
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Vainshtein solutions without superluminal modes
Gregory Gabadadze, Rampei Kimura, and David Pirtskhalava

Phys. Rev. D 91, 124024 — Published  8 June 2015
DOI: 10.1103/PhysRevD.91.124024

http://dx.doi.org/10.1103/PhysRevD.91.124024


Vainshtein Solutions Without Superluminal Modes

Gregory Gabadadze,1 Rampei Kimura,1 and David Pirtskhalava2

1Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY, 10003
2Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy

The Vainshtein mechanism suppresses the fifth force at astrophysical distances, while enabling it
to compete with gravity at cosmological scales. Typically, Vainshtein solutions exhibit superluminal
perturbations. However, a restricted class of solutions with special boundary conditions were shown
to be devoid of the faster-than-light modes. Here we extend this class by finding solutions in a
theory of quasidilaton, amended by derivative terms consistent with its symmetries. Solutions with
Minkowski asymptotics are not stable, while the ones that exhibit the Vainshtein mechanism by
transitioning to cosmological backgrounds are free of ghosts, tachyons, gradient instability, and
superluminality, for all propagating modes present in the theory. These solutions require special
choice of the strength and signs of nonlinear terms, as well as a choice of asymptotic cosmological
boundary conditions.

PACS numbers: 04.50.Kd, 14.70.Kv

I. INTRODUCTION

Local, Lorentz-invariant theories that modify gravity at cosmological scales, (∼ 1028 cm), do so at the expense
of extra gravitationally coupled degrees of freedom. The latter need to be ”hidden” at shorter, astrophysical scales
(∼ 1026 cm and below), to avoid conflict with observations. One of the intricate mechanisms that provide such
suppression at shorter scales is the Vainshtein mechanism [1]. While this mechanism was originally formulated in the
context of massive gravity, it has a broader scope [2, 3] (for a nice and comprehensive review of screening mechanisms
in cosmology, see [4]). A majority of Vainshtein solutions discussed so far in the literature exhibit superluminal
perturbations; this has been shown in the context of the DGP model [5] in the decoupling limit [6] in Ref. [7, 8],
and has been extended to the most general Galileon theory in [9]. Moreover, it has been demonstrated in [10], that
the same feature persists for Vainshtein solutions in multi-Galileon systems. Whether or not superluminalities always
imply acausality – which is a subtle issue – will not be discussed here; instead, we note that it would be easier if the
superluminal modes were absent altogether. An example of a nonlinear scalar theory that exhibits the Vainshtein
mechanism without superluminal modes was found in [11]. Its features that enable to avoid superluminal modes are:
a choice of a sign of a nonlinear term, and choice of boundary cosmological conditions for the solution.

The question is if there are other similar examples, and if they share common features with the one of [11]. In
particular it is interesting to know if such solutions can exist in full-fledged theories of massive gravity and their
extensions, where tensor and vector modes, in addition to scalars, are also relevant. These are the questions studied
in the present work.

Whether or not the graviton can consistently have a nonzero mass has been a subject of discussion for more than
seven decades. The unique linear theory of a massive spin-2 field, proposed by Fierz and Pauli (FP) [12], consists
of linearized General Relativity (GR) supplemented by a special mass term for the metric perturbation. The special
structure of the FP mass guarantees that there are no more than 5 degrees of freedom propagating on flat space, as
required by the representation theory of the Poincaré group. Naively, the massless limit of FP massive gravity would
be expected to reduce to GR; this however is not the case, and regardless of how small the mass is, the presence
of extra degrees of freedom leads to order-one deviations from GR at all length scales – the phenomenon known as
the van Dam-Veltman-Zhakarov (VDVZ) discontinuity [13, 14]. Continuity in physical predictions can be restored in
nonlinear extensions of the the FP gravity through the Vainshtein mechanism [1], whereby nonlinear effects screen
out extra contributions to the gravitational potential beyond the standard general-relativistic one. The success of the
Vainshtein mechanism thus manifestly depends on nonlinear properties of a given extension of the Fierz-Pauli model.
It has been believed for a long time however, that a generic interacting theory of massive gravity would necessarily
contain a sixth light ghost degree of freedom – the so-called Boulware-Deser (BD) ghost [15]. The latter would lead
to a catastrophic instability of the system, effectively rendering the Vainshtein mechanism useless.

This has changed with an explicit construction of the Lagrangian free from the BD ghost: First, the BD ghost has
been eliminated by a careful choice of the graviton potential consisting of an infinite series of interactions of the form
that projects it out order-by-order in perturbation theory [16]. The infinite series can be resummed into a compact
expression [17], referred to as the dRGT theory. The full non-perturbative proof of ghost-freedom in this theory has
been given in Refs. [18–21].

While the dRGT theory guarantees 5 degrees of freedom on an arbitrary background, it only guarantees that these



2

5 are healthy on (nearly) flat backgrounds. This is because the theory is strongly coupled at a low scale – incomplete
in that sense – and some of the 5 modes may flip signs of their kinetic terms on strong enough backgrounds, converting
them into ghost (these latter should not be confused with the BD ghost that is absent now).

Perhaps the minimal way to extend the dRGT model is by introducing into the theory a new scalar field σ, referred
to as quasidilaton, which nonlinearly realizes an Abelian global symmetry [22],

σ → σ − αMPl , φa → eαφa . (1)

Here, φa are the four auxiliary (Stückelberg) fields, required to formulate the theory in a diffeomorphism-invariant way.
It has been shown recently [23], that the quasidilaton admits self-accelerated solutions in the decoupling limit, similar
to the ones of dRGT gravity [24]. An important difference from massive gravity however, is that the presence of the
quasidilaton makes it possible to avoid all of the stability problems associated with the former class of cosmologies.

The key aspect for viability of cosmological solutions in modified gravity is the existence and stability of a mechanism
that would allow to screen extra contributions to the gravitational potential at distances where GR agrees with
observations with an excellent accuracy. In massive gravity, as discussed above, it is the Vainshtein mechanism that
makes this possible. The analysis of spherically symmetric solutions in the decoupling limit of the dRGT theories has
revealed however that in general, the Vainshtein mechanism is accompanied with various kinds of instability [25]. The
only way to avoid these is to restrict to a particular corner of the parameter space, where the scalar and the tensor
modes can be decoupled by a local field redefinition [11]. The obtained solution has no superluminal modes.

The above observations motivate to look for a stable realization of the Vainshtein mechanism in quasidilaton
theories. We will focus on the decoupling limit theory, analogous to the one of massive gravity with stable Vainshtein
solutions, where the tensor and the scalar modes can be treated independently, but will also account for the vector
modes. We will show that in a large fraction of the free parameter space the solutions are pathological, as they
exhibit various instabilities. However, we’ll find a small region of the parameter space where a satisfactory solution
can be obtained. This solution exhibits the Vainshtein mechanism without instabilities or superluminal modes, and
asymptotes to a cosmological solution away from a source.

The rest of this paper is organized as follows: we will start with a brief review of the original quasidilaton theory
in Sec. II, and derive its decoupling limit action, along with the equations of motion for spherically symmetric
configurations in Sec. III. In Secs. IV and V, we carry out a detailed analysis of the time-independent and time-
dependent solutions respectively. In Sec VI. we consider the decoupling limit action of the most general quasidilaton
theory, obtained by supplementing the original Lagrangian by the Horndeski terms for σ [26–28]. This will provide
the first completely stable realization of the Vainshtein mechanism in the given class of theories. We summarize our
results in Sec VII.

We adopt the signature (−,+,+,+) for the metric throughout this work, and use the following notation for various
contractions of rank-2 tensors:

Kµµ = [K], KµνKνµ = [K2], KµαKαβKβµ = [K3] , etc.

Moreover, certain expressions involving the Levi-Civita tensor will be shortcut in the following way:
εµαρσενβρσΠµνΠαβ ≡ εεΠΠ, ε γαρµ ε βσ

νγ ΠαβΠρσ ≡ εµενΠΠ, (B2)µν ≡ BµαBαν , εεB∂A ≡ εµ1µ2µ3µ4ε
ν1ν2µ3µ4Bµ1

ν1∂ν2A
µ2 ,

and so on.

