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1 Introduction

A very useful microscopic model for the study of black holes [1, 2, 3, 4, 5] has been the D1D5
conformal field theory (CFT) [6]. One makes a bound state of D1 and D5 branes, and the
CFT emerges as a description of the low energy dynamics of this bound state. While this CFT
is complicated in general, it has been conjectured that there is a point in its moduli space of
couplings where it becomes particularly simple. At this orbifold point the theory is described
by a sigma model whose target space is a symmetric orbifold [7].

At the orbifold point, the CFT is free; using this free theory enables us to extend the
Strominger-Vafa computation [8] from extremal to near-extremal black holes [9]. Such cou-
plings do not describe the point in moduli space where the dual gravity theory is weakly
coupled, giving the supergravity approximation. In order to work towards describing interest-
ing gravity processes such as black hole formation, one therefore needs to turn on an exactly
marginal deformation operator in the CFT, which deforms the theory by ‘blowing up’ the orb-
ifold singularities of the target space. The deformation operator is built out of a twist operator
of the orbifold theory dressed with a supercharge [6].

It is interesting and important to study the effect of this deformation operator OD on
states of the CFT [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. [12, 13] described the effect of OD

on the Ramond vacuum, and on states containing one or two initial quanta. [14] considered
transitions between different Ramond vacua via absorption and emission of chiral primaries;
processes involving the change of angular momentum by k units were found to be suppressed
as 1/Nk. [15, 16] took a different tack, studying the computation of anomalous dimensions at
first order in conformal perturbation theory for low-lying string states in the CFT and operator
mixing. [17] studied the effect of OD for bosonic fields, when the twist links together winding
numbersM and N to winding numberM+N . [18] looked at the effect of OD in the limit when
excitation wavelengths are short compared to the gap. The method of [19] also allows handling
fermions.

Overall, it was found that the twist involved in the deformation operator converts the vac-
uum into a squeezed state, with a schematic form eγ

B
mn α−m α−n + γFmn d−m d−n |0〉. The coefficients

γB , γF in the above squeezed state are given by closed form expressions, but the derivation
of these expressions was somewhat lengthy. In the present paper we find a much more direct
way of obtaining γB , γF . In our new method, we consider the OPE of the stress tensor T with
the deformation operator O(w). The conformal Ward identity relates this OPE to a derivative
∂wO(w). We then find that this derivative has a simple expression, and performing an integral
then gives the γBmn, γ

F
mn. This derivation also gives insight into the structure of these coeffi-

cients: they are seen to be given by an integral of an expression that is a product of factors,
one depending only on m and the other depending only on n.

One may consider a continuum limit where m,n ≫ 1; this corresponds to looking at wave-
lengths much shorter than the ‘box size’ set by the circle on which the D1D5 CFT lives (see
figure 3). We obtain the expression of the squeezed state in this limit, by recasting the γB , γF

as position space kernels; thus the squeezed state is written in terms of 2-point correlations of
fields generated after the twist. The product structure in the derivatives of γB and γF men-
tioned earlier becomes a product structure for the position space kernel found in the continuum
limit: the kernel K(w1, w2;w0) becomes a product of two terms, one depending only on w1 and
one depending only on w2.
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We organize the paper as follows. First we summarize earlier work in section 2. In section 3
we consider the action of the stress tensor to re-derive the form of the squeezed state using the
conformal Ward identity. Finally in section 4, we compute the continuum limit of the squeezed
state, expressing it in terms of a position space kernel. In section 5 we comment on the utility
of the stress-tensor method and on the form of the squeezed state.

2 Summary of earlier results

In this section we review some facts about the D1D5 CFT and summarize some results from
[12, 13].

2.1 The D1D5 CFT

We compactify IIB string theory as M9,1 →M4,1×S1×T 4. Wrapping N1 D1 branes on S1 and
N5 D5 branes on S1 × T 4, we get a bound state that is described at low energy by the D1D5
CFT.

It is believed that there is an orbifold point in the moduli space of couplings where the CFT
is given by a sigma model with target space the symmetric product of N1N5 copies of T 4 [7].
At this point the CFT is given by N1N5 copies of a c = 6 CFT containing 4 free bosons and 4
free fermions. The fact that we have a symmetric product in the target space implies that we
get twist sectors where different copies of the c = 6 CFT get twisted together to make a c = 6
CFT living on a longer circle.

The CFT has N = (4, 4) supersymmetry; we list the algebra generators and their commu-
tators in Appendix A. The N = 4 superalgebra contains a SU(2) current algebra under which
the fermions form doublets, labelled by an index α. (This doublet structure is described in eqs.
(A.1),(A.2).) The four bosons are grouped into representations of the SO(4) ≈ SU1(2)×SU2(2)
symmetry group of the T 4; the doublets under these two SU(2) groups are labelled by indices
A, Ȧ (eq. (A.6)).

We consider the Euclidean theory for which the base space is a cylinder with coordinates τ
and σ where −∞ < τ <∞ and 0 ≤ σ < 2π. We deform the CFT off the orbifold point by the
operators

ÔȦḂ(w0) =
[ 1

2πi

∫

w0

dwG−
Ȧ
(w)
][ 1

2πi

∫

w̄0

dw̄Ḡ−
Ḃ
(w̄)
]

σ++
2 (w0). (2.1)

The operator σ+2 (w0) is a twist which links together two copies of the CFT at the point w0; the
+ superscript indicates that it carries a charge 1

2 under the SU(2) contained in the superalgebra.
G−
Ȧ
is the supercurrent.
The left and right moving parts of all operators and states are decoupled in our computa-

tions and thus in what follows we will write only the left movers. The D1D5 bound state as
constructed above gives fermions that are periodic around the S1, so they are in the Ramond
sector. We can map Ramond sector states to NS sector states by spectral flow, which is a
symmetry that changes dimensions and charges as follows [20]

h′ = h+ αj +
cα2

24
, j′ = j +

cα

12
(2.2)
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(a) (b)

Figure 1: The twist operator joins two copies of the CFT on two singly-wound circles into one
copy of the CFT on a doubly-wound circle.

while the operators themselves change as

T ′ = T − αJ +
cα2

24
, J ′3 = J3 − cα

12
(2.3)

(Thus we get 〈ψ|L0|ψ〉 = 〈ψ′|L′
0|ψ′〉 and 〈ψ|J0|ψ〉 = 〈ψ′|J ′3

0 |ψ′〉). The transformations of the
stress-energy tensor and the R-current under the spectral flow have been explicitly derived in
Appendix B.

In [12, 13] the situation in figure (1) was studied. We start with two copies of the c = 6
CFT, each on a singly wound circle. The twist σ+2 joins these copies into one copy of the c = 6
CFT living on a doubly wound circle. The twist operator is inserted at the point w0 = τ0+ iσ0
on the cylinder.

The Ramond sector ground states are doublets under SU(2), and we choose the initial state

|0−R〉(1) ⊗ |0−R〉(2) (2.4)

which has spin −1
2 for each copy. The twist σ+2 is normalized so that

σ+2 (w0) |0−R〉(1) ⊗ |0−R〉(2) = |0−R〉+ . . . (2.5)

where |0−R〉 is the (normalised) negative charge Ramond ground state of the CFT on the doubly
wound circle.

2.2 The mode expansions and the exponential ansatz

We first expand the modes of bosonic and fermionic fields on the cylinder. For τ < τ0, i.e.
below the twist insertion, these modes are given by

α
(i)

AȦ,n
=

1

2π

∫ 2π

σ=0
∂wX

(i)

AȦ
(w)enwdw, i = 1, 2 (2.6)

d(i)αAn =
1

2πi

∫ 2π

σ=0
ψ(i)αA(w)enwdw, i = 1, 2 (2.7)
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and their (anti-)commutation relations are

[α
(i)

AȦ,m
, α

(j)

BḂ,n
] = −ǫABǫȦḂδijmδm+n,0, (2.8)

{d(i)αAm , d(j)βBn } = −ǫαβǫABδijδm+n,0. (2.9)

Above the twist insertion (τ > τ0) the CFT lives on a doubly twisted circle and the boson and
fermion modes are

αAȦ,n =
1

2π

∫ 4π

σ=0
∂wXAȦ(w)e

n
2
wdw, (2.10)

dαAn =
1

2πi

∫ 4π

σ=0
ψαA(w)e

n
2
wdw. (2.11)

The (anti-)commutation relations for these modes read

[αAȦ,m, αBḂ,n] = −ǫABǫȦḂmδm+n,0, (2.12)

{dαAm , dβBn } = −2ǫαβǫABδm+n,0. (2.13)

We would like to find an expression for the state

|χ(w0)〉 ≡ σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2) (2.14)

in terms of operator modes acting on |0−R〉. To do so, [12, 13] started from the initial state
defined in the Ramond sector on the cylinder and then performed a series of spectral flow
transformations and coordinate changes and map the state to a state of simpler form. We
briefly describe the process below:

(i) The first step is to perform a spectral flow on the cylinder (2.2) with parameter α = 1.
This takes the two copies of the CFT from the Ramond sector to the NS sector. The bosons
are not affected by the spectral flow, while the fermions transform as

ψ+A(w) → e−
w
2 ψ+A(w), ψ−A(w) → e

w
2 ψ−A(w). (2.15)

(ii) We next map the cylinder with coordinate w to the complex plane with coordinate z
via the map

z = ew. (2.16)

The two NS vacua at τ → −∞ on the cylinder are mapped into two NS vacua at z = 0 on the
complex plane. The location of the twist operator is mapped into z0 = ew0 .

