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We present a variational principle for relativistic hydrodynamics with gauge-anomaly terms for a

fluid coupled to an Abelian background gauge field. For this we utilize the Clebsch parametrization

of the velocity field. We also set up the Hamiltonian formulation and the canonical framework for the

theory. While the equations of motion only involve the density and velocity fields, i.e., the Clebsch

potentials only appear in the combination which is the velocity field, the generators of symmetry

transformations (including the Hamiltonian) depend explicitly on one of the Clebsch potentials, if

the background field is time-dependent. For the special case of time-independent background fields,

this feature is absent.

I. INTRODUCTION

Hydrodynamics is a long-wavelength effective descrip-

tion of interacting systems based on the assumption of lo-

cal equilibrium. Hydrodynamic equations are essentially

local conservation laws supplemented by the constitutive

relations between conserved densities. These conserva-

tion laws are macroscopic manifestations of symmetries

of the system. Constitutive relations are often written

phenomenologically and involve unknown “equations of

state”, which in principle should be obtainable from the

underlying “microscopic” theory such as kinetic theory,

many body models or quantum field theory [1].

If the underlying theory is a quantum field the-

ory (QFT) with quantum anomalies, the conservation

laws corresponding to anomalous symmetries are broken.

However, the anomalous symmetry breaking is rather

subtle and one might hope for an applicability of a uni-

versal hydrodynamic description with additional hydro-

dynamic terms taking anomalies into account. This pos-

sibility was noticed initially in AdS/CFT systems [2, 3],

and then in genuine relativistic hydrodynamic formula-

tion by Son and Surowka for a particular case of Abelian

gauge anomaly [4] .

The goal of this work is to find a variational and Hamil-

tonian formulations of the hydrodynamics with gauge

anomaly [4]. Variational and Hamiltonian approaches

to hydrodynamics have a long history and we refer the

reader to Refs. [5], [6] for reviews. The Hamiltonian for-

malism is appropriate to study wavelike excitations and

instabilities near the fixed point — through the linear

analysis of the eigenmodes — and provides the most ap-

propriate framework to study perturbation theory and

symmetries of the system. We aim to understand how

the quantum anomaly affects the canonical generators

of gauge transformations and diffeomorphisms as well as

their semidirect product algebra. Our approach will be

entirely 3+1 dimensional, providing a minimal general-

ization of the standard action principle for fluid dynamics

to accommodate anomalies.

Let us start with equations of anomalous hydrodynam-

ics of [4]. The current and energy-momentum conserva-

tion laws for anomalous QFT in the background gauge

field can be written as:

∂λj
λ = −C

8
ǫλνστFλνFστ , (1)

∂λT
λν = F νσjσ . (2)

The right hand side of the equation (2) is the Lorentz

force, while the right hand side of (1) is the gauge

anomaly term, fully characterized by a single dimension-

less constant C. Here and in the following we drop the an-

gular brackets denoting expectation values, e.g., 〈j〉 → j,

so that jλ and T λν are classical fields representing the

current and the energy-momentum tensor.

Assuming local equilibrium and imposing the local

form of the second law of thermodynamics, Son and

Surowka were able to constrain the form of constitutive

relations. In this paper we are interested in the case of

zero temperature and absence of dissipation. Thus, we

will use a particular form of the constitutive relations
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found in [4], which is given by:

jλ = nuλ +
C

12
ǫλνστ µuν (2µ∂σuτ + 3Fστ ) , (3)

T λν = nµuλuν + P (µ) gλν . (4)

Here we have introduced the equation of state of the

fluid P (µ) which gives the fluid pressure P as a func-

tion of the chemical potential µ. The charge density in

the fluid rest frame is given by n = P ′(µ). The fluid 4-

velocity uλ satisfies uλuλ = −1 and, therefore, has only

three independent components. In this case, the zeroth

component of the equation (2) — the energy conserva-

tion — is not independent, but can be viewed as a con-

sequence of the other four equations (1, 2). The latter

four independent equations fully determine the evolution

of n and three independent components of 4-velocity uλ.

We notice that equations (1-4) constitute the first-

order hydrodynamics equations written in Landau frame.

Namely, the constitutive relations (3, 4) are first order

in derivatives and the ambiguity in the definition of 4-

velocity is resolved by defining it as an eigenvector of the

energy-momentum tensor. Landau frame was used in [1]

and was adopted in [4] to construct the hydrodynamics

with gauge anomaly.

