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We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general
relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We
describe our implementation of the moment formalism and important tests of our code, before studying the
formation phase of an accretion disk after a black hole-neutron star merger. We use as initial data an existing
general relativistic simulation of the merger of a neutron star of mass 1.4M� with a black hole of mass 7M� and
dimensionless spin χBH = 0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we
find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity.
We find that the electron neutrino luminosity is much lower in the transport simulations, and that both the disk
and the disk outflows are less neutron-rich. The spatial distribution of the neutrinos is significantly affected by
relativistic effects, due to large velocities and curvature in the regions of strongest emission. Over the short
timescale evolved, we do not observe purely neutrino-driven outflows. However, a small amount of material
(3 × 10−4M�) is ejected in the polar region during the circularization of the disk. Most of that material is
ejected early in the formation of the disk, and is fairly neutron rich (electron fraction Ye ∼ 0.15 − 0.25).
Through r-process nucleosynthesis, that material should produce high-opacity lanthanides in the polar region,
and could thus affect the lightcurve of radioactively powered electromagnetic transients. We also show that by
the end of the simulation, while the bulk of the disk remains neutron-rich (Ye ∼ 0.15 − 0.2 and decreasing),
its outer layers have a higher electron fraction: 10% of the remaining mass has Ye > 0.3. As that material
would be the first to be unbound by disk outflows on longer timescales, and as composition evolution is slower
at later times, the changes in Ye experienced during the formation phase of the disk could have an impact on
nucleosynthesis outputs from neutrino-driven and viscously-driven outflows. Finally, we find that the effective
viscosity due to momentum transport by neutrinos is unlikely to have a strong effect on the growth of the
magnetorotational instability in the post-merger accretion disk.

PACS numbers: 04.25.dg, 04.40.Dg, 26.30.Hj, 98.70.-f

I. INTRODUCTION

The likely detection of gravitational waves by the advanced
LIGO/VIRGO detectors [1, 2] in the coming years will open
up an entirely new way to observe the universe, complement-
ing existing electromagnetic and neutrino observations. Merg-
ers of black holes and neutron stars are expected to be among
the first and most common sources of gravitational waves to
be observed [3]. Beyond the excitement associated with the
first gravitational wave detection, binary mergers will provide
us with a wealth of information which could constrain the
formation and evolution of massive binaries [4, 5], the out-
comes of core collapse supernovae, or the properties of the
cold, dense neutron-rich matter in the core of neutron stars [6–
9].

In the presence of at least one neutron star, the gravitational
wave signal may be accompanied by electromagnetic and neu-
trino emissions. The joint detection of a system by a grav-
itational wave observatory and an electromagnetic telescope
would provide additional information about the location, en-
vironment, and parameters of the binary [10]. It could also

help us understand some important astrophysical processes.
Neutron star mergers are among the most likely progenitors
of short-hard gamma-ray bursts. They may also significantly
contribute to the production of heavy elements in the universe,
through r-process nucleosynthesis in the neutron-rich material
unbound during some mergers [11–15]. This nucleosynthesis
could be observed through radioactively powered transients,
observable in the optical and/or infrared bands days after the
merger (“kilonovae”) [16, 17].

To understand which signals can be emitted by a merger,
and how they depend on the initial parameters of the binary,
we need numerical simulations in full general relativity: the
strong non-linearities in the evolution of the spacetime sur-
rounding the binary make any approximate treatment of grav-
ity unreliable. Most general relativistic simulations focus on
a very short period around the time of merger (∼ 100 ms for
simulations involving neutron stars), when general relativistic
effects are important. Over that time period and beyond grav-
ity, the most important physical effects to take into account are
the equation of state of neutron star matter, the effects of mag-
netic fields, and the cooling and composition evolution due to
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neutrino-matter interactions. Although numerical simulations
of these effects have significantly improved over the last few
years, much work is needed to simulate them well-enough to
reliably predict the post-merger signals produced by compact
binary mergers. The main object of this work is the develop-
ment and testing of an improved method for the treatment of
neutrinos in the SpEC code [18], based on the moment for-
malism of Thorne [19], and its application to the post-merger
evolution of a black hole-neutron star binary.

In terms of the neutron star equations of state, most general
relativistic simulations use either a simple Gamma-law equa-
tion of state, or parametrized piecewise-polytropic equations
of state with a thermal Gamma-law. When modeling the grav-
itational wave signal up to the point of merger, this should be
sufficient: the gravitational wave signal mostly probes a sin-
gle parameter of the equation of state, its tidal deformability,
while the detailed structure of the neutron star appears unim-
portant [7, 8]. But the equation of state plays a crucial role
when simulating the merger and post-merger evolution of the
binary [20, 21]. Many systems have been evolved with hot
nuclear-theory based equations of state using Newtonian or
pseudo-Newtonian potentials (e.g. [22–27]). But only a few
general relativistic simulations have used cold [21, 28, 29]
or hot [15, 30–33] tabulated, nuclear-theory based equations
of state, and of those only the equation of state used in [15]
appears consistent with the most recent models for dense
neutron-rich matter [34, 35]. In this work, we use a hot, com-
position dependent, nuclear-theory based equation of state by
Lattimer & Swesty [36], which leads to an acceptable mass-
radius relationship for neutron stars and allows us to include
neutrino-matter interactions, but is not fully consistent with
the latest constraints from nuclear experiments.

The simulation of magnetic fields has seen some impres-
sive recent improvements. General relativistic simulations of
binary neutron star mergers assuming ideal magnetohydrody-
namics have been performed with a number of codes (see
e.g. [37] for a recent review of the field), but resolving the
growth of magnetic instabilities at an acceptable computa-
tional cost remains an open problem [38]. Simulations us-
ing force-free or resistive magnetohydrodynamics, needed to
properly simulate magnetically dominated regions, have also
been performed [39–42]. So far they have, however, mostly
studied the pre-merger evolution of the system. Here, we
do not take the magnetic fields into account at all, and focus
solely on neutrino effects.

The third component needed to simulate compact binaries
around the time of merger, neutrinos, is also the most com-
putationally expensive to treat accurately. In theory, for each
species of neutrinos, one should evolve the distribution func-
tion of neutrinos in both physical and momentum space. The
high dimensionality of the problem places it out of reach of
current numerical codes and computers. Accordingly, various
approximations have been developed - most of them in New-
tonian simulations and/or with the aim of studying core col-
lapse supernovae. In general relativistic simulations of binary
mergers, a few simulations have used a simple cooling pre-
scription (“leakage”) to model the first-order impact of neutri-
nos on the cooling of the disk and the composition evolution

of high-density regions [31–33]. The only published result us-
ing a more advanced method [15] studied a binary neutron star
merger using an energy-integrated (“gray”) version of the mo-
ment formalism for radiation transport [19, 43, 44]. The first
two moments of the neutrino distribution function (i.e. the
energy density and flux of neutrinos) were evolved, and the
analytical M1 closure was used to compute the third moment
(pressure tensor). In this work, we discuss the implementation
of a similar scheme within the SpEC code, and its applica-
tion to the post-merger evolution of a black hole-neutron star
merger. As in [15] , we use a gray M1 scheme. We should note
that there are significant differences between our implementa-
tion of the M1 formalism and the one used in [15], in partic-
ular in the treatment of optically thick regions1, which would
make a comparison between the results of the two codes an
interesting test of the accuracy of the M1 formalism in the
core of the disk or in the presence of a hypermassive neutron
star. However, we will not discuss this here, as we are consid-
ering a completely different physical setup for the evolution,
and the details of the M1 implementation used in [15] have
not yet been published.

The focus of this paper is to discuss three different ques-
tions. First, we describe the implementation and testing of
the M1 formalism in SpEC. An overview of the methods is
offered in Sec. II, while the interested reader will find the de-
tails of the algorithm and important tests of the code in the
Appendices. Second, we simulate the evolution of a black
hole-neutron star binary in the critical phase in which the ac-
cretion disk is formed, from the moment at which neutrino
emission increases due to the heating of the forming disk, to
the time at which the disk reaches a quasi-equilibrium state
(about 20 ms after merger). We pay particular attention to the
temperature and composition evolution, the ejection of matter
along the spin axis of the black hole, the geometry of the neu-
trino radiation, and the potential astrophysical consequences
of our results. This is the main focus of Secs. IV-V. And third,
we study the impact of using the M1 formalism instead of the
simpler leakage scheme, and the impact of the various approx-
imations which have to be made when using a gray scheme.
This is the focus of Sec. IV G.

