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We investigate the shear viscosity of leptons in a strongly coupled quark gluon plasma (QGP).
We find that the shear viscosity due to the lepton-quark scattering is inversely proportional to the
ratio of electric conductivity of the QGP to temperature up to the leading logarithmic order of the
electromagnetic coupling. The finding implies that the thermal leptons form a more viscous fluid
than the quarks by a large ratio. Using the known result for the electrical conductivity of strongly
coupled plasmas obtained from gauge/gravity duality, we find that the lepton shear viscosity is sup-
pressed compared with the one from lepton-lepton scattering. Consistently, we find an enhancement
of the energy loss of hard leptons in a strongly coupled scenario compared with that in a weakly
coupled plasma.

The transport properties of thermal plasmas have been
widely investigated for decades, because such plasmas
play important roles in many areas of physics, rang-
ing from thermonuclear fusion to astrophysics. Most re-
cently, plasmas including free quarks have been studied in
the context of relativistic heavy ion collisions and cosmol-
ogy. In weakly coupled scenarios described by quantum
electrodynamics (QED) or perturbative quantum chro-
modynamics (QCD), transport coefficients such as the
shear viscosity η and electric conductivity σ can be com-
puted in the framework of kinetic theory [1–4]. Similar
studies have been also carried out for weakly coupled
hadronic gas and a variety of quantum field theories [5–
10]. In strongly coupled scenarios, the perturbative cal-
culation and the quasi-particle description underlying ki-
netic theory become invalid. However, the transport co-
efficients can still be evaluated non-perturbatively using
Kubo formulas. For example, Demir and Bass [11] used
the Kubo formalism combined with a phenomenological
transport model to compute the ratio of shear viscosity
to entropy density (η/s) of a thermal hadronic gas(see
relevant studies of hadronic matter in [12, 13]). The
gauge/gravity duality can be employed to evaluate η for
strongly coupled plasmas via the Kubo formula [14, 15]
giving rise to the well-known KSS bound of η/s.

Here we address a more subtle situation – the mix-
ture of both weakly coupled and strongly coupled sectors
of the plasma – which exists in the practical cases such
as the quark gluon plasma present in the early universe.
The plasma comprises both leptons and colored quanta
(quark and gluons), where the interactions among leptons
are weakly coupled but the interactions among quarks
and gluons are strongly coupled. The two sectors are
connected by electroweak scattering between leptons and
quarks. Intuitively, one would expect a minor influence
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of the leptonic sector on the QCD sector, while the mag-
nitude of the inverse effect is less obvious. We address
this question by computing η of light thermal leptons
imbedded in the strongly coupled plasma.

Because of their weak coupling, the Boltzmann ap-
proach can be applied to analyze the leptonic trans-
port. There exist two collisional terms: one corre-
sponds to lepton-lepton scattering and the other comes
from lepton-quark scattering, which encodes the non-
perturbative nature of the QCD sector. We denote the
former contribution to the viscosity of the QED plasma
by ηQED and the latter by ηmix. Since the collisional
terms are additive in the linear Boltzmann equation, one
could compute ηmix and ηQED separately. The complete
shear viscosity of leptons

ηc ≈
ηmixηQED

ηmix + ηQED
(1)

will be always smaller than each individual contribution.

We will now briefly describe our strategy to tackle the
problem and mention our salient findings. In the Boltz-
mann approach, the collisional term is proportional to
the square of the scattering amplitude, which can be re-
lated to the imaginary part of the photon self energy
through the optical theorem. The photon self energy
can be further written as the current-current correlation
function, which can be computed via perturbative or non-
perturbative approaches. It was found in weak coupling
that the collisional integral is dominated by an infrared
(IR) divergence led by small momentum transfers. Such
a divergence can be regularized in terms of a logarith-
mic power of the coupling, ln(1/e) for QED and ln(1/g)
for pQCD, by introducing an IR cutoff around the scale
of Debye mass [1, 2], which gives the so-called leading
logarithmic results of transport coefficients.

