entropy of a system about which we only

know the boundary area A is just the logarithm of the dimension of the true Hilbert space of

the bulk region in question (as opposed to the näıve Hilbert space in quantum field theory),

which the Bousso bound implies is less than A/4G.1 As such, if we denote the Hilbert space

of B by HB, let us replace Eq. (22) with the slightly more concrete statement

ln dimHB ≤
A

4G
. (23)

B. A MERA version of the Bousso Bound

Our aim is to compute both sides of the inequality (23) using the MERA. For this

calculation, it is instructive to change our parametrization of the hyperbolic plane from

coordinates (x, z), which take values in the half-plane z > 0, to coordinates (ρ, θ), which

take values in a disk 0 ≤ ρ < 1, 0 ≤ θ < 2π. Embeddings of the MERA in a disk are often

depicted in the literature, e.g., [38]; here we make this coordinate transformation explicit,

since we wish to carefully study the geometric properties of the MERA.

To begin, consider a MERA consisting of a single tree that contains a finite number of

layers m. This situation is illustrated in Fig. 6a for k = 2 and m = 4. Note that such a

1 Moreover, it is known that there exists an asymptotically-AdS bulk configuration that saturates the Bousso

bound, namely, the BTZ black hole [35, 36], which further implies that ln dimHB in fact equals A/4G.

However, we will not need this stronger assertion in what follows. A similar but unrelated result equating

the area of a region with its entanglement entropy in vacuum was obtained in Ref. [37].
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MERA begins with a top-level tensor at the mth level that seeds the rest of the MERA in

the IR.

(a)

a

2a

2
2
a

2
3
a

2
4
a

z

x

0 2
4
a

(b)

ρ
θ

(c)

FIG. 6. (a) A k = 2 MERA consisting of m = 4 layers and with periodic boundary conditions, (b)

the corresponding embedding in (x, z) coordinates, and (c) the embedding in (ρ, θ) coordinates.

The base of the MERA is made up of km sites. Without loss of generality, let us locate the

leftmost site of the base of the MERA at x = 0, so that the UV-most sites sit at coordinates

(x, z) = (na, a), where n = 0, 1, 2, . . . , (km − 1) as shown in Fig. 6b. Let us also assume

periodic boundary conditions for this MERA and hence identify x = 0 and x = kma.
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Next, define the coordinates (ρ, θ) as follows:

ρ =
kma− z
kma

,

θ = 2π
x

kma
.

(24)

In these coordinates, the metric reads

ds2 =
L2

(1− ρ)2

[
dρ2 +

(
dθ

2π

)2
]
, (25)

cf. Eq. (3). This embedding of the MERA is shown in Fig. 6c; the top-level tensor always

sits at ρ = 0 and the lower layers of the MERA are equally spaced on circles of radii

1/2, 3/4, 7/8, . . . that are centered at ρ = 0.

More generally, one could construct a top-level tensor that has T legs, each of which begets

a tree of sites. In this case, x = 0 and x = Tkm−1a are identified, so one should define the

angular variable as θ ≡ 2πx/(Tkm−1a). The metric (25) is correspondingly modified and

reads

ds2 =
L2

(1− ρ)2

[
dρ2 +

T 2

k2

(
dθ

2π

)2
]
. (26)

This situation is depicted in Fig. 7. (If T = k, however, then it is not necessary to introduce

any new structure in addition to the disentanglers and isometries that were already discussed,

i.e., one may take the top-level tensor to be one of the isometries.)

We may immediately compute the right-hand side of Eq. (23). Let the ball B be centered

about ρ = 0, and suppose B contains the top-level tensor, the sites at the top tensor’s legs,

and then the first NB generations of the MERA emanating from these sites, as indicated in

Fig. 7. The boundary of B is a circle at constant ρ, so its circumference according to the

MERA is A = TkNBL. As such, we may write

A

4G
=
TkNBL

4G
=
TkNBc

6
, (27)

where in the second equality we used the Brown-Henneaux relation, Eq. (10).

How one evaluates the left-hand side of Eq. (23) using the MERA is not as immediate.