II. MOMENT FORMALISM

We will start here with an overview of the M1 formalism,
and of its numerical implementation in SpEC. A more detailed
description of many aspects of the algorithm, as well as tests
of our implementation, are available in the appendices.

A. Evolution equations

For each neutrino species νi, we can describe the neutri-
nos by their distribution function f(ν)(x

α, pα), where xα =

1 M. Shibata, Y. Sekiguchi, private communication



3

(t, xi) gives the time and the position of the neutrinos, and pα

is the 4-momentum of the neutrinos. The distribution function
f(ν) evolves according to the Boltzmann equation

pα
[
∂f(ν)

∂xα
− Γβαγp

γ ∂f(ν)

∂pβ

]
=

[
df(ν)

dτ

]
coll

, (1)

where the Γαβγ are the Christoffel symbols and the right-hand
side includes all collisional processes (emissions, absorptions,
scatterings). In general, this is a 7-dimensional problem which
is extremely expensive to solve numerically. Approximations
to the Boltzmann equation have thus been developed for nu-
merical applications. In this work, we consider the moment
formalism developed by Thorne [19], in which only the low-
est moments of the distribution function in momentum space
are evolved. Our code is largely inspired by the implemen-
tation of Thorne’s formalism into general relativistic hydro-
dynamics simulations proposed by Shibata et al. [43] and
Cardall et al. [44]. We limit ourselves to the use of this for-
malism in the “gray” approximation, that is we only consider
energy-integrated moments. Although the moment formalism
can in theory be used with a discretization in neutrino en-
ergies, this makes the simulations significantly more expen-
sive and involves additional technical difficulties in the treat-
ment of the gravitational and velocity redshifts. We will also
only consider three independent neutrino species: the elec-
tron neutrinos νe, the electron antineutrinos ν̄e, and the heavy-
lepton neutrinos νx. The latter is the combination of 4 species
(νµ, ν̄µ, ντ , ν̄τ ). This merging is justified because the temper-
atures and neutrino energies reached in our merger calcula-
tions are low enough to suppress the formation of the corre-
sponding heavy leptons whose presence would require includ-
ing the charged current neutrino interactions that differentiate
between these individual species.

In the gray approximation, and considering only the first
two moments of the distribution function, we evolve for each
species projections of the stress-energy tensor of the neutrino
radiation Tµνrad. One possible decomposition of Tµνrad is [43]

Tµνrad = Juµuν +Hµuν +Hνuµ + Sµν , (2)

with Hµuµ = Sµνuµ = 0 and uµ the 4-velocity of the fluid.
The energy J , flux Hµ and stress tensor Sµν of the neutrino
radiation as observed by an observer comoving with the fluid
are related to the neutrino distribution function by

J =

∫ ∞
0

dν ν3

∫
dΩ f(ν)(x

α, ν,Ω) , (3)

Hµ =

∫ ∞
0

dν ν3

∫
dΩ f(ν)(x

α, ν,Ω)lµ , (4)

Sµν =

∫ ∞
0

dν ν3

∫
dΩ f(ν)(x

α, ν,Ω)lµlν , (5)

where ν is the neutrino energy in the fluid frame,
∫
dΩ de-

notes integrals over solid angle on a unit sphere in momentum
space, and

pα = ν(uα + lα) , (6)

with lαuα = 0 and lαlα = 1. We also consider the decom-
position of Tµνrad in terms of the energy, flux and stress tensor
observed by an inertial observer,

Tµνrad = Enµnν + Fµnν + F νnµ + Pµν , (7)

with Fµnµ = Pµνnµ = F t = P tν = 0, and nα the unit
normal to a t = constant slice.

We use the 3+1 decomposition of the metric,

ds2 = gαβdx
αdxβ (8)

= −α2dt2 + γij(dx
i + βi)(dxj + βj) , (9)

where α is the lapse, βi the shift, and γij the 3-metric on a
slice of constant coordinate t. The extension of γij to the full
4-dimensional space is the projection operator

γαβ = gαβ + nαnβ . (10)

We similarly define a projection operator onto the reference
frame of an observer comoving with the fluid,

hαβ = gαβ + uαuβ . (11)

We can then write equations relating the fluid-frame variables
to the inertial frame variables [44]:

E = W 2J + 2WvµH
µ + vµvνS

µν , (12)

Fµ = W 2vµJ +W (gµν − nµvν)Hν

+WvµvνH
ν + (gµν − nµvν)vρS

νρ , (13)

Pµν = W 2vµvνJ +W (gµρ − nµvρ)vνHρ

+W (gρν − nρvν)vµH
ρ

+(gµρ − nµvρ)(gνκ − nνvκ)Sρκ , (14)

using the decomposition of the 4-velocity

uµ = W (nµ + vµ) , (15)

with vµnµ = 0 and W =
√

1 + γijuiuj .
Evolution equations for Ẽ =

√
γE and F̃ =

√
γF i can

then be written in conservative form:

∂tẼ + ∂j(αF̃
j − βjẼ) (16)

= α(P̃ ijKij − F̃ j∂j lnα− S̃αnα) ,

∂tF̃i + ∂j(αP̃
j
i − β

jF̃i) (17)

= (−Ẽ∂iα+ F̃k∂iβ
k +

α

2
P̃ jk∂iγjk + αS̃αγiα) ,

where γ is the determinant of γij , P̃ij =
√
γPij , and S̃α in-

cludes all collisional source terms.
To close this system of equations, we need two addi-

tional ingredients: a prescription for the computation of
P ij(E,Fi) (‘closure relation’, which we choose following
Minerbo 1978 [45]), and the collisional source terms S̃α. In
the M1 formalism, the neutrino pressure tensor P ij is recov-
ered as an interpolation between its known limits for an op-
tically thick medium and an optically thin medium with a
unique direction of propagation for the neutrinos. We pro-
vide details on its computation in Appendix A. For the source
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terms S̃α, we will consider that the fluid has an energy-
integrated emissivity η̄ due to the charged-current reactions

p+ e− → n+ νe , (18)
n+ e+ → p+ ν̄e , (19)

as well as electron-positron pair annihilation

e+ + e− → νiν̄i , (20)

plasmon decay

γ → νiν̄i , (21)

and nucleon-nucleon Bremsstrahlung

N +N → N +N + νi + ν̄i . (22)

The inverse reactions are responsible for an energy-averaged
absorption opacity κ̄a. We also consider an energy-averaged
scattering opacity κ̄s due to elastic scattering of neutrinos on
nucleons and heavy nuclei. The source terms are then

S̃α =
√
γ (η̄uα − κ̄aJuα − (κ̄a + κ̄s)H

α) . (23)

Details of the choices made for the computation of the gray
η̄, κ̄a and κ̄s are provided in Appendix B. Except for the
modifications described in that Appendix, we use the emissiv-
ities and opacities proposed by Ruffert et al. [22] for all of the
above reactions, except for nucleon-nucleon Bremsstrahlung
for which the emissivity is computed following Burrows et
al. [46].

B. Numerical scheme

We add the evolution of neutrinos with the moment scheme
to the SpEC code [18], which already includes a general rela-
tivistic hydrodynamics module [47]. The latest methods used
for evolving in SpEC the coupled system formed by Einstein’s
equation and the general relativistic equations of hydrody-
namics are described in [48], Appendix A.