In the strongly coupled scenario (in the QCD sector),
we will use the correlation function obtained from the
gauge/gravity duality in the large number of colors Nc

limit for the lepton-quark collision. Given that small-
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FIG. 1: The self-energy diagram for thermal leptons. The
curvy lines correspond to off-shell thermal photons and the
solid lines represent the thermal leptons. The blob incorpo-
rates the strong coupling in the QCD sector to all orders.

momentum transfers dominates we focus on the long-
wavelength limit. It turns out that the collisional inte-
gral is mainly contributed by collinear divergence when
the intermediate virtual photons become almost lightlike.
By ignoring the contribution from the longitudinal part
of the correlator, we further relate ηmix to the electric
conductivity σc of the color sector. We find that

ηmix/T
3 ∼ T/σc, (2)

which is physically intuitive since the strength of colli-
sions between two sectors is characterized by σc in the
long-wavelength limit. When σc/T is large, ηmix will be
suppressed making thermal leptons more viscous.

We also study the energy loss for high-energy leptons
or heavy leptons like muons, which slowly thermalize in
the medium. We find that their scattering with the QCD
sector results in a linear divergence in the IR regime for
heavy leptons, which dominates over the logarithmic di-
vergence from the scattering with thermal leptons. For
light leptons, the 1/Nc suppression of ηmix and the O(Nc)
enhancement of the energy loss mutually support each
other. In the following, we now present the details of our
approach and derivations. We denote the electric charge
of the leptons by e and that of the single flavor of quarks
by Q. The generalization to several quark flavors with
differing electric charges is straightforward.

In thermal equilibrium, the interaction rate of leptons
in the relativistic Boltzmann approach can be written as

pµ

Ep

∂µf̃(p, x) = −f̃(p, x)Γ>(p) + (1− f̃(p, x))Γ<(p), (3)

where f̃(p, x) denotes the distribution function of leptons
in phase space. Here Γ>(p) and Γ<(p) represent the ra-
diation and absorption rates, respectively. Based on the
optical theorem, one finds

Γ>(<)(p) = (−)
1

4Ep

tr

[

(/p+m)Σ>(<)(p)
]

, (4)

where m is the lepton mass. The Σ>(<)(p) are given by

Σ>(p) = e2
∫

d4q

(2π)4(q2)2
γµΠ>

µν(q)S
>
F (p− q)γν , (5)

and the analogous equation for Σ<(p), where S>
F and

Π>
µν(q) are Wightman functions of on-shell leptons and

electromagnetic currents generated by thermal quarks
in momentum space. In thermal equilibrium, one may

rewrite Π
>(<)
µν (q) in terms of the retarded correlator

ΠR
µν(q) via linear response theory. Note that ΠR

µν(q) is

proportional to Q2 since we only consider the leading-
order interaction for the electromagnetic coupling. How-
ever, ΠR

µν(q) contains all orders of the strong coupling g.

One could easily show that Γ>(p) = eβEpΓ<(p) express-
ing detailed balance.
The Boltzmann equation now becomes

pµ∂µf̃(p, x) = e2
∫

d3q

(2π)34Ep−q

ǫ(q0)Im[ΠR
µν(q)]

(q2)2
(6)

tr
[

(/p+m)γµ((/p− /q) +m)γν
]

D(q, p),

where Ep−q =
√

|p− q|2 +m2 and

D(q, p) = f̃(p, x)(1 + f(q, x))(1 − f̃(p− q, x))

−(1− f̃(p, x))f(q, x)f̃ (p− q, x). (7)

Here f̃(p, x) and f(p, x) correspond to fermionic and
bosonic distributions and ǫ(q0) denotes the sign function
of q0 following the convention in [16]. One can easily

check that D(q, p) = 0 when f̃(p, x) and f(p, x) are the
thermal distribution functions.
Following the general approach in [5, 6, 17], we intro-

duce the perturbations away from equilibrium for the lep-
tons as f̃ = ñ+ δf̃ , where ñ(p, x) and n(p, x) correspond
to the thermal distributions of fermions and bosons in
the vicinity of the rest frame. We then assume that the
perturbation takes the form,