II. THE QUASIDILATON

The dRGT theory is specified by supplementing the standard Einstein-Hilbert action with special mass and potential
terms for the metric perturbation. In its diff-invariant formulation involving four scalar Stückelber fields φa, the theory
takes on the following form [17]

SMG =
M2

Pl

2

∫
d4x
√
−g
[
R− m2

4
(U2 + α3U3 + α4U4)

]
+ Sm[gµν , ψ], (2)

where we have defined

U2 = 4
(
[K2]− [K]2

)
,

U3 = −[K]3 + 3[K][K2]− 2[K3], (3)

U4 = −[K]4 + 6[K]2[K2]− 3[K2]2 − 8[K][K3] + 6[K4],

and

Kµν = δµν −
√
ηabgµα∂αφa∂νφb. (4)
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One can always fix the unitary gauge φa = δaµx
µ, in which all five degrees of freedom, present in the theory sit in the

metric perturbation h
µν
≡ g

µν
− η

µν
.

It is sometimes useful to view the four scalars φa as certain target-space coordinates of a flat manifold in which
our dynamical manifold, parametrized by the coordinates xµ is embedded as a spacetime-filling brane. A natural
question is then whether one can define a theory, invariant under quasidilatations – a global Abelian symmetry, under
which the target space coordinates scale with respect to those of the dynamical spacetime, φa → eαφa. This requires
introducing a goldstone field σ – the quasidilaton – that nonlinearly realizes the symmetry at hand

σ → σ − αMPl (5)

and enters the action through an extended K - tensor

K̄µν = δµν − eσ/MPl

√
ηabgµα∂αφa∂νφb . (6)

Then the full action including the quasidilaton is given by the following expression [22]

S =
M2

Pl

2

∫
d4x
√
−g
[
R− ωgµν∂µσ∂νσ −

m2

4

(
Ū2 + α3Ū3 + α4Ū4

)]
+ S′ + Sm[gµν , ψ] + . . . . (7)

Here we have added a kinetic term for the new scalar σ, and the potentials Ūi are defined in terms of K̄ as in (3). In
addition, we have allowed for an extra piece in the action, invariant under the quasidilaton symmetry (5),

S′ = M2
Plm

2α5

∫
d4x
√
−g e4σ/MPl

√
det (gµα∂αφa∂νφa). (8)

In the dRGT theory, this term is non-dynamical, L′ ∼
√
−η, which is however not true in the presence of the

quasidilaton. Moreover, it includes a tadpole for σ and is therefore expected to contribute to asymptotically non-
trivial backgrounds, which we will be interested in in this paper. Furthermore, the ellipses denote possible extra terms
involving σ consistent with the quasidilaton symmetry, that we will consider in what follows.

A further extension of the quasidilaton has been found in Ref. [29], obtainable via replacing fµν with a new fiducial
metric

f̄µν ≡ fµν − (ασ/M
2
Plm

2)e−2σ/MPl∂µσ∂νσ . (9)

The resultant theory is still manifestly invariant under (5) and with a little more work one can show that it is also
devoid of the BD ghost (see [30] for a detailed discussion).

We will focus on the action (7) - (8) for definiteness throughout the present paper. In fact, the theory we consider
leads to the most general decoupling limit action of a tensor and two scalars, invariant under galilean symmetry. Since
we are primarily interested in the decoupling limit in this work, we expect our analysis to capture the phenomenological
aspects of any extension of massive general relativity, based on the quasidilaton and (approximate) galilean symmetries.

III. DECOUPLING LIMIT

In gauge theories in general, and in massive gravity in particular, there exists a very convenient regime of the
theory – the decoupling limit – where most of the complications associated with the low-energy dynamics go away. In
the case of the ghost-free massive general relativity, the decoupling limit captures physics at distances in the range
(MPlm

2)−1/3 < r < m−1, essentially encompassing all relevant astrophysical and cosmological scales (given that
the most reasonable choice for the graviton mass is around the current Hubble scale m ∼ H−1

0 ). Our analysis of
spherically symmetric solutions in theories with the quasidilaton will be carried out exclusively in this limit.

Let us consider small fluctuations of the Stückelberg fields around their unitary gauge values,

φa = δaµx
µ − ηaµAµ

MPlm
− ηaµ∂µπ

MPlm2
, (10)

while the metric is expanded around the Minkowski spacetime in the usual way, gµν = ηµν+hµν/MPl. The decoupling
limit, in which π,A and h capture respectively the helicity- 0, 1, and 2 components of the massive graviton, is then
defined in the following way

MPl →∞, m→ 0, Λ = (MPlm
2)1/3 = fixed,

Tµν
MPl

= fixed , (11)



4

and the scalar-tensor part of the action for massive GR plus the quasidilaton reduces to the following expression

L(h,π,σ)
DL = −1

4
hµνEαβµν hαβ −

ω

2
∂µσ∂µσ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]
+ σ

[
4α5Λ3 + γ0εεΠ +

γ1

Λ3
εεΠΠ +

γ2

Λ6
εεΠΠΠ +

γ3

Λ9
εεΠΠΠΠ

]
+

1

2MPl
hµνTµν ,

where we have made use of the following notation,

α = −3

4
α3 − 1, β = −1

8
α3 −

1

2
α4, γ0 =

1

2
− 2

3
α5,

γ1 =
3

8
α3 −

1

2
− α5, γ2 =

1

2
α4 −

3

8
α3 −

2

3
α5, γ3 = −1

2
α4 −

1

6
α5 . (12)

The lagrangian L(h,π,σ)
DL is invariant under linearized gauge transformations hµν → hµν+∂µξν+∂νξµ, as well as internal

galilean transformations for π and σ, ∂µπ → ∂µπ + cµ and ∂µσ → ∂µσ + dµ. Furthermore, the complete decoupling
limit additionally features the mixing and interaction terms for the gelicity-1 and helicity-0 gravitons specified by the
following action

L(A)
DL = −1

4

[
Λ3εεBB + 2(1− α)εεBBΠ− α+ 6β

Λ3
εεBBΠΠ + εεB2Π− α

Λ3
εεB2ΠΠ

− 2β

Λ3
εεB2ΠΠΠ + 2Λ3/2εεB∂A− 4α

Λ3/2
εεB∂AΠ− 12β

Λ9/2
εεB∂AΠΠ

]
. (13)

Here, Bµν is an auxiliary non-dynamical anti-symmetric tensor which can in principle be algebraically integrated
out1, and the action is invariant under U(1) gauge transformations, Aµ → Aµ + ∂µχ. For the spherically symmetric
solutions we consider below, Aµ = 0 at the background level and the vector action will only be relevant for their
perturbative stability.

In the special case of β = 0, the helicity-2 mode in (12) can be completely decoupled from the rest of the fields
through the following field redefinition

hµν → hµν + πηµν −
α

Λ3
πΠµν , (14)

which is not true in the presence of the hµνεµενΠΠΠ interaction. The quasidilaton action in the new frame defined
by (14) is then given by the following bi-Galileon [33–35] theory

LDL = −1

4
hµνEαβµν hαβ −

ω

2
∂µσ∂µσ −

1

8
π

[
εεΠ− 2α

Λ3
εεΠΠ +

α2 − 4β

Λ6
εεΠΠΠ +

4αβ

Λ9
εεΠΠΠΠ

]
+ σ

[
4α5Λ3 + γ0εεΠ +

γ1

Λ3
εεΠΠ +

γ2

Λ6
εεΠΠΠ +

γ3

Λ9
εεΠΠΠΠ

]
+

1

2MPl
hµνTµν +

1

2MPl
πT − α

2MPlΛ3
πΠµνT

µν . (15)

Throughout this paper we will concentrate on β = 0 for simplicity. Varying the action with respect to π, one obtains

1

4
εεΠ− 3α

4Λ3
εεΠΠ +

α2

2Λ6
εεΠΠΠ− γ0εεΣ−

2γ1

Λ3
εεΣΠ− 3γ2

Λ6
εεΣΠΠ (16)

− 4γ3

Λ9
εεΣΠΠΠ =

1

2MPl
T − α

MPlΛ3
ΠµνT

µν , (17)

while the σ-equation of motion reads

−ω
6
εεΣ + 4α5Λ3 + γ0εεΠ +

γ1

Λ3
εεΠΠ +

γ2

Λ6
εεΠΠΠ +

γ3

Λ9
εεΠΠΠΠ = 0 . (18)

1 The vector-scalar lagrangian (13) has first been derived in the vielbein formalism in [31, 32].
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The tensor mode on the other hand obeys exactly the same Einstein’s equations as in general relativity. In what
follows, we will allow for time-dependent background solutions for the scalars π and σ. To this end, the general ansatz
that we will adopt has the following form