In the M1 formalism, we evolve the variables Ẽ and F̃i
according to Eqs. (16-17), and couple the neutrinos to the fluid
evolution. The coupling takes the form

∂tτ = ... + αS̃αnα , (24)
∂tSi = ... − αS̃αγiα , (25)

∂t(ρ∗Ye) = ... − sign(νi)α
√
γ
η̄ − κ̄aJ
〈εν〉

, (26)

where ρ∗, ρ∗Ye, τ and Si are the conservative hydrodynamics
variables which are evolved in SpEC,

ρ∗ = ρ0W
√
γ , (27)

τ = ρ∗(hW − 1)−√γP , (28)
Si = ρ∗hui , (29)

ρ0 is the baryon density of the fluid, P its pressure, Ye its elec-
tron fraction, and h its specific enthalpy. 〈εν〉 is the weighted
average energy of neutrinos, which should be

〈εν〉 =

∫∞
0

[η(εν)− κa(εν)J(εν)] dεν∫∞
0

η(εν)−κa(εν)J(εν)
εν

dεν
, (30)

where η(εν) and κa(εν) are the emissivity and absorption of
neutrinos at energy εν . sign(νi) is 1 for νe, −1 for ν̄e, and
0 for heavy-lepton neutrinos. Lacking the knowledge of the
neutrino spectrum, we have to use an approximate form for
〈εν〉. If we assume that the neutrinos follow a Fermi-Dirac
distribution at the local temperature T of the fluid and with
neutrino chemical potential µν , and that the opacity follows
κa ∝ ε2ν (as for the dominant charged-current reactions), 〈εν〉
is

〈εν〉 =
F5(ην)

F4(ην)
T (31)

where

Fk(ην) =

∫ ∞
0

xk

1 + exp (x− ην)
dx (32)

is the Fermi integral, and ην = µν/T is the degeneracy pa-
rameter. We use this value of 〈εν〉 in hot / optically thick re-
gions. Unfortunately, we are not aware of any simple way to
make a similar estimate in optically thin regions. In merger
simulations, these regions are generally colder than the op-
tically thick regions from which most neutrinos are emitted,
and the average energy of neutrinos there is thus higher than
what one would expect by assuming equilibrium between the
neutrinos and the fluid. We make a first order estimate of the
effect of the deviations from the equilibrium spectrum by us-
ing

〈εν〉 ≈
F5(ην)

F4(ην)
T max

(
1,

√
〈ε2ν,leak〉
〈ε2ν,fluid〉

)
. (33)

Here, 〈ε2ν,leak〉 is the global estimate of the average square
energy of neutrinos obtained from the simpler leakage
scheme [32], and 〈ε2ν,fluid〉 would be the average square en-
ergy of the neutrinos if they obeyed the equilibrium Fermi-
Dirac distribution (see Appendix B). In making this approx-
imation, we are helped by the relative homogeneity of the
fluid temperature around the neutrinospheres. This implies
that there should be only moderate variations of the neutrino
spectrum between different points in the optically thin region,
making the use of the global average energy 〈ε2ν,leak〉 better
motivated.

For the applications that we are considering here, the back-
reaction of the neutrinos onto the fluid evolution is weak (ex-
cept for transients when we turn on neutrino emission). Ac-
cordingly, we separate the hydrodynamics and neutrino evo-
lution. Our evolution scheme thus proceeds as follow:

• Evolve the Einstein equations and the general relativis-
tic hydrodynamics equations, without taking neutrinos
into account, over a time step ∆tH chosen as in [48],
Appendix A.3.

• Evolve the neutrino radiation, potentially taking mul-
tiple time steps, so that the neutrinos are also evolved
by ∆tH . The time step used to evolve the neutrinos
is chosen as described in Appendix D. Each time step
proceeds as follow:
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– Reconstruct the fields E,Fi/E at cell faces, using
the minmod reconstruction method.

– Compute the closure relation at cell faces to get
the fluxes (αF̃ i − βiẼ) and (αP̃ ij − βiF̃j).

– Use those fluxes to compute the divergence terms
in Eqs. (16-17), using the shock-capturing meth-
ods and corrections in high optical depth regions
described in Appendix C.

– Compute the closure relation at cell centers.
– Compute the gravitational source terms on the

right-hand side of Eqs. (16-17) [everything but the
terms proportional to S̃α] fromE and Fi at the be-
ginning of the neutrino step.

– Solve Eqs. (16-17) by treating implicitly the colli-
sional source terms proportional to S̃α, following
the method described in Appendix D.

– Compute the coupling to the hydrodynamics
variables, and update (τ, Si, ρ∗Ye) according to
Eqs. (24-26).

– If we have evolved the neutrinos by ∆tH , go back
to the GR-Hydro evolution. Otherwise, take the
next neutrino time step.

A more complete description of the different steps of this
algorithm is provided in Appendices A-D.

III. INITIAL CONDITIONS AND NUMERICAL SETUP

As a first astrophysical application of our code, we consider
the disk formation phase of a black hole-neutron star merger
from Foucart et al. 2014 [32]. This phase is particularly in-
teresting to study with a general relativistic code and neutrino
transport because general relativistic effects and the evolution
of the metric remain important at this point. Furthermore, due
to the high temperatures experienced by the fluid during disk
formation, the neutrino luminosity is higher and the composi-
tion evolution is faster than at any other time. Finally the fluid
is initially very close to the black hole, where relativistic ef-
fects cannot be neglected, and it is far from equilibrium. This
phase of the evolution would thus not be properly captured by
simulations which start from an equilibrium torus configura-
tion, or which model general relativistic effects through the
use of pseudo-Newtonian potentials.

In the specific merger that we are considering, the masses
of the compact objects before merger are M i

NS = 1.4M� and
M i

BH = 7M�. The initial dimensionless spin of the black
hole is χiBH = 0.8, and it is aligned with the orbital angular
momentum of the binary. The neutron star is initially non-
spinning. This is simulation M14-7-S8 of [32]. We showed
in [32] that the disruption of the neutron star results in the
ejection of about 0.06M� of material, and the formation of an
accretion disk of mass Mdisk ∼ 0.1M�. The final properties
of the black hole are Mf

BH = 8M� and χfBH = 0.87. We
use the equation of state of Lattimer & Swesty [36] with nu-
clear incompressibility parameter K0 = 220 MeV and sym-
metry energy Sν = 29.3 MeV, using a table available on

http://www.stellarcollapse.org and described in O’Connor &
Ott 2010 [49]. For a neutron star of mass MNS = 1.4M�,
this results in a neutron star radius RNS = 12.7 km.

The post-merger configuration obtained as a result of the
merger is expected to be fairly typical for black hole-neutron
star mergers in which the neutron star is disrupted by the black
hole. In [32], we studied the range of initial black hole masses
M i

BH = (7−10)M� and neutron stars massesM i
NS = (1.2−

1.4)M� currently deemed most likely from the observation of
galactic stellar mass black holes [50, 51] and of neutron stars
in compact binary systems [52–54]. For those parameters, a
moderate to high initial black hole spin, χiBH ≥ (0.5−0.9), is
a requirement for the neutron star to be disrupted by the black
hole and thus allow the formation of an accretion disk [55].
But once that condition is satisfied, we showed that the local
properties of the disk are largely independent of the binary
parameters. Furthermore, 10 ms after merger the mass of the
disk is typically Mdisk ∼ (0.05− 0.15)M� and the neutrino
luminosities Lν ∼ 1053 erg/s.

In this paper, we want to assess the effects of a better treat-
ment of the neutrinos on the evolution of the disk and of its
immediate neighborhood. To do so, we compare simulations
using the same leakage scheme as in [31, 32] with simulations
using the M1 formalism presented here. The leakage scheme
should give us a rough estimate of the cooling of the disk due
to the neutrinos and of the evolution of the composition of the
high density regions of the disk, but does not include heat-
ing or composition evolution due to neutrino absorption in
the low-density regions. The M1 formalism should give us
a better estimate of both the total luminosity and the effects of
neutrino-matter interactions.

We evolve the post-merger accretion disk with the follow-
ing treatments of the neutrinos:

• A “Leakage” simulation using the same algorithm as
in [31, 32] .

• A “Leakage” simulation in which the neutrino opacities
have been corrected as in our M1 code (to guarantee
that the energy density of neutrinos in the optically thick
regions is correct, see Appendix B).

• A “M1” simulation using the standard methods de-
scribed in this paper.

• A “M1” simulation with a simpler treatment of the
emissivity in optically thin regions (i.e. without the cor-
rection described in Eq. B6), to get a first estimate of the
errors due to the use of a gray scheme: we find in our
test of the neutrino-fluid interactions in a post-bounce
supernova profile (see Appendix E 6) that variations in
the results with and without that correction are compa-
rable to the difference between the gray results and the
results of an energy-dependent code.

