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1 Introduction

Because photons have zero mass it does not take much to affect the long
wavelength modes. This has lead many to suspect that the explosive expan-
sion of spacetime during primordial inflation might help to explain cosmic
magnetic fields [1]. However, the Maxwell Lagrangian is conformally invari-
ant, which means that free photons cannot locally sense the expansion of
spacetime. The search for an inflationary connection has prompted investi-
gations of explicit conformal breaking terms which might be present in the
effective action [2]. Quantum effects from the conformal anomaly have been
also studied [3].

Conformal breaking from other particles can be communicated to pho-
tons. No one knows the gravitational couplings of the charged partners of
the Standard Model Higgs (which become the longitudinal polarizations of
the W± at low energies) but it has been suggested that the inflationary pro-
duction of minimally coupled Higgs scalars could endow the photon with a
mass during inflation [4, 5, 6], and that this might seed the ubiquous cosmic
magnetic fields of the current epoch [7, 8]. An explicit one loop computation
of the massless charged scalar contribution to the vacuum polarization on
de Sitter background [9, 10] has confirmed the photon mass conjecture [11],
although more work needs to be done to connect this to cosmic magnetic
fields [12]. Similar one loop results pertain as well when the scalar has a
small mass [13, 14].

Because inflation produces more and more charged scalars as time pro-
gresses (provided they are light and nearly minimally coupled) the effec-
tive photon mass grows. The scalar mass remains small during this pro-
cess [15, 16, 17] until a static, nonperturbative limit is eventually reached
[18]. The vacuum energy drops while this occurs [19] and there are dramatic
changes in the electrodynamic forces exerted by point charges and current
dipoles [20].

The effects of charged, minimally coupled scalars are fascinating but de-
pendent upon assumptions about the unknown conformal coupling of the
Higgs. Gravitons also break conformal invariance so they too can commu-
nicate the violence of primordial inflation to the photon sector [21, 22, 23].
Graviton effects are weaker because they are mediated through derivative
interactions, but they are universal. Hence they serve to establish the mini-
mum level at which primordial inflation must affect electromagnetism. The
purpose of this paper is to complete the derivation of these minimum effects.
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Our technique is based on a recent dimensionally regulated and fully
renormalized computation of the one loop graviton contribution to the vac-
uum polarization i[µΠν ](x; x′) on de Sitter background [24]. We use this to
quantum correct Maxwell’s equation,

∂ν
[√−g gνρgµσFρσ(x)

]

+
∫

d4x′
[

µΠν
]

(x; x′)Aν(x
′) = Jν(x) , (1)

where gµν is the de Sitter metric, Fρσ ≡ ∂ρAσ−∂σAρ is the usual field strength
tensor and Jµ(x) is the current density. With Jµ(x) 6= 0 one can study how
inflationary gravitons alter the electrodynamic response to standard sources,
as has recently been done for a point charge and for a point magnetic dipole
with the following results [25]:

• An observer co-moving with respect to the sources (hence at an expo-
nentially increasing physical distance) perceives the magnitude of the
point charge to increase linearly with co-moving time and logarithmi-
cally with the co-moving position;

• The co-moving observer reports only a negative logarithmic spatial vari-
ation in the one loop field of the magnetic dipole;

• An observer at fixed invariant distance from the sources perceives no
secular change of the point charge; and

• The static observer reports a secular enhancement of the magnetic
dipole moment.

For our study we set Jµ(x) = 0 and work out the one loop corrections to
dynamical photons.

This paper has four sections of which the first is this Introduction. In
section 2 we use the vacuum polarization [24, 25] to derive an equation for
the one loop correction to spatial plane wave photon mode functions. This
equation is solved in section 3. In section 4 we discuss the minimum our
result sets for inflation to seed cosmic magnetic fields.

2 Effective Mode Equation for Photons

The purpose of this section is to convert the quantum corrected Maxwell
equation (1) into a simple relation for the one loop corrections to the mode
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function of a plane wave photon on de Sitter background. We first specialize
to plane wave photons at one loop order. Then we discuss the restrictions
imposed by cosmology, by effective field theory and by our lack of knowledge
about the initial state.

2.1 Perturbative Formulation

We work on spatially flat sections of de Sitter in conformal coordinates,

ds2 = a2(η)
(

−dη2 + d~x · d~x
)

, (2)

where a(η) = − 1
Hη

= eHt is the scale factor and H is the Hubble parameter.