π(t, x)→ a

2
Λ3t2 + π(r),

σ(t, x)→ b

2
Λ3t2 + σ(r) , (19)

which reduces the π-equation of motion to

−a
2

+ 2bγ0 +

(
3

2
+ 3aα+ 4bγ1

)
λ− (3α+ 3aα2 − 6bγ2)λ2 + (α2 + 8bγ3)λ3

−(6γ0 − 4aγ1)λσ − (8γ1 − 12aγ2)λσλ− (6γ2 − 24aγ3)λσλ
2 = (1 + 2aα)

(r∗
r

)3

, (20)

while the σ e.o.m yields

4α5 + 6aγ0 − bω − 6(3γ0 − 2aγ1)λ− 6(2γ1 − 3aγ2)λ2 − 6(γ2 − 4aγ3)λ3 + 3ωλσ = 0 . (21)

Here, we defined the dimensionless variables λ, λσ and the Vainshtein radius r∗ as follows,

λ ≡ π′

Λ3r
, λσ ≡

σ′

Λ3r
, r∗ ≡

(
M

4πM2
Plm

2

)1/3

. (22)

IV. TIME-INDEPENDENT BACKGROUND SOLUTIONS

In this section, we assume a static (a = b = 0) background solution and study its stability under small perturbations.
Moreover, we will set α5 = 0 to start with. In this case, the equation of motion for λ can be obtained by combining
Eqs. (20) and (21),

3

2

(
1− 6

ω

)
λ−

(
3α+

36γ1

ω

)
λ2 +

(
α2 − 32γ2

1 + 24γ2

ω

)
λ3 − 40

γ1γ2

ω
λ4 − 12γ2

2

ω
λ5 =

(r∗
r

)3

. (23)

For r � r∗, five possible asymptotic solutions are obtained by solving P (λ) = 0, the latter function defined by the
left hand side of Eq. (23). One is the trivial λ = 0, and the rest of these we denote by λ1,2,3,4 = const. The solution
λ(r →∞) = 0 corresponds to asymptotically Minkowski geometry, the leading piece given as follows

λ ' 2ω

3(ω − 6)

(r∗
r

)3

. (24)

The other λ(r → ∞) 6= 0 solutions correspond to cosmological backgrounds. Inside the Vainshtein radius, r � r∗,
the highest nonlinear term λ5 dominates, and there are two solutions depending on the sign of ω,

λ ' ±
(

3|ω|
16(1 + α)2

)1/5 (r∗
r

)3/5

. (25)

Here, negative λ corresponds to positive ω, and vice versa. As it can be straightforwardly verified from the explicit
form of the action, negative ω unambiguously leads to a ghost in the σ field, so we disregard this possibility, fixing the
lower sign in (25). This solution is the only one inside the Vainshtein radius – no matter what it matches to outside.

It is interesting to evaluate the effective energy density and pressure contributed from the scalar modes, i.e. effective
π stress tensor, to which the physical metric (the one before the field redefinition (14)) couples to. For the asymptotic
Minkowski solution, the effective energy density at large distances reads

ρ = MPlG00 ' −
4αω2Λ3MPl

3(w − 6)2

(r∗
r

)6

, (26)

while the pressure is given by the following expression

p =
MPl

3
Gii '

4αω2Λ3MPl

9(w − 6)2

(r∗
r

)6

, (27)
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rendering the effective equation of state w ' −1/3. Positive energy density requires α < 0 for this solution; negative
α however will always lead to a ghost inside reasonable sources 2 [11]. One thus concludes that the asymptotically
Minkowski solutions are always plagued by a ghost instability. For the rest of the constant λ solutions, λ1,2,3,4, the
asymptotic effective energy density and pressure read

ρ ' −3λ(1− αλ)Λ3MPl, p ' −λ(−2 + αλ)Λ3MPl . (28)

Since λ has to be negative everywhere3, we have positive energy and negative pressure for the case that the system
is ghost free in the region within the source, α > 0. Whether or not ghost-freedom persists for the rest of the space,
we investigate next.

Let us slightly perturb our background solution. The detailed derivation of the perturbation action is given in
Appendix B. The leading piece in the kinetic term for π-perturbations (denoted by φ(t, ) in what follows) in the
region inside the Vainshtein radius is given by

L(2)
DL = − 34/5

10× 21/5

(1 + α)(10 + 7α)

ω

[
ω

(1 + α)2

]4/5 (r∗
r

)12/5

φ̇2 + . . . . (29)

Since α has to be positive, one can see that φ becoming a ghost somewhere in space is unavoidable. Let us for
completeness also check the kinetic term for the σ perturbation (denoted by ψ(t, x) throughout the present work).
The general expression for the kinetic terms in the quadratic perturbation lagrangian is of the following form

L(2)
DL ⊃ A1(∂tφ)2 + B1(∂tψ)2 + C1(∂tφ)(∂tψ) = A1

(
∂tφ+

C1
2A1

∂tψ

)2

+

(
B1 −

C2
1

4A1

)
(∂tψ)2.

On the solution (25) inside Vainshtein radius, the analysis of Appendix B gives

A1 ∝
(r∗
r

)12/5

, C1 ∝
(r∗
r

)9/5

, (30)

meaning that C2
1/4A1 ∝ (r∗/r)

6/5 � B1 (since B1 = ω/2 is just a constant). We thus arrive at a conclusion that both
of the scalar modes are ghosts inside the Vainshtein radius (and outside the source). One can show, that including
the extra term (8) in the action does not help: even if we include this term, the qualitative structure of the solutions
remains intact. In particular, the coefficients A1 and C1 still go as (r∗/r)

12/5 and (r∗/r)
9/5 respectively for r � r∗,

turning at least one of the two scalars into a ghost on the time-independent solutions. In the next section, we will
attempt to fix the problem by allowing time-dependence for the background.

V. TIME-DEPENDENT CASE

In this section we investigate the case of time-dependent background configurations,

a 6= 0, b 6= 0 . (31)

We note that while the fields are time dependent, they enter the Lagrangian with derivatives so that the stress-tensors
of these fields on the solutions at hand are time-independent. In subsections 1 and 2 we still set the parameter α5 to
zero, and study the case of α5 6= 0 in subsection 3.

2 One can see this by e.g. considering a static lump of dust of constant density, Tµν = ρδ0µδ
0
νθ(R− r), where R denotes its size. Then, the

leading contribution to the kinetic term for the π-perturbations is given by (αρ/MPlΛ
3)(δπ̇)2, leading to a ghost unless α > 0. Now, the

structure of the matter couplings to gravity in the present case is the same as in the original dRGT theory, so that the same argument
goes through here to constrain the sign of α.

3 We have argued below eq. (25), that λ has to be negative inside the Vainshtein radius in order to avoid ghosts. Now, P (λ) becomes
infinity as r goes to zero and is everywhere nonzero except for spatial infinity. This means that λ does not cross zero anywhere in space
for the solutions at hand (since P (0) would vanish at a finite distance from the origin if this were not true), being negative also outside
of the Vainshtein radius.
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A. Asymptotically de Sitter

To start with, we consider a solution, corresponding to 1+2αa 6= 0. As it can be straightforwardly verified, we then
have exactly the same ghost problem inside the Vainshtein radius as described in the end of the previous section4.
Let us nevertheless have a closer look at possible asymptotically de Sitter backgrounds. The condition for de Sitter
asymptotics can be recast in terms of the effective r →∞ equation-of-state parameter,

w ≡ p

ρ
=
a− 2aαλ− λ(2− αλ)

3λ(1− αλ)
= −1 . (32)

This is solved for λ = 1/2α and λ = −a and both of these conditions can not be imposed at the same time unless
1 + 2αa vanishes.

Let us first consider the case λ = 1/2α. As shown in Appendix C, this parameter choice kills the kinetic term
for the vector mode at the quadratic level, leading to infinitely strongly coupled vector perturbations. The second,
λ = −a case on the other hand, corresponds to a Lorentz-invariant profile for the π field, and has been considered
as a special β = 0 subclass of the self-accelerating solutions, found in [23]5. These solutions can be discarded on the
basis of our analysis of the previous section. Indeed, the Vainshtein solution in the vicinity of the source

λ ∼
(r∗
r

)3/5

, (33)

is the same one as in the previous section (with a difference only in numerical coefficients), and therefore at least one
of the scalars has to be a ghost inside the Vainshtein radius for our choice of the parameters.