The variational problem for hydrodynamics with gauge

anomaly in 1+1 dimensions was successfully developed in

[7], however it cannot be trivially generalized to 3+1 di-

mensions. The most successful attempt so far in finding

an effective action for equations (1-4) was given in [8], but

the obtained action contained unphysical hydrodynamic

excitations propagating in a fourth auxiliary spatial di-

mension. All these approaches rely on an effective action

for the Lagrangian specification of fluid variables [9, 10].

On the other hand, the action principle for non-abelian

hydrodynamics was presented in [6], where the authors

introduced the idea of coarse graining the coadjoint orbit

action. A similar approach to fluid dynamics for spinning

particles has been recently developed in [11]. An action

that includes anomalies in the standard model of parti-

cle physics within the framework of the coadjoint orbit

method was given in [12]. The anomaly structure in the

standard model is different from what is given in (1-4)

and so the effective action for anomalies in [12] is not

immediately applicable to the present problem.

In this work, we will use the so-called Clebsch po-

tentials to parametrize the Eulerian variables [13] and

to write down a variational principle that produces the

Son-Surowka equations at zero temperature. We restrict

ourselves to the flat Minkowski spacetime, though the

generalization to more general geometric backgrounds is

straightforward. Unless otherwise specified, we use the

Cartesian orthonormal frame, where the pseudo-metric

can be chosen as gλν = diag(−1, 1, 1, 1).

The variational principle and the symmetries are an-

alyzed in sections II and III. Using the obtained action,

we then derive the corresponding Hamiltonian formula-

tion specifying the form of the relativistic Hamiltonian

and the Poisson brackets. We emphasize the symmetries

of the system and their manifestations in Hamiltonian

formalism, pointing out the special feature of one of the

Clebsch potentials appearing separately and not via the

combination in the dynamic velocity field. This feature

is commented on in section VII and we conclude with

the discussion of the obtained results and their possible

generalizations.

II. HYDRODYNAMIC ACTION

The variational principle for perfect relativistic fluid

dynamics is well known and goes back to [14–16]. The

key point in finding a hydrodynamic action is the intro-

duction of a set of variables appropriate to the canoni-

cal framework, the so-called Clebsch potentials. The use

of the Clebsch parametrization enlarges the phase space

and removes the degeneracy of the Poisson algebra be-

tween hydrodynamic variables. The latter degeneracy

of the Poisson’s bracket makes the writing a symplec-

tic form only in terms of hydrodynamic quantities im-

possible. The Clebsch potentials are scalar fields which

parametrize the hydrodynamic variables, such as momen-

tum and charge densities. Namely, we write the velocity

one-form in terms of 3 scalar potentials (θ, α, β) and the

chemical potential µ, such that u = µ−1(dθ+αdβ), vide

[15]. In the following we find an additional term in the

hydrodynamic action of [15, 16] reproducing the gauge

anomaly in hydrodynamic equations.

The field content of the hydrodynamic action is given

by 4 components of the 4-current Jλ and 3 scalar Clebsch

potentials (θ, α, β) parametrizing dynamic velocity ξλ:

ξλ = ∂λθ + α∂λβ . (5)

Then one of the main results of this work is that the

action generating equations (1-4) is given by:

S = −
∫ [

Jλ (ξλ −Aλ)− ε(n)
]
d4x +

+
C

6

∫
A ∧ ξ ∧ d (ξ +A) . (6)
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Here ε(n) is the proper energy density of the fluid

which is assumed to be a known function of the proper

charge density n. The latter is given by an absolute value

of the 4-current Jλ as n ≡
√
−gλνJλJν . The second

term on the right hand side of (6) describes the anomaly

and is written in the differential form language, that is,

ξ = dθ+αdβ. Taking C = 0 in (6) we recover the action

for a relativistic perfect fluid without anomaly [15, 16].