Recall that HB is the Hilbert space of bulk states. The MERA, however, does not directly
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FIG. 7. Disk parametrization of the Poincaré patch of AdS in which a MERA has been embedded.

The top tensor of the MERA shown has T = 6. The shaded region is a ball B, which is this case

contains NB = 1 generation.

prescribe the quantum-gravitational state in the bulk; it is not by itself a bulk-boundary

dictionary. As we mentioned in Sec. II B, the minimal assumption that one can make is

to posit the existence of a bulk Hilbert space factor Vbulk associated with each MERA site

that is not located at the top tensor. To keep the assignment general, we assign a factor

VT to the top tensor. The dimensionality of each Vbulk factor should be the same in order

to be consistent with the symmetries of the hyperbolic plane. The assumption of a Hilbert

space factor at every MERA site is minimal in the sense that it introduces no new structure

into the MERA. A true AdS/MERA correspondence should dictate how states in the bulk

Hilbert space are related to boundary states. However, for our analysis, it is enough to

simply postulate the existence of the bulk Hilbert space factors Vbulk and VT, each of which

may be thought of as localized to an AdS-scale patch corresponding to the associated MERA

site.

In addition to the site at the top tensor, the number of regular MERA sites that the ball

B contains is given by

NB = T

NB∑
i=0

ki = T

(
kNB+1 − 1

k − 1

)
. (28)

As such, the Hilbert space of bulk states restricted to B is HB = (Vbulk)⊗NB ⊗ VT. Next,

suppose that dimVbulk = χ̃ and that dimVT = χ̃T, where, like χ, χ̃ and χ̃T are some fixed,

NB-independent numbers. Then dimHB = χ̃T(χ̃NB). Note that one would expect χ and χ̃

24



to have a very specific relationship in a true bulk/boundary correspondence, the nature of

which will be explored later in this section. Combining Eqs. (27) and (28), the dimensionality

of HB is upper bounded as follows:

ln dimHB ≤
A

4G
=⇒ T

(
kNB+1 − 1

k − 1

)
ln χ̃+ ln χ̃T ≤

TkNB c

6
. (29)

After isolating c in Eq. (29) and using the result of Eq. (19), we find that

c = 12ηf(k)
lnχ

ln k
≥ 6

(
kNB+1 − 1

kNB(k − 1)
ln χ̃+

1

TkNB
ln χ̃T

)
. (30)

Next, let us consider this inequality in the limit of large NB. A motivation for this limit is

the fact that the natural scale of validity of an AdS/MERA correspondence is super-AdS, as

was established in Sec. III. Moreover, by virtue of its definition, there is always an ambiguity

of order the AdS scale in the radius of the ball B. That is, the region in AdS denoted by

B is only well-defined in the MERA if B is large compared to the AdS scale L. Taking the

limit of large NB, Eq. (30) reduces to

ηf(k) ≥ k ln k

2(k − 1)

(
ln χ̃

lnχ

)
. (31)

By using the bound on ηf(k) given by Eq. (18), we arrive at a constraint on k, χ, and χ̃:

k2 ln k

2(k − 1)2

(
ln χ̃

lnχ

)
≤ 1. (32)

In principle, the above inequality could be satisfied for any k, provided that the dimension

χ̃ of the factors Vbulk can be arbitrarily chosen with respect to the bond dimension χ.

However, the essence of holography, that the bulk and boundary are dual descriptions of the

same degrees of freedom and therefore have isomorphic Hilbert spaces [5], implies a relation

between χ and χ̃. Namely, for a MERA with a total of N levels of sites in the bulk strictly

between the UV-most level and the top-level tensor, the number of bulk sites Nbulk that are

not located at the top tensor is given by Eq. (28) with NB = N , and the number of sites in

the boundary description is Nboundary ≡ TkN+1. The bulk Hilbert space thus has dimension
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χ̃Nbulkχ̃T and the boundary Hilbert space has dimension χNboundary . Equating2 the dimension

of the bulk and boundary Hilbert spaces then yields

ln χ̃

lnχ
=

1

Nbulk

(
TkN+1 − ln χ̃T

lnχ

)
N large→ k − 1, (33)

where we took the limit of N large, consistent with Eq. (31) and in keeping with the ex-

pectation that the UV cutoff be parametrically close to the boundary at ρ = 1. Putting

together Eqs. (32) and (33), we obtain a constraint on k alone:

k2 ln k

2(k − 1)
≤ 1. (34)