Finally, we look at the case that both conditions, λ = 1/2α and λ = −a, are imposed. This is only possible if
1 + 2αa = 0, which means that the source term in the scalar background equations vanishes. As already noted above,
the condition λ = 1/2α leads to infinitely strongly coupled vector perturbations, so we discard this possibility.

B. Solutions with decoupled sources

We now turn to the special case, 1 + 2αa = 0, λ 6= 1/2α, and λ 6= −a, for which the equation of motion for π no
longer depends on the source. This can potentially take care of the ghost problem inside the Vainshtein radius, since
the scalar profiles correspond to λ, λσ = const everywhere in space, describing cosmologies with the equation of state
parameter w 6= −1. To simplify the analysis, let us consider the limit ω →∞, where the interactions between π and
σ is absent, and expand the solution around it. To do so, it is convenient to define a canonically normalized σ field,
σ ≡ σ̃/

√
ω, and consider an expansion in the inverse powers of the large parameter

λ = λ1 + λ2ω
−1/2 +O(ω−1), λ̃σ = λ̃σ,1 + λ̃σ,2ω

−1/2 +O(ω−1) , (34)

where λσ = λ̃σ/
√
ω. The zeroth order, ω →∞ solutions are given as follows

λ1 =
1

2α
,

1±
√

3

2α
, λ̃σ,1 =

b̃

3
, (35)

where we have defined b = b̃/
√
ω, in accord with the canonical normalization of the quasidilaton. Since π and σ are

decoupled in this limit, the solution for π is exactly the same as the one in massive gravity, found in Ref. [11], while
σ is just a free massless scalar. The first of the above profiles for λ1 corresponds to the self-accelerating background
with infinitely strongly coupled vector perturbations, considered in the previous section. We therefore focus on one
of the other two solutions6, λ1 = (1 +

√
3)/2α, in which case the next order terms in the 1/

√
w expansion are

λ2 =
2
(√

3α3 − 6α2 − 3α+ 2
√

3 + 3
)
b

9α3
,

λ̃σ,2 = −
3α3 +

(
8 + 6

√
3
)
α2 −

(
17 + 9

√
3
)
α+ 3

√
3 + 5

6α4
. (36)

4 Indeed, the fact that the background configurations have an additional time-dependent piece can not change the kinetic terms for
their perturbations – they can only affect the gradient energy. This follows from the special galileon structure of our decoupling limit
lagrangian.

5 Note that the parameter space on Fig. 1 of [23] corresponds to a particular choice of the parameter ω.
6 Considering the other one, λ1 = (1−

√
3)/2α, will lead to similar conclusions.
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The coefficients of the kinetic and gradient terms in the quadratic perturbation lagrangian for the background of
interest are summarized in D. As long as ω is large enough, one can clearly see from these expressions that the
conditions for avoiding ghost and gradient instabilities for all helicities are satisfied if

0 < α <
2 +
√

3

4
. (37)

Moreover, the speed of sound for one combination of the scalar modes and that of the vector helicities, c
2(−)
s and c2sA,

are strictly subluminal, the former propagating at a quarter of the speed of sound. The remaining scalar on the other
hand, propagates at the following speed

c2(+)
s = 1 +

2(2 +
√

3−
√

3α− 2
√

3α2 + α3)2

3α6ω
+O(ω−3/2) , (38)

which is always slightly superluminal for large ω. Beyond the 1/ω expansion, one can employ numerical analysis to
explore the stable parameter space. The qualitative picture is the same as for the large ω case: one can readily find
a parameter space, devoid of ghosts and gradient instability. Furthermore, all modes propagate at subluminal speed,
except for one combination of the scalars, which becomes (exactly luminal) σ in the limit of large ω.

The picture remains qualitatively similar for the case of nonzero α5. To avoid the ghost problem inside the
Vainshtein radius, we still need to impose 1 + 2αa = 0, and then expand the solutions around their ω →∞ values, as
above. Nonzero α5 does not change the zeroth order background profiles, since it enters only through the potential

for σ, which makes its effects suppressed by powers of
√
ω. This means that all quantities, possibly except of c

2(+)
s ,

determining stability and (sub)luminality of perturbations remain intact, since they are all dominated by the zeroth

order contributions. Now, c
2(+)
s is exactly one at the zeroth order, and as shown above, receives a slightly superluminal

correction in the case of vanishing α5 at O(ω−1). One can straightforwardly convince oneself, that unfortunately the

same conclusion persists for α5 6= 0, the speed of sound c
2(+)
s being corrected by a positive-definite (α5-dependent)

quantity at order ω−1. Furthermore, as we checked via numerical analysis, the situation is the same for O(1), or
smaller values of ω, corresponding to stable backgrounds with all modes, but one scalar propagating at superluminal
velocity.

VI. EXTENDED THEORY

We have seen in the previous sections that static solutions, that excite the helicity-zero polarization of the graviton
in the original quasidilaton theory are in general problematic, due to the issues with the propagation of ghosts in the
Vainshtein region. Mathematically, the problems arise due to the kinetic term of the quasidilaton, B1 = ω/2, becoming
parametrically suppressed with respect to the mixing with the helicity-0 graviton as r � r∗. One might therefore
think that the situation can be improved by supplementing the σ sector by Galileon interactions [9] in the decoupling
limit, since this would make the kinetic coefficient of the quasidilaton space-dependent, and possibly enhanced within
the Vainshtein radius. In addition, we saw that while the ghost problem can be avoided for solutions with decoupled
sources (i.e. the ones that do not excite the longitudinal graviton), one combination of the scalar modes always
propagates at a superluminal speed. This can be seen in the ω → ∞ limit, by noting that the quasidilaton becomes
a free field propagating at exactly the unit speed, while the next order, 1/ω correction to the speed of sound always
happens to be in the superluminal direction for the solutions of interest. On the other hand, if the ω → ∞ limit
does not describe a trivial (free) quasidilaton sector, with possibly a nontrivial background σ-profile characterized by
subluminal excitations, one can in principle get rid of superluminal propagation altogether.

Finally, a very important motivation beyond extending the decoupling limit of the original quasidilaton is the
realization that the resulting theory can capture all possible technically natural spherically symmetric and static
solutions in the most general extensions of the full original quasidilaton (i.e. the theory beyond any limit). Indeed the
decoupling limit we will consider in fact represents the most general ghost-free theory of a tensor and a pair of scalars,
invariant under internal galilean transformations. This guarantees that any ghost-free modification of the original
quasidilaton is bound to reduce to what we consider below at sufficiently short distances. Moreover, the decoupling
limit treatment guarantees that the obtained solutions lie well within the regime of validity of the effective theory,
and are fully insensitive to any possible UV physics.



9

We therefore wish to consider the following action,

LDL = −1

4
hµνEαβµν hαβ −

1

8
π

[
εεΠ− 2α

Λ3
εεΠΠ +

α2

Λ6
εεΠΠΠ

]
− σ

[
ω

12
εεΣ +

ξ1
6Λ3

εεΣΣ +
ξ3

4Λ6
εεΣΣΣ +

ξ5
10Λ9

εεΣΣΣΣ

]
+ σ

[
4α5Λ3 + γ0εεΠ +

γ1

Λ3
εεΠΠ +

γ2

Λ6
εεΠΠΠ +

γ3

Λ9
εεΠΠΠΠ

]
+

1

2MPl
hµνTµν +

1

2MPl
πT − α

2MPlΛ3
πΠµνT

µν (39)

which, as shown in appendix A, can be obtained as the decoupling limit of the quasidilaton with ghost-free Horndeski
interactions. Here we have set β = 0 and α5 = 0 as above, as well as ξ2 = ξ4 = 0, where ξ2,4 are the coefficients in
front of the nonlinear interaction terms between the quasidilaton and the helicity-2 graviton in the extended theory.
The parameter choice β = ξ4 = 0 ensures the absence of scalar-tensor interactions unremovable by a tensor mode
redefinition, while ξ2 = 0 removes the disformal coupling of σ to the energy momentum tensor. The given choice of the
model parameters thus corresponds to just the Galileon interactions for σ, contributed by the additional Horndeski
terms.