The full set of variational equations is obtained by

varying (6) over Jλ, θ, α, β. We start with:

δS

δJλ
= − (ξλ −Aλ) + ε′(n)

Jλ
n

= 0 . (7)

It is convenient to introduce a complete parametriza-

tion of the 4-current Jλ in terms of its absolute value n

and its direction given by 4-velocity uλ as:

Jλ ≡ nuλ , uλuλ = −1 . (8)

Then equation (7) can be viewed as a relation between

the dynamic velocity, density and the 4-velocity∗:

ξλ −Aλ = µuλ , (9)

where the chemical potential µ(n) is given by the deriva-

tive of the energy density as:

µ(n) ≡ ε′(n) . (10)

The Clebsch potentials θ, α, β enter (6) only through

ξ given by (5). The corresponding variations give the

following equations of motion:

δS

δθ
= ∂λ

(
δS

δξλ

)
= 0 , (11)

δS

δα
=

δS

δξλ
∂λβ = 0 , (12)

δS

δβ
= ∂λ

(
α
δS

δξλ

)
=

δS

δξλ
∂λα = 0 , (13)

with

− δS

δξλ
= nuλ +

C

6
ǫλνησ [2Aν∂ηξσ − (ξν −Aν)∂ηAσ] .

(14)

Introducing the charge current:

jλ = − δS

δξλ
+
C

6
ǫλνησ [3 ∂ν(Aηξσ)− 3Aν∂ηAσ + ξν∂ηξσ] ,

(15)

∗ For the case of irrotational flows, such as superfluids, the dy-
namic velocity can be fully characterized by dθ and equation (9)
corresponds to Josephson condition.

we obtain (1) from (11) and (5). The relations (15, 14)

give the constitutive relation (3).

Defining the energy-momentum tensor by (4), one can

derive the conservation law (2) from (9) and (11-13) after

some tedious but straightforward manipulations.† We do

not go through this derivation in more detail, since, in

the next section III, we will derive equations (1-4) more

straightforwardly from symmetries of the action (6).

In the absence of the gauge field background Aµ = 0

the action (6) becomes the conventional action for rela-

tivistic perfect fluid dynamics [15, 16]. The only mani-

festation of the gauge anomaly in this case is the non-

conventional relation between current and 4-velocity.

Namely, the relation (3) becomes jλ = nuλ + C
3
µ2ωλ

with relativistic vorticity defined as ωλ = 1
2
ǫλνστuν∂σuτ .

This current is conserved ∂λj
λ = 0 because both relations

∂λ(nu
λ) = 0 and ∂λ(µ

2ωλ) = 0 follow from (6) in the ab-

sence of the gauge background‡ — this consequence can

be observed directly from [4] by setting the temperature

and the external fields to zero. Such “removal” of the

anomaly responses by current redefinition is not possi-

ble though when a non-trivial gauge field background is

present.

III. SYMMETRIES

In this section we show explicitly that the equations

(1,2) can be obtained as consequences of (anomalous)

gauge symmetry and space-time translational symmetry

of the action (6), respectively.

We notice that the first line of (6) is symmetric with

respect to the gauge transformation with the gauge pa-

rameter Λ(x)

δΛAλ = ∂µΛ , δΛθ = Λ . (16)

Indeed, from (5,16) we have δΛξλ = ∂λΛ and see that the

combination ξλ −Aλ entering (6) is gauge invariant.

This gauge invariance, however, is broken by the

anomalous (second line) part of the action (6). It is easy

to verify that, up to boundary terms, the gauge transfor-

† Technical remark: it is convenient to start this derivation with
an obvious equation δS

δξλ

[

∂λ

(

δS
δJν

)

− ∂ν

(

δS

δJλ

)]

= 0.
‡ One can think of the second relation as a consequence of (1,2).
We notice that the second conserved quantity µ2ωλ can be iden-
tified as a density of the Casimir (helicity) of the relativistic
perfect fluid dynamics.
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mation of the action is given by

δΛS =

∫
∂λΛ

(
δS

δξλ
+

δS

δAλ

)
d4x =

C

6

∫
Λ dA ∧ dA .

(17)

Unlike the case of a general breaking of a symmetry,

the loss of symmetry due to anomalies is rather special.

The gauge variation of the action depends only on the

background gauge field and has a very specific form, the

latter being determined by the densities of certain topo-

logical invariants. It is easy to see that the action can

be made fully gauge invariant by supplementing it with

the Chern-Simons term −C
6

∫
M5

A ∧ dA ∧ dA. The inte-

gral in this term is taken over an auxiliary 5-dimensional

space M5 which boundary coincides with the physical

space-time. This gives an elegant interpretation of the

anomaly of the 4-dimensional theory as being due to the

inflow of charge from the fifth dimension, a set-up known

as anomaly inflow ; this is standard and well known in

QFT with quantum anomalies [17]. With the variation

with respect to the Clebsch potential θ satisfying equa-

tion (11), the variation of (17) over Λ gives the charge

conservation law modulo the anomaly as

∂λ

(
δS

δAλ

)
= − C

24
ǫλνστFλνFστ . (18)

The quantity δS/δAλ is known as the consistent cur-

rent versus the covariant current jλ defined in (3). A

quick calculation shows that

jλ =
δS

δAλ

− C

6
ǫλνστAνFστ . (19)

Taking the divergence of (19), we obtain (1).