Hence the metric can be written as gµν = a2ηµν , where ηµν is the Minkowski
metric. Because the Maxwell Lagrangian is conformally invariant, all the
scale factors cancel in the leftmost term of (1) and we can express it as
∂νF

νµ(x), where we raise and lower indices with the Minkowski metric, F νµ ≡
ηνρηµσFρσ.

We follow [24] in employing a noncovariant representation for the vacuum
polarization [26],

i [µΠν ] (x; x′) = (ηµνηρσ−ηµσηνρ) ∂ρ∂
′
σF (x; x′)

+ (ηµνηρσ−ηµσηνρ) ∂ρ∂
′
σG(x; x′) , (3)

where ηµν ≡ ηµν + δµ0 δ
ν
0 is the purely spatial part of the Minkowski metric.

(For the transformation to a covariant representation see [27].) Substituting
(3) into (1) with Jµ = 0 and partially integrating the primed derivatives on
the right hand side gives,

∂νF
νµ(x) = −∂ν

∫

d4x′

{

iF (x; x′)F νµ(x′) + iG(x; x′)F νµ(x′)

}

. (4)

Here a barred index on any tensor means that its 0-components vanish, for
example, V µ ≡ ηµνVν = V µ − δµ0V

0.
Some nonperturbative statements can be made. For example, so long

as the vacuum polarization is computed (as the one loop correction was
[24]) using electromagnetic and gravitational gauge conditions which respect
homogeneity and isotropy then the structure functions F (x; x′) and G(x; x′)
can depend upon the spatial coordinates ~x and ~x′ only through the Euclidean
norm of their difference ∆~x ≡ ~x− ~x′. If spatial surface terms vanish (which
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will be shown in the next sub-section) we can reflect external space derivatives
onto the field strengths inside the integral of expression (4),

∂νF
νµ(x) = −∂0

∫

d4x′ iF (x; x′)F 0µ

−
∫

d4x′

{

iF (x; x′)∂′
jF

jµ(x′) + iG(x; x′)∂′
jF

jµ(x′)

}

. (5)

One simple consequence of (5) is the validity, to all orders, of the general
form for the classical field strengths of plane wave photon solutions with wave
vector ~k and transverse polarization vector εi(~k, λ),

F 0i
ph(x) = −∂0u(η, k)× εiei

~k·~x , F ij
ph(x) = u(η, k)× i[kiεj−kjεi]ei

~k·~x . (6)

To see this, first substitute (6) into the µ = 0 component of equation (5) and
act the space derivatives using ∂jF

µν
ph = ikjF

µν
ph ,

ikjF
j0
ph(x) = 0−

∫

d4x′ iF (x; x′)ikjF
j0
ph(x

′) + 0 . (7)

Exploiting transversality (kjε
j = 0) reduces expression (7) to a tautology of

the form 0 = 0. Now substitute (6) into the µ = i component of (5) and
again exploit transversality,

−
(

∂2
0+k2

)

u(η, k)× εiei
~k·~x = ∂0

∫

d4x′ iF (x; x′)∂′
0u(η

′, k)× εiei
~k·~x′

+
∫

d4x′ i
[

F (x; x′) + G(x; x′)
]

k2u(η′, k)× εiei
~k·~x′

, (8)

= εiei
~k·~x ×

{

∂0

∫

d4x′ iF (x; x′)∂′
0u(η

′, k)e−i~k·∆~x

+k2
∫

d4x′
[

iF (x; x′)+iG(x; x′)
]

u(η′, k)e−i~k·∆~x

}

. (9)

Dispensing with the now-redundant factors of εiei
~k·~x results in effective mode

equation for u(η, k),

(

∂2
0+k2

)

u(η, k) = −∂0

∫

d4x′ iF (x; x′)∂′
0u(η

′, k)e−i~k·∆~x

−k2
∫

d4x′
[

iF (x; x′)+iG(x; x′)
]

u(η′, k)e−i~k·∆~x . (10)
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Because the structure functions can only depend upon the norm of ∆~x it
is possible to quite generally reduce the right hand side of the effective mode
equation (10) to a double integral over η′ and r ≡ ‖~x−~x‖. However, we must
at this point face the fact that the structure functions can only be computed
to some finite order in the quantum gravitational loop counting parameter
κ2 ≡ 16πG,

F (x; x′) = 0 + κ2F(1)(x; x
′) + κ4F(2)(x; x

′) + . . . , (11)

G(x; x′) = 0 + κ2G(1)(x; x
′) + κ4G(2)(x; x

′) + . . . . (12)

At this time we have only the one loop results [24, 25],

iF(1) =
−1

8π2

{

H2 [ln(a)+α]−
[

ln(a)