(iii) We pass from the complex plane to its covering surface through the map

z = z0 + t2, (2.17)

where
z0 = ew0 ≡ a2. (2.18)
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(a) (b)

z plane t plane

σ2

z = 0

z = z0

t = 0

t = i a

t = −i a

Figure 2: The map from the complex plane to its covering surface is given by z = z0+ t
2, where

z is the coordinate on the complex plane and t is the coordinate on the covering space. The
two NS vacua at z = 0 are mapped to two NS vacua at t = ±ia (these correspond the original
two Ramond vacua at τ → −∞ on the cylinder). The location of the twist insertion at z = z0
is mapped to t = 0 on the cover.

This transformation is described in figure 2. Passing to the covering space allows us to analyze
explicitly the action of σ+2 on the initial state. The two NS vacua at z = 0 in the z-plane are
mapped into two NS vacua at the two punctures at t = ±ia in the t plane. Since there are
no operator insertions at these punctures, we can close them smoothly. The twist operator σ+2
at z = z0 gets mapped into the spin up Ramond vacuum state of the covering space, |0+R〉t, at
t = 0.

(iv) We finally perform a spectral flow with parameter α = −1 on the covering space . This
operation maps the Ramond vacuum state at t = 0 to the NS vacuum in the t-space. There no
other insertions at this point on the t-plane, so we can smoothly close the puncture at t = 0.
The bosons are not affected by the spectral flow transformation but the fermions transform as

ψ+A → t
1
2ψ+A, ψ−A → t−

1
2ψ−A. (2.19)

We thus find that the above sequence of spectral flow and coordinate transformations maps
the initial state |χ〉 in (2.14) to the NS vacuum state in the t plane at large t (i.e. τ → ∞).
This vacuum state is then expressed in terms of the original modes on the cylinder at τ > τ0.
In order to do so, [12] computes how the bosonic and fermionic modes on the cylinder are
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transformed under the operations (i)-(iv). At τ < τ0 the t-plane modes are

α
(1)

AȦ,n
→ 1

2π

∫

t=ia
∂tXAȦ(t)(z0 + t2)ndt, (2.20)

α
(2)

AȦ,n
→ 1

2π

∫

t=−ia
∂tXAȦ(t)(z0 + t2)ndt, (2.21)

d(1)+An → 2
1
2

2πi

∫

t=ia
ψ+A(t)(z0 + t2)n−1tdt, (2.22)

d(2)+An → 2
1
2

2πi

∫

t=−ia
ψ+A(t)(z0 + t2)n−1tdt, (2.23)

d(1)−An → 2
1
2

2πi

∫

t=ia
ψ−A(t)(z0 + t2)ndt, (2.24)

d(2)−An → 2
1
2

2πi

∫

t=−ia
ψ−A(t)(z0 + t2)ndt, (2.25)

and at τ > τ0 the modes read

αAȦ,n → 1

2π

∫

t=∞
∂tXAȦ(t)(z0 + t2)

n
2 dt, (2.26)

d+An → 2
1
2

2πi

∫

t=∞
ψ+A(t)(z0 + t2)

(n−2)
2 tdt, (2.27)

d−An → 2
1
2

2πi

∫

t=∞
ψ−A(t)(z0 + t2)

n
2 dt. (2.28)

In the t plane, we will also define operator modes that are natural to the t plane. Thus we
write

α̃AȦ,n ≡ 1

2π

∫

t=0
∂tXAȦ(t)t

ndt, (2.29)

d̃αAr =
1

2πi

∫

t=0
ψαA(t)tr−

1
2dt. (2.30)

Note that the bosonic index n is an integer while the fermionic index r is a half integer. We
have

α̃AȦ,m|0〉t = 0, m ≥ 0, (2.31)

d̃αAr |0〉t = 0, r > 0. (2.32)

The computation of [12] found that the state |χ〉 has the structure of a squeezed state

|χ〉 = e
∑

m≥1,n≥1 γ
B
mn[−α++,−mα−−,−n+α−+,−mα+−,−n] e

∑
m≥0,n≥1 γ

F
mn[d

++
−md

−−
−n −d+−

−md
−+
−n ]|0−R〉, (2.33)

where the coefficients γBm,n and γFm,n are given by

γB2m′+1,2n′+1 =
2

(2m′ + 1)(2n′ + 1)

z
(1+m′+n′)
0 Γ[32 +m′]Γ[32 + n′]

(1 +m′ + n′)πΓ[m′ + 1]Γ[n′ + 1]
, (2.34)
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γF2m′+1,2n′+1 = − z
(1+m′+n′)
0 Γ[32 +m′]Γ[32 + n′]

(2n′ + 1)π(1 +m′ + n′)γ[m′ + 1]Γ[n′ + 1]
. (2.35)

The full state (2.1) is then obtained by the action of the supercharge on the squeezed state. We
refer the reader to [12] for the details of the computation of the full state.

3 Action of the stress tensor

Consider the cylinder shown in fig. 1, with state |0−R〉(1) ⊗ |0−R〉(2) at τ → −∞ and the twist σ+2
inserted at w0. Let T be the stress tensor of the CFT, given in (A.12). We integrate T around
a small contour around w0, getting
∮

w=w0

dw

2πi
T (w) σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2) = ∂w0σ

+
2 (w0)|0−R〉(1) ⊗ |0−R〉(2) = ∂w0 |χ(w0)〉 (3.1)

where we have used the fact that σ+2 is a primary of the Virasoro algebra. Thus if we can
understand the action of T in some other description, then we can arrive at a description of
∂w0 |χ(w0)〉, and by integration, at a description for |χ(w0)〉 itself. This then gives a simple
method to evaluate the coefficients γBmn and γFmn by only using basic properties of the CFT.

3.1 Computation of ∂w0 |χ(w0)〉
To get this alternative description, we follow the steps in subsection (2.2).

(i) We first start from the contour integral on the cylinder and consider a description which
is spectral flowed by α = 1. We obtain

∮

w=w0

dw

2πi

2
∑

i=1

T (w)(i)σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2)
sf1−−→

∮

w=w0

dw

2πi

2
∑

i=1

(

T (i)(w) − J (i) 3(w) +
1

4

)

e−
1
2
w0σ+2 (w0)|0〉(1) ⊗ |0〉(2), (3.2)

where T (w) =
∑2

i=1 T
(i)(w) and

sf1−−→ represents the spectral flow with α = 1. We note that
the spectral flow with α = 1 maps the Ramond vacua |0−R〉(i) to NS vacua |0〉(i) and acts on the
chiral primary as

σ+2 (w0) → e−
1
2
w0σ+2 . (3.3)

The transformation of the stress-energy tensor under the spectral flow is derived in appendix
B and is given by

T (i)(w)
sf1−−→ T (i)(w)− J (i) 3(w) +

1

4
. (3.4)

The integral of the constant term (1/4) on the right-hand-side of (3.2) vanishes and thus we
find

∮

w0

dw

2πi
T (w)σ+2 |0−R〉(1) ⊗ |0−R〉(2)

sf1−−→
∮

w0

dw

2πi

2
∑

i=1

(

T (i)(w)− J (i) 3(w)
)

e−
1
2
w0σ+2 (w0)|0〉(1) ⊗ |0〉(2). (3.5)
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(ii) Next, we perform coordinate transformation z = ew to map T (w) to the complex plane.
The NS vacua at τ → −∞ are mapped into vacua at z = 0 and the puncture is smoothly
closed since there are no insertions at this point. We then consider how T (w), J(w), and σ+2 (w)
transform under this map. The stress tensor is a quasi-primary operator and is modified by the
Schwarzian derivative under the coordinate transformation:

(

∂z′

∂z

)2

T (i)(z′) = T (i)(z)− c

12
{z′, z}, (3.6)

where {z′, z} is the Schwarzian derivative

{z′, z} =

∂z′

∂z
∂3z′

∂z3
− 3

2

(

∂2z′

∂z2

)2

(

∂z′

∂z

)2 . (3.7)

Using (3.7), equation (3.6) reads

T (i)(w) = z2 T (i)(z)− 1

4
. (3.8)

The R-current and the chiral primary twist operator transform as J (i)(w) = z J (i)(z) and

σ+2 (w0) = e
1
2
w0σ+2 (z0), and we find

∮

w0

dw

2πi

2
∑

i=1

(

T (i)(w) − J (i) 3(w)
)

e−
1
2
w0σ+2 (w0)|0〉(1) ⊗ |0〉(2) →

∮

z0

dz

2πi

∂w

∂z

2
∑

i=1

(

z2 T (i)(z)− 1

4
− zJ (i) 3(z)

)

σ+2 (z0)|0〉(1) ⊗ |0〉(2). (3.9)

(iii) We next pass from the complex plane to the covering surface through the map z = z0+t
2.