This constraint cannot be satisfied for any allowed value of the rescaling factor k, which

must be an integer greater than or equal to 2. We thus learn that a conventional MERA

cannot yield a consistent AdS/MERA correspondence. The MERA cannot simultaneously

reproduce AdS geodesics, respect the Ryu–Takayanagi relation, and (using the only con-

struction for the bulk Hilbert space available to the MERA by itself) satisfy the Bousso

bound. That is, there exists no choice of MERA parameters that can faithfully reproduce

geometry, holographic properties, and bulk physics.

If we relax this bound and, instead of Eq. (18), only observe the weaker, natural bounds

η ≤ 1 and f(k) ≤ k − 1 as discussed at the end of Sec. IV C, the constraint (34) is corre-

spondingly modified:
k ln k

2(k − 1)
≤ 1. (35)

In contrast to Eq. (34), this latter bound can be satisfied, but only for k = 2, 3, or 4. As such,

other AdS/tensor network correspondences, in which the ancillae are perhaps entangled and

therefore do not describe a conventional MERA, are not ruled out. Note that we never

needed to compute bulk entanglement entropy explicitly — and therefore did not need to

treat separately the possibility of entanglement among ancillae — because we cast the Bousso

bound as a constraint on the size of the bulk Hilbert space itself. The appearance of η in

Eq. (31) corresponds to entanglement in the boundary theory as computed by the tensor

network; Eqs. (31) and (33) still apply.

2 We recognize that there are other proposals [12, 39] that do not require an exact equivalence between

the bulk and boundary Hilbert spaces, but, even in these cases, there is the requirement of an exact

equivalence between the logical qubits on the boundary with the Hilbert space of the bulk.
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VI. CONCLUSION

The notion of emergence of spacetime based on a correspondence between AdS and a

tensor network akin to AdS/CFT is a tantalizing one. A necessary step in such a program

is the evaluation and comparison of calculable quantities on both sides of the duality. In

this work, we have subjected the proposed AdS/MERA correspondence to such scrutiny. To

summarize, let us restate our three main findings:

1. In matching the discrete graph geometry of the MERA to the continuous geometry of

a spatial slice of AdS, we demonstrated that the MERA describes geometry only on

scales larger than the AdS radius. Concretely, as shown in Sec. III, the proper length

assigned to the spacing between adjacent sites in the MERA lattice must be the AdS

scale.

2. By requiring that the entropy of a set of boundary sites in the MERA — whose

computation is a discrete realization of the Ryu–Takayanagi formula — be equal to

the CFT ground state entropy of the same boundary region in the thermodynamic

limit, we obtained a constraint on the parameters that describe a MERA in terms of

the CFT central charge [Eqs. (20) and (21)], which implies that the bond dimension

χ must be exponentially large in the ratio of the AdS scale to the Planck scale.

3. In the natural construction of a bulk Hilbert space (Hbulk) using the MERA, we used

the Bousso bound to constrain the dimension of Hbulk. When combined with our

previous results, we found that any strict AdS/MERA correspondence cannot satisfy

the resulting constraint, Eq. (34). Upon relaxing the definition of the MERA or

allowing for additional structure, however, we obtained a looser constraint, Eq. (35),

which may not rule out some other AdS/tensor network correspondences.

In particular, more general correspondences between AdS and MERA-like tensor networks,

in which we allow the ancillae to be entangled when reproducing the CFT ground state [and

for which Eq. (35) applies in place of Eq. (34)] are not ruled out by our bounds, provided

that the rescaling factor k = 2, 3, or 4. Further, it is interesting to note that our bounds

extend to states other than the vacuum that are described by a MERA. One such example,

namely, states at finite temperature dual to black holes in AdS, is discussed in App. B below.

27



While the consistency conditions that we found are specific to the MERA tensor network,

many of the ideas and techniques that we used apply equally well to other tensor networks.