3a2
− β

a2

]

(

∂2+2Ha∂0
)

+
H

3a
∂0

}

δ4(x−x′)

+
a−1∂6

384π3

{

θ(∆η−∆x)

a′

(

ln
[

1

4
H2(∆η2−∆x2)

]

−1
)

}

− H2

32π3

{[

∂4

4
+∂2∂2

0

]

×θ(∆η−∆x) ln
[

1

4
H2(∆η2−∆x2)

]

−
[

∂4

4
−∂2∂2

0

]

θ(∆η−∆x)

}

, (13)

iG(1) =
H2

6π2

[

ln(a) +
3

4
γ
]

δ4(x−x′)

+
H2∂4

96π3

{

θ(∆η−∆x)
(

ln
[

1

4
H2(∆η2−∆x2)

]

− 1
)

}

. (14)

In these and subsequent expressions the coordinate separations are ∆η ≡
η−η′ and ∆x ≡ ‖~x−~x′‖ and the flat space d’Alembertian is ∂2 ≡ ηµν∂µ∂ν =
−∂2

0 +∇2.
Because the structure functions are only known to a finite order in κ2

there is no alternative to making a similar expansion for the mode function,

u(η, k) = u0(η, k) + κ2u1(η, k) + κ4u2(η, k) + . . . (15)

Substituting expansions (11-12) and (15) into (10) and segregating terms of
the same order in κ2 gives the tree order and one loop relations,
(

∂2
0+k2

)

u0(η, k) = 0 , (16)
(

∂2
0+k2

)

u1(η, k) = −∂0

∫

d4x′ iF(1)(x; x
′)∂′

0u0(η
′, k)e−i~k·∆~x

−k2
∫

d4x′
[

iF(1)(x; x
′)+iG(1)(x; x

′)
]

u0(η
′, k)e−i~k·∆~x . (17)

By conformal invariance the tree order mode function is the same in de Sitter
conformal coordinates as it is in flat space, u0(η, k) = e−ikη/

√
2k.
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2.2 Schwinger-Keldysh Formalism

The treatment (though not of course the explicit structure functions (13-14))
we have given so far applies as well for traditional quantum field theory on flat
space (for example, see [28]). However, it is important to understand that the
usual effective field equations describe matrix elements of the field operator
between states which are free in the asymptotic past and future. These in-out
matrix elements provide a correct description of scattering processes in flat
space, but they make little sense in cosmology because the universe began
with a singularity at some finite time and no one knows how (or even if) it
will end. Persisting with the in-out effective field equations for inflationary
cosmology would result in two embarrassments from the nonlocal source term
on the right hand side of expression (17):

• Because the in-out structure functions do not vanish for x′µ outside the
past light-cone of xµ the right hand side of 17) would be dominated by
contributions from the far future when the inflated 3-volume is much
larger;

• Because the in-out structure functions are complex they couple the
real and imaginary parts of the mode function u(η, k), making real
field strengths impossible.

The more meaningful effective field to study for cosmology is the true
expectation value of the field operator in the presence of some state which
is released at a finite time. The appropriate field equations for studying
expectation values are those of the Schwinger-Keldysh formalism [29, 30, 31,
32, 33, 34, 35, 36, 37]. The associated one loop structure functions were
given in expressions (13-14). Note that they are manifestly real, and that
the factors of θ(∆η − ∆x) make each term vanish whenever the point x′µ

strays outside the past light-cone of xµ.1 These are important features of the
Schwinger-Keldysh formalism which the in-out formalism lacks.

The constants α, β and γ which appear in expressions (13-14) represent
the arbitrary finite parts of the three higher derivative counterterms which
were needed to renormalize the vacuum polarization [24] because Einstein +
Maxwell is not perturbatively renormalizable [38, 39]. (Appendix A discusses

1One consequence is that spatial integration by parts produces no surface terms in the
Schwinger-Keldysh formalism. Partial integration in time can and does produce surface
terms at the initial time.
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the noncovariant counterterm resulting from the use of a de Sitter breaking
gauge to compute the vacuum polarization [24].) No physical principle can
fix these constants because those counterterms cannot actually be present in
fundamental theory. They are the price we must pay for using Einstein +
Maxwell as a low energy effective field theory. In contrast, the logarithms of
the scale factor with which the three constants are paired,

ln(a) + α ,
1

3
ln(a)− β , ln(a) +

3

4
γ , (18)

represent unique and reliable predictions of the theory which must persist
in whatever is the correct ultraviolet completion of Einstein + Maxwell. At
late times these logarithms dwarf the unknown constants, which means that
we can make reliable predictions in the late time regime. We are of course
making the usual assumption of low energy effective field theory that α, β
and γ are of order one.