The two initial NS vacua are mapped into punctures at t = ±ia (a = z
1/2
0 ). There are no other

insertions at these two punctures and one can smoothly close them. The chiral primary at
z = z0 is mapped into a puncture at t = 0 at which we have the positive spin Ramond vacuum
|0+R〉t. Under this coordinate transformation we have

T (z) =
1

4t2
T (t) +

3

16t4
, J(z) =

1

2t
J(t), (3.10)

and the integral reads

∮

z0

dz

2πi

1

z

2
∑

i=1

(

z2 T (i)(z)− 1

4
− zJ (i) 3(z)

)

σ+2 (z0)|0〉(1) ⊗ |0〉(2) →
∮

t=0

dt

2πi

1

z

∂z

∂t

(

z2
( 1

4t2
T (t) +

3

16t4

)

− 1

4
− z

2t
J3(t)

)

|0+R〉t =
∮

t=0

dt

2πi

(

z

2t
T (t)− J3(t) +

3z

8t3
− t

2z

)

|0+R〉t, (3.11)
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where the integral of the constant term (−1/4) in the second line vanishes. We further note
that

∮

t=0

dt

2πi

t

2z
|0+R〉t = 0, (3.12)

and
∮

t=0

dt

2πi

3 z

8t3
|0+R〉t =

∮

t=0

dt

2πi

3 (z0 + t2)

8t3
|0+R〉t =

3

8
|0+R〉t. (3.13)

Using the fact that |0+R〉t has R-charge +1/2, we find

1

2πi

∮

t=0
dtJ3(t) |0+R〉t =

1

2
|0+R〉t. (3.14)

Equation (3.11) then reads

∮

z0

dz

2πi

1

z

2
∑

i=1

(

z2 T (i)(z) − 1

4
− zJ (i) 3(z)

)

σ+2 (z0) →
∮

t=0

dt

2πi

(z0 + t2)

2t
T (t) |0+R〉t −

1

8
|0+R〉t. (3.15)

(iv) Finally, we perform a spectral flow in the t plane with spectral flow parameter α = −1.
This maps the Ramond vacuum at t = 0 to a NS vacuum and we can then smoothly close the
puncture at this point on the cover. The transformation of T under this spectral flow is of the
form (see appendix B)

T (t)
sf2−−→ T (t) +

1

t
J3(t) +

1

4t2
, (3.16)

where
sf2−−→ corresponds to the spectral flow on the covering surface with α = −1. We thus find

that
∮

t=0

dt

2πi

(z0 + t2)

2t
T (t) |0+R〉t −

1

8
|0+R〉t

sf2−−→
∮

t=0

dt

2πi

(z0 + t2)

2t

(

T (t) +
1

t
J3(t) +

1

4t2

)

|0〉t −
1

8
|0〉t. (3.17)

Let us consider the last term inside the parentheses in the right-hand-side of the above equation.
The contour integral for this term reads

∮

t=0

dt

2πi

(z0 + t2)

8t3
|0〉t =

1

8
|0〉t. (3.18)

Inserting this in equation (3.17), the constant parts cancel out and we obtain

∮

t=0

dt

2πi

(z0 + t2)

2t
T (t) |0+R〉t −

1

8
|0+R〉t

sf2−−→
∮

t=0

dt

2πi

(z0 + t2)

2t

(

T (t) +
1

t
J3(t)

)

|0〉t |0〉t =
z0
2

(

L̃−2 + J̃3
−2

)

|0〉t, (3.19)
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where L̃m and J̃3
m are the modes natural to the covering surface given by

L̃n =

∮

dt

2πi
tn+1 T (t), (3.20)

J̃3
n =

∮

dt

2πi
tn J3(t). (3.21)

We thus find that under the series of maps and spectral flows explained above the action of
T on σ+2 is given by

∮

w0

dw

2πi
T (w) σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2) = ∂w0 |χ(w0)〉 −→

z0
2

(

L̃−2 + J̃3
−2

)

|0〉t. (3.22)

3.2 Writing ∂w0 |χ(w0)〉 in terms of boson and fermion modes on the cover

We now write the above result (3.22) in terms of boson and fermion modes which are natural
to the t plane. Modes of bosonic fields are

∂tXAȦ = −i
∑

m∈Z

α̃AȦ,m
tm+1

, (3.23)

and modes of fermionic fields in the NS sector are

ψαA =
∑

r∈Z+ 1
2

d̃αAr

tr+
1
2

. (3.24)

These give

α̃AȦ,m =
1

2π

∮

t=0
dt tm ∂tXAȦ(t), n ∈ Z, (3.25)

d̃αAr =
1

2πi

∮

t=0
dt tr−

1
2 ψαA(t), r ∈ Z+

1

2
. (3.26)

Inserting these expansions in the stress-energy tensor (A.12) and the R-current (A.10) we
expand the generators L̃n and J̃3

n in terms of α̃AȦ,m and d̃αA:

L̃n =
∑

m∈Z
(−α̃++̇,n−m α̃−−̇,m+ α̃+−̇,n−m α̃−+̇,m)+

∑

r∈Z+ 1
2

(
n

2
− r) (d̃++

n−r d̃
−−
r − d̃+−

n−r d̃
−+
r ), (3.27)

and

J̃3
n =

1

2

∑

r∈Z+ 1
2

(−d̃++
n−r d̃

−−
r + d̃+−

n−r d̃
−+
r ). (3.28)

For n = −2 we find that

L̃−2 |0〉t = (−α̃++̇,−1 α̃−−̇,−1 + α̃+−̇,−1 α̃−+̇,−1) |0〉t

+
1

2
(d̃++

− 1
2

d̃−−
− 3

2

− d̃++
− 3

2

d̃−−
− 1

2

− d̃+−
− 1

2

d̃−+
− 3

2

+ d̃+−
− 3

2

d̃−+
− 1

2

) |0〉t, (3.29)
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J̃3
−2 |0〉t =

1

2
(−d̃++

− 1
2

d̃−−
− 3

2

− d̃++
− 3

2

d̃−−
− 1

2

+ d̃+−
− 1

2

d̃−+
− 3

2

+ d̃+−
− 3

2

d̃−+
− 1

2

) |0〉t. (3.30)

Adding together the above two equations we obtain

(L̃−2 + J̃3
−2) |0〉t =

(

− α̃++̇,−1 α̃−−̇,−1 + α̃+−̇,−1 α̃−+̇,−1 − d̃++
− 3

2

d̃−−
− 1

2

+ d̃+−
− 3

2

d̃−+
− 1

2

)

|0〉t. (3.31)

Inserting this expression back in (3.22), the action of T on |χ〉 is given by

∂w0 |χ(w0)〉 →
z0
2

(

− α̃++̇,−1 α̃−−̇,−1 + α̃+−̇,−1 α̃−+̇,−1 − d̃++
− 3

2

d̃−−
− 1

2

+ d̃+−
− 3

2

d̃−+
− 1

2

)

|0〉t. (3.32)

3.3 Computing the coefficients γBmn and γFmn

We express the above result in terms of modes on the cylinder. The modes α̃AȦ,n (3.25) and

d̃αAr (3.26) where defined by contour integrals over circles around t = 0. Since there are no
singularities at any point in the t plane, we can stretch the contours to circles at large t

α̃AȦ,m =
1

2π

∫

t=∞
dt tm ∂tXAȦ, m ∈ Z, (3.33)

d̃αAr =
1

2πi

∫

t=∞
dt tr−

1
2 ψαA, r ∈ Z+

1

2
. (3.34)

We can now convert these modes to the modes on the cylinder at τ → ∞ derived in section
2. Under the spectral flows and coordinate maps that we explained above, the modes on the
cylinder at τ → ∞ transform into (2.26), (2.27), and (2.28). We write

tm = (t2 + z0 − z0)
m
2 = (z0 + t2)

m
2

(

1− z0 (z0 + t2)−1
)

m
2

=
∑

k≥0

m
2 Ck (−z0)k (z0 + t2)

m
2
−k, (3.35)

where qCk =
(

q
k

)

is the binomial coefficient. Substituting this in the mode expansion (3.33) we
have

α̃AȦ,m =
1

2π

∫

t=∞
dt
∑

k≥0

m
2 Ck (−z0)k ∂tXAȦ(z0 + t2)

m−2k
2

=
∑

k≥0

m
2 Ck (−z0)k αAȦ,m−2k, (3.36)

where we used (2.26) to get to the second line. Similarly, we write

tr−
1
2 = t (t2 + z0 − z0)

1
2
(r− 3

2
) = t

∑

k≥0

1
2
(r− 3

2
)Ck (−z0)k (z0 + t2)

1
2
(r− 3

2
)−k. (3.37)

Substituting this in equation (3.34) we find that

d̃+Ar =
1

2πi

∫

t=∞
dt
∑

k≥0

1
2
(r− 3

2
)Ck (−z0)k ψ+A, (z0 + t2)

r−2k− 3
2

2 t

= 2−
1
2

∑

k≥0

1
2
(r− 3

2
)Ck (−z0)k d+Ar−2k+ 1

2

, (3.38)
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where we used (2.27) in the second line. To find the negatively charged fermionic modes we
write

tr−
1
2 = (t2 + z0 − z0)

1
2
(r− 1

2
) =

∑

k≥0

1
2
(r− 1

2
)Ck (−z0)k (z0 + t2)

1
2
(r− 1

2
)−k. (3.39)

Substituting this in equation (3.34) and using (2.28) we have

d̃−Ar =
1

2πi

∫

t=∞
dt
∑

k≥0

1
2
(r− 1

2
)Ck (−z0)k ψ−A, (z0 + t2)

r−2k− 1
2

2 t

= 2−
1
2

∑

k≥0

1
2
(r− 1

2
)Ck (−z0)k d−Ar−2k− 1

2

. (3.40)

We finally express (3.32) in terms of the operator modes on the cylinder

∂w0 |χ(w0)〉 →
[

− z0

( 1√
2

∑

k≥0

− 1
2Ck (−z0)k α++̇,−1−2k

)( 1√
2

∑

k′≥0

− 1
2Ck′ (−z0)k

′

α−−̇,−1−2k′

)

+ z0

( 1√
2

∑

k≥0

− 1
2Ck (−z0)k α+−̇,−1−2k

)( 1√
2

∑

k′≥0

− 1
2Ck′ (−z0)k

′

α−+̇,−1−2k′

)

− z0

(1

2

∑

k≥0

− 3
2Ck (−z0)k d++

−1−2k

)(1

2

∑

k′≥0

− 1
2Ck′ (−z0)k

′

d−−
−1−2k′

)

+ z0

(1

2

∑

k≥0

− 3
2Ck (−z0)k d+−

−1−2k

)(1

2

∑

k′≥0

− 1
2Ck′ (−z0)k

′

d−+
−1−2k′

)

]

|0〉t. (3.41)

We evaluate the coefficients γBmn and γFmn by integrating the above equation. As explained
in section 2, the state |χ(w0)〉 = σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2) is mapped into the t plane NS vacuum
under the spectral flows and coordinate transformations that we apply. It was shown in [12]
that |χ(w0)〉 has the form of a squeezed state (2.33). We thus obtain that for this squeezed
state