The π-equation of motion, that follows from (39) reads

−a
2

+ 2bγ0 +

(
3

2
+ 3aα+ 4bγ1

)
λ− (3α+ 3aα2 − 6bγ2)λ2 + (α2 + 8bγ3)λ3

−(6γ0 − 4aγ1)λσ − (8γ1 − 12aγ2)λσλ− (6γ2 − 24aγ3)λσλ
2 = (1 + 2aα)

(r∗
r

)3

, (40)

while the equation of motion for σ takes on the following form

4α5 + 6aγ0 − bω − 6(3γ0 − 2aγ1)λ− 6(2γ1 − 3aγ2)λ2 − 6(γ2 − 4aγ3)λ3

+ 3ωλσ − 6bξ1λσ + 6(ξ1 − 3bξ3)λ2
σ + 6(ξ3 − 2bξ5)λ3

σ = 0 . (41)

In the rest of this section, we will study solutions to these equations analogous to the ones previously obtained, as
well as the details of the spectra of perturbations on the corresponding backgrounds.

A. Time-independent solutions

We start out by considering time-independent Vainshtein solutions. The simplest extension of our previous analysis
would correspond to setting ξ3 = ξ5 = 0, in which case the solution inside the Vainshtein radius gives, λ ∝ (r∗/r)

6/7

and λσ ∝ (r∗/r)
9/7. This yields the following r � r∗ behavior of the kinetic coefficients in the quadratic perturbation

action for the scalar modes, B1 ∝ (r∗/r)
9/7, C2

1/A1 ∝ (r∗/r)
3, leading again to a scalar ghost in the Vainshtein region.

This, as we now show, can be avoided upon inclusion of the quartic Galileon, ξ3 6= 0, leading to the same r-dependence
of the kinetic coefficients B1 and C2

1/A1. To make things simple and analytic, we again consider the further limit, in
which π and σ are decoupled. To this end, one can again set ω →∞ just as we did in the previous section; however,
in contrast to the previous case, we’d like the resulting σ sector to retain Galileon interactions in order to allow for
non-trivial backgrounds. This requires to scale the ξ̃ coefficients accordingly, the proper limit defined as follows

ω →∞, ξ̃1 ≡
ξ1
ω3/2

= finite, ξ̃3 ≡
ξ3
ω2

= finite, ξ̃5 ≡
ξ5
ω5/2

= finite . (42)

The action (39) then splits up in this limit into separate, non-interacting Galileon theories for π and σ. For simplicity,
we further impose the condition that the two Galileon sectors are of similar structure. This can be achieved by
requiring

ξ3 =
ξ2
1

3ω
, ξ5 = 0 , (43)

which makes the two sectors symmetric under the interchange (π ↔ σ̃, α↔ −ξ̃1), apart form the source term in the
equation of motion for π. We then expand the solutions in terms of ω−1/2 as follows

λ = x1 + x2ω
−1/2 +O(ω−1), λ̃σ = y1 + y2ω

−1/2 +O(ω−1), (44)
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where x1 and y1 are determined from,

2α2x3
1 − 6αx2

1 + 3x1 = 2

(
r∗
r

)2

, (45)

2ξ2
1y

3
1 + 6ξ1y

2
1 + 3y1 = 0 , (46)

The expressions for x2 and y2 can then be obtained perturbatively. In general, there are multiple solutions within the
Vainshtein radius, out of which we will focus on the following one

x1 =
1

α2/3

r∗
r

+
1

α
+

1

2α4/3

r

r∗
+O

(
r

r∗

)2

(47)

y1 = −3 +
√

3

2ξ̄1
(48)

x2 = − (3 +
√

3)γ2

α2ξ̄1
− 2(3 +

√
3)(2αγ1 + 3γ2)

3α7/3ξ̄1

r

r∗
+O

(
r

r∗

)2

(49)

y2 =
2γ2

(1 +
√

3)α2

(
r∗
r

)3

+
2(2αγ1 + 3γ2)

(1 +
√

3)α7/3

(
r∗
r

)2

+O
(
r∗
r

)
. (50)

(51)

The leading terms in the expression for x1 and y1 correspond to the ‘restricted Galileon’ discussed in [11]. Since
there is no source term in the σ-equation, the ω → ∞ solution describes a cosmological background, λσ = const;
couplings between the π and σ sectors on the other hand introduce weak space dependence in λσ within the Vainshtein
radius. Once substituted into the expressions for the kinetic coefficients of the quadratic perturbation action, the
above background solution yields

A1 =

[
3α2/3

2

(
r∗
r

)2

+O
(
r∗
r

)]
ω0 +O(ω−1/2), (52)

B1 −
C2

1

4A1
= 5 + 3

√
3 +O(ω−1/2) . (53)

For positive α, the solution at hand is free from scalar ghosts. The radial and angular sound speeds can be evaluated
following the procedure, outlined in Appendix B

c2(+)
r =

[
1− 2

α1/3

r

r∗
+O

(
r

r∗

)2 ]
ω0 +O(ω−1/2), (54)

c2(−)
r = 1−

√
3

2
+O(ω−1/2), (55)

c
2(+)
Ω =

[
1

α2/3

(
r

r∗

)2

+O
(
r

r∗

)3 ]
ω0 +O(ω−1/2), (56)

c
2(−)
Ω = 1−

√
3

2
+O(ω−1/2). (57)

All these expressions are manifestly positive for large ω. Furthermore, the radial sound speed for π (54) is slightly
subluminal while the angular speed (56) is suppressed by the small factor (r/r∗)

2, making it extremely subluminal
inside the Vainshtein radius (this is generic to Vainshtein solutions in Galileon theories [9]). Both radial and angular

sound speed for σ, (55) and (57), are also subluminal, c
2(−)
r, Ω ≈ 0.134. The kinetic coefficients and the sound speeds
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in various directions of the vector perturbations are given as follows

Ctr =

[
α4/3

(1− 2α)

r∗
r

+O(r0)

]
ω0 +O(ω−1/2), (58)

Ctθ =

[
α

2
+O(r)

]
ω0 +O(ω−1/2), (59)

c2(A)
r =

[
1− 2

α1/3

r

r∗
+O(r2)

]
ω0 +O(ω−1/2), (60)

c
2(A)
Ω,1 =

[
1− 2α

2α1/3

r

r∗
+O(r2)

]
ω0 +O(ω−1/2), (61)

c
2(A)
Ω,2 =

[
1

2α2/3

(
r

r∗

)2

+O(r3)

]
ω0 +O(ω−1/2). (62)

The latter expressions show that the vector perturbations are also free of ghosts, gradient instabilities, and superlu-
minal propagation for large ω, and as long as 0 < α < 1/2 is satisfied.

We proceed by looking at the behaviour of the solutions at large distances. The asymptotically Minkowski solution
is the same as the one in (24), which as we have argued above, leads to ghosts inside reasonable sources. We thus
disregard this branch, moving to the asymptotically curved, cosmological solutions in the ω → ∞ limit. The field
profiles in this limit read

λdecoupled = 0,
3±
√

3

2α
, λ̃σ,decoupled = 0, − 3±

√
3

2ξ̃1
, (63)

and they are identical due to the α→ −ξ̃1 interchange symmetry we have imposed above. The solution λdecoupled =

(3 −
√

3)/2α leads to the wrong sign for the kinetic term of π-perturbations, A1 = 3(5 − 3
√

3)/2 < 0, we therefore
disregard it (and its dual in the σ sector), and concentrate on the only remaining solution for λdecoupled (this is also
the one that matches the field profiles inside the Vainshtein region, obtained above). Furthermore, we will concentrate

on the only remaining nozero solution for the quasidilaton, corresponding to λ̃σ,decoupled = −(3 +
√

3)/2ξ̃1.
The perturbations over the obtained background can be treated along the lines of what we did in the previous

section in eq. (34). The expressions for quantities, determining stability and the speed of propagation of fluctuations
of various helicity read

A1 =
3

2

(
5 + 3

√
3
)

+O(ω−1/2), (64)

B1 −
C2

1

4A1
= 5 + 3

√
3 +O(ω−1/2), (65)

c2(+)
s = 1−

√
3

2
+O(ω−1/2), (66)

c2(−)
s = 1−

√
3

2
+O(ω−1/2), (67)

D̄1 =

(
2 +
√

3
)
α

3 +
√

3− 4α
+O(ω−1/2), (68)

c2(A)
s =

−2
√

3α+ 2α+
√

3

6 + 2
√

3− 4α
+O(ω−1/2) . (69)

One can see, that for 0 < α < (3 +
√

3)/4 and for sufficiently large ω, the system is free from any sort of instability
and all speeds of sound are safely subluminal.