Another limit to the generality of our formalism is that the structure
functions (13-14) were computed without correcting the free vacuum state.
For in-out matrix elements we typically do not worry about correcting the
states because infinite time evolution is supposed to accomplish this in the
weak operator sense. However, when the universe is released at a finite
time one must include at least the perturbative corrections to the initial
state. In the Schwinger-Keldysh formalism these corrections show up as new
interaction vertices on the initial value surface [40]. Unlike the finite parts
of the higher derivative counterterms, it is perfectly possible to work these
corrections out [41, 42, 43, 44, 45, 46]. However, there is no point to doing
so because they give rise to surface terms which fall off like powers of the
inflationary scale factor. We shall assume that these corrections simply serve
to cancel the surface terms which would arise, at various points, from partial
integrations.

3 Solving the Equation

The purpose of this section is to solve equation (17) for u1(η, k) in the late
time limit for which reliable predictions can be made. First note that (17)
can be expressed in terms of seven master integrals,

(∂2
0+k2)u1(η, k) = ik∂0

[

I1+I2+I3+I4+I5+I6+I7
]
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+k2
[

−I1+
1

3
I2−I3+

1

3
I4−I5−I6−I7

]

, (19)

where the various integrals are,

I1(η, k)≡−a−1(∂2
0+k2)3

384π3

∫

d4x′Θ

a′

[

ln

[

H2

4

(

∆η2−∆x2
)

]

−1

]

u0(η
′, k)e−i~k·∆~x,(20)

I2(η, k)≡−H2(∂2
0+k2)2

128π3

∫

d4x′Θ

[

ln

[

H2

4

(

∆η2−∆x2
)

]

−1

]

u0(η
′, k)e−i~k·∆~x,(21)

I3(η, k)≡
H2(∂2

0+k2)∂2
0

32π3

∫

d4x′Θ

[

ln

[

H2

4

(

∆η2−∆x2
)

]

+1

]

u0(η
′, k)e−i~k·∆~x, (22)

I4(η, k)≡−H2 ln(a)

8π2

∫

d4x′δ4(x−x′)u0(η
′, k)e−i~k·∆~x, (23)

I5(η, k)≡−a−2 ln(a)(∂2
0+k2)

24π2

∫

d4x′δ4(x−x′)u0(η
′, k)e−i~k·∆~x, (24)

I6(η, k)≡
Ha−1 ln(a)∂0

12π2

∫

d4x′δ4(x−x′)u0(η
′, k)e−i~k·∆~x, (25)

I7(η, k)≡−Ha−1∂0
24π2

∫

d4x′δ4(x−x′)u0(η
′, k)e−i~k·∆~x, (26)

To save space, we have defined the causality-enforcing θ-function as Θ ≡
θ(∆η − ∆x). Of course the delta function terms (23-26) are trivial, and
most of the nonlocal contributions can be inferred from previous work [47].
Technical details can be found in Appendix B but the results are,

I1(η, k) =
H2u0(η, k)

48π2a

{

[1+2ik∆ηi+e2ik∆ηi

H2∆η2i

]

+
[1+e2ik∆ηi

H∆ηi

]

−4ik

H
ln(H∆ηi)−

2ik

H

∫ 1

0

dt

t

[

e2ik∆ηit−1
]

}

, (27)

I2(η, k) =
H2u0(η, k)

16π2

{

−2 ln(H∆ηi)−
∫ 1

0

dt

t

[

e2ik∆ηit−1
]

}

, (28)

I3(η, k) =
H2u0(η, k)

16π2

{

[

6−4ik∆ηi+2e2ik∆ηi
]

ln(H∆ηi)+e2ik∆ηi+7−2ik∆ηi

+
∫ 1

0

dt

t

[

(3−2ik∆ηi)(e
2ik∆ηit−1)+e2ik∆ηi(e−i2ik∆ηit−1)

]}

, (29)

I4(η, k) = −H2 ln(a)

8π2
× u0(η, k) , (30)
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I5(η, k) = 0 , (31)

I6(η, k) = −ikH ln(a)

12π2a
× u0(η, k) , (32)

I7(η, k) =
ikH

24π2a
× u0(η, k) . (33)