• Three “M1” simulations with a numerical grid covering
a larger volume and improved boundary conditions (see
below), with and without the correction to the emissiv-
ities described in Eq. B6, and with and without the cor-
rection to the opacities described in Eq. B8.
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FIG. 1. Density and velocity field in the equatorial plane of the black
hole at the initial time t0 ∼ tmerge + 6.1 ms. For reference, the
velocity at the peak of the density distribution is about 0.6c.

As initial configuration, we consider a snapshot of sim-
ulation M14-7-S8 of [32] at t0 = tmerge + 6.1 ms, where
tmerge is the time at which half of the neutron star material
has been accreted by the black hole. This is around the time
when an accretion disk is forming and neutrino effects begin
to significantly affect its evolution. The initial configuration
is shown in Fig. 1. From the disruption of the neutron star to
t0, the hydrodynamics equations were evolved using two lev-
els of refinement, each with 1002 × 50 grid points and with
grid spacings ∆x ≈ 1.5 km × 2l in the equatorial plane and
∆z ≈ 0.5 km× 2l in the vertical direction (with l = 0, 1, and
using the equatorial symmetry to only evolve the z ≥ 0 re-
gion). We note that, due to our choice of map between the
grid and the laboratory frame, the resolution in the grid is
not uniform. We quote here the resolution close to the black
hole, but the grid spacing far from the black hole is actually
∼ 30% coarser. For comparison, the horizon of the black hole
has a radius rBH ∼ 25 km in the coordinates of our simu-
lation, the peak of the matter density in the accretion disk is
initially at rdisk ∼ 50 km, and the scale height of the disk
is H ∼ (0.2 − 0.3)r. The finest grid level thus covers the
forming accretion disk. Note that, in SpEC, Einstein’s equa-
tions are evolved on a separate pseudospectral grid extending
3700 km away from the center of the black hole. This is why
we can use such a small finite difference grid if we only want
to study the evolution of the post-merger accretion disk. A
smaller grid means that we can maintain a reasonable resolu-
tion in the disk at a fairly low computational cost2, but also
that the unbound material, and some bound material on high-
eccentricity orbits, is allowed to leave the grid. By t0, we still

2 Although such a resolution is only reasonable because we do not include
the effects of magnetic fields. It would be much too coarse to capture the
effects of MHD instabilities.

have a baryonic mass Mb = 0.12M� on the grid, while we
have allowed 0.06M� of unbound material and 0.06M� of
bound material to escape. In [32], we also performed lower
resolution simulations following the material in the tidal tail
farther out. From these simulations, we can deduce that the
material that we allowed to escape would start to fall back
onto the disk at t ∼ tmerge + 20 ms. At later times, material
neglected in our simulation may affect the evolution of the
disk.

In this work, we thus only evolve the system to tf =
tmerge + 20 ms. Another reason to do stop the simulation is
that our simulations do not include the effects of magnetic
fields, and the only viscosity is due to the finite resolution of
our numerical grid. Over longer timescales, turbulent angu-
lar momentum transport due to the magnetorotational insta-
bility would significantly affect the evolution of the disk (see
Sec. IV A). However, we will see that this is long enough for
the fluid and the neutrinos to reach a quasi-equilibrium state.
This also allows us to study the main differences between sim-
ulations using the leakage scheme and simulations using the
M1 formalism. Finally, we can get a first estimate of the out-
flows emitted in the region above the disk and of the effects of
interactions between the disk and the tidal tail.

For the evolution between t0 and tf , we use an extended
finite difference grid. Indeed, although the system still re-
spects the equatorial symmetry after merger, small perturba-
tions which are not equatorially symmetric might grow in the
disk due to hydrodynamical instabilities. To make sure that
our grid structure does not artificially suppress such perturba-
tions, we remove the assumption of equatorial symmetry. We
also want to capture the radial growth of the disk, potential
matter outflows, and the evolution of the bound material in
the tidal tail remaining on the grid (which is still expanding at
t = t0). We thus add a third level of refinement (with the res-
olution chosen as before, with l = 2). Each refinement level
now has 1003 grid points. In three of the M1 simulations, a
fourth level is added (l = 3), so that we can follow the evolu-
tion of low-density material far enough along the direction of
the black hole spin axis to extract accurate information about
potential disk winds.

We also performed simulations with different numerical
resolution, to assess our numerical errors. A detailed discus-
sion of these errors is provided in Appendix F. In summary,
we find that the errors due to finite resolution are at most com-
parable to the errors due to the use of a gray scheme, and much
smaller than the errors in the leakage scheme.

As opposed to previous SpEC simulations, we want here
to study the behavior of low-density winds. Accordingly, for
these last M1 simulations we also made a few modifications to
the handling of low-density matter. In general relativistic hy-
drodynamics simulations, the region surrounding the neutron
star or accretion disk is generally filled with lower-density ma-
terial in order to avoid evolving towards either negative den-
sities or unphysical values of the evolved variables. Addition-
ally, corrections are applied to all regions of baryon density
ρ0 lower than an “atmosphere” threshold ρatm

0 . In our case,
those corrections set the temperature to T = 0.5 MeV and the
spatial components of the 4-velocity to ui = 0, although dif-
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ferent prescriptions also work in practice. In previous SpEC
simulations with the LS220 equation of state [31, 32], that
threshold was set at ρatm

0 ∼ 106−7 g/cm3 far away from the
black hole. In this work, we are interested in disk outflows
with density ρ0 ∼ 107−8 g/cm3 close to the outer boundary
of our grid. Such outflows cannot be launched with that high
an atmosphere threshold. We thus modify our choice of atmo-
sphere threshold to

ρatm
0 = ρfloor

0 + ρmax
0

[
10−5

(
2rAH

rAH + r

)2

(34)

+ 10−3 exp

(
−
(
r − rAH

0.5rAH

)2
)]

,

with rAH the grid-coodinate radius of the black hole apparent
horizon, which is by construction a sphere in the coordinates
of our numerical grid. r is the distance to the center of the
black hole in the same coordinates, and ρfloor

0 ∼ 105 g/cm3.
With this choice, the atmosphere threshold remains as before
close to the black hole, but now drops to ρatm

0 ∼ ρfloor
0 at

larger distances, which is sufficient for our current purpose.
Finally, in previous simulations the table containing

the equation of state information only covered the range
108 g/cm3 < ρ0 < 1016 g/cm3, and was artificially extended
to lower densities using a simple ideal gas equation of state.
In this last simulation, we instead use a table going down to
105 g/cm3. The new table uses 345 logarithmically spaced
points to cover that range of densities, instead of 250 for the
smaller table. Both tables are also discretized in temperature
(0.01 MeV < T < 251 MeV with 136 logarithmically spaced
points) and composition (0.035 < Ye < 0.53 with 50 lin-
early spaced points). Below 108 g/cm3, the compositional
information of the equation of state is approximated by the
nuclear statistical equilibrium of matter at 108 g/cm3, for the
same temperature and electron fraction (see O’Connor & Ott
2010 [49] for details).

IV. DISK EVOLUTION

In the following, we describe the physical results of the
simulations. We mainly focus on the M1 simulation using
our standard algorithm, including the improved treatment of
the low-density regions for the hydrodynamical variables, as
it offers the most accurate predictions. The effects of different
neutrino treatments are discussed in Sec. IV G.

A. Global properties of the disk

At the beginning of the simulation (t0 = tmerge + 6.1 ms),
we have about 0.08M� of material in a forming accretion disk
extending ∼ 60 km away from the black hole. As shown in
Fig. 1, this material is still far from being circularized or ax-
isymmetric. Another 0.04M� of material is on the grid in
an extended tidal tail with a relatively flat density profile. As
discussed in the previous section, an additional 0.06M� of

unbound material and 0.06M� of bound material with fall-
back time longer than ∼ 20 ms were allowed to escape the
grid before t0. The initial configuration has a sharp density
peak around r = 45 km. Most of the tail material is cold
(T < 1.5 MeV), while the disk material has a broad tem-
perature distribution, with most of the matter at temperatures
2 MeV < T < 12 MeV. The composition of the disk and tail
is sharply peaked at 0.05 < Ye < 0.07, and the small amount
of material at Ye > 0.1 is in the hot regions close to the black
hole and rapidly accreted.