δf̃(p, x) = (1 − ñ(p, x))ñ(p, x)χ(p, x), (8)

where

χ(p, x) =
B(p)

T
p̂ip̂j∂iuj, (9)

with uj being the velocity and T being the temperature
of the medium. Here B(p) is associated with η and the
part corresponding to the bulk viscosity is dropped by
setting ∇ · u = 0 for simplicity. Collecting the leading-
order contributions in (6), we find

(

δij |p|2

3
− pipj

)

= e2
∫

d3q ǫ(q0)

(2π)3Ep−q

[

Im
[

ΠR
µν(q)

]

(q2)2
Pµν

×
n(q, x)ñ(p− q, x)

ñ(p, x)
Bij(p, q)

]

, (10)

where

Pµν = (2pµ(p− q)ν − p · (p− q)gµν +m2gµν),

Bij(p, q) = (Bij(p)−Bij(p− q)) ,

Bij(p) = B(p)

(

p̂ip̂j −
δij

3

)

. (11)
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From the definition of η as the perturbation of the energy-
stress tensor, one obtains

η =
β

15

∫

d3p

(2π)32Ep

|p|2(1− ñp)ñpB(p). (12)

The primary task now is to solve the integral equation
(10) for B(p). In general, the integral equation must be
solved numerically [2, 3]. Nonetheless, in order to make
manifest comparison with the result of the QED plasma,
we may choose an appropriate ansatz for B(p) and work
out an approximate analytic solution of ηmix up to the
leading logarithmic order.

From the structure of the integrand in the momentum
integral of (10), one may anticipate the dominance of low
momentum transfer. This is true for QED and weakly
coupled QCD plasmas. It also turns out to be the case
when the QCD sector is strongly coupled. Therefore, we
will work in the long-wavelength region for light leptons
(m ≪ T ),

q0 < |q| ≪ T ≤ |p|. (13)

For convenience, we may further decompose ΠR
µν(q) into

the transverse and longitudinal parts,

ΠR
µν(q) = P̂T

µνΠ
T (q) + P̂L

µνΠ
L(q), (14)

where P̂
T (L)
µν are projection operators. In the long-

wavelength limit, (10) reduces to

(

δij |p|
2

3
− pipj

)

≈ e2
∫

d|q|ds

2π2|q|3s

[

T |p|(1− s2)ǫ(q0)
(

(s2 − 1)− m2

2|p|2

)2

Bij(p, q)Im
[

ΠT (q)−ΠL(q)
]

]

, (15)

where we preserve the small lepton mass in q2 to avoid
the collinear divergence at s = cos θ = ±1 in the photon
propagators [34].

In order to study the effect of the non-perturbative dy-
namics in the QCD sector, we take the D3/D7-brane sys-
tem in gauge/gravity duality as a concrete example [18],
which is dual to a strongly coupled supersymmetric gauge
plasma with quarks in the fundamental representation.
Such a system as an analogue of the strongly coupled
QGP in holography was frequently used to study elec-
tromagnetic signatures emitted from a thermal medium
[19–21]. In the long-wavelength limit for q = (q0, 0, 0, qz),
one finds [22]

Im
[

ΠT (q)−ΠL(q)
]

≈ −
Q2NcNfT

4π

q2z ǫ(q0)

q0
(16)

where the extra factor ǫ(q0) is introduced for the cut

correlators [35]. Now, we may choose the simple ansatz

B(p) = C
|p|2

T 2 ln
(

2|p|
m

) , (17)

where C = 2π3/(e2Q2NcNf) is a dimensionless constant,
which serves as the leading-order solution of (10) in the
long-wavelength limit.