Here and henceforth we define ∆ηi ≡ η − ηi = H−1(1 − 1
a
), where ηi is the

initial conformal time.
A few comments are in order regarding the inverse factors of ∆ηi which

appear in expression (27) for I1(η, k). These factors diverge on the initial
value surface and completely preclude any attempt to exactly solve the one
loop truncated effective field equations in their present form. That the prob-
lem has nothing to do with de Sitter background is obvious from the fact that
these very same divergences appear as well when the background is changed
to flat space [28]. The problem arises instead because the vacuum polariza-
tion was computed in free (Bunch-Davies) vacuum Ω0[A, h] [24]. Even in flat
space the true vacuum state wave functional Ω[A, h] requires perturbative
corrections [41, 42, 43, 44, 45, 46],

Ω[A, h] = Ω0[A, h]×
{

1 + κ
∫

d3x1

∫

d3x2

∫

d3x3

×Ωµνρσ(~x1, ~x2, ~x1)hµν(ηi, ~x1)Aρ(ηi, ~x2)Aσ(ηi, ~x3) +O(κ2)

}

, (34)

where Ωµνρσ(~x1, ~x2, ~x3) is a C-number function which could be worked out
— but has not been — the same way one computes corrections the simple
harmonic oscillator wave functions when the Hamiltonian contains an anhar-
monic term. We stress that the problem derives from combining (D = 4)
interactions with evolution from a finite time, and it cannot be solved by any
clever choice Gaussian initial state Ω0[A, h]. It can be avoided in flat space
by taking the initial time to −∞ [28] but this is not an option for our de Sitter
computation owing to the factors of ln(a) and 1/a which are evident in ex-
pressions (30) and (32-33).2 On the other hand, the initial value divergences

2The physical origin of this mathematical obstacle is inflationary particle production
which results in very high occupation numbers N(t, k) = [Ha(t)/2k]2 for graviton modes
which have experienced first horizon crossing. The earlier one releases the initial state the
more modes will have experienced first horizon crossing by any fixed late time.
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i
√
2k Ii(η, k)

√
2k ∂0Ii(η, k)

1 O( 1
a
) O(1)

2 O(1) O(1)

3 O(1) O(1)

4 −H2 ln(a)
8π2 −H3a

8π2

5 0 0

6 O( ln(a)
a

) ikH2 ln(a)
12π2

7 O( 1
a
) O(1)

Table 1: Leading late time limiting forms for the integrals defined in expres-
sions (20-26) and their first time derivatives. Only terms which show secular
growth are given explicitly.

in expression (27) are all well behaved at late times,

1

H2∆η2i
−→ 1 ,

1

H∆ηi
−→ 1 , ln(H∆ηi) −→ 0 . (35)

The multiplicative factor of 1/a makes I1(η, k) go to zero at late times, so we
can avoid computing initial state corrections by simply working consistently
in the late time regime, which is in any case necessary owing to the unknown
finite parts of the counterterms.

Table 1 gives the leading late time effect from each of the seven integrals
and its first (conformal) time derivative. The dominant effect derives from
the time derivative of I4(η, k),

(∂2
0+k2)u1(η, k) = −ikH3a

8π2
× u0(η, k) +O

(

ln(a)
)

. (36)

Hence we find,

u1(η, k) =
ikH ln(a)

8π2
× u0(η, k) +O

(1

a

)

. (37)

From expression (6) follows that the one loop field strengths are,

κ2F 0i
(1)(x) =

κ2H2

8π2

{

ln(a) +O(1)

}

× F 0i
(0)(x) , (38)
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κ2F ij
(1)(x) =

κ2H2

8π2

{

ik ln(a)

Ha
+O

(1

a

)

}

× F ij
(0)(x) . (39)

4 Discussion

We have employed a previous computation of the one loop contribution to
the vacuum polarization from inflationary gravitons [24] to derive what hap-
pens to photons during primordial inflation. Our results (38-39) for the field
strengths show that the electric field experiences a secular enhancement, rela-
tive to its classical value. In contrast, the one loop correction to the magnetic
field falls off with respect to its classical counterpart. Both results are con-
sistent with the one loop photon wave function (37) relaxing to zero less
slowly (by one factor of ln(a)) than the classical mode function approaches
a constant.

The enhancement we find seems to derive from the buffeting of photons
by inflationary gravitons. Even though the photon’s kinetic energy redshifts
to zero, its spin does not and this permits it to continue interacting with
inflationary gravitons even at late times. The same ln(a) enhancement was
found for massless fermions [48, 47, 50], and was explicitly tied to the spin
interaction [49]. In contrast, massless, minimally coupled scalars neither ex-
perience any significant effect from inflationary gravitons [51, 52], nor do
they induce a significant effect on inflationary gravitons [53, 54, 55]. Gravi-
tons also have spin so it would be very interesting to see what they do to
themselves, as well as to the force of gravity.