In the EHM, for instance, the type of bulk Hilbert space dimensionality arguments that we

made based on the covariant entropy bound may be directly transferred to the EHM. The

same stringent final constraints that we derived do not apply to the EHM, however, since it

is unclear to what extent the EHM reproduces the Ryu–Takayanagi formula (which renders

the results of Sec. IV inapplicable). Our bulk Hilbert space arguments similarly apply to

the holographic error-correcting code proposal in Ref. [12], which furthermore purports to

reproduce a version of the Ryu–Takayanagi formula. It is presently unknown, however,

whether the boundary state of a holographic code can represent the ground state of a CFT,

so an identification of entropies similar to the identification SMERA = SCFT, upon which our

boundary entropy constraints so crucially depend, cannot yet be made.

In closing, we have found several consistency conditions that any AdS/MERA corre-

spondence must satisfy. The totality of these constraints rules out the most straightforward

construal of an AdS/MERA correspondence. Other interesting holographic correspondences

that are described by tensor networks more general than the MERA and that respect all of

our bounds may indeed be possible. Our consistency conditions are nice validity checks for

these correspondences when applicable and in other cases they may inspire similar consis-

tency conditions. The program of identifying the emergence of spacetime from the building

blocks of quantum information is an ambitious one; stringent consistency conditions, such

as those presented in this paper, are important for elucidating the subtleties in this quest

and in providing guidance along the way.
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and Guifré Vidal for helpful discussions. This research was supported in part by DOE grant

DE-SC0011632 and by the Gordon and Betty Moore Foundation through Grant 776 to the

Caltech Moore Center for Theoretical Cosmology and Physics. N.B. is supported by the

DuBridge postdoctoral fellowship at the Walter Burke Institute for Theoretical Physics.

A.C.-D. and C.C. are supported by the Canadian NSERC Postgraduate Scholarship pro-

gram. G.N.R. is supported by a Hertz Graduate Fellowship and a NSF Graduate Research

Fellowship under Grant No. DGE-1144469.

28



Appendix A: Entropy bound for general MERAs

Following the method presented in Ref. [22], let us compute an upper bound for the

entanglement entropy of a region B consisting of `0 sites in a MERA with rescaling factor

k. We will use the notation of Ref. [22] throughout.

First, recall the result from Ref. [22] that the entanglement entropy of a region consisting

of `0 sites is bounded by

SMERA(`0;B) ≤ (`m′ +N tr
m′) lnχ. (A1)

The quantity `m′ is the width of the causal cone at depth m′ and N tr
m′ =

∑m′−1
m=0 n

tr
m is the

total number of sites that are traced out along the boundary of the causal cone. In other

words, N tr
m′ is the number of bonds that are cut by the causal cone up to a depth m′ (cf.

Fig. 4). The quantity lnχ is the maximum entanglement entropy that each site that is

traced out could contribute to SMERA(`0;B). Note that Eq. (A1) holds for all m′ ≥ 0.

The width of the causal cone for a given m′ depends sensitively on the structure of the

MERA. In particular, the number of sites that are traced out at each renormalization step

depends on the choice of disentanglers, as well as how they are connected to the isometries.

For instance, in a MERA with a rescaling factor k, any given disentangler could have any-

where from 2 up to k incoming and outgoing legs. (It should be reasonable to require that

any disentangler can have no more than k incoming and k outgoing legs so that it straddles

no more than two isometries.) It is thus clear that the number of bonds that one cuts when

drawing a causal cone, and hence the entanglement entropy of the region subtended by that

causal cone, depends on the choice of disentanglers and connectivity.