Although neutrinos have an important effect on the evolu-
tion of the system, to first order, purely hydrodynamical ef-
fects dictate the evolution. During the time period considered
in this simulation, 5 ms − 20 ms after merger, the circular-
ization of the disk material is the most important effect. At
the initial time, most of the disk material is at or close to pe-
riastron. Shock heating and the contraction of the disrupted
material cause the fluid to heat to its maximum average tem-
perature, 〈T 〉 = 6.4 MeV at t = t0 + 1.5 ms 3. Afterwards,
the forming disk goes through a damped cycle of expansions
and contractions, with a period of about 6 ms. During each ex-
pansion period, the temperature of the fluid and the accretion
rate decrease. During contractions, shock heating causes the
temperature to rise, and the accretion rate increases. Neutrino
emissions and absorptions, although not critical to the dynam-
ics, contribute to a smoothing of the temperature distribution
and determine the composition of the fluid. Their total lumi-
nosity mostly follows the oscillations of the fluid temperature.
Energy lost to neutrino emissions and to the accretion of hot
material onto the black hole also causes a slower global cool-
ing of the fluid, by about 1 MeV over the 14 ms of evolution.

This is illustrated through snapshots of the simulation taken
at t0, t1 = t0+5 ms, t2 = t0+10 ms, and tf = t0+14 ms. We
plot the fraction of the local mass observed at a given radius in
Fig. 2, at a given temperature in Fig. 3, and at a given electron
fraction in Fig. 4. All plots are normalized to the total mass on
the grid. Due to accretion onto the black hole, the total mass
decreases from 0.12M� at t0 to 0.097M� at t1, 0.075M� at
t2, and 0.069M� at tf . The first two snapshots t0 and t1, are
close to the times of maximum contraction and expansion of
the disk, respectively. The third snapshot corresponds to the
time at which the temperature becomes largely homogeneous
and the electron fraction reaches its quasi-equilibrium value
(i.e. nearly equal emission of electron neutrinos and antineu-
trinos). By the end of the simulation, at tf , nearly all of the
remaining material is in a circularized accretion disk.

Turbulent angular momentum transport due to the mag-
netorotational instability, which is not modeled here, should
eventually take over for purely hydrodynamical effects and
cause a viscous spreading of the disk. This should happen
over the viscous timescale tvisc ∼ (αδ2Ω)−1, where α is the
standard viscosity parameter, δ = H/r and H is the scale
height of the disk. For the expected α ∼ 0.01 − 0.1 and the
simulation δ ∼ 0.2 − 0.3, we get tvisc ∼ (30 − 700) ms >

3 Here and in the rest of the text, the average fluid properties refer to density-
weighted averages
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FIG. 2. Radial distribution of the material outside of the black hole.
We plot the fraction of the total mass within bins of width ∆r ≈
3 km at 4 representative times of the simulation. Most of the matter
is initially near the black hole (r <∼ 60 km) and close to periastron.
The disk then expands, and later circularizes.

tf − t0 = 14 ms. We thus expect angular momentum trans-
port due to magnetically-driven turbulence to be fairly unim-
portant on the timescales considered here. In a disk with
α ∼ 0.01 − 0.1, we can also estimate the viscous accretion
rate as

Ṁ ≈ 3αδ2ΩdiskMdisk. (35)

For Ωdisk ≈ 1900s−1 (at the peak of the density), we get
M� ≈ (0.1 − 3)M�/s. For comparison, at the end of the
simulation, the mass accretion rate has dropped to its low-
est value of Ṁ ≈ 1.5M�/s. Even at the end of the simula-
tion, the accretion rate due to the circularization of the disk
thus remains at least comparable with the expected accretion
rate due to the magnetorotational instability. As for the heat-
ing of the disk, Newtonian simulations have shown that an
isotropic viscosity can heat the disk to maximum temperatures
of Tmax ∼ 3 MeV − 10 MeV for α ∼ 0.001 − 0.1 [56]. For
the largest viscosities, viscous heating would be relevant to the
thermal evolution of the disk towards the end of our simula-
tions. For lower viscosities, it would remain largely irrelevant
until the disk cools down, but magnetically-driven turbulence
might still hasten the homogenization of the disk temperature.
As viscous heating is the main process stopping the cooling
of the disk, it is of course always relevant to the long term
evolution of the disk.

The observed temperature evolution (Fig. 3) is thus the re-
sult of mixing in the fluid, shock heating during the circular-
ization of the disk, and energy transport by neutrinos. Some
mixing of fluid elements with different temperatures does oc-
cur in purely hydrodynamical simulations, or in simulations
using a simple cooling prescription for the neutrinos (leakage
runs). But the process is significantly more efficient when us-
ing a transport scheme, as now neutrinos can transport energy
from hot parts of the disks to cool parts of the disk. Variations
in the average temperature of the fluid are due mostly to the
oscillations observed as the disk circularizes.
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FIG. 3. Fraction of the total mass within temperature bins of width
∆T = 0.5 MeV, plotted at 4 representative times of the simulation.
Within 10 ms, the temperature of the disk becomes very homoge-
neous.

The electron fraction (Fig. 4) reaches its equilibrium com-
position within about 10 ms. The composition then evolves
more slowly as the properties of the disk change, adapting
nearly instantaneously to the disk evolution. At the temper-
atures and electron fractions observed in most of the disk,
matter becomes less neutron rich when the disk heats up, and
more neutron rich as it cools down. The electron fraction also
decreases for denser material. At times beyond 20 ms past
merger, the disk is expected to cool and the core of the disk
will reneutronize, at least until viscous heating balances neu-
trino cooling. However, this is not necessarily true for the
high-Ye tail of the distribution which corresponds to cooler,
lower density points whose composition has been significantly
affected by neutrino irradiation and which evolve fairly slowly
at late times. The amount of high-Ye material can be more
easily assessed from Fig. 5, which shows that even after the
average Ye in the disk begins to decrease, the fraction of ma-
terial with Ye >∼ 0.3 actually increases. The production of that
high-Ye material is nearly entirely due to neutrino emissions
and absorptions during the simulation: at the beginning of the
simulation, 6.1 ms after merger, less than 3% of the material
has Ye > 0.2, and even that is mostly due to charged-current
reactions before the beginning of the simulation, taken into
account with the simpler leakage scheme.

B. Final disk configuration

From the discussion in Sec. IV A, we expect that at tf
the simulated hydrodynamical properties of the accretion
disk (density, temperature, composition) are probably a good
representation of the state of the system about 20 ms after
merger. Magnetically-driven turbulence and magnetically-
driven winds could affect the results. But so far simulations
have found that for reasonable initial values of the magnetic
fields, magnetic outflows only appear more than 100 ms after
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FIG. 4. Fraction of the total mass within electron fraction bins of
width ∆Ye = 0.01, plotted at 4 representative times of the simula-
tion. Within 10 ms, the electron fraction of the disk becomes very
homogeneous. The tail of higher-Ye material is due to lower density
regions around the disk.
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FIG. 5. Fraction of the baryon mass with Ye below a given value, at
4 representative times of the simulation. We note the slowly growing
tail of high-Ye material even after the average Ye begins to decrease.

the merger [57], or are not observed at all [58, 59] 4. As dis-
cussed in the previous section, MRI-driven angular momen-
tum transport is also expected to occur on timescales longer
than the duration of our simulation. In this section, we thus
offer a more detailed description of the disk at the end of the
simulation, assuming that it is a fairly good description of a
post-merger accretion disk∼ 20 ms after a black hole-neutron
star merger.

We first show the density and velocity field in the equatorial
plane of the black hole (Fig. 6), and in the vertical plane y =
yBH (Fig. 7). Here, we define the velocity as the “transport ve-
locity” viT = α

W ui, which satisfies ∂tρ∗+∂i(ρ∗viT ) = 0. This

4 The main difference between the two sets of simulations is the inclusion of
an initial dipole magnetic field outside of the neutron star in [57].