An interesting technical detail concerns the comparison of our full one
loop computations with the result previously derived using the Hartree ap-
proximation [24]. Both calculations give the same time dependence, confirm-
ing the general reliability of the Hartree approximation for predicting the
functional form. However, the sign of our exact computation differs from
that of the Hartree result. This emphasizes the need for making exact com-
putations, and has clear implications for gravitons [56].

One important consequence of our result is that quantum gravitational
perturbation theory must break down after an enormous number of e-foldings
ln(a) ∼ 1/κ2H2, which is larger than 1010 in standard inflation. Note first
that this eventual breakdown in no way invalidates the use of perturbation
theory at earlier times. The reason for working in the late time regime is that
we have not included perturbative corrections to the initial state (although
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this could be done) and that we do not know, and cannot know, the finite
parts α and β of the higher time derivative counterterms. However, as long
as one makes the usual assumption that these finite parts are of order one
it will be seen that there is an enormous range of times for which the late
time limiting form (38) vastly dominates the unknown contributions, but is
still small compared with the classical result. For example, if it is agreed that
the infrared logarithm ln(a) dominates when it has reached ln(a) >∼ 100, and
that it is still reliable for κ2H2 ln(a) <∼ 1/100, then we see that the regime
of validity for our result extends to a million e-foldings of inflation. For
some perspective it should be recalled that there is no currently recognized
evidence for more than about 60 e-foldings of inflation.

Still, it is a fact that perturbation theory must eventually break down
if inflation persists long enough, and we would dearly love to know what
takes place afterwards. The analogous problem for scalar potential models
on nondynamical de Sitter (whose loop corrections also involve factors of
ln(a)) can be solved using Starobinsky’s stochastic formalism [57, 58]. A
proof has been given that this method reproduces the leading secular growth
factors at each order in perturbation theory [59, 60], and it has been extended
to include scalars coupled to fermions [61] and to electromagnetism [18].
Detailed analysis of the nonperturbative resummation of this series of leading
logarithms reveals that all three logical possibilities occur for the induced
vacuum energy:

• It can approach a small positive constant [58];

• It can approach a small negative constant [18]; or

• It can decrease without bound, resulting in a Big Rip singularity [61].

The stochastic formalism is also very useful in debunking techniques which
are sometimes proposed for evolving past the breakdown of perturbation
theory, for example, using order reduction to solve the one loop truncated
effective field equations exactly [62],3 or employing variants of the renormal-
ization group [63]. These techniques do give equations which can be evolved
past the breakdown of perturbation theory, but the results are wrong [64].

3Order reduction is just a technique for preventing higher derivatives from introducing
new solutions, which problem does not even arise in our one loop solution. The problem
comes in solving the one loop truncated equations exactly. This is only valid if no equally
strong contributions occur in primitive contributions from higher loops. The stochastic
formalism shows that they do.
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Unfortunately, the presence of derivative interactions means that the
proof of Starobinsky’s formalism which was given for scalar potential models
[59, 60] does not apply to quantum gravity. One might speculate that the
stochastic formalism is nonetheless correct, and it has been employed on this
basis to estimate corrections to the inflationary power spectra [65]. Other
plausible approximations were earlier invoked to arrive at somewhat different
estimates [66, 67, 68]. And there has been recent work by Kitamoto and Ki-
tazawa on secular growth corrections to gauge couplings [69, 70, 71, 72, 73].
The key question is, does any specific formalism reproduce the correct secular
growth factors from inflationary gravitons? Absent a proof, one can never
know except by comparison with complete and fully renormalized results
such as the one (38) we have just derived. Indeed, expression (38) is only
the second example of such a result so it effectively doubles what is reliably
known about this fascinating phenomenon.

An appreciation of the importance of (38) comes by recalling what was
learned from the only other complete and fully renormalized graviton loop
which shows a factor of ln(a), the 2005-6 computation of inflationary graviton
corrections to massless fermions [48, 47, 50]. A diagram-by-diagram analysis
of that result reached the following conclusions [49]:

• Naive application of the stochastic formalism does not correctly predict
the secular growth factor of ln(a);

• The factor of ln(a) derives entirely from diagrams which involve the
fermion spin connection; and

• Because the ultraviolet sector of the fermion field contributes to the
factor of ln(a), one must leave the ultraviolet regularization on as well
for the graviton.