B. Time-dependent solutions

We have seen that extending the quasidilaton by Horndeski-like terms can take care of stability problems associated
with time-independent solutions in the original theory. In principle, for a certain subclass of time-dependent solutions
one can again use the same arguments as before: the stable solutions (both inside and outside the Vainshtein radius)
can be explicitly constructed by expanding around the time-independent solutions obtained in Sec. VI A as long as the
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FIG. 1: This plot shows the condition for avoiding ghosts, tachyon, gradient instabilities, superluminal modes for the time-
dependent solution with 1 + αa = 0. The parameters are chosen to be λ = 3, λσ = 1, and ξ3 = 50.

contributions from the time-dependent pieces of the scalar fields, a and b, are small. Therefore, the time-dependent
solutions are also free of ghosts, tachyons, gradient instabilities, and superluminal modes in the extended quasidilaton
theory.

Next we would like to focus the special case with decoupled sources, analogous to the one of Sec. V. To this end,
we again focus on solutions corresponding to 1 + αa = 0. Moreover, to simplify the analysis we will again impose
symmetry under π ↔ σ̃, which, in addition to (43), requires b = ω/2ξ1 to hold. The relevant solution in the ω →∞
limit then reads [11]

λdecoupled =
1

2α
,

1±
√

3

2α
, λ̃σ,decoupled = − 1

2ξ1
, − 1±

√
3

2ξ̃1
(70)

The solution λdecoupled = 1/2α corresponds to a de Sitter background with infinitely strongly coupled vector per-
turbations, as shown above. We therefore disregard it. The analysis of perturbations in 1/ω expansion for one

representative background from (70), corresponding to λdecoupled = (1 +
√

3)/(2α), λ̃σ,decoupled = −(1−
√

3)(2ξ̃1) , is
given in Appendix E. Most importantly, the ω →∞ solutions are free of ghosts, gradient instability and superluminal
propagation for all modes present in the theory for

0 < α <
1

4
(2 +

√
3) . (71)

Since perturbations are stable and safely subluminal for ω →∞, we expect that they generically remain such at least
down to moderate values of ω (when all other parameters are taken of order unity).

Finally, for illustrative purposes we provide a different, numerically obtained example of a parameter space com-
pletely free of all kinds of instability and superluminal propagation. Rather than solving for the quantities λ and λσ,
we treat these as input parameters, and solve for ξ1 and b instead (we have assumed α5 = ξ5 = 0 in this analysis).
The results, displayed on Fig. 1 confirm that there is typically a rich parameter space for stable and subluminal
backgrounds.

VII. CONCLUSIONS

In this paper, we have investigated spherically symmetric solutions in the decoupling limit of quasidilaton theory
in the absence of the un-diagonalizable interaction term, hµνεµενΠΠΠ. In the decoupling limit of the original quasi-
dilaton theory (15), we have found that

• Both of the scalar perturbations become ghosts inside the Vainshtein radius for spherically symmetric configu-
rations that asymptote to Minkowski space at infinity.
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• The only option to avoid ghosts is to consider solutions that correspond to 1 +αa = 0, which leads to vanishing
of the source term in the π equation of motion, and to a modification of the boundary conditions at infinity. In
this case, there are no ghosts, tachyons or gradient instability, but one scalar mode always propagates with a
superluminal group velocity.

Thus the condition 1 + αa = 0 is crucial in order to have stable solutions in the original quasidilaton theory, where
any asymptotically-flat background always suffers from ghost excitations in the Vainshtein region.

Furthermore, we show that a general self-accelerated solution found in [23], when restricted to a special case of
β = 0, shares the same problem: the kinetic term of the scalar field, which has a right sign on a de Sitter background,
flips the sign inside the Vainshtein radius. This means that the sign of the kinetic term vanishes somewhere as one
approaches a source from far away; at that point one of the scalar fields becomes infinitely strongly coupled and the
classical solution – meaningless.

A way to avoid ghost instability inside the Vainshtein solution is to supplement the theory by shift-symmetric
Horndeski terms for the σ field; the latter are naturally allowed by the quasidilaton symmetry (5). By adding these
terms, the σ field acquires the cubic, quartic, and quintic Galileon self-interactions in the decoupling limit, which can
in principle cure the ghost problem inside the Vainshtein radius. In particular, we find in this case, that

• The solution approaching Minkowski spacetime at large distances cannot be allowed due to the presence of a
ghost in the scalar sector.

• There exists another branch of solutions with cosmological asymptotics at large distances, that is free of ghosts,
tachyons, gradient instability, and superluminal propagation. The latter class of solutions are of a highest
interest.

As we pointed out above, throughout this paper we set the coefficient of the interaction term, hµνεµενΠΠΠ, to
zero. This is a technically natural choice [36], however, inclusion of this term may open novel branches of solutions
and should be investigated in future.
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Appendix A: Complete Lagrangian in the decoupling limit

In this appendix we consider the action of quasi-dilaton theory supplemented by the shift-symmetric Horndeski
Lagrangian, given as follows

SH =

∫
d4x
√
−g

5∑
i=2

Li, (A1)

where

L2 = P (X),

L3 = −G3(X)�σ,

L4 = G4(X)R+G4X

[
(�σ)2 − (∇µ∇νσ)2

]
,

L5 = G5(X)Gµν∇µ∇νσ −
1

6
G5X(X)

[
(�σ)3 − 3�σ(∇µ∇νσ)2 + 2(∇µ∇νσ)3

]
. (A2)

Here P (X) and Gi(X) are arbitrary functions of X = −(∂σ)2/2, and GiX denotes the derivative of Gi with respect
to X, ∂Gi/∂X. This action is invariant under constant shifts (5).

As a next step, we derive the complete scalar-tensor Lagrangian in the decoupling limit of the quasidilaton theory
including the shift-symmetric Horndeski terms. The decoupling limit of the Horndeski theory has been derived in
[37], and we follow their approach. To find the effective action in the decoupling limit, we first perturb the quasi-
dilaton around a constant background value, σ → σ0 + σ as well as perturb the metric around Minkowski spacetime,
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gµν = ηµν + hµν . We then Taylor-expand the entire action and keep the dominant interactions for the Vainshtein
mechanism, schematically given as σ(∂σ)n and h(∂σ)2. Here we assume that the terms such as (∂σ)3, (∂σ)4, etc., are
suppressed with respect to galileon;like interactions. The complete effective Lagrangian is then given by

L(h,π,σ)
DL = −1

4
hµνEαβµν hαβ − hµν

[
1

4
εµενΠ− α

4Λ3
εµενΠΠ− β

2Λ6
εµενΠΠΠ

]
+ σ

[
4α5Λ3 + γ0εεΠ +

γ1

Λ3
εεΠΠ +

γ2

Λ6
εεΠΠΠ +

γ3

Λ9
εεΠΠΠΠ

]
− σ

[
ω

12
εεΣ +

ξ1
6Λ3

εεΣΣ +
ξ3

4Λ6
εεΣΣΣ +

ξ5
10Λ9

εεΣΣΣΣ

]
+ hµν

[
ξ2

2Λ3
εµενΣΣ− ξ4

2Λ6
εµενΣΣΣ

]
+

1

2MPl
hµνTµν ,

where we have introduced the dimensionless parameters ξi as follows

ω = PX , ξ1 = −G3XΛ3, ξ2 =
Λ3

MPl
G4X ,

ξ3 = G4XXΛ6, ξ4 = − Λ6

3MPl
G5X , ξ5 = −1

3
G5XXΛ9, (A3)

these being evaluated at the background value, i.e., X = 0. The Lagrangian is still invariant under the gauge
transformation, hµν → hµν + ∂µξν + ∂νξµ and the galileon transformation for π and σ fields, ∂µπ → ∂µπ + cµ and
∂µσ → ∂µσ + dµ. Here the ”k-essence” term, P (X), gives the standard kinetic term (∂σ)2 in the decoupling limit;
this defines ω in (7). Note that the lowest possible interaction between h and σ, hµνεµενΣ, is absent unlike for the π
field. This interaction could be obtained from e.g. a term like σR; the shift-symmetry in the σ sector however forbids
such an interaction.