FIG. 6. Density and velocity field in the equatorial plane of the black
hole at the end of the simulation, 20 ms after merger. For scale, the
velocities at the peak of the density distribution are v ∼ 0.5c.

is a convenient definition of the velocity for visualization pur-
poses, as it directly shows the motion of fluid elements on the
grid with all general relativistic coordinate effects taken into
account. From Fig. 6 we infer that the disk is well circularized
up to r ∼ 100 km. The velocity in the inner disk is mildly rel-
ativistic (vT ∼ 0.5c at r ∼ 60km) which, as we shall see, has
important effects on the geometry of the neutrino radiation.

Fig. 7 shows some interesting additional features. The core
of the disk at the end of our simulation is of moderate geo-
metrical thickness (H/r ∼ 0.2), and still noticeably asym-
metric (note that the density is plotted on a logarithmic scale).
There are resolved outflows coming from the contact regions
between the disk and the tail (left side of the plot), at densi-
ties ρ0 ∼ 108 g/cm3. At the grid boundary, this material has
not reached the escape velocity (it has ut > −1). But most
of the outflowing fluid has enough energy to be unbound (i.e.
it satisfies the condition hut < −1, thanks to temperatures
T ∼ 2 MeV). We discuss the disk/tail interactions in more de-
tail in Sec. IV C, and the unbound material in Sec. IV D. For
now, we simply note that the outflows, although helped by
neutrino heating and radiation pressure, are mostly a conse-
quence of purely hydrodynamical interactions at the disk/tail
interface, as can be verified by their existence in the simula-
tions using a leakage scheme. Earlier in the evolution, shocks
during the circularization power similar outflows, albeit more
axisymmetric and with some material closer to the black hole
spin axis.

Similar visualizations for the temperature are shown in
Fig. 8 and Fig. 9. Asymmetric features in the temperature dis-
tribution remain clearly visible despite the smoothing effect
of the neutrino cooling and heating. Nearly all of the mate-
rial, including the tidal tail, has been heated to T > 1 MeV,
by a combination of shocks and neutrino absorption. Denser
material with ρ0

>∼ 1011 g/cm3 is heated to T >∼ 4 MeV.
The relatively small variations of the temperature are one of
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FIG. 7. Density (in g/cm3) and velocity field in the y = yBH plane
at the end of the simulation, 20 ms after merger. For reference, the
largest poloidal velocities are about 0.6c. In the core of the disk, the
velocities are mostly directed out of the plane of the visualization.

FIG. 8. Temperature in the equatorial plane of the black hole at
the end of the simulation, 20 ms after merger. Density contours are
shown as thick black lines for ρ0 = (109, 1010, 1011) g/cm3.

the main reasons a gray scheme for the neutrino radiation is
more reliable for merger simulations than in core collapse su-
pernovae, where large temperature gradients exist and small
changes in the interactions between the neutrinos and the fluid
can significantly modify the dynamics of the system.

Finally, we consider the composition of the fluid, through
its electron fraction Ye, in Fig. 10 and Fig. 11. Being able
to reliably predict the electron fraction in low-density regions
is one of the main advantage of the use of the moment for-
malism over the leakage scheme. We see that the core of the
disk remains relatively neutron rich (0.15 <∼ Ye <∼ 0.20), but
material below ρ0 ∼ 1010 g/cm3 is significantly protonized.
About 30% of the total mass is at Ye > 0.2, and about 10%
at Ye > 0.3 (see also Fig. 5). More importantly, the less
neutron-rich material, which surrounds the neutron-rich core
of the disk, is more likely to be unbound by disk winds. Lee et

FIG. 9. Temperature in a plane orthogonal to the equatorial
plane of the disk the at the end of the simulation, 20 ms after
merger. Density contours are shown as thick black lines for ρ0 =
(109, 1010, 1011) g/cm3.

FIG. 10. Electron fraction Ye in the equatorial plane of the black hole
at the end of the simulation, 20 ms after merger. Density contours are
shown as thick black lines for ρ0 = (109, 1010, 1011) g/cm3

al. [60], Fernandez & Metzger [61, 62] and Just et al [63] have
shown that 5%− 25% of the matter in accretion disks formed
in binary neutron star or black hole-neutron star mergers is
eventually unbound, mostly due to viscous heating in the disk.
In those 2D simulations, most of the ejecta remains neutron-
rich. Its nucleosynthesis output is very close to the output of
the more massive dynamical ejecta [61], and the associated
radioactively powered electromagnetic transients would also
be very similar. However, the initial conditions for these sim-
ulations were taken to be Ye ∼ 0.1 everywhere, at a time at
which the disk is already wider and the composition evolution
due to neutrino emission slower than in the simulations pre-
sented here. It is possible that a higher initial electron fraction
in the outer regions of the disk can have a measurable impact
on the properties of kilonovae. We discuss this in more detail
in Sec. IV D.
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FIG. 11. Electron fraction Ye in a plane orthogonal to the equa-
torial plane of the disk the at the end of the simulation, 20 ms af-
ter merger. Density contours are shown as thick black lines for
ρ0 = (109, 1010, 1011) g/cm3.

C. Stability and disk/tail interactions

From the beginning of the simulation, strong asymmetries
and shocks are present in the disk, and the system is well out
of equilibrium. However, as the disk circularizes, it reaches
a more stable configuration. By the end of the simulation, al-
though asymmetries remain, fluid elements follow nearly cir-
cular trajectories at the expected orbital frequency, up to radii
r ∼ 100 km. The core of the disk is convectively stable, and
close to equilibrium. Around the disk/tail interface, however,
this is not the case. First, the tail material is not circularized,
which creates a shear layer at the outer edge of the disk. Ad-
ditionally, according to the Soldberg-Hoiland criterion [64],
the disk is convectively unstable in both the vertical and ra-
dial directions. We should note that as this is also the region
in which the disk begins to deviate from hydrostatic equilib-
rium, the Soldberg-Hoiland criterion is not strictly applicable.
But the presence of convective regions is clearly observable at
all times in the simulation. These instabilities cause the cre-
ation of large scale eddies close to the outer edge of the disk,
and are strongly correlated with outflows launched above the
disk. Given how out of equilibrium the system is, picking a
single instability responsible for the creation of the eddies or
causally associating these eddies with the outflows is difficult.
However, we note that regions in which there no longer are
any interactions between the accretion disk and the tidal tail
are devoid of both eddies and outflows. We can infer that the
ejection of disk material is probably helped by the convec-
tion of hotter fluid from the core of the disk to the top of the
disk/tail interface. The high neutrino fluxes in that same re-
gion probably play a role as well, especially in directing the
outflows at late times and setting their composition. Compar-
ing Fig. 7 and Fig. 13, it is clear that the disk outflows are, at
the end of the simulation, aligned with the neutrino radiation.
This is not the case at earlier times, when unbound material is
observed closer to the spin axis of the black hole.

D. Unbound material

The ejection of unbound material by black hole-neutron star
and neutron star-neutron star mergers is, from an astrophysical
perspective, one of the most important consequences of these
mergers. This is because these ejecta are one of the most likely
locations for r-process nucleosynthesis to occur [11–13, 65].
Neutron star mergers were long thought to happen too late in
the evolution of a galaxy to explain observations of r-process
elements [66], but recent studies incorporating updated popu-
lation synthesis predictions for neutron star binaries are more
favorable to the merger process [67–69]. Additionally, the
radioactive decay of nuclei in the neutron-rich ejecta during
r-process nucleosynthesis powers electromagnetic transients
potentially detectable in the optical [70] or, more likely, in
the infrared [16, 71, 72]. The luminosity, duration and peak
frequency of these electromagnetic signals can significantly
vary with the mass, composition, entropy and velocity of the
ejecta [17, 71, 73]. In particular, the composition will signif-
icantly affect the results of the nucleosynthesis: low Ye ma-
terial will produce mostly heavy elements (strong r-process),
while high Ye material will produce more iron-peak elements
(weak r-process). The transition occurs at Ye ∼ 0.25 − 0.3
for conditions typical of a viscously-driven wind in a post-
merger accretion disk [74]. However, nucleosynthesis results
also depend on the entropy of the ejected material, and the
exact dividing point for the lower entropy ejecta observed in
our simulations is not, to our knowledge, known at this point.
This difference in the products of r-process nucleosynthesis
impacts the lightcurve of radioactively powered electromag-
netic transients. Indeed, high-opacity lanthanides are pro-
duced in the case of a strong r-process, causing the emission
to be fainter, redder and longer lived than in the case of a weak
r-process [16, 71, 72].