One should also note the claim that false indications of secular corrections
can come from neglecting diagrams [74].

It is not that approximate calculations are necessarily wrong but rather
that we cannot currently judge their validity. When a technique is finally
devised for isolating the leading secular effects at each order and re-summing
them it will no doubt lead to simple approximations for quickly inferring
just the leading effects, without enduring the tedium of a complete and fully
renormalized computation. We have reached this point with scalar potential
models through Starobinsky’s stochastic formalism. However, we are not
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there yet for quantum gravity and we are not likely to get there, or be sure
that we have even made any progress, without careful examination of exact
results such as expression (38). These comparisons sometimes reveal subtle
problems with plausible-sounding arguments such as the universal applica-
bility of the stochastic formalism or the irrelevance of ultraviolet effects.

Finally, it is interesting to work out what our result says for the possi-
bility of inflation seeding cosmic magnetic fields. We can use the 0-point
energy to estimate the number of photons created by inflationary gravitons.
Because the co-moving time t is related to the conformal time η by dt = adη,
the physical Hamiltonian (which generates evolution in t) is 1/a times the
conformal one. The physical 0-point energy in a single photon polarization
wave vector ~k is therefore,

1

2a

[

F 0i
ph × F 0i

ph

∗
+

1

2
F ij
ph × F ij

ph

∗
]

=
k2uu∗

2a
, (40)

−→ k

2a
×

{

1 +
κ2H2 ln(a)

8π2
+O(κ4)

}

. (41)

The occupation number N(η, k) is defined by equating the 0-point energy
(41) to (N + 1

2
)× k

a
,

N =
κ2H2 ln(a)

16π2
+O(κ4) . (42)

The remainder of the computation is the same as the analysis [12] for the
much larger effect from inflationary scalars (if the Higgs is minimally coupled
and still light at inflationary energy scales). Substituting our value (42)
for the occupation number into equation (118) of that paper results in the
following estimate for the magnetic strength on scale ℓ0,

B2(ℓ0) ∼
h̄2GH2

INI

8π3c4ℓ40
, (43)

where HI is the inflationary Hubble parameter and NI is the value reached
by ln(a). Plugging in the numbers with NI ∼ 50 and ℓ0 ∼ 10 kpc gives,

B(ℓ0) ∼ 10−61 Gauss . (44)

This is far too small to have seeded today’s cosmic magnetic fields, but it
does serve to establish the absolute minimum effect which must be present
from inflation.
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5 Appendix A: de Sitter Breaking Gauges

Our analysis is based on an earlier computation [24] of the one loop vacuum
polarization from inflationary gravitons that was made using electromagnetic
and gravitational gauge fixing terms which respect homogeneity and isotropy,
and also dilatation invariance, but not the three remaining symmetries of the
de Sitter group. The special feature of these gauge fixing terms is that the
photon and graviton propagators consist of linear combinations of constant
tensor factors times scalar propagators [75, 76]. This makes the computation
tractable but it also means that renormalization can involve noninvariant
counterterms, and one such does occur [24].4 Similar noninvariant countert-
erms arose from the graviton contribution to the one loop fermion self-energy
[48] (see equations (74), (216) and (221))and the one loop self-mass-squared
of of a massless, minimally coupled scalar [51] (see equation (145) and Table
8).

Those accustomed to modern techniques of renormalization in covariant
gauges sometimes find the appearance of noninvariant counterterms to be
disconcerting. However, it is important to realize that they pose no problem
of principle. The divergent part of the counterterm is of course fixed by the
primitive divergences it is to remove, and the finite part can be determined
to enforce physical symmetries. (In our case the focus on late times obviates
the need for this as long as the finite part of the counterterm is assumed
to be of order one.) The procedure is explained in older standard texts on
quantum field theory, for example [77]. And it is important to recognize that
many of the classic computations of quantum electrodynamics were in fact
performed using noncovariant gauges [78].

Finally, it should be noted that an impressive amount of evidence has
been accumulated to support the consistency of this particular gauge. This
evidence includes:

• An explicit check of the tree order gravitational Ward identity [79];

• An explicit check of the one graviton loop gravitational Ward identity
[80];

4The vacuum polarization was recently computed in a manifestly de Sitter invariant
gauge. Strangely enough, the noninvariant counterterm is still required owing the the time-
ordering of interactions, the fact that gravitational interactions contain two derivatives,
and the fact that the coincident graviton propagator diverges in de Sitter background [83].
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• A detailed physical comparison between the noncovariant gauge result
for the one (photon) loop contribution to a charged scalar self-mass-
squared [15, 16] and the analogous covariant guage result [17]; and

• A computation of the linearized Weyl-Weyl correlator in both the non-
covariant [81] and covariant gauges [82].