∂w0 |χ(w0)〉 =
(

∑

m≥1,n≥1

∂w0γ
B
mn (−α++,−mα−−,−n + α−+,−mα+−,−n)

+
∑

m≥0,n≥1

∂w0γ
F
mn

(

d++
−md

−−
−n − d+−

−md
−+
−n
)

)

σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2). (3.42)

Comparing (3.41) and (3.42) we find that for m and n being odd and positive integers m =
2m′ + 1, m′ ≥ 0 and n = 2n′ + 1, n′ ≥ 0, we have

∂w0γ
B
2m′+1,2n′+1 = z0 ∂z0γ

B
2m′+1,2n′+1 = z0

( 1√
2

− 1
2Cm′ (−z0)m

′
)( 1√

2
− 1

2Cn′ (−z0)n
′
)

, (3.43)

∂w0γ
F
2m′+1,2n′+1 = z0 ∂z0γ

F
2m′+1,2n′+1 = −z0

( 1

2
√
2

− 3
2Cm′ (−z0)m

′
)( 1√

2
− 1

2Cn′ (−z0)n
′
)

.(3.44)
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This then gives

z0 ∂z0γ
B
2m′+1,2n′+1 = z0

(√
2√
π

zm
′

0

(2m′ + 1)

Γ[32 +m′]

Γ[1 +m′]

)(√
2√
π

zn
′

0

(2n′ + 1)

Γ[32 + n′]

Γ[1 + n′]

)

, (3.45)

and

z0 ∂z0γ
F
2m′+1,2n′+1 = −z0

(

1√
2π

zm
′

0

Γ[32 +m′]

Γ[1 +m′]

)(√
2√
π

zn
′

0

(2n′ + 1)

Γ[32 + n′]

Γ[1 + n′]

)

. (3.46)

We observe that the derivative of |χ〉 is given in terms of a product of two factors f(m) and
f(n).

Using (3.45) and (3.46), we integrate (3.42) with respect to z0 and find that

|χ(w0)〉 = σ+2 (w0) |0−R〉(1) ⊗ |0−R〉(2) = (3.47)

e
∑

m≥1,n≥1 γ
B
mn(−α++,−mα−−,−n+α−+,−mα+−,−n) e

∑
m≥0,n≥1 γ

F
mn(d

++
−md

−−
−n−d+−

−md
−+
−n )|0−R〉,

where

γB2m′+1,2n′+1 =
2 z

(1+m′+n′)
0

π (2m′ + 1)(2n′ + 1)(1 +m′ + n′)

Γ[32 +m′] Γ[32 + n′]

Γ[1 +m′] Γ[1 + n′]
, (3.48)

γF2m′+1,2n′+1 = − z
(1+m′+n′)
0

π (2n′ + 1)(1 +m′ + n′)

Γ[32 +m′] Γ[32 + n′]

Γ[1 +m′] Γ[1 + n′]
. (3.49)

The result agrees with the coefficients γB2m′+1,2n′+1 (2.34) and γF2m′+1,2n′+1 (2.35) previously
computed in [12].

4 Continuum limit

The D1-D5 system is constructed by wrapping the D1 branes on the circle S1 and the D5 branes
on S1 × T 4. In the regime where the volume of the compactification circle is larger than the
size of the torus, the D1-D5 CFT is a 2-dimensional CFT which lives on S1. In the previous
section we studied the action of the deformation operator on the vacuum state of the CFT. The
deformation operator was inserted at the point w0 = τ0 + iσ0 on the cylinder corresponding to
the 2-dimensional CFT.

In this section we would like to study the behaviour of the final state in a region close to the
insertion point of the twist operator. In this limit, the CFT lives on the non-compact infinite
line R rather than the circle S1 (see figure 3). We refer to this limit as the continuum limit.

There are several places where this ‘local’ description of the twist can be useful. First, if
we are studying the CFT dual to the Poincare patch of AdS3 × S3 × T 4, then the CFT lives
on R instead of S1. Second, even if we have an S1 compactification, the generic state dual to
a black hole has a highly twisted sector of the orbifold CFT, thus creating a CFT that lives on
an effectively infinite line. Third, when we are at strong coupling we expect that the quanta
created by on twist insertion will be picked up and modified by another twist insertion before
they have had time to travel around the closed loop on which the CFT lives; thus the CFT
would again behave as if it lived on an infinite line.
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(a) (b)

Figure 3: The circles becomes infinite lines in the continuum limit, but the twist operator still
works locally as it did in the compact case.

In this section we will evaluate expressions describing the squeezed state in the continuum
limit. These expressions enable us to better understand the physics of the excitations on top
of the vacuum state created by the deformation operator as one deforms the CFT away from
the orbifold point. We will first analyze the bosonic part of the final state in section 4.1, and
then consider the fermionic part in section 4.2 . We will finally write down the full expression
in the continuum limit in section 4.3. These computations can be verified by directly exploring
the squeezed state (2.33) in the continuum limit, which we do in appendix C.

4.1 Bosonic part of the squeezed state in the continuum limit

We consider again the expression that we obtained in section (3) for the stress energy tensor
method

1

2πi

∮

w0

dwT (w)σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2) = ∂w0 |χ〉 = ∂w0σ
+
2 (w0)|0−R〉(1) ⊗ |0−R〉(2) (4.1)

→ z0
2

(

L̃−2 + J̃3
−2

)

|0〉t

=
z0
2

(

− α̃++̇,−1 α̃−−̇,−1 + α̃+−̇,−1 α̃−+̇,−1 − d̃++
− 3

2

d̃−−
− 1

2

+ d̃+−
− 3

2

d̃−+
− 1

2

)

|0〉t,

where the arrow in the second line refers to the series of spectral flows and coordinate maps and
α̃AȦ,m and d̃αAm are the bosonic and fermionic operator modes natural to the covering space.
We consider the bosonic part of ∂w0 |χ〉 in this subsection and analyze the term α̃++̇,−1α̃−−̇,−1.
The analysis for the other bosonic term α̃+−̇,−1α̃−+̇,−1 follows similarly.

Using the mode expansions in section 2 we have

α̃AȦ,−1 = ∂tXAȦ(0) =
1

2π

∮

t=0

dt

t
∂tXAȦ(t). (4.2)

We map the complex plane to the cylinder via the map z = ew. In the region close to the
insertion of the deformation operator, w0 = τ0 + iσ0, we have

|z| = eτ = eτ0+ǫ,
ǫ

τ0
≪ 1, (4.3)

where ǫ is a positive real number. On passing to the covering surface we have

z = z0 + t2 =⇒ t = ± (z − z0)
1
2 = ±

(

eτ0+ǫ+iσ − eτ0+iσ0
)

1
2

= ±e
τ0
2
+i

σ0
2

(

eǫ+i(σ−σ0) − 1
)

1
2 ≈ ±e

τ0
2
+i

σ0
2 (w − w0)

1
2 . (4.4)
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We then use this expression to rewrite the factor 1/t in the integrand of (4.2) in terms of the
cylinder coordinates w:

1

t
=

±e−
w0
2

(w −w0)
1
2

. (4.5)

Under the coordinate transformations which map the t plane to the w plane we have

∂tX(t) dt = ∂wX(w) dw. (4.6)

We note that the bosons do not transform under the spectral flow transformations. Thus we
only need to consider the conformal transformation properties of the boson fields in order to
map them back to the cylinder. This is, however, not the case for fermions which carry R-
charges and transform nontrivially under the spectral flows. We will discuss this in more detail
in section 4.2.

For τ > τ0 we have a single copy of the CFT on a doubly wound circle on the cylinder. The
mode integrals on the cylinder in this region are then defined on this double circle. The positive
and negative roots of (4.4) correspond to the two 2π turns around the doubly twisted circle.
The contour integral (4.2) in the cover then gives the sum over the two parts of the integral on
the cylinder. Using (4.5) and (4.6) the contour integral (4.2) reads

α̃AȦ,−1(0) =

∮

t=0

dt

2πt
∂tXAȦ(t) =

∫

dw

2π
e−

w0
2
∂wXAȦ(w)

(w − w0)
1
2

. (4.7)

We now analyze the first bosonic term of |χ〉 in (4.1) in the continuum limit. Under the
series of spectral flows and coordinate transformations which map the covering surface to the
cylinder, the NS vacuum |0〉t on the cover is mapped into the state |χ(w0)〉 on the cylinder. We
then obtain

z0
2
α̃++̇,−1α̃−−̇,−1|0〉t =

z0
2

∮

t1=0

dt1
2πt1

∂t1X++̇(t1)

∮

t2=0

dt2
2πt2

∂t2X−−̇(t2) |0〉t

−→ ew0

2

∫

dw1

2π

e−
w0
2 ∂w1X++̇(w1)

(w1 − w0)
1
2

∫

dw2

2π

e−
w0
2 ∂w2X−−̇(w2)

(w2 −w0)
1
2

|χ(w0)〉

=

∫

dw1

2π

∫

dw2

2π
∂w1X++̇(w1) ∂w2X−−̇(w2)KB(w1, w2) |χ(w0)〉, (4.8)

where the bosons are normal ordered and the arrow in the second line denotes the maps and
spectral flows from the covering space to the cylinder. The kernel KB is defined as

KB(w1, w2) ≡
1

2

1

(w1 − w0)
1
2 (w2 −w0)

1
2

. (4.9)

The same results hold for the second bosonic term in (4.1), i.e., z02 α̃+−̇,−1α̃−+̇,−1. Thus we
have

z0
2

(

− α̃++̇,−1α̃−−̇,−1 + α̃+−̇,−1α̃−+̇,−1

)

|0〉t (4.10)

−→
∫

dw1

2π

∫

dw2

2π

(

− ∂w1X++̇(w1) ∂w2X−−̇(w2) + ∂w1X+−̇(w1) ∂w2X−+̇(w2)
)

×

×KB(w1, w2) |χ(w0)〉.
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4.2 Fermionic part of the squeezed state in the continuum limit

In this section we analyze the fermionic contribution to the squeezed state in the continuum
limit. We consider the fermionic part of the state |χ〉 (4.1) which is expressed in terms of the
modes d̃αAr (4.11) natural to the t plane. We perform the calculations for the term d̃++

−3/2d̃
−−
−1/2.