The Horndeski terms introduce the h-σ couplings, similar to the h-π terms of pure massive gravity. In the similar
way, these couplings can be removed by a local field redefinition,

hµν → hµν + πηµν −
α

Λ3
πΠµν −

2ξ2
Λ3

σΣµν , (A4)

except for the hµνεµενΠΠΠ and hµνεµενΣΣΣ terms. Then the action in the new frame becomes

LDL = −1

4
hµνEαβµν hαβ −

1

8
π

[
εεΠ− 2α

Λ3
εεΠΠ +

α2 − 4β

Λ6
εεΠΠΠ +

4αβ

Λ9
εεΠΠΠΠ

]
− σ

[
ω

12
εεΣ +

ξ1
6Λ3

εεΣΣ +
2ξ2

2 + ξ3
4Λ6

εεΣΣΣ +
10ξ2ξ4 + ξ5

10Λ9
εεΣΣΣΣ

]
+ σ

[
4α5Λ3 + γ0εεΠ +

γ1

Λ3
εεΠΠ +

γ2

Λ6
εεΠΠΠ +

γ3

Λ9
εεΠΠΠΠ

]
+ π

[
ξ2

2Λ3
εεΣΣ +

ξ4
2Λ6

εεΣΣΣ− αξ2
2Λ6

εεΠΣΣ− αξ4
2Λ9

εεΠΣΣΣ− βξ2
Λ9

εεΠΠΣΣ

]
+

β

2Λ6
hµνεµενΠΠΠ +

ξ4
2Λ6

hµνεµενΣΣΣ

+
1

2MPl
hµνTµν +

1

2MPl
πT − α

2MPlΛ3
πΠµνT

µν − ξ2
MPlΛ3

σΣµνT
µν . (A5)

The equation of motion for hµν reads

Eαβµν hαβ =
β

Λ6
εµενΠΠΠ +

ξ4
Λ6
εµενΣΣΣ +

1

MPl
Tµν , (A6)

while the equations of motion for π and σ yield respectively

1

4
εεΠ− 3α

4Λ3
εεΠΠ +

α2 − 4β

2Λ6
εεΠΠΠ +

5αβ

2Λ9
εεΠΠΠΠ

− γ0εεΣ−
2γ1

Λ3
εεΣΠ− 3γ2

Λ6
εεΣΠΠ− 4γ3

Λ9
εεΣΠΠΠ

− ξ2
2Λ3

εεΣΣ− ξ4
2Λ6

εεΣΣΣ +
αξ2
Λ6

εεΠΣΣ +
αξ4
Λ9

εεΠΣΣΣ +
3βξ2
Λ9

εεΠΠΣΣ

− 3β

2Λ6
εµαργενβσγ∂µ∂νhµνΠρσΠγδ =

1

2MPl
T − α

MPlΛ3
ΠµνT

µν , (A7)



15

−ω
6
εεΣ− ξ1

2Λ3
εεΣΣ− 2ξ2

2 + ξ3
Λ6

εεΣΣΣ− 10ξ2ξ4 + ξ5
2Λ9

εεΣΣΣΣ

+ 4α5Λ3 + γ0εεΠ +
γ1

Λ3
εεΠΠ +

γ2

Λ6
εεΠΠΠ +

γ3

Λ9
εεΠΠΠΠ

+
ξ2
Λ3
εεΠΣ +

3ξ4
2Λ6

εεΠΣΣ− αξ2
2Λ6

εεΠΠΣ− αξ4
2Λ9

εεΠΠΣΣ− 2βξ2
Λ9

εεΠΠΠΣ

+
3ξ4
2Λ6

εµαργενβσγ∂µ∂νhµνΣρσΣγδ =
2ξ2

MPlΛ3
ΣµνT

µν . (A8)

Appendix B: Scalar Perturbations

In this appendix, we summarize the quadratic Lagrangian of the fluctuations of π and σ around the background
(19). We define the fluctuations φ and ψ as

π(t, x)→ a

2
Λ3t2 + π(r) + φ(t, x)

σ(t, x)→ b

2
Λ3t2 + σ(r) + ψ(t, x). (B1)

Then the quadratic Lagrangian becomes

L(2)
DL = A1(∂tφ)2 −A2(∂rφ)2 −A3(∂Ωφ)2 + B1(∂tψ)2 − B2(∂rψ)2 − B3(∂Ωψ)2

+C1∂tφ∂tψ − C2∂rφ∂rψ − C3∂Ωφ∂Ωψ, (B2)

where the coefficients are

A1 =
3

4
− 1

Λ3

[
3

2
α

(
π′′ + 2

π′

r

)
+ 2γ1

(
σ′′ + 2

σ′

r

)]
+

1

Λ6

[
3

2
α2

(
π′2

r2
+ 2

π′π′′

r

)
− 6γ2

(
σ′π′

r2
+
σ′′π′

r
+
σ′π′′

r

)]
− 12γ3

Λ9

(
σ′′π′2

r2
+ 2

σ′π′π′′

r2

)
, (B3)

A2 =
3

4
+

3

2
αa+ 2γ1b−

1

Λ3

[
3(α+ α2a− 2γ2b)

π′

r
+ 2(2γ1 − 3γ2a)

σ′

r

]
+

1

Λ6

[
3

2

(
α2 + 8γ3b

) π′2
r2
− 6(γ2 − 4γ3a)

σ′π′

r2

]
, (B4)

A3 =
3

4
+

3

2
αa+ 2γ1b−

1

Λ3

[
3

2
(α+ α2a− 2γ2b)

(
π′′ +

π′

r

)
+ (2γ1 − 3γ2a)

(
σ′′ +

σ′

r

)]
+

1

Λ6

[
3

2

(
α2 + 8γ3b

) π′π′′
r
− 3(γ2 − 4γ3a)

π′σ′′ + σ′π′′

r

]
, (B5)

B1 =
ω

2
+
ξ1
Λ3

(
σ′′ + 2

σ′

r

)
+

3ξ3
Λ6

(
σ′2

r2
+ 2

σ′σ′′

r

)
+

6ξ5
Λ9

σ′2σ′′

r2
, (B6)

B2 =
ω

2
− ξ1b+

2(ξ1 − 3ξ3b)

Λ3

σ′

r
+

3(ξ3 − 2ξ5b)

Λ6

σ′2

r2
, (B7)

B3 =
ω

2
− ξ1b+

ξ1 − 3ξ3b

Λ3

(
σ′′ +

σ′

r

)
+

3(ξ3 − 2ξ5b)

Λ6

σ′σ′′

r
, (B8)

C1 = −6γ0 −
4γ1

Λ3

(
π′′ + 2

π′

r

)
− 6

γ2

Λ6

(
π′2

r2
+ 2

π′π′′

r

)
− 24γ3

Λ9

π′2π′′

r2
, (B9)

C2 = −6γ0 + 4γ1a−
8γ1 − 12γ2a

Λ3

π′

r
− 6γ2 − 24γ3a

Λ6

π′2

r2
, (B10)

C3 = −6γ0 + 4γ1a−
4γ1 − 6γ2a

Λ3

(
π′′ +

π′

r

)
− 6γ2 − 24γ3a

Λ6

π′π′′

r
. (B11)

Here we set β = ξ2 = ξ4 = 0. One can express the quadratic Lagrangian (B2) in a simple form as

L(2)
DL =

1

2
(∂tQ)Jt(∂tQ)− 1

2
(∂rQ)Jr(∂rQ)− 1

2
(∂ΩQ)JΩ(∂ΩQ), (B12)
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where Q and Ji are the matrices,

Q =

(
φ(t, x)
ψ(t, x)

)
, Jt =

(
2A1 C1
C1 2B1

)
, Jr =

(
2A2 C2
C2 2B2

)
, JΩ =

(
2A3 C3
C3 2B3

)
. (B13)

The conditions for avoiding ghost instability are simply given by det Jt > 0 and tr Jt > 0. These conditions are
equivalent to the following explicit conditions,

A1 > 0, B1 −
C2

1

4A1
> 0. (B14)

The squared sound speeds in the radial direction c
2(±)
r are given by the eigenvalues of the matrix, Mr = J−1

t Jr, and

the squared sound speeds in the angular direction c
2(±)
Ω are given by the eigenvalues of the matrix, MΩ = J−1

t JΩ.
The condition for avoiding gradient instabilities and superluminal propagation are given by