In black hole-neutron star binaries, matter can be ejected
through different processes during and after the merger. First,
if the neutron star is disrupted, a mass Mej ∼ 0.01M� −
0.1M� (depending on the parameters of the binary) is typ-
ically unbound during the tidal disruption of the neutron
star [32, 48, 75]. The amount of ejected material can even
be larger for rapidly spinning, low mass black holes [31, 76].
The tidally ejected material is very neutron rich (Ye < 0.1),
cold (T < 1 MeV), confined close to the equatorial plane, and
strongly asymmetric.

After that, material can be ejected during the formation of
the accretion disk and at the interface between the disk and
the tidal tail. This is the main source of outflows observed in
this simulation, and is discussed in more detail below.

Third, disk winds may be triggered by magnetic effects
and/or neutrino absorption. Newtonian simulations of bi-
nary neutron star mergers using an energy-dependent leakage
scheme (with a specifically designed absorption term for neu-
trinos in optically thin regions) [77] or energy-dependent flux-
limited diffusion [78] observed the formation of a neutrino-
driven wind within ∼ 100 ms of the merger, and neutrino
driven winds were also observed in two-dimensional simu-
lations of an accretion disk, with initial condition taken from
a black hole-neutron star merger [63]. In [77], the observed
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outflows were more neutron-rich in the equatorial region, with
conditions favorable to a strong r-process, and less neutron-
rich in the polar region, with the expectation of a weaker r-
process (and bluer kilonovae). In [63], a wide range of elec-
tron fraction is observed in all directions, although the po-
lar outflows remain less neutron rich. The disk generated in
our black hole-neutron star mergers are likely, over longer
timescales than those simulated here, to create winds sim-
ilar to those observed in [63, 77]. In those studies, about
1% of the disk mass was eventually ejected in the neutrino-
driven wind. In black hole-neutron star mergers, this is gen-
erally much less material than in the dynamical ejecta: for the
configuration considered here, the total mass ejected in the
neutrino-driven wind would be Mwind ∼ 10−3M�, while the
dynamical ejecta has mass Mdin ∼ 0.06M�. Accordingly,
that ejecta is only interesting if its different composition has
observable consequences.

Finally, over longer timescales (seconds), and using an ide-
alized initial disk profile, 2D Newtonian simulations have also
shown that viscous heating can drive strong outflows in the
disk [61, 79]. The total ejected mass is about 5% − 25%
of the mass of the disk, with some significant dependance
on the spin of the black hole [62]. Starting from idealized
initial conditions (equilibrium torus with Ye ∼ 0.1), these
simulations find that most of the unbound material remains
at electron fractions too low to avoid the production of lan-
thanides – and they thus lead to an electromagnetic signal
peaking in the infrared, and to strong r-process nucleosynthe-
sis. For an initial black hole spin similar to our simulation
(χBH = 0.8), however, 0.1% − 1% of the mass of the disk is
ejected in a less neutron-rich outflow, which does not produce
any lanthanides and could lead to a ‘blue bump’ in the kilo-
nova lightcurve [62]. More recent results using more accurate
neutrino methods also find large ejected masses, of the order
of 20%− 25% of the mass of the disk [63]. For the configura-
tion considered here, this would be a mass Mvis ∼ 0.02M�.

In our simulation, we observe polar outflows during the cir-
cularization of the disk, mostly coming from the region in
which the accretion disk and the tidal tail interact. The total
mass ejected is only 3 × 10−4M� ∼ 0.4%Mdisk, a negligi-
ble amount compared to the mass ejected during the disrup-
tion of the neutron star (0.06M�). But because it is ejected
early, and in a direction in which no material has been un-
bound so far, its effects cannot be neglected. First, material
in the polar region can affect the formation and collimation of
a jet, if the merger leads to a short gamma-ray burst. Addi-
tionally, because this material is ejected before any disk wind,
it could obscure the blue component of a kilonova if enough
high-opacity lanthanides are formed during r-process nucle-
osynthesis and the ejected material obscures a significant frac-
tion of the polar regions. The properties of the outflows ob-
served in our simulation vary significantly in time, and are
summarize in Table I. The front of the outflow has a rela-
tively low electron fraction (Ye <∼ 0.2) and specific entropy
s ∼ 30kB per baryon. At later times, the outflows become
less neutron rich and colder. By the end of the simulation,
we measure Ye >∼ 0.3 and s ∼ (10 − 15)kB . Overall, about
15% of the ejected material has Ye <∼ 0.2, and about 15% has

TABLE I. Properties of the post-merger outflows, as measured on the
outer boundary of the computational domain. Ṁ is the mass outflow
rate, 〈Ye〉 is the average electron fraction, 〈s〉 is the average specific
entropy per baryon, and 〈Θ〉 is the average angle between the direc-
tion of propagation of the outflowing fluid and the spin axis of the
black hole. We list the average properties of the outflow over the
last 11ms of evolution (there are not significant outflows at earlier
times), as well as average properties of the unbound material cross-
ing the outer boundary of the computational domain at given times.
tpeak is the time at which the outflow rate is maximal. All values
are for our “standard” M1 algorithm. Data required to compute the
time-averaged 〈Θ〉 was not output by the simulation, so that we only
compute 〈Θ〉 from snapshots at fixed times.

Time Ṁ (M�/s) 〈Ye〉 〈s〉 〈Θ〉
Average 0.032 0.25 15 kB NA

tpeak = t0 + 4 ms 0.131 0.21 22 kB 50◦

t1 = t0 + 5 ms 0.087 0.27 11 kB 41◦

t2 = t0 + 10 ms 0.005 0.36 8 kB 42◦

tf = t0 + 14 ms 0.004 0.42 11 kB 49◦

Ye >∼ 0.3. Accordingly, we would expect most of the material
unbound during disk formation to undergo strong r-process
nucleosynthesis, produce lanthanides, and obscure potential
optical components of the radioactively powered electromag-
netic transient. By the end of the simulation, the mass loss
to these outflows has stabilized to about 0.005M�/s. It is
thus conceivable that after the end of our simulation, another
∼ 10−4M� of less neutron-rich material would be unbound
through the same process. The average orientation of the out-
flows remains around 〈Θ〉 ∼ 40◦ − 50◦, as a large fraction
of the material still has a significant velocity orthogonal to the
spin axis of the black hole. But while at late times the re-
gion along the spin axis of the black hole is largely devoid of
matter, at early times some ejecta is observed in that region.

As we only considered a single configuration, and the mass
ejected along the polar axis is barely enough to have an ef-
fect on the light curve of the radioactively powered transient,
it would be dangerous to draw generic conclusions from these
results. The properties and total mass of the outflows are in-
deed likely to depend on the parameters of the binary. But
our simulations demonstrate that the effect of polar outflows
ejected during the circularization, despite their small mass,
should probably be taken into account when modeling those
signals. Neutron-rich polar outflows ejected during disk circu-
larization could have an effect on the collimation of relativistic
jets, and could obscure the electromagnetic signal from more
proton-rich neutrino-driven winds ejected at later times.

E. Neutrino Emission

With our M1 code, we can for the first time examine the
spatial distribution of neutrinos in the first 20 ms following a
black hole-neutron star merger. To understand the main prop-
erties of the neutrino radiation, it is however useful to take
a step back and look at a few of the quantities which could
already be predicted using our leakage scheme. Indeed, the
leakage scheme gives us a good estimate of the optical depth
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FIG. 12. Neutrinospheres τ = 2/3 at the end of the simulation,
20 ms after merger. We show the vertical plane y = yBH. The three
contours are, from the outside to the inside, the neutrinospheres for
νe (outer solid line), ν̄e (dashed line) and νx (inner solid line). The
disk is colored according to its baryon density ρ0.

in the disk, a useful quantity to understand where the neutrinos
effectively decouple from the fluid. For the electron neutrinos,
although there are always a few hotter regions in which the op-
tical depth is τνe ∼ 10, the density averaged optical depth is
only 〈τνe〉 ∼ 2. It is even lower for the electron antineutrinos,
with 〈τν̄e〉 ∼ 1, and heavy lepton neutrinos, with 〈τνx〉 ∼ 0.5.
The neutrinospheres, defined as τ = 2/3, are shown for a ver-
tical cut at the end of the simulation in Fig. 12. We see that
neutrinos are only trapped in the core of the disk, and mostly
free streaming everywhere else.