6 Appendix B: Integrals from Section 3

The purpose of this appendix is to summarize the necessary details for eval-
uating the nonlocal terms (20-22), and show they indeed make no significant
contribution in the late time regime. The first step is to perform the angular
integrations using the formula,

∫

d3x′Θf(∆x)e−i~k·∆~x = 4π
∫ ∆η

0
drr2f(r)

sin(kr)

kr
. (45)

Employing relation (45) in (20-22) allows us to write,

I1=−a−1(∂2
0+k2)3

96π2k

∫ η

ηi

dη′
u(η′, k)

a′

∫ ∆η

0
drr sin(kr)

{

ln

[

H2

4
(∆η2−r2)

]

−1

}

, (46)

I2=−H2(∂2
0+k2)2

32π2k

∫ η

ηi

dη′u(η′, k)
∫ ∆η

0
drr sin(kr)

{

ln

[

H2

4
(∆η2−r2)

]

−1

}

, (47)

I3=
H2(∂2

0+k2)∂2
0

8π2k

∫ η

ηi

dη′u(η′, k)
∫ ∆η

0
drr sin(kr)

{

ln

[

H2

4
(∆η2−r2)

]

+1

}

, (48)

where ηi ≡ −H−1 denotes the initial time. The next step is to perform the
two independent radial integrations,

J1(∆η, k)≡
∫ ∆η

0
drr sin(kr) =

T (k∆η)

k2
, (49)

J2(∆η, k)≡
∫ ∆η

0
drr sin(kr) ln

[

H2

4
(∆η2−r2)

]

, (50)

=
2 ln(H∆η)

k2
T (k∆η) +

1

k2

∫ 1

0

dt

t

{

T [k∆η(1−2t)]−T (k∆η)

}

, (51)

where T (x) ≡ sin(x)−x cos(x) = 1
3
x3 +O(x5). This allows us to express the

integrals I1−3(η, k) as,

I1(η, k)=−a−1(∂2
0+k2)3

96π2k

∫ η

ηi

dη′
u(η′, k)

a′

{

J2(∆η, k)−J1(∆η, k)

}

, (52)
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I2(η, k)=−H2(∂2
0+k2)2

32π2k

∫ η

ηi

dη′u(η′, k)

{

J2(∆η, k)−J1(∆η, k)

}

, (53)

I3(η, k)=
H2∂2

0(∂
2
0+k2)

8π2k

∫ η

ηi

dη′u(η′, k)

{

J2(∆η, k)+J1(∆η, k)

}

. (54)

Because the various integrands of (52-54) vanish like ∆η3 ln(∆η) at η′ = η
we can pass one factor of the differential operator (∂2

0 + k2) through the
integration to act on J1(∆η, k) and J2(∆η, k),

I1(η, k) = −a−1(∂2
0+k2)2

48π2k

∫ η

ηi

dη′
u(η′, k)

a′

{

2 sin(k∆η) ln(H∆η)

+
∫ 1

0

dt

t

[

sin [k∆η(1−2t)]−sin(k∆η)
]

}

, (55)

I2(η, k) = −H2(∂2
0+k2)

16π2k

∫ η

ηi

dη′u(η′, k)

{

2 sin(k∆η) ln(H∆η)

+
∫ 1

0

dt

t

[

sin [k∆η(1−2t)]−sin(k∆η)
]

}

, (56)

I3(η, k) =
H2∂2

0

4π2k

∫ η

ηi

dη′u(η′, k)

{

2 sin(k∆η) ln(H∆η) + 2 sin(k∆η)

+
∫ 1

0

dt

t

[

sin [k∆η(1−2t)]−sin(k∆η)
]

}

. (57)

We can pass one more derivative through the integration using the identities,

(∂2
0+k2)

[

u(η′, k)f(∆η)
]

= −(∂0−ik)× ∂′
0

[

u(η′, k)f(∆η)
]

, (58)

(∂2
0+k2)2

[u(η′, k)

a′
f(∆η)

]

= −(∂2
0+k2)(∂0−ik)× ∂′

0

[u(η′, k)

a′
f(∆η)

]

+H(∂0−ik)2 × ∂′
0

[

u(η′, k)f(∆η)
]

. (59)

The final results are (31-33).
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