The analysis for the other term d̃+−
−3/2d̃

−+
−1/2 will follow analogously. The modes of fermions

natural to the covering surface are given by

d̃αAr =
1

2πi

∮

t=0
dt tr−

1
2 ψαA(t), r ∈ Z+

1

2
. (4.11)

Under the coordinate transformations which map the cover to the cylinder coordinates we have

ψ(t) dt =
(dt(w)

dw

)
1
2
ψ(w) dw. (4.12)

Using the expression we obtained in (4.5) we find that

(dt(w)

dw

)
1
2
=
( dt

dz

dz

dw

)
1
2
=

1√
2

e
w0
4

(w − w0)
1
4

(4.13)

in the continuum limit. For d̃++
−3/2 and d̃−−

−1/2 we have

d̃++
− 3

2

= ∂tψ
++(0) =

∮

t=0

dt

2πi

ψ++(t)

t2
, (4.14)

d̃−−
− 1

2

= ψ−−(0) =

∮

t=0

dt

2πi

ψ−−(t)

t
. (4.15)

Let us first consider d̃++
−3/2 and use (4.12) and (4.5) to write (4.14) in terms of the w co-

ordinates. There is an important point to note here before we perform these calculations. In
the process of computing the state |χ〉 (4.1) we performed two spectral flow transformations:
one on the cylinder with the spectral flow parameter α = −1 and one on the cover with α = 1.
Fermionic fields carry SU(2)R charges and acquire a phase under the spectral flow transforma-
tion. In order to express ψαA(t) in terms of ψαA(w) in the integrand of (4.14), one not only
needs to take into account the conformal transformation properties of the fermion field, but
also the spectral flow transformations on the cover and the cylinder. These two spectral flows
have parameters α = −1 on the cover and α = 1 on the cylinder. Let us first consider ψ++(t).

We use (2.15) and (2.19) and find that ψ++(t) → e
w0
2 t−

1
2ψ++(w). We then obtain

d̃++
− 3

2

=

∮

t=0

dt

2πi

ψ++(t)

t2

=

∫

dw

2πi

1√
2
e

w0
4 (w − w0)

− 1
4ψ++(w) e

w0
4 (w − w0)

− 1
4

ew0(w − w0)

=
1√
2

∫

dw

2πi

ψ++(w) e−
w0
2

(w − w0)
3
2

. (4.16)
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For ψ−−(t) we have ψ−−(t) → e−
w0
2 t

1
2ψ−−(w) and

d̃−−
− 1

2

=

∮

t=0

dt

2πi

ψ−−(t)

t

=

∫

dw

2πi

1√
2
e

w0
4 (w − w0)

− 1
4ψ−−(w) e−

w0
4 (w − w0)

1
4

e
w0
2 (w − w0)

1
2

=
1√
2

∫

dw

2πi

ψ−−(w) e−
w0
2

(w − w0)
1
2

. (4.17)

We can now write the full expression for fermions. Under the spectral flows and coordinate
transformations, the NS vacuum |0〉t on the cover is mapped to the state |χ(w0)〉 (4.1) on the
cylinder. We then have

z0
2
d̃++
− 3

2

d̃−−
− 1

2

|0〉t −→ ew0

2(
√
2)2

∫

dw1

2πi

ψ++(w1) e
−w0

2

(w1 − w0)
3
2

∫

dw2

2πi

ψ−−(w2) e
−w0

2

(w2 − w0)
1
2

|χ(w0)〉

=

∫

dw1

2πi

∫

dw2

2πi
ψ++(w1)ψ

−−(w2)K′F (w1, w2) |χ(w0)〉, (4.18)

where the fermions are normal ordered and the fermion kernel K′F is defined as

K′F (w1, w2) ≡
1

4

1

(w1 − w0)
3
2 (w2 −w0)

1
2

. (4.19)

The boson kernel KB (4.9) and the fermion kernel in the above equation are related to each
other as we now describe. The boson kernel KB acts as ∂XAȦKB ∂XBḂ and the fermion kernel
acts as ψαAK′F ψβB . If we integrate the fermion kernel K′F (4.19) by parts over w1, we get
∂ψαAKFψβB , where

KF = KB =
1

2

1

(w1 − w0)
1
2 (w2 − w0)

1
2

. (4.20)

The kernels for ∂XAȦKB ∂XBḂ and ∂ψαAKF ψβB are thus the same.

The same results obtained above hold for the second fermionic term in (4.1): z0
2 d̃

+−
−3/2d̃

−+
−1/2.

The total fermionic contribution reads

z0
2

(

− d̃++
−3/2d̃

−−
−1/2 + d̃+−

−3/2d̃
−+
−1/2

)

|0〉t (4.21)

−→
∫

dw1

2π

∫

dw2

2π

(

∂ψ++(w1)ψ
−−(w2)− ∂ψ+−(w1)ψ

−+(w2)
)

×

×KF (w1, w2) |χ(w0)〉.
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4.3 The complete squeezed state in the continuum limit

It is now straightforward to combine the results of the bosonic and fermionic contributions
(4.10) and fermion (4.21). This gives

z0
2

(

L̃−2 + J̃3
−2

)

|0〉t (4.22)

=
z0
2

(

− α̃++̇,−1 α̃−−̇,−1 + α̃+−̇,−1 α̃−+̇,−1 − d̃++
− 3

2

d̃−−
− 1

2

+ d̃+−
− 3

2

d̃−+
− 1

2

)

|0〉t

−→
[

∫

dw1

2π

∫

dw2

2π

(

− ∂w1X++̇(w1) ∂w2X−−̇(w2) + ∂w1X+−̇(w1) ∂w2X−+̇(w2) +

+∂ψ++(w1)ψ
−−(w2)− ∂ψ+−(w1)ψ

−+(w2)

)

1
2

(w1 − w0)
1
2 (w2 − w0)

1
2

]

|χ(w0)〉.

This yields a differential equation for the state |χ(w0)〉

∂w0 |χ(w0)〉 = (4.23)
[

∫

dw1

2π

∫

dw2

2π

(

− ∂w1X++̇(w1) ∂w2X−−̇(w2) + ∂w1X+−̇(w1) ∂w2X−+̇(w2) +

+∂ψ++(w1)ψ
−−(w2)− ∂ψ+−(w1)ψ

−+(w2)

)

1
2

(w1 − w0)
1
2 (w2 − w0)

1
2

]

|χ(w0)〉.

Note that the location of the twist insertion w0 only appears in the kernel. This allows us to
integrate this expression, and find

|χ(w0)〉 = exp

[

∫

dw1

2π

∫

dw2

2π

(

∂w1X++̇(w1) ∂w2X−−̇(w2)− ∂w1X+−̇(w1) ∂w2X−+̇(w2) +

−∂w1ψ
++(w1)ψ

−−(w2) + ∂w1ψ
+−(w1)ψ

−+(w2)

)

ln
(√
w1 − w0 +

√
w2 − w0

)

]

|0−R〉,

(4.24)

up to an overall normalization. This normalization is fixed by the earlier convention that
σ+2 (w0)|0−R〉(1) ⊗ |0−R〉(2) = |0−R〉 + · · · . A second way to arrive at this state is by directly
analyzing the sums in the exponentials of the squeezed state (2.33), and replacing these sums
with integrals in the continuum limit. We do this in appendix C.

5 Discussion

If we could understand the D1D5 CFT away from the orbifold point, then we would be able to
unravel many mysteries about the black hole. In particular, we could ask how the black hole
forms from the infalling matter, or how it reacts when additional matter falls in; this is expected
to correspond to a thermalization process in the dual CFT. The CFT at the orbifold point is
essentially free and so does not thermalize. It is hoped that with a study of the deformations
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away from the orbifold point we would be able to get a qualitative picture of the thermalization
process.

Since thermalization is likely to involve many orders of deformation from the orbifold point,
it is useful to have a good understanding of the effect of the deformation operator. In the present
paper we have seen that while the coefficients γB , γF look complicated, their derivative with
respect to z0 is in fact simple: in the covering space it has the schematic form α̃−1α̃−1+d̃− 3

2
d̃− 1

2
.

We have also investigated the squeezed state produced by the twist deformation in the
continuum limit. In a position space representation, the exponential in the squeezed state is
given through kernels KB(σ1, σ2),K

F (σ1, σ2). Looking at these kernels gives a useful physical
picture of the effect of the twist; one can see the correlations produced in the fields around the
location of the twist insertion.