We now turn to the energy-momentum conservation

(4). The standard way of deriving this law is to gauge

space-time translational symmetries by introducing the

background metric and study the invariance of the action

under diffeomorphisms xλ → xλ + ζλ(x).

We consider (6) in an arbitrary background metric by

replacing the measure d4x by the invariant one
√−g d4x

and by introducing the metric into all scalar products.

Notice that ξλ is naturally a covariant vector, being

derivatives of the scalar Clebsch potentials, and thus

Jλ ξλ being an invariant scalar product does not require

additional metric factors. However, a scalar product like

J2 will become JµJν gµν . The resulting action is invari-

ant under diffeomorphisms, i.e., δζS = 0, and on equa-

tions of motion we have
∫ [

(Lζg)νλ
δS

δgνλ
+ (LζA)λ

δS

δAλ

]
d4x = 0 , (20)

since the terms corresponding to the variations of the

fields vanish by the equations of motion. Here Lζ de-

notes the Lie derivative with respect to the vector field

ζ. Explicitly

(Lζg)νλ = ∂νζλ + ∂λζν , (21)

(LζA)λ = ζνFνλ + ∂λ(ζ
νAν) . (22)

Using these formulas and setting the coefficient of ζν

in (20) to zero we obtain §

∂λT
λ
ν = Fνλ

δS

δAλ

− C

6
Fνλ ǫ

ληστAηFστ , (23)

with

T λν ≡ − 2√−g

δS

δgλν
, (24)

A quick calculation shows that the energy-momentum

tensor (24) is the same as (4). This is expected as the

last term of (6) is the integral of a 4-form — which is

metric-independent — and gives no contribution to the

energy-momentum tensor. Therefore, (4) is identical in

form to the energy-momentum tensor for conventional

perfect fluid dynamics. We see that the metric indepen-

dence of the anomalous contribution to (6) is an essen-

tial feature of the analysis in the hydrodynamic Landau

frame where the energy-momentum tensor is not modi-

fied by corrections which are of the first order in gradients

of the velocity.

Finally, it is easy to see that the equation (23) with

the relation (19) is equivalent to (2). This completes the

demonstration that the action (6) does indeed reproduce

equations (1-4).

IV. HAMILTONIAN FORMALISM

In this section we set up the Hamiltonian formulation

of equations (1-4) starting with the action (6).

We start by reducing the seven independent variational

fields of (6) to four given by J0 and by the Clebsch pa-

rameters θ, α, β. The spatial components of (8,9) give

Ji =
n

µ
(ξi −Ai) (25)

and we can eliminate the spatial components of the cur-

rent J i using (25). Using this relation and the defining

§ The identity Aν ǫληστFληFστ = −4Fνλ ǫληστAηFστ can be use-
ful.
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relation (8) for n, namely, (J0)2 − (J i)2 = n2, we find

J0 ≡ ρ =
n

µ

√
µ2 + (ξi − Ai)2 . (26)

Here and in the following we use ρ to denote J0. We

may regard J0 = ρ as the independent variable, with n

given implicitly as a function of ρ by (26).¶

Substituting (25,26) into (6) we obtain the action in

a form linear in the time-derivatives and depending only

on fields ρ, θ, α, β. After some integrations by parts, it

can be brought to the following form:

S =

∫ (
〈πθ , θ̇〉+ 〈πβ , β̇〉 −H

)
dt , (27)

where 〈f, g〉 ≡
∫
f(x)g(x) d3x denotes the L2-inner prod-

uct in the space of real functions, H is the Hamiltonian,

πθ and πβ are the canonical field momenta conjugate to θ

and β, respectively. The explicit formulas for the canon-

ical momenta are:

πθ = −
[
ρ+

C

6
(Ai + α∂iβ)B

i

]
, (28)