B(p) diverges in the limit m → 0 owing to the collinear
divergence in the integral over s. As a regularization we
may take m ∼ eT as the thermal mass of leptons, which
is equivalent to introducing an IR cutoff at |q| ∼ eT to
regularize the IR divergence in QED. We could further
take ln(2|p|/(eT )) ≈ ln(1/e) as an approximation ap-
plied in QED up to the leading logarithmic order. There
exists a caveat that such an approximation may break
down when |p| ≥ T/e. For quantitative correctness, one
may also have to incorporate the Landau-Pomeranchuk-
Migdal (LPM) effect with multiple Coulomb scattering
for high-energy leptons.

Inserting (17) into (12), we obtain the ηmix in a
strongly coupled supersymmetric plasma modeled by the
D3/D7-brane system,

η
D3/D7
mix ≈

πT 3Ip
30NcNfe2Q2 ln(1/e)

, (18)

where Ip ≈ 116. To make a comparison with ηQED on
equal footing, one could follow the same approach and
utilize the photon self energy in O(e2) to solve the Boltz-
mann equation with a similar ansatz, which gives rise to
[36]

ηQED =
T 3Ip

5πe4 ln(1/e)
. (19)

Comparing (18) with (19) we conclude that the ratio

η
D3/D7
mix /ηQED is suppressed in the large-Nc limit.

Based on the dominance of the collinear divergence
in our derivation, we can generalize our result by con-
necting Im[ΠT (q)] in the long-wavelength limit with the
direct-current (DC) electrical conductivity σc of the QCD
sector. The collinear divergence occurs when q0 → |q|,
which yields Im[ΠL(q)] → 0. Therefore, the integral on
the left hand side of (15) will be dominated by the contri-
bution from Im[ΠT (q)]. Recall that the DC conductivity
could be defined as [23]

σc =
1

4
lim
q0→0

ǫ(q0)χ(q0, |q|)|q|=q0

q0
, (20)

where χ(q0, |q|) denotes the spectral density, which can
be computed from the retarded correlator,

χ(q0, |q|) = −2Im
(

2ΠT (q) + ΠL(q)
)

. (21)

The static limit (q0 → 0) is approximately equivalent to
the long-wavelength limit here. By dropping Im[ΠL(q)]
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and replacing Im[ΠT (q)] with the DC conductivity as

σc = −

(

ǫ(q0)Im[ΠT (q)]

q0

)

q0→|q|≪T

, (22)

we thus obtain the more general result:

ηmix ≈
T 4Ip

120σce2 ln(1/e)
. (23)

Armed with (23), we can evaluate ηmix in the lead-
ing logarithmic order in different systems provided σc is
known. In pQCD at finite temperature, the DC conduc-
tivity up to the leading logarithmic order [24, 25] leads
to

ηpQCD
mix ≈

T 3Ip(N
2
c − 1)g4 ln(1/g)

c0N2
cNfe2Q2 ln(1/e)

, (24)

where c0 is a numerical constant[37]. By contrast, in the
Sakai-Sugimoto (SS) model of holographic QCD [26, 27],
the known value of the DC conductivity in the deconfined
phase [28–30] yields

ηSSmix ≈
9πIpT

2MKK

40λNce2Q2 ln(1/e)
, (25)

where λ denotes the t’Hooft coupling and MKK corre-
sponds to the Kaluza-Klein mass as the meson mass scale
in the gauge theory. Qualitatively, the ratio ηmix/ηQED in
the two systems are g4 ln(1/g) and 1/(λtNc) suppressed
despite the competition of MKK and T in the latter case.
These results may be representative of the viscous be-
havior of thermal leptons in high-temperature (pQCD)
and strongly coupled, intermediate-temperature regimes
of QGP.
Using the analytical expressions derived above, we

may attempt a crude estimate of the ratio ηmix in the
cosmological QGP beyond the deconfinement transition
temperature. According to various approaches for the
electrical conductivity of QGP [31], one finds σc/T ∼
0.02 − 0.1 from T = 0.2 GeV to T = 0.6 GeV. This
implies a ratio ηmix/ηQED ∼ 0.12 − 0.6, corresponding
to ηc/ηQED ∼ 0.11 − 0.38. We conclude that the lep-
tonic visosity in cosmological QGP was dominated by the
interactions between leptons and quarks. Nevertheless,
σc/T drops rapidly near the deconfinement transition,
where the lepton-lepton scattering suppresses the lepton-
quark interaction and ηc/ηQED thus increases. As shown
in Fig.2, by utilizing σc/T obtained from the strongly
coupled non-conformal gauge theory in holography [32],
ηc/ηQED rapidly increases near the transition tempera-
ture.
We now apply the same considerations to the interac-