In future work, we hope to return to the results here to extract a general qualitative picture
of deforming away from the orbifold point as well as to apply the stress-tensor method to higher
twist states.
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A Notation and the CFT algebra

In the D1D5 CFT at the orbifold point, we have four real left moving fermions ψ1, ψ2, ψ3, ψ4.
We group these into complex doublets ψαA

(

ψ++

ψ−+

)

=
1√
2

(

ψ1 + iψ2

ψ3 + iψ4

)

(A.1)

(

ψ+−

ψ−−

)

=
1√
2

(

ψ3 − iψ4

−(ψ1 − iψ2)

)

(A.2)

The first index, which we label α = (+,−), denotes the transformation properties under SU(2)L,
which is a subgroup of rotations on S3. The second index, which we label A = (+,−), is an
index of the subgroup SU(2)1 of rotations in T 4. These four complex fermions have a reality
condition because they are constructed from only four real fermions:

(ψ†)αA = −ǫαβǫABψβB . (A.3)

The two-point function for these complex fermions are

〈ψαA(z)ψ†
βB(w)〉 = δαβ δ

A
B

1

z − w
, 〈ψαA(z)ψβB(w)〉 = −ǫαβǫAB 1

z − w
(A.4)
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where the ǫ symbol is defined as

ǫ12 = 1, ǫ12 = −1, ψA = ǫABψ
B , ψA = ǫABψB . (A.5)

In addition to the fermions, there are four real left moving bosons X1,X2,X3,X4 which can be
grouped into a matrix

XAȦ =
1√
2
Xiσ

i =
1√
2

(

X3 + iX4 X1 − iX2

X1 + iX2 −X3 + iX4

)

(A.6)

where σi for i = 1, 2, 3 are the usual Pauli matrices, and σ4 = iI. The complex conjugate of the
above fields are given by

(X∗)AȦ =
1√
2

(

X3 − iX4 X1 + iX2

X1 − iX2 −X3 − iX4

)

(A.7)

leading again to a reality condition

(XAȦ)
∗ = XAȦ (A.8)

which is expected because we constructed four complex bosons from four real bosons, so there
must be a condition of this sort to reduce the number of degrees of freedom. From these
definitions, the 2-point functions are

〈∂XAȦ(z)(∂X
†)BḂ(w)〉 = − 1

(z − w)2
δBAδ

Ḃ
Ȧ
, 〈∂XAȦ(z)∂XBḂ(w)〉 =

1

(z − w)2
ǫABǫȦḂ (A.9)

The symmetry currents

Ja = −1

4
(ψ†)αA(σ

Ta)αβψ
βA (A.10)

Gα
Ȧ
= ψαA∂XAȦ, (G†)Ȧα = (ψ†)αA∂(X

†)AȦ (A.11)

T = −1

2
(∂X†)AȦ∂XAȦ − 1

2
(ψ†)αA∂ψ

αA (A.12)

(G†)Ȧα = −ǫαβǫȦḂGβḂ , Gα
Ȧ
= −ǫαβǫȦḂ(G†)Ḃβ (A.13)

obey the following OPE algebra

Ja(z)Jb(w) ∼ δab
1
2

(z − w)2
+ iǫabc

Jc

z −w
(A.14)

Ja(z)Gα
Ȧ
(z′) ∼ 1

(z − z′)

1

2
(σaT )αβG

β

Ȧ
(A.15)

Gα
Ȧ
(z)(G†)Ḃβ (z

′) ∼ − 2

(z − z′)3
δαβ δ

Ḃ
Ȧ
− δḂ

Ȧ
(σTa)αβ[

2Ja

(z − z′)2
+

∂Ja

(z − z′)
]− 1

(z − w)
δαβ δ

Ḃ
Ȧ
T (A.16)

T (z)T (z′) ∼ 3

(z − z′)4
+

2T

(z − z′)2
+

∂T

(z − z′)
(A.17)
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T (z)Ja(z′) ∼ Ja

(z − z′)2
+

∂Ja

(z − z′)
(A.18)

T (z)Gα
Ȧ
∼

3
2G

α
Ȧ

(z − z′)2
+

∂Gα
Ȧ

(z − z′)
. (A.19)

Working on the fundamental ψ fields, note that

Ja(z)ψγC (w) ∼ 1

2

1

z − w
(σaT )γβψ

βC (A.20)

The above OPEs lead to the following algebra for modes of the symmetry currents

[Jam, J
b
n] =

m

2
δabδm+n,0 + iǫabcJ

c
m+n (A.21)

[Jam, G
α
Ȧ,n

] =
1

2
(σaT )αβG

β

Ȧ,m+n
(A.22)

{Gα
Ȧ,m

, Gβ
Ḃ,n

} = ǫȦḂ

[

(m2 − 1

4
)ǫαβδm+n,0 + (m− n)(σaT )αγǫ

γβJam+n + ǫαβLm+n

]

(A.23)

[Lm, Ln] =
m(m2 − 1

4)

2
δm+n,0 + (m− n)Lm+n (A.24)

[Lm, J
a
n ] = −nJam+n (A.25)

[Lm, G
α
Ȧ,n

] =
(m

2
− n

)

Gα
Ȧ,m+n

(A.26)

.

B Spectral flow

Consider a state |ψh,j〉 with dimension h and charge j. Under spectral flow by a parameter α,
this state changes to a different state with dimension h′ and charge j′ [20]:

|ψh,j〉 → |ψ′
h′,j′〉, (B.1)

where

h′ = h+ αj +
α2c

24
, (B.2)

j′ = j +
αc

12
. (B.3)

Consider a primary operator Oj carrying charge j on the cylinder with coordinate w. Under
spectral flow this operator changes as

Oj → O′
j = Oje

−αjw + . . . . (B.4)

The operator J is neutral, but is modified by spectral flow due to the current anomaly. The
operator T is not a primary, and also has the conformal anomaly. Our goal is to see how these
operators change under spectral flow.

22



B.1 The changes in J0 and L0

The current operator J0 is neutral, but changes by an additive constant due to the current
anomaly:

J0 → J ′
0 = J0 + a1. (B.5)

We can find a1 by using the change in charge under spectral flow. We have

J0|ψh,j〉 = j|ψh,j〉. (B.6)

If we spectral flow both the state and the charge operator, we will get the same eigenvalue

J ′
0|ψ′

h′,j′〉 = (J0 + a1)|ψ′
h′,j′〉 = j|ψ′

h′,j′〉. (B.7)

From (B.3) we have

J0|ψ′
h′,j′〉 = (j +

αc

12
)|ψ′

h′,j′〉. (B.8)

Thus we get a1 = −αc
12 and the operator J0 transforms as

J0 → J ′
0 = J0 −

αc

12
. (B.9)

Let us now consider the energy operator L0, for which we can follow a similar procedure.
The change in L0 has the form

L0 → L′
0 = L0 + a2J0 + a3, (B.10)

where a2, a3 are constants. We have

L0|ψh,j〉 = h|ψh,j〉. (B.11)

If we spectral flow both the state and the energy operator, we will get the same eigenvalue

L′
0|ψ′

h′,j′〉 = (L0 + a2J0 + a3)|ψ′
h′,j′〉 = h|ψ′

h′,j′〉. (B.12)

Using (B.8), this gives

(L0 + a2(j +
αc

12
) + a3)|ψ′

h′,j′〉 = h|ψ′
h′,j′〉. (B.13)

From (B.2) we have

L0|ψ′
h′,j′〉 = (h+ αj +

α2c

24
)|ψ′

h′,j′〉. (B.14)

Substituting (B.14) in (B.13) we find

(h+ αj +
α2c

24
) + a2(j +

αc

12
) + a3 = h. (B.15)

Thus we get a2 = −α, a3 = α2c
24 , and the operator L0 transforms as

L0 → L′
0 = L0 − αJ0 +

α2c

24
. (B.16)

23



B.2 The changes in J(w) and T (w) on the cylinder

From the shifts of J0, L0 under spectral flow, we can find the shifts of the operators J(w), T (w)
on the cylinder. We have

J0 =
1

2π

∫ 2π

σ=0
dwJ(w), L0 =

1

2π

∫ 2π

σ=0
dwT (w). (B.17)

Thus
J(w) → J ′(w) = J(w)− αc

12
, (B.18)

T (w) → T ′(w) = T (w)− αJ(w) +
α2c

24
. (B.19)

B.3 The changes in J(z) and T (z) on the plane

We will also need to find the effect of spectral flow on operators on the complex plane. Consider
the plane z defined through z = ew. The analog of (B.4) is

Oj → O′
j = Ojz

−αj + . . . . (B.20)

Consider the operator J(z), and spectral flow by parameter α around the origin z = 0. To
find the change in J(z), we proceed in three steps:

(i) We map J(z) to the cylinder, getting

J(w) =

(

∂z

∂w

)

J(z) = zJ(z). (B.21)

(ii) We perform the spectral flow by parameter α on the cylinder, getting

J(w) → J(w) − αc

12
. (B.22)

(iii) We then map back to the plane, getting

J ′(z) =

(

∂w

∂z

)

[

J(w) − αc

12

]

=
1

z

[

zJ(z) − αc

12

]

= J(z)− αc

12z
. (B.23)

We can perform the same steps to find the change in T (z);

(i) We map T (z) to the cylinder, getting

T (w) =

(

∂z

∂w

)2

T (z) +
c

12
{z, w} = z2T (z)− 1

4
. (B.24)
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(ii) We perform the spectral flow by parameter α, getting

T (w) → T (w)− αJ(w) +
α2c

24
. (B.25)

(iii) We map back to the plane, getting

T ′(z) =

(

∂w

∂z

)2 [

T (w)− αJ(w) +
α2c

24

]

+
c

12
{w, z}

=
1

z2

[

z2T (z)− 1

4
− αzJ(z) +

α2c

24

]

+
1

4z2

= T (z)− αJ(z)

z
+

α2c

24z2
. (B.26)

B.4 Spectral flows used in our computations

Let us now see how we use the above relations in our computations in section 3.1.

(a) On the cylinder we perform a spectral flow transformation with parameter α = 1. Using
c = 6 we find equation (3.4):

T ′(w) = T (w)− J(w) +
1

4
. (B.27)

(b) On the t-plane we spectral flow by α = −1. This then gives equation (3.16):

T ′(t) = T (t) +
J(t)

t
+

1

4t2
(B.28)

C Directly analyzing the squeezed state

C.1 bosonic contribution

The results obtained in section 4 for the continuum limit can be obtained by performing com-
putations directly on the cylinder using |χ(w0)〉 (2.33):

|χ(w0)〉 = σ+2 (w0) |0−R〉(1) ⊗ |0−R〉(2) = (C.1)

e
∑

m≥1,n≥1 γ
B
mn(−α++̇,−mα−−̇,−n+α−+̇,−mα+−̇,−n) e

∑
m≥0,n≥1 γ

F
mn(d

++
−md

−−
−n−d+−

−md
−+
−n )|0−R〉.