πβ = −α

[
ρ+

C

6
(Ai − ∂iθ)B

i

]
. (29)

The Hamiltonian H in (27) is given by

H =

∫ [
ρ
√
µ2 + (ξi −Ai)2 − P (µ)− ρA0

]
d3x

− C

6

∫ [
ξiB

iA0 + ǫijk(∂iθ −Ai) ξjEk

]
d3x . (30)

The pressure P (µ) is related to the energy density by

the Legendre transform ε(n) = nµ−P (µ), with P ′(µ) =

n and we have also introduced the magnetic and electric

fields Bi = ǫikl∂jAk and Ei = ∂0Ai − ∂iA0 with ǫijk ≡
ǫ0ijk.

Once again, we may note that if the anomaly vanishes,

that is, for C = 0, the Hamiltonian formulation (28-30)

reduces to the known Hamiltonian formulation for the

perfect relativistic fluid [15, 16, 18, 19]. We notice that in

this case the Hamiltonian depends on Clebsch potentials

only through ξi. This feature is lost in the presence of

the anomaly, i.e., when C 6= 0, although the equations of

motion (1-4) still do not contain the Clebsch potentials

explicitly.

We shall comment on the the meaning of this explicit

dependence on θ in the following sections. Here we just

¶ As µ(n) is assumed to be a known function of n (10) the equation
(26) can in principle be solved to obtain n(ρ, ξi), µ(ρ, ξi) etc.

point out that the coefficient of Ek in the last term of

(30) may be interpreted as an intrinsic electric dipole

moment of the fluid. It is worth recalling that one of

the main predictions of the anomaly for fluids is the chi-

ral magnetic effect which leads to charge separation in

a magnetic field. An electric dipole moment obviously

suggest a charge separation and we may regard the last

term of equation (30) as a reflection of this feature in the

Hamiltonian framework.

So far we have considered the background gauge field

as space- and time-dependent. An interesting special case

is when the magnetic field is time-independent. It is then

possible to choose a vector potential Ai which is indepen-

dent of time as well. Then the last term of (30) can be

integrated by parts and the Hamiltonian takes the form

H =

∫ [
ρ
√
µ2 + (ξi −Ai)2 − P (µ)−A0ρ

]
d3x

− C

6

∫
A0

[
2 ξiB

i + ǫijk(ξi −Ai)∂jξk
]
d3x (31)

In this case, the explicit dependence on θ has disap-

peared and the Clebsch potentials only appear in the

combination ξi. It is straightforward to observe that,

for a time-independent gauge field, the potential term is

simply
∫
A0j

0d3x, as one should expect.

In the next section we discuss the effect of the anomaly

on the Poisson structure of the Hamiltonian formulation

derived in this section.

V. POISSON BRACKETS

The variational principle (27) which is linear in time-

derivatives immediately provides us with the canonically

conjugate pairs θ, πθ and β, πβ . The Poisson brackets

of all fields follow then from the canonical ones for the

above fields

{θ, π′
θ} = {β, π′

β} = δ(x− x
′) , (32)

where we have listed only the non-vanishing Poisson

brackets. Here and below we use a concise notation omit-

ting the spatial arguments of the fields so that, e.g., β

means β(x), π′
θ means πθ(x

′) etc.

The hydrodynamic equations of motion (1-4) can be

formulated as equations written entirely in terms of ρ

and ξi without an explicit dependence on the Clebsch

parameters. Therefore, we shall look for the possible

Hamitlonian reduction of (30,32). The reduction consists

of the dynamic reduction, i.e., the Hamiltonian should be
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expressible only in terms of the density ρ and dynamic

velocity ξi, and the kinematic reduction, i.e., the closure

of Poisson brackets of ρ and ξi without the use of the

Clebsch parameters [20].

As we remarked before, with the inclusion of the

anomaly, the dynamic reduction is only partially success-

ful. Namely, the Hamiltonian (30) does depend on ∂iθ

in the case of general time-dependent gauge field back-

ground. In the case of time-independent background the

dynamic reduction is complete and the Hamiltonian (31)

depends on the Clebsch parameters only through ξi.