Nevertheless, we can compute an upper bound for SMERA(`0;B) by considering a worst-

case scenario for the number of bonds cut by the causal cone. We begin by asking: What

is the largest number of bonds that a causal cone could cut in one renormalization step

at a depth m′? The layout of disentanglers and isometries that produces this situation

is shown at one side of a causal cone in Fig. 8. If the causal cone at the bottom of the

renormalization step incorporates a single bond that goes into a disentangler accepting k

bonds, then the causal cone must cut the other k− 1 bonds entering the disentangler. Then

if this disentangler is arranged so that its leftmost outgoing bond is the first bond to enter

an isometry from the right, the causal cone must cut the other k − 1 bonds entering the

isometry. If this arrangement is mirrored on the other side of the causal cone, we see that
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4(k − 1) bonds are cut by the causal cone in this renormalization step, i.e., ntr
m′ = 4(k − 1).

k − 1k − 1

FIG. 8. Left side of a causal cone that cuts the maximum possible number of bonds over the course

of one renormalization step. The rectangles are disentanglers that accept k bonds as input and the

triangles are isometries that coarse-grain k bonds into one. The causal cone is the shaded region.

If this situation is mirrored on the right side of the causal cone, then 4(k− 1) bonds are cut in this

renormalization step.

Recall that for any finite `0, after a fixed number of renormalization steps, the width of

the causal cone remains constant for any further coarse-grainings. The depth at which this

occurs is called the crossover scale and is denoted by m̄. Therefore, the causal cone will cut

the largest possible number of bonds when the arrangement described above and depicted

in Fig. 8 occurs at every step up until the crossover scale. Then, by Eq. (A1), the entropy

bound is given by

SMERA(`0;B) ≤ (`m̄ + 4(k − 1)m̄) lnχ, (A2)

where `m̄ is the width of the causal cone at the crossover scale.

For any given causal cone in a MERA with scale factor k ≥ 2, the maximum number of

additional sites the causal cone can pick up at some level m′ is 4(k − 1). Therefore, for a

causal cone that contains `m′ sites at depth m′, the number of sites in the causal cone after

one renormalization step `m′+1 ≤ d(`m′ + 4(k − 1))/ke ≤ `m′/k + 5. Applying the relation

recursively, we find that the number of sites `m′ at any layer m′ < m̄ is bounded,

`m′ ≤ `0

km′ + 5
m′∑

m=1

1

km
≤ `0

km′ + 5 . (A3)

Setting m′ = m̄, it trivially follows that the crossover scale obeys m̄ ≤ logk `0. Furthermore,

we notice that this is the scale at which the entanglement entropy is minimized if we trace

over the remaining sites. In other words, the number of bonds cut by going deeper into
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the renormalization direction is no less than the bonds cut horizontally, so 4(k − 1) ≥ `m̄
3.

Applying the bounds for m̄ and `m̄ on Eq. (A2), we arrive at an upper bound on SMERA(`0;B)

for a k-to-one MERA,

SMERA(`0;B) ≤ 4(k − 1)(1 + logk `0) lnχ. (A4)

When `0 is parametrically large, we neglect the O(1) contribution to the bound on

SMERA(`0;B), which yields Eq. (13).

Appendix B: BTZ Black Holes and Thermal States in AdS/MERA

Thus far, we have found constraints on the structure of a MERA that can describe CFT

states dual to the AdS3 vacuum. One might ask whether these results extend to other

constructions that exist in three-dimensional gravity. Although pure gravity in AdS3 has

no local or propagating degrees of freedom, there exist interesting non-perturbative objects,

namely, BTZ black holes [35]. In this appendix, we extend our constraints on boundary

entanglement entropy to these objects.

The non-rotating, uncharged BTZ black hole solution is given in Schwarzschild coordi-

nates by

ds2 = −
(r2 − r2

+)

L2
dt2 +

L2

(r2 − r2
+)

dr2 + r2dφ2 , (B1)

with a horizon at r = r+. Noting that Euclidean time is compactified by identifying τ ∼ τ +

2πL2/r+, the horizon temperature of the black hole is given by T = r+/2πL
2. Additionally,

the Bekenstein–Hawking entropy of the black hole is

SBH =
Area

4G
=
πr+

2G
. (B2)

Let us now consider applying a MERA with rescaling factor k and bond dimension χ

to a CFT at a finite temperature, where instead of minimizing the energy of the boundary

state, one minimizes the free energy. In the CFT, turning on a temperature introduces a

scale, going as the inverse temperature, which screens long-range correlations. Thus, the

3 Alternatively, we can see this from a heuristic argument by noting that the crossover scale is the scale

at which the causal cone has a constant width for further coarse-grainings, i.e., (`m̄ + 4(k − 1))/k ≈ `m̄.