tion of hard leptons with the QGP. Because here we do
not assume that the leptons are thermal, this calculation
also has relevance to the QGP produced in relativistic
heavy ion collisions. For energetic or heavy leptons such
as muons which slowly thermalize, we may compute the
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FIG. 2: The ratio of the complete shear viscosity of leptons in
a strongly coupled non-conformal plasma to that in the QED
plasma versus temperature.

radiation rate Γ>(Ep) by simply replacing the thermal
cut- propagator of leptons in the previous computations
with the one in vacuum. Following the definition in [16]
with the long-wavelength approximation, the energy loss
for a hard lepton traveling along the z direction in the
strongly coupled supersymmetric plasma characterized
by the D3/D7 system could be written as

dEp

dz
=

e2Q2NcNfT

16π3

∫

d|q|ds

[

s2
(

1 +D2|q|2
)

v2s2 +D2|q|2

(

v3(1− s2)

(1− v2s2)2
+

v(1 − v2)

(1− v2s2)

)

]

, (26)

where s = cos θ and v = |p|/Ep and D = (2πT )−1 is the
diffusion constant. We focus on the large-velocity and
small-velocity regions, where the analytic expressions are
accessible. For light leptons m ∼ eT ≪ |p|, one could
simply drop the diffusion terms and obtain

(

dEp

dz

)

D3/D7

≈
e2Q2 ln(1/e)NcNfT

2

8π3
for v → 1.(27)

For heavy leptons with v ≪ D|q|, the presence of the
diffusion term prevents the 1/v divergence in (26), while
there still exists linear divergence in the IR regime for the
|q| integral. By simply taking the IR cutoff qIR ∼ eT ,
we acquire

(

dEp

dz

)

D3/D7

≈
eQ2NcNfT

3

6πEp

for v →
T

Ep

. (28)

Compared with the energy loss in the leading order of
two limits in the QED plasma,

(

dEp

dz

)

QED

≈
e4 ln(1/e)T 2

24π
for v → 1,

(

dEp

dz

)

QED

≈
e4 ln(1/e)T 3

36πEp

for v →
T

Ep

, (29)

it turns out that the pattern of the energy loss of light
leptons in a QED plasma is similar to that in the strongly
coupled supersymmetric plasma. Nonetheless, despite
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the prefactor altered by the choice of qIR, the diffusion
at small momentum transfer further enhances the energy
loss for heavy leptons in the strongly coupled scenario.
Even for light leptons, the energy loss is O(Nc) enhanced
in the D3/D7 system, which is in accordance with the

1/Nc suppression of η
D3/D7
mix /ηQED.

In summary, we have studied the shear viscosity and
energy loss of leptons in strongly coupled (weakly cou-
pled) QCD-like plasmas. It turns out that the non-
perturbative effect of the QCD sector substantially af-
fects the leptonic transport, rendering the lepton fluid
more viscous. In order to obtain more accurate results
for the leptonic viscosity, numerical solvers of the Boltz-
mann equation beyond the leading logarithmic order are
required. In addition, more realistic simulations of the
current-current correlator should be involved. Our ap-
proach can be easily generalized to other fluids that
weakly interact with a strongly coupled medium. For in-
stance, in the semi-holographic model of QGP [33], where
hard and soft gluons are connected by effective pertur-
bative couplings, our approach could be utilized to study

the transport of hard gluons within the QGP. Moreover,
there exist also thermal photons in the cosmic plasma,
the study of the non-perturbative effect from the QCD
sector on thermal-photon transport in the similar frame-
work could be an interesting issue.
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