We focus on the bosonic part in this section. Let us consider the bosonic term

e
−

∑
m′≥0,n′≥0 γ

B
2m′+1,2n′+1

α++̇,−(2m′+1)α−−̇,−(2n′+1) , (C.2)

where we have set m = 2m′ + 1 and n = 2n′ + 1 because the coefficients γBmn and γFmn are
nonzero only for odd values of m and n (see section 2). The bosonic modes αAȦ,m are defined
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on the doubly wound circle in the region τ > τ0 above the insertion point of the twist operator.
These modes are given by

αAȦ,m =
1

2π

∫ σ+4π

σ
dw ∂wXAȦ(w) e

m
2
w. (C.3)

We then obtain

∂wXAȦ = − i

2

∑

m

αAȦ,me
−m

2
w. (C.4)

In what follows, it will be more convenient to write the modes in terms of X rather than ∂X.
We write, with a caveat,

XAȦ(w) =
i

2

∑

m6=0

2

m
αAȦ,me

−m
2
w. (C.5)

This is not the full X operator. Rather, it is the holomorphic part of X with both the center
of mass mode xAȦ and the momentum mode αAȦ,0 removed. It would be sufficient to simply
remove the center of mass mode, given that this operator acts on the zero momentum Ramond
vacuum. We suppress this subtlety here, writing X to simplify notation in this section. At the
end, we will integrate by parts to put the derivative back on theX operator, which automatically
removes the center of mass mode x, and because the operator is acting on the Ramond vacuum,
the momentum modes evaluate to 0. This will reinstate the ∂X as being the full operator. Thus,
in our final answer, we will be using conventional notation.

This subtlety being noted, we write the odd modes m = 2m′ + 1 in (C.3) we find

αAȦ,m =
1

2π

∫ σ+4π

σ
dw
(−m

2

)

XAȦ(w) e
m
2
w

=
1

2π

∫ σ+4π

σ
dw
(

m′ +
1

2

)

XAȦ(w) e
−(m′+ 1

2
)w. (C.6)

We use the above expression and rewrite the exponent of (C.2)

−
∑

m′≥0,n′≥0

γB2m′+1,2n′+1α++̇,−(2m′+1)α−−̇,−(2n′+1) =

−
∫ σ1+4π

σ1

dw1

2π

∫ σ2+4π

σ2

dw2

2π
X++̇(w1)X−−̇(w2)×

×
∑

m′≥0,n′≥0

γB2m′+1,2n′+1

(

m′ +
1

2

)(

n′ +
1

2

)

e−(m′+ 1
2
)w1e−(n′+ 1

2
)w2 , (C.7)

where

γB2m′+1,2n′+1 =
2 z

(m′+n′+1)
0

π (2m′ + 1)(2n′ + 1)(1 +m′ + n′)

Γ[32 +m′] Γ[32 + n′]

Γ[1 +m′] Γ[1 + n′]
. (C.8)

In the continuum limit, z0z1 → 1, z0z2 → 1, m′ → ∞, n′ → ∞, and the summation is replaced with
integrals over dm′ and dn′. In this limit we obtain

γB2m′+1,2n′+1 ≈ 1

2π

z
(m′+n′+1)
0

m′ + n′
Γ[12 +m′]

Γ[1 +m′]

Γ[12 + n′]

Γ[1 + n′]
(C.9)
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Using properties of the Gamma functions

lim
m→∞

Γ(m+ β)

Γ(m)mβ
= 1 β ∈ R, (C.10)

allows us to approximate the coefficients γBmn (C.9). We then replace the remaining sums over
m′ and n′ as integrals in (C.7) giving

−
∑

m′≥0,n′≥0

γB2m′+1,2n′+1α++̇,−(2m′+1)α−−̇,−(2n′+1) ≈

−
∫ σ1+4π

σ1

dw1

2π

∫ σ2+4π

σ2

dw2

2π
X++̇(w1)X−−̇(w2)×

×
∫ ∞

0
dm

∫ ∞

0
dn

1

2π

zm
′+n′+1

0

m′ + n′
m′ n′

m′ 1
2 n′

1
2

e−(m′+ 1
2
)w1e−(n′+ 1

2
)w2 (C.11)

recalling that we have taken m′ and n′ to be large. We switch to coordinates

m+ ≡ m′ + n′, m− ≡ m′ − n′. (C.12)

Thus, our approximation becomes

−
∑

m′≥0,n′≥0

γB2m′+1,2n′+1α++̇,−(2m′+1)α−−̇,−(2n′+1) ≈

−
∫ σ1+4π

σ1

dw1

2π

∫ σ2+4π

σ2

dw2

2π
X++̇(w1)X−−̇(w2)×

×1

2

∫ ∞

0
dm+

z
m++1
0

4πm+
e−

1
2
(m++1)w+

∫ m+

−m+

dm−
(

m2
+ −m2

−
)

1
2 e−

1
2
m−w−, (C.13)

where w+ and w− are defined as

w+ ≡ w1 + w2, w− ≡ w1 − w2. (C.14)

We first evaluate the integral over dm−, which gives a Bessel function as the solution. We find
∫ m+

−m+

dm−
(

m2
+ −m2

−
)

1
2 e−

1
2
m−w− = 2π

m+

w−
I1
(m+w−

2

)

. (C.15)

Inserting this result back in (C.13) we obtain the following integral over m+

1

2

∫ ∞

0
dm+

z
m++1
0

4πm+
e−

1
2
(m++1)w+

∫ m+

−m+

dm−
(

m2
+ −m2

−
)

1
2 e−

1
2
m−w−

=
e−

1
2
(w+−2w0)

4w−

∫ ∞

0
dm+ e

− 1
2
(w+−2w0)m+ I1

(w−m+

2

)

. (C.16)

We use the table of integrals for the modified Bessel functions and consider the expression

∫ ∞

0
dx e−αx Iν(βx) =

β−ν
(

α−
√

α2 − β2
)ν

√

α2 − β2
, Re ν > −1, Reα > |Re β|. (C.17)
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We identify α = (w+ − 2w0)/2, β = w−/2. The first condition for the integral above is clearly
satisfied because ν = 1. For the second, we recall that we are working in a region just above
the insertion of the twist operator, and so

w0 = τ0 + iσ0, w1 = τ0 + ǫ1 + iσ1, w2 = τ0 + ǫ2 + iσ2, (C.18)

w+ = 2τ0 + (ǫ1 + ǫ2) + i(σ1 + σ2), w− = (ǫ1 − ǫ2) + i(σ1 − σ2) (C.19)

with ǫ1 > 0, ǫ2 > 0. Hence,

α =
(ǫ1 + ǫ2)

2
+ i

(σ1 + σ2 − 2σ0)

2
, β =

(ǫ1 − ǫ2)

2
+ i

(σ1 − σ2)

2
. (C.20)

and the second condition Reα > |Re β| is met as well. The integral over dm+ then reads

∫ ∞

0
dm+ e

− 1
2
(w+−2w0)m+ I1

(w−m+

2

)

=
2

w−

(

1

2

(√
w1 − w0 −

√
w2 − w0

)2

√
w1 − w0

√
w2 − w0

)

=
w−

(√
w1 − w0 +

√
w2 − w0

)2

1√
w1 − w0

√
w2 − w0

(C.21)

after some algebraic simplification. Thus

e−
1
2
(w+−2w0)

4w−

∫ ∞

0
dm+ z

m++1
0 I1

(m+w−
2

)

e−
1
2
(m++1)w+ (C.22)

=
1

4
e−

1
2

[

(w1−w0)+(w2−w0)
]

1
(√
w1 − w0 +

√
w2 − w0

)2

1√
w1 − w0

√
w2 − w0

≈ 1
(√
w1 − w0 +

√
w2 − w0

)2

1√
w1 − w0

√
w2 − w0

.

where in the last expression, we use that z0/z1 → 1 and z0/z2 → 1 and so the exponential
becomes 1 in the continuum limit.

We use this to compute the exponent (C.11). Therefore, in the continuum limit we obtain

−
∑

m′≥0,n′≥0

γB2m′+1,2n′+1α++̇,−(2m′+1)α−−̇,−(2n′+1) ≈

−
∫ σ1+4π

σ1

dw1

2π

∫ σ2+4π

σ2

dw2

2π
X++̇(w1)X−−̇(w2) K̂B(w1, w2), (C.23)

where the kernel is of the form

K̂B(w1, w2) ≡
1

4

1

(w1 − w0)
1
2 (w2 − w0)

1
2

1
[

(w1 − w0)
1
2 + (w2 − w0)

1
2

]2
. (C.24)

In section C.3 we will see how the kernel K̂B obtained above through direct computations on
the cylinder is related to the kernel KB (4.9) obtained in the main text. Essentially, this comes
down to integrating by parts to put the derivatives back on X(w1) and X(w2). As mentioned
earlier in this section, this will be important to bring us back to more conventional notation.
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The calculation for the other bosonic contribution is identical, and so we find the total bosonic
contribution to be

∑

m′≥0,n′≥0

γB2m′+1,2n′+1

(

− α++̇,−(2m′+1) α−−̇,−(2n′+1) + α+−̇,−(2m′+1) α−+̇,−(2n′+1)

)

≈

∫ σ1+4π

σ1

dw1

2π

∫ σ2+4π

σ2

dw2

2π

(

−X++̇(w1)X−−̇(w2) +X+−̇(w1)X−+̇(w2)
)

K̂B(w1, w2). (C.25)