Therefore, `m̄ . 4 ≤ 4(k − 1).
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state will have classical correlations in addition to entanglement and the effect of a finite

temperature on the entanglement entropy is the appearance of an extensive contribution.

As one runs the MERA and coarse-grains, the thermal correlations that cannot be removed

become more relevant. The MERA, which is unable to remove the extensive contribution,

truncates at a level with multiple sites. The schematic entanglement renormalization process

is illustrated in Fig. 9. The state at the top level effectively factorizes, where each factor

appears maximally mixed [10, 21]. A tractable realization of this tensor network structure

recently appeared in Ref. [40], which found a MERA representation of a thermal state.

ρ ρ ρ ρ

1

Z
exp









−

ĤCFT

T









FIG. 9. The MERA, when applied to a thermal CFT state Z−1 exp(−ĤCFT/T ), where Z =

tr(exp(−ĤCFT/T )), truncates after a finite number of layers. The boundary state at the top of the

truncated MERA effectively factorizes into a product of maximally mixed states ρ = I/χ.

Keeping in mind that the holographic dual of a finite-temperature state in the CFT

is a black hole in AdS, where the temperature of the CFT corresponds to the Hawking

temperature of the black hole, we note that the truncated MERA is suggestive of a black

hole horizon [10]. If the MERA is to be interpreted as a discretization of the geometry, then

the geometry has ended at some scale. Also, as we approach the horizon, the amount of

Hawking radiation that we see increases and the temperature measured by an observer at

the horizon diverges. The density matrix of some system in the infinite-temperature limit

is given by the product of a maximally mixed state at each site, just like the state at the

top of the MERA. It is important to note that, as was pointed out in Ref. [40], in order
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to reproduce the correct thermal spectrum of eigenvalues, a small amount of entanglement

must be present between the sites at the horizon. If the bond dimension were taken to be

infinite, then the sites at the horizon truly would factorize. But for a finite bond dimension,

one should really think of the horizon as a high-temperature state, with sites effectively

factorized.

For small regions on the boundary, the length of the subtending bulk geodesic is subexten-

sive and so the Ryu–Takayanagi formula maintains that the boundary region’s entanglement

entropy is subextensive as well. However, if we consider a large enough region on the bound-

ary, the geodesic will begin to probe the horizon of the black hole. The geodesic will run

along the black hole horizon and pick up an extensive contribution to the entropy. We

consider a boundary theory living on a lattice consisting of nb sites, with total system coor-

dinate length xsys = nba. In the limit as r approaches the boundary in the metric (B1), we

see that Txsys = r+/L, as was pointed out in Refs. [6, 29]. We further note that this implies

that the system coordinate size is of order AdS radius, xsys = 2πL.

Let us now view the MERA of Fig. 9 as a discretization of a BTZ spacetime and repeat

the analysis of Sec. III. In this discretization, the layers of the MERA lie along circles of

fixed radius r in the coordinates of Eq. (B1). Again, we ask what proper length L1 separates

sites in any given layer of the MERA.

First, note that a path at fixed r0 that subtends an angle φ0 has proper length r0φ0. At

the boundary of the MERA, we consider a region defined by 0 ≤ φ ≤ φ0 = 2πx0/xsys, where

x0 is the coordinate length of the interval, consisting of `0 lattice sites. The boundary of the

MERA is at a fixed radius r = rb. Naturally, the boundary radius rb can be interpreted as

a UV cutoff and is related to the lattice spacing a by rb = L2/a [6]. By equating the proper

distance of the region in the MERA, `0L1, with that at the boundary of the BTZ spacetime,

rbφ0, we find the proper length between horizontal bonds to be L1 = L.

With the foresight that the top of the MERA is suggestive of a black hole horizon with

proper length 2πr+, the number of sites at the final layer is therefore nh = 2πr+/L. This

further tells us that the MERA truncates after a finite number of layers m, given by

m = logk

(
nb

nh

)
= logk

1

2πTa
. (B3)

This coincides with the conclusion in Refs. [40, 41] that the MERA representation of a
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thermal state is obtained after O(logk(1/T )) iterations of coarse-graining.