Remarkably, the Poisson algebra of ρ and ξi is closed

for any gauge field background so that the kinematic re-

duction is achieved. Indeed, after some straightforward

calculations, we derive from (32) and the definition (5)

the following set of Poisson brackets closed with respect

to the fields ρ and ξi,

{
ρ+, ρ

′
+

}
=

C

3
Bi∂i δ(x− x

′) , (33)
{
ξ̃i, ρ

′
+

}
= ∂i δ(x− x

′) , (34)

{
ξ̃i, ξ̃

′
j

}
= −∂iξ̃j − ∂j ξ̃i − ǫjikB

k

ρ−
δ(x− x

′) . (35)

Here, for the sake of brevity, we introduced the following

compact notation,

ξ̃i ≡ ξi −Ai , (36)

ρ± ≡ ρ± C

6
ξ̃i B

i . (37)

A comment on the first of these equations, namely,

(33), is appropriate at this point. It is well known that

the [j0, j0
′
] commutator will be modified by a Schwinger

term in the presence of an anomaly for the corresponding

symmetry [21]. This can be shown by explicit compu-

tation of the corrections to commutators via Feynman

diagrams, the triangle diagram leading to the specific

form given.∗∗ It can also be seen from a 2-cocycle con-

structed in terms of the descent equations which lead

to the anomalies [22]. Our action effectively reproduces

this in the Poisson brackets. We may also note that an

expression analogous to (33) has appeared in [23].

We remark here that the dynamic velocity ξ̃i and the

modified densities ρ± are invariant under the transfor-

mations (16), therefore, the Poisson algebra (33-35) is

∗∗ The computation of modified commutators follows a procedure
known as the Bjorken-Johnson-Low method where correlators of
currents at slightly unequal times are calculated and a suitable
equal-time limit is taken.

written in terms of explicitly gauge-invariant quantities.

However, as it is well known [22] generator of gauge trans-

formations cannot be realized canonically in the presence

of anomaly (see Sec. VI).

The algebra (33-35) is obtained as a result of Hamilto-

nian reduction and is degenerate. It admits two Casimirs

— the quantities having vanishing Poisson brackets with

fields entering Poisson algebra. They are given by

C1 =

∫
ρ+ d3x , (38)

C2 =

∫
ǫijk ξ̃i ∂j

(
ξ̃k + 2Ak

)
d3x . (39)

The charge density j0 defined in (3) is given by

j0 = ρ+ +
C

6
ǫijk ξ̃i ∂j

(
ξ̃k + 2Ak

)
. (40)

It is a combination of densities of two Casimirs of the

algebra. It is worth to point out that when the gauge

field is time-independent the anomaly term can be writ-

ten as a total derivative, i.e., EiB
i = ∂i(A0B

i), what

automatically implies that the total is indeed conserved.

In the absence of anomaly C = 0, all expressions

(30, 33-40) become the known formulas for perfect fluid

dynamics [5, 6]. Even when the anomaly is present,

i.e., C 6= 0, if we consider the case of the background

gauge field being absent, we obtain again the formulas

of anomaly-free hydrodynamics with a single exception.

Namely, the definition of the charge density (40) still dif-

fers from ρ by the density of Casimir (39). The latter is

known as the helicity of the hydrodynamic flow.

Having Hamiltonian and Poisson brackets one can ob-

tain equations of motion for any quantity Q as Q̇ =

∂Q/∂t + {H,Q}, where ∂Q/∂t denotes the “explicit”

time-derivative. In our case this explicit derivative acts

only on the time varying external gauge field. The dy-

namical fields ξi and ρ do not depend on time explic-

itly. For example, the equation of motion for ξi will read
˙̃
ξi = −∂tAi + {H, ξ̃i}, etc.
While the Clebsch variables appear in the algebra (33-

35) only via ξi, we should note that, in the presence of

the time-dependent gauge field background, the Hamilto-

nian (30) contains ∂iθ in addition to the density and the

dynamic velocity fields. Thus the algebra (33-35) is not

adequate for a complete Hamiltonian description, and it

should be supplemented by Poisson brackets involving

the θ field. We list those brackets here for completeness

{ρ+, ∂kθ′} = ∂kδ(x− x
′) , (41)

{ξ̃i, ∂kθ′} =
ξ̃i +Ai − ∂iθ

ρ−
∂kδ(x− x

′) . (42)
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VI. SYMMETRY GENERATORS

The Poisson algebra (33-35) is closed and, in the case

of the time-independent background, produces the hy-

drodynamic equations with the use of the Hamiltonian

(31). However, the brackets (33-35) are nonlinear and

therefore do not have the Lie-Poisson form. For the sym-

metry analysis it is preferable to find an equivalent set

of Poisson brackets corresponding to the algebra of sym-

metry generators of the system.