0 ≤ c2(±)
r ≤ 1, 0 ≤ c2(±)

Ω ≤ 1. (B15)

In the case of λ = const, the radial and angular perturbations coincide, Jr = JΩ. Thus we can obtain the dispersion
relation ω = c2s(±)k

2 in Fourier space, where c2s(±) is given by

c2s(±) =
−w ±

√
w2 − 4vz

2v
, (B16)

with v = 4A1B1−C2
1 , w = −4(A1B2 +A2B1) + 2C1C2, and z = 4A2B2−C2

2 . Then the conditions for avoiding gradient
instability and superluminal propagation are given by

0 ≤ c2s(±) ≤ 1. (B17)

Appendix C: Vector Perturbations

In this appendix, we derive the conditions for stability and subluminality for vector perturbations. Expanding π as
in (B1) and integrating out the non-dynamical B field, we obtain

L(A)
DL = −CtrF trFtr − CtθF tθFtθ − CtϕF tϕFtϕ − CrθF rθFrθ − CrϕF rϕFrϕ − CθϕF θϕFθϕ, (C1)

where Fµν = ∂µAν − ∂νAµ is the field strength of the vector field and

Ctr =
1− 2απ′/Λ3r

2(2 + a)− 2π′′/Λ3
, (C2)

Ctθ = Ctϕ =
1− απ′/rΛ3 − απ′′/Λ3

2(2 + a)− 2π′/rΛ3
, (C3)

Crθ = Crϕ =
1 + aα− απ′/rΛ3

4− 2π′/rΛ3 − 2π′′/Λ3
, (C4)

Cθϕ =
1 + aα− απ′′/Λ3

4(1− π′/rΛ3)
. (C5)

One can rewrite this Lagrangian in terms of the electric and magnetic fields, Eµ ≡ Fµνu
ν and Bµ ≡ εµναβF

αβuν ,
where uµ denotes four velocity; we then have

L(A)
DL = −CtrErEr − Ctθ(EθEθ + EϕE

ϕ) + CθϕB
rBr + Crθ(BθB

θ +BϕB
ϕ) . (C6)

One can now read off the conditions for the absence of ghosts

Ctr > 0, Crθ > 0. (C7)
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The sound speeds in various directions of the vector perturbations depend on the polarization modes, and are given
as follows

c2(A)
r =

Crθ
Ctθ

for Er = Br = 0, (C8)

c
2(A)
Ω,1 =

Crθ
Ctr

for Eθ = Eϕ = Br = Bθ = 0, (C9)

c
2(A)
Ω,2 =

Cθϕ
Ctθ

for Er = Eθ = Bθ = Bϕ = 0. (C10)

leading to the following conditions

0 ≤ c2(A)
r ≤ 1, 0 ≤ c2(A)

Ω,1 ≤ 1, 0 ≤ c2(A)
Ω,2 ≤ 1, (C11)

for avoiding gradient instability and superluminal propagation.
In the λ = const case, the vector Lagrangian (C1) can be written as

L(A)
DL = D1F

0iF0i +D2F
ijFij , (C12)

and

D1 = − 1− 2αλ

2(2 + a− λ)
, D2 = −1 + aα− αλ

8(1− λ)
. (C13)

One can fix the gauge such that ∇·A = 0, where A is the transverse modes, and write the vector field as Aµ = (0,A).
Then the Lagrangian can be rewrited as

L(A)
DL = D̄1(∂tA)2 − D̄2(∇×A)2, (C14)

where D̄1 = −D1 and D̄2 = −2D2. Thus the conditions for the absence of ghosts, gradient instability and superluminal
propagation for the vector modes are given by

D̄1 > 0, 0 ≤ c2sA ≤ 1 (C15)

c2sA = D̄2/D̄1. Note that in the the case, a = −λ, the vector Lagrangian is simply given by L(A)
DL = −(D̄1/2)FµνF

µν ,
and the sound speed of the vector mode is equal to the speed of light.

Appendix D: Perturbations of the time-dependent solution

Here we summarize the kinetic coefficients for perturbations and the sound speeds for all modes on the time-
dependent solution given by (34), (35), and (36). The coefficients for the solution, corresponding to λ1 = (1+

√
3)/(2α),

are given by

A1 = 3 + c1ω
−1/2 +O(ω−1), (D1)

B1 −
C2

1

4A1
=

1

2
+ c2ω

−1 +O(ω−3/2), (D2)

c2(+)
s = 1 + c3ω

−1 +O(ω−3/2), (D3)

c2(−)
s =

1

4
+ c4ω

−1/2 +O(ω−1), (D4)

D̄1 = D̄1,decoupled + c5ω
−1/2 +O(ω−1), (D5)

c2(A)
s = c

2(A)
s,decoupled + c6ω

−1/2 +O(ω−1), (D6)

where D̄1 and the sound speed of the vector perturbations in the limit ω →∞ are given by

D̄1,decoupled =

√
3α

2 +
√

3− 4α
, (D7)

c
2(A)
s,decoupled =

2 +
√

3− 4α

4 + 4
√

3− 8α
. (D8)

(D9)
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Then the conditions for avoiding ghosts, gradient instability, and superluminal propagation of the vector perturbations
translate into

0 ≤ α ≤ 1

4
(2 +

√
3). (D10)

The next-to-leading order coefficients are given by

c1 =
4b
(
α3 − 2

√
3α2 −

√
3α+

√
3 + 2

)
α2

, (D11)

c2 = −
(
3
√

3α3 − 6α2 −
(
7 + 3

√
3
)
α+ 3

√
3 + 5

)2
12α6

, (D12)

c3 =
2(2 +

√
3−
√

3α− 2
√

3α2 + α3)2

3α6
, (D13)

c4 = −
b
(
α3 − 4

√
3α2 +

(
3− 2

√
3
)
α+ 2

√
3 + 5

)
9α2

, (D14)

c5 = −
8b(2α− 1)

(√
3α3 − 6α2 − 3α+ 2

√
3 + 3

)
9
(
−4α+

√
3 + 2

)2
α

, (D15)

c6 =
b(2α− 1)

(√
3α3 − 6α2 − 3α+ 2

√
3 + 3

)
9
(
−2α+

√
3 + 1

)2
α2

. (D16)

Appendix E: Perturbations of the time-dependent solution in extended theories

In this appendix we focus on one of the time-dependent solutions, corresponding to λdecoupled = (1 +
√

3)/(2α) and

λ̃σ,decoupled = −(1−
√

3)(2ξ̃1). Then, λ2 and λσ2 can be easily found,

λ2 =
2 + 8α− 6α2 − 9(2−

√
3)α3

9α3ξ̃1
, (E1)

λσ2 = −5 + 3
√

3− (17 + 9
√

3)α+ (8 + 6
√

3)α2 + 3α3

6α4
. (E2)

and one can evaluate the coefficients of perturbations,

A1 = 3 + d1ω
−1/2 +O(ω−1), (E3)

B1 −
C2

1

4A1
= 2 + d2ω

−1/2 +O(ω−1), (E4)

c2(+)
s =

1

4
+ d3ω

−1/2 +O(ω−1), (E5)

c2(−)
s =

1

4
+ d4ω

−1/2 +O(ω−1), (E6)

D̄1 = D̄1,decoupled + d5ω
−1/2 +O(ω−1), (E7)

c2(A)
s = c

2(A)
s,decoupled + d6ω

−1/2 +O(ω−1), (E8)
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where D̄1 and c
2(A)
s are the same as in (D9), and

d1 =
3 + 5

√
3− (9− 11

√
3)α− 18α2 + 3(8− 5

√
3)α3

2α2ξ̃1
, (E9)

d2 = −9 + 5
√

3− (27 + 17
√

3)α+ 2(9 + 4
√

3)α2 + 3
√

3α3

2α4
ξ̃1, (E10)

d3 =
d1

24
, (E11)

d4 =
−9− 19

√
3 + (27− 13

√
3)α− 6(3− 4

√
3)α2 − 3

√
3α3

72α2ξ̃1
, (E12)

d5 =
4(1− 2α)

(
2 + 8α− 6α2 − 9(2−

√
3)α3

)
9(2 +

√
3− 4α)2αξ̃1

, (E13)

d6 = −
(1− 2α)

(
2 + 8α− 6α2 − 9(2−

√
3)α3

)
18(1 +

√
3− 2α)2α2ξ̃1

. (E14)
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