C.2 fermionic contribution

In this subsection we consider the fermion part of the state |χ(w0)〉 (2.33) on the cylinder in
the continuum limit. The fermion part is of the form

e
∑

m′≥0,n′≥0 γ
F
2m′+1,2n′+1

(

d++
−(2m′+1)

d−−

−(2n′+1)
−d+−

−(2m′+1)
d−+
−(2n′+1)

)

, (C.26)

where the modes of fermions dαAm are defined on the doubly twisted circle in the region τ > τ0
and are given by

dαAm =
1

2πi

∫ σ+4π

σ
dw ψαA(w) e

m
2
w. (C.27)

We then find

ψαA(w) =
1

2

∑

m

dαAm e−
m
2
w. (C.28)

For the odd modes m = 2m′ + 1 in (C.27) we find

dαAm =

∫ σ+4π

σ

dw

2πi
ψαA(w) e−(m′+ 1

2
)w. (C.29)

We write the exponent of (C.26) using the above relation. We perform the computations for the
term d++

−(2m′+1)d
−−
−(2n′+1) and note the calculations for the other term d+−

−(2m′+1)d
−+
−(2n′+1) follow

analogously. The exponent is given by

∑

m′≥0,n′≥0

γF2m′+1,2n′+1d
++
−(2m′+1)d

−−
−(2n′+1) = (C.30)

∫ σ1+4π

σ1

dw1

2πi

∫ σ2+4π

σ2

dw2

2πi
ψ++(w1)ψ

−−(w2)
∑

m′≥0,n′≥0

γF2m′+1,2n′+1e
−(m′+ 1

2
)w1e−(n′+ 1

2
)w2 ,

where

γF2m′+1,2n′+1 = − z
(m′+n′+1)
0

π (2n′ + 1)(1 +m′ + n′)

Γ[32 +m′] Γ[32 + n′]

Γ[1 +m′] Γ[1 + n′]
. (C.31)

In the continuum limit, {z0z1 ,
z0
z2
} → 1, and {m′, n′} → ∞. Again, applying the property of

gamma matrices (C.10) we find

γF2m′+1,2n′+1 ≈ − 1

2π

z
(m′+n′+1)
0

m′ + n′
m′ 1

2

n′
1
2

. (C.32)
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After replacing the sums with integrals, the exponent (C.30) then reads

∑

m′≥0,n′≥0

γF2m′+1,2n′+1d
++
−(2m′+1)d

−−
−(2n′+1)

∫ σ1+4π

σ1

dw1

2πi

∫ σ2+4π

σ2

dw2

2πi
ψ++(w1)ψ−−(w2)×

×
∫ ∞

0
dm′

∫ ∞

0
dn′

(−1)

2π

zm
′+n′+1

0

m′ + n′
m′ 12

n′
1
2

e−(m′+ 1
2
)w1e−(n′+ 1

2
)w2 . (C.33)

We want to evaluate the integrals over m′ and n′ in the second line. Let us rewrite the second
line of the above expression as

I ≡
∫ ∞

0
dm′

∫ ∞

0
dn′

(−1)

2π

zm
′+n′+1

0

m′ + n′
m′ 12

n′
1
2

e−(m′+ 1
2
)w1e−(n′+ 1

2
)w2

= − 1

2π
e−

(w1+w2)
2 ew0

∫ ∞

0
dm′m′ 1

2 e−(w1−w0)m′

∫ ∞

0
dn′

1

n′
1
2 (n′ +m′)

e−(w2−w0)n′

.(C.34)

We first evaluate the integral over n′. Using table of integrals for exponentials we consider
the following expression
∫ ∞

0
dx

xν−1 e−µx

x+ β
= βν−1 eβµ Γ(ν) Γ(1− ν, βµ), |arg β| < π,Reµ > 0,Re ν > 0, (C.35)

where Γ(η, x) is the upper incomplete Gamma function. In our case, ν = 1/2, µ = w2 − w0,
β = m′, and so the conditions in (C.35) are satisfied. The integral over dn′ in (C.34) then reads

∫ ∞

0
dn′

1

n′
1
2 (n′ +m′)

e−(w2−w0)n′

=
π

1
2

m′ 1
2

e(w2−w0)m′

Γ
(1

2
, (w2 − w0)m

′
)

. (C.36)

Putting this expression back in (C.34) we obtain

I = −π
1
2

2π
e−

(w1+w2)
2 ew0

∫ ∞

0
dm′ e−(w1−w2)m′

Γ
(1

2
, (w2 −w0)m

′
)

. (C.37)

We define a new parameter m′′ ≡ (w2 − w0)m
′. The above integral then reads

I = − 1

2π
1
2

e−
1
2

(

(w1−w0)+(w2−w0)
)

1

(w2 − w0)

∫ ∞

0
dm′′ e

−w1−w2
w2−w0

m′′

Γ
(1

2
,m′′). (C.38)

We next use the table of integrals for the incomplete Gamma functions to evaluate the integral
over m′′. We have

∫ ∞

0
dx e−αx Γ(ξ, x) =

1

α
Γ(ξ)

[

1− 1

(1 + α)β

]

, ξ > 0. (C.39)

Comparing this expression to (C.38) we find that α = (w1 − w2)/(w2 − w0), and ξ = 1/2 > 0.
We then obtain

I = −1

2
e−

1
2

[

(w1−w0)+(w2−w0)
]

1√
w1 − w0(

√
w1 − w0 +

√

w2 −w0))
(C.40)

≈ −1

2

1
√
w1 − w0(

√
w1 − w0 +

√

w2 − w0))
(C.41)
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where we have used the continuum limit z0/z1 → 1 and z0/z2 → 1 to remove the preceding
exponentials. Inserting this into the exponent (C.30), we find

∑

m′≥0,n′≥0

γF2m′+1,2n′+1d
++
−(2m′+1)d

−−
−(2n′+1) ≈

∫ σ1+4π

σ1

dw1

2πi

∫ σ2+4π

σ2

dw2

2πi
ψ++(w1)ψ

−−(w2) K̂F (w1, w2), (C.42)

where the kernel is given by

K̂F (w1, w2) ≡ −1

2

1

(w1 − w0)
1
2

1

[(w1 − w0)
1
2 + (w2 − w0)

1
2 ]
. (C.43)

In section C.3 we will compare the fermion kernel K̂F obtained in the above equation to the
fermion kernel KF (4.20) computed in the main text. As mentioned before, the kernel for
the other fermionic term d+−

−(2m′+1)d
−+
−(2n′+1) is the same as (C.43). Therefore, the fermionic

contribution to the squeezed state in the continuum limit is given by

∑

m′≥0,n′≥0

γF2m′+1,2n′+1

(

d++
−(2m′+1)d

−−
−(2n′+1) − d+−

−(2m′+1)d
−+
−(2n′+1)

)

≈

∫ σ1+4π

σ1

dw1

2πi

∫ σ2+4π

σ2

dw2

2πi

(

ψ++(w1)ψ
−−(w2)− ψ+−(w1)ψ

−+(w2)
)

K̂F (w1, w2). (C.44)

C.3 Squeezed state on the cylinder

In subsetions C.1 and C.2 we considered the squeezed state on the cylinder (C.1) and investi-
gated the bosonic and fermionic contributions in the continuum limit. Combining the bosonic
(C.25) and fermionic (C.44) parts, we obtain the full expression

|χ(w0)〉 = σ+2 (w0) |0−R〉(1) ⊗ |0−R〉(2) = (C.45)

e
∑

m≥1,n≥1 γ
B
mn(−α++̇,−mα−−̇,−n+α−+̇,−mα+−̇,−n) e

∑
m≥0,n≥1 γ

F
mn(d

++
−md

−−
−n−d+−

−md
−+
−n ) |0−R〉 ≈

e

∫ σ1+4π
σ1

dw1
2π

∫ σ2+4π
σ2

dw2
2π

(

−X++̇(w1)X−−̇(w2)+X+−̇(w1)X−+̇(w2)

)

1
4√

w1−w0
√

w2−w0

1
(
√

w1−w0+
√

w2−w0)
2

× e

∫ σ1+4π
σ1

dw1
2πi

∫ σ2+4π
σ2

dw2
2πi

(

ψ++(w1)ψ−−(w2)−ψ+−(w1)ψ−+(w2)

)

(−1)
2√

w1−w0

1

(
√

w1−w0+
√

w2−w0) |0−R〉.

In order to compare this expression to (4.24), we perform integration by parts over w1 and w2

for the bosonic terms and over w1 for the fermionic terms. We then find

|χ(w0)〉 = (C.46)

e

∫ σ1+4π
σ1

dw1
2π

∫ σ2+4π
σ2

dw2
2π

(

−∂w1X++̇(w1) ∂w2X−−̇(w2)+∂w1X+−̇(w1) ∂w2X−+̇(w2)

)

(− ln (
√
w1−w0+

√
w2−w0))

× e

∫ σ1+4π
σ1

dw1
2πi

∫ σ2+4π
σ2

dw2
2πi

(

∂w1ψ
++(w1)ψ−−(w2)−∂w1ψ

+−(w1)ψ−+(w2)

)

(− ln (
√
w1−w0+

√
w2−w0)) |0−R〉.

We note that the boson and fermion kernels are the same after performing integration by parts

K̂′B(w1, w2) = K̂′F (w1, w2) ≡ ln
(√

w1 −w0 +
√
w2 −w0

)

. (C.47)

31



We then have

|χ(w0)〉 = exp

[

∫ σ1+4π

σ1

dw1

2π

∫ σ2+4π

σ2

dw2

2π
× (C.48)

×
(

∂w1X++̇(w1) ∂w2X−−̇(w2)− ∂w1X+−̇(w1) ∂w2X−+̇(w2) +

−∂w1ψ
++(w1)ψ

−−(w2) + ∂w1ψ
+−(w1)ψ

−+(w2)

)

ln
(√

w1 − w0 +
√
w2 − w0

)

]

|0−R〉

thus yielding the same result as the main text.
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