It is easy to see from (27) that the momentum densities

can be defined as:

Θ0i = −πθ∂iθ − πβ∂iβ . (43)

The momentum densities Θ0i satisfy the diffeomo-

sphism algebra and act as local translations in the ab-

sence of background field. However, one cannot express

(43) only in terms of the density ρ and the dynamic ve-

locity in the background of nonvanishing magnetic field.

More precisely, the canonical energy-momentum tensor

acquires an explicit θ dependence:

Θ0i =

(
ρ+

C

6
AkB

k

)
ξi +

C

6
Bk(ξk∂iθ − ξi∂kθ) . (44)

Let us now turn to gauge transformations which can

be viewed as shifts in the field θ. The naive canonical

gauge generator for this symmetry is −πθ. Using (28,5)

we can write it as

−πθ = ρ+
C

6
(Ai + ξi − ∂iθ)B

i (45)

and notice that it also depends explicitly on ∂iθ.

It is straightforward to check that the Poisson struc-

ture (33-35) can be put in a semidirect product Lie-

Poisson algebra [18, 19] in terms of (44, 45).

A gauge transformation of an arbitrary functional F

of basic fields generated by −πθ is given by:

δΛF ≡
∫ (

−Λ(x′){π′
θ, F}+ δF

δAi(x′)
∂′
iΛ

)
d3x′ , (46)

where the transformation of the gauge potential has also

been added.

However, it is easy to see that (46) gives δΛα 6= 0, as

well as δΛρ 6= 0 in apparent contradiction with gauge

invariance of α and ρ. In fact, one can show that the

gauge symmetry (16) is not canonically realizable.

Let us now consider ρ+ given by (37) as a generator of

gauge transformations instead of −πθ. We easily check

that δΛα = δΛβ ≡ 0 and δΛθ ≡ Λ. Moreover, under

the modified gauge transformations generated by ρ+ the

density ρ transforms as:

δΛρ = −C

6
Bi∂iΛ , (47)

and there exists the gauge invariant quantity ρ+ C
6
BiAi.

While ρ+ can be considered as a modified generator

of gauge transformations two subsequent gauge transfor-

mations generated by ρ+ do not commute and the com-

mutative algebra of gauge transformations has acquired

a central extension (33). This is, of course, a classical

manifestation of a well known phenomenon in studies

of quantum anomalies [22]. At this point it is not clear

whether similar modifications can be made for diffeomor-

phism generators (43)††.

VII. CONCLUSION AND DISCUSSION

We have presented a variational principle for hydro-

dynamic equations with gauge anomaly at zero temper-

ature. From the obtained action, we derived the Pois-

son structure and the Hamiltonian for the system. The

most noteworthy feature of the obtained Hamiltonian for-

mulation is that in the presence of gauge anomaly, the

Hamiltonian reduction to the density and velocity fields

is not complete and one of the Clebsch potentials be-

comes physical and is present in the Hamiltonian in the

presence of the time-dependent gauge field background.

The case of the time-independent external gauge fields

is more natural for the Hamiltonian formulation. In this

case one has a complete Hamiltonian reduction with both

Hamiltonian and Poisson brackets expressed purely in

terms of the charge density ρ and dynamic velocity ξi.

It turns out, however, that the generators of gauge

transformations ρ+ (37) cease to commute and that the

generators of spatial translations (44) can be written

only with the explicit use the Clebsch potential θ. The

origin of the explicit appearance of θ in the Hamilto-

nian and in (45) and (43) can be traced to the term

A∧ ξ ∧ dξ = A∧ dθ ∧ dα∧ dβ in the action. This term is

needed in the hydrodynamic action to make sure that the

anomalous non-conservation of the charge corresponds to

the one of the underlaying QFT and following from the

computation of the triangle diagram. In our variational

†† The variables α and ρ do not transform nicely under these gen-
erators.
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approach the presence of A ∧ ξ ∧ dξ term does not lead

to any entropy production and is in agreement with the

requirement of positive semidefinite entropy production

which was central in Son and Surowka analysis [4]. A

connection of the anomalous term with the entropy ar-

guments might become more explicit if the variational

principle could be generalized to finite temperature hy-

drodynamics. A possibility of such a generalization is

worthy of further investigation.
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