Now consider a region B on the boundary consisting of `0 sites and for which the cor-

responding geodesic contains a segment running along the BTZ horizon. The subextensive

contribution to the entropy in the MERA is exactly as before, in which we pick up at most

lnχ from each bond we cut with the causal cone of the region B. Furthermore, we will

now pick up an extensive contribution from the horizon, where the number of horizon sites

within the causal cone is `h and each such site in the product state on the horizon contributes

maximally to the entropy by an amount lnχ. Combining the contributions, we find

SMERA(B) = 4ηBfB(k) logk

(
`0

`h

)
lnχ+ `h lnχ . (B4)

Recall that the entanglement entropy of a single interval B of coordinate length x0 in a

CFT at finite temperature [27] is given, up to a non-universal constant, by

SCFT(B) =
c

3
ln

(
1

πaT
sinhπx0T

)
, (B5)

where x0 is much smaller than the total system size xsys. The standard field-theoretic

derivation of the above entropy is done by computing the Euclidean path integral on an

n-sheeted Riemann surface and analytically continuing to find the von Neumann entropy.

The same result can be derived by computing geodesic lengths on spatial slices of BTZ

spacetimes and making use of the Ryu–Takayanagi formula.

When T → 0 in Eq. (B5), we recover the usual result (9). In the T → ∞ limit, the

von Neumann entropy gives the usual thermal entropy as entanglement vanishes. Taking

Tx0 � 1, the leading and subleading contributions to the entanglement entropy are

SCFT =
c

3
πx0T +

c

3
ln

1

2πaT
, (B6)

where the first term is the thermal entropy for the region B.

Now let us consider a finite-temperature CFT that is dual to a BTZ black hole with

horizon temperature T = r+/2πL
2. In terms of geometric MERA parameters, we find that

Eq. (B6) becomes

SCFT =
c

6
`h +

c

3
m ln k . (B7)
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Here we used the fact that `h = x0r+/L
2 as well as Eq. (B3), where we note that m can

also be written as logk(`b/`h). The result (B7) coincides precisely with the extensive and

subextensive contributions calculated using the MERA in Eq. (B4) provided that c/ lnχ ∼

O(1). Therefore, we find that the truncated MERA correctly captures the entanglement

structure of thermal CFT states and their dual BTZ spacetimes. These conclusions are in

agreement with those in Refs. [20, 41].

As a check of the claim that c and lnχ should be of the same order, we can compare

the horizon entropy given by the contribution from the sites at the final layer with the

Bekenstein–Hawking entropy (B2) of a BTZ black hole. There are nh sites comprising the

horizon, each with Hilbert space dimension χ. The system is in the infinite-temperature limit

— and hence described by a maximally mixed density matrix, with entropy contribution

lnχ from each site — so

Shorizon = nh lnχ . (B8)

Making use of the Brown–Henneaux relation and requiring that the entropy (B8) coincide

with the Beckenstein-Hawking entropy, we again find that c/ lnχ ∼ O(1). More specifically,

taking the counting to be precise, we find that

c/ lnχ = 6 , (B9)

which is qualitatively in agreement with the previous conclusion (20) that the Hilbert space

dimension must be exponentially large in c.

With this relation, the extensive terms in Eqs. (B4) and (B7) agree precisely. Further

identifying the subextensive terms, we find ηBfB(k) = (ln k)/2. If we then impose the

constraint (18), we find that
k ln k

2(k − 1)
≤ 1 . (B10)

This last inequality exactly reproduces Eq. (35) and thus constrains k to be 2, 3, or 4.

Interestingly, we have found the weaker of the two bounds derived in Sec. V, without needing

to consider the Bousso bound.

As desired, the truncated MERA computation of entanglement entropy agrees with the

expected entanglement entropy given by the application of the Ryu–Takayanagi formula to

the length of the minimal surface in a BTZ spacetime. The fact that the results of matching
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boundary entanglement entropy given in Sec. IV further hold in BTZ spacetimes might not

be too surprising given that such spacetimes are quotients of pure AdS3.
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