To illustrate the main properties of the neutrino radiation,
we plot in Figs. 13-14 the energy density and “normalized
flux” F inorm = αF i/E − βi in vertical and horizontal slices
of the disk, for the electron neutrinos. The normalized flux
is chosen so that it represents an effective transport velocity
for the neutrino energy. In the core of the disk, Fig. 14 shows
that the neutrino energy is mostly transported with the fluid,
as befits an optically thick region. Outside of the expected
neutrinosphere, i.e. for r >∼ 90 km, the neutrinos transition to
free streaming away from the disk. The energy density is max-
imal close to the inner edge of the disk, in part due to higher
temperatures and in part due to gravitational redshifting.

The vertical slice on Fig. 13 shows a few additional fea-
tures of interest. First, we note the random orientation of the
fluxes along the speed axis of the black hole, up to a height
|z| <∼ 80M�. This is a known problematic feature of the M1
approximation, due to the convergence of neutrinos from all
around the disk. Beyond this issue, we can also see that the
emission at large radii is clearly asymmetric. We find signifi-
cantly lower energy densities within about 20◦ of the equato-
rial plane as well as in the (less reliable) polar regions. This is
a purely geometric effect due to the projected shadow of the
disk and the relativistic beaming of the neutrinos.

To understand this beaming, we first have to remember that
the velocities in the disk are mildly relativistic, with v ∼ 0.5c.
This means that the emission of neutrinos will be focused
within a relatively large beam centered on the direction of mo-
tion of the fluid, which nearly follows a circular orbit around

FIG. 13. Energy density and normalized flux (αF i/E − βi) of the
electron neutrinos at the end of the simulation, 20 ms after merger.
We show the vertical plane y = yBH.

FIG. 14. Energy density and normalized flux (αF i/E − βi) of the
electron neutrinos at the end of the simulation (20 ms after merger),
in the equatorial plane of the disk.

the black hole. Only a small fraction of the neutrinos are
emitted in the vertical direction. Additionally, most of the
neutrinos decouple from the matter around the location of the
neutrinosphere, and then free stream away from the disk. Ac-
cordingly, if the inner regions of the disk are brighter than
its outer regions, as is the case here, the disk casts a shadow
along the equatorial plane. This is more clearly illustrated by
Fig. 15, which shows the energy density and fluxes for the
electron neutrinos on the surface τνe = 0.1. Most of the en-
ergy comes from the inner disk, and neutrinos cannot easily
escape along the equatorial plane. The shadow along the equa-
torial plane observed in Fig. 13 exactly matches the thickness
of the disk. Relativistic beaming causes neutrinos to be prefer-
entially emitted nearly tangent to the disk. Hence the neutrino
flux is larger just outside of the shadow than at high latitudes.
The equatorial shadow is of course not perfect, as some neu-
trinos are emitted from the outer edge of the neutrinosphere.
But this is a relatively small fraction of the total neutrino lu-
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FIG. 15. Energy density and normalized fluxes of the electron neu-
trinos on the τνe = 0.1 surface.

minosity, as can be seen in Fig. 15.

The radiation fields of the other neutrino species are qual-
itatively similar, except for the fact that the neutrinosphere
is located deeper inside the disk. As shown in Fig. 16, we
find that most of the energy emitted in neutrinos goes into
electron antineutrinos, at least at early times. The luminos-
ity in νe is fairly constant during the evolution, at Lνe ∼
5 − 8 × 1052 ergs/s. But the luminosity in ν̄e peaks at
Lν̄e ∼ 5 × 1053 ergs/s during the rapid evolution of the
electron fraction from its very neutron-rich initial value to
the equilibrium value in the disk. Within 5 ms, it decreases
to Lν̄e ∼ 1053 ergs/s, and by the end of the simulation it
becomes lower than the electron neutrino luminosity, with
Lfνe = 7 × 1052 ergs/s and Lfν̄e = 5 × 1052 ergs/s. Finally,
there is an equally brief burst of heavy-lepton neutrinos, with
Lνx ∼ 3×1052 ergs/s for each species, due to the existence of
hot spots early in the disk formation. That luminosity rapidly
decreases as the temperature becomes more homogeneous.
Within 3 ms, we measure Lνx ∼ 5 × 1051 ergs/s for each
species, and by the end of the simulation, Lfνx = 1051 ergs/s
per species.

The properties of the neutrino spectrum are not directly
measurable within our gray formalism. Nonetheless, it is
possible to get reasonable estimates from either the predic-
tions of the leakage scheme, shown on Fig. 17, or the proper-
ties of the fluid on the neutrinosphere. The leakage scheme
predicts average energies of 〈ενe〉 = 11 MeV − 13 MeV,
〈εν̄e〉 = 13 MeV − 15 MeV, and 〈ενx〉 = 14 MeV − 19 MeV
during the last 10 ms of evolution, and higher energies at the
beginning of the simulation, when hot spots are present. Ne-
glecting corrections due to the finite chemical potential of
neutrinos in the emitting regions and assuming a redshift fac-
tor of 2 between the emitting region and the observer, this
would correspond to fluid temperatures of roughly 6 MeV,
7 MeV, and 8 MeV. Considering the temperature distribution
observed in the disk, the increasing temperature as the neutri-
nosphere recedes deeper into the disk, and the higher emissiv-
ity of high temperature points, this appears fairly reasonable.

F. Neutrino viscosity and the growth of magnetic instabilities

The magnetorotational instability (MRI) is expected to play
a crucial role in the growth of magnetic fields in post-merger
accretion disk, and may also be important for the genera-
tion of jets after a compact binary merger. However, recent
work has shown that the transport of momentum by neutri-
nos can significantly affect the growth timescale and wave-
length of the MRI [80, 81]. In the context of protoneutron
stars, Guilet et al. [81] showed that if the wavelength of the
fastest growing mode of the MRI in the absence of neutrinos
λMRI is larger than the neutrino mean free path λν , an effec-
tive viscosity from the transport of neutrinos causes the MRI
to grow slower than expected for small magnetic fields, but
at a fastest-growing wavelength independent of the magnetic
field strength (instead of the wavelength decreasing with the
magnetic field strength). If instead λMRI < λν , the neutri-
nos can act as a drag force on the magnetized fluid. For large
neutrino energy densities, this slows the growth timescale of
the fastest growing mode of the MRI, and slightly increases
its wavelength. In accretion disks, and when neutrinos can
be modeled through an effective viscosity, a similar increase
of the growth timescale of the MRI has been measured [80].
By applying the model of Guilet et al. [81] to our accretion
disk, we can obtain a first estimate of the expected effect of
neutrinos on the growth of the MRI.

First, we need to determine the critical magnetic field Bc at
which λMRI = λν , using λMRI ∼ 2πb/

√
b2 + ρ0h and λν ∼

1/(κ̄a + κ̄s) (where b is the strength of the magnetic field ob-
served by an observer comoving with the fluid). At the high-
est density points in the disk, we get Bc ∼ 1013 G, while Bc
smoothly increases with decreasing density, to Bc ∼ 1015 G
for ρ0 ∼ 1010 g/cm3. These values are larger than the initial
magnetic field in most merging neutron stars, but smaller than
the expected saturation amplitude of the MRI, thus indicat-
ing that both the viscous and neutrino drag regimes might be
relevant during the evolution of a post-merger accretion disk.

As far as the neutrino drag is concerned (e.g. for B < Bc),
its effects on the growth of the MRI should however be negli-
gible. Guilet et al. [81] find that the importance of neutrinos
on the growth of the MRI in this regime is determined by the
value of the dimensionless parameter

Γ

Ω
=

2(κ̄a + κ̄s)Eν
15ρ0Ω

. (36)

For Γ/Ω >∼ 1, neutrinos affect the growth of the MRI. How-
ever, in our disk, we find Γ/Ω <∼ 0.01 everywhere. Thus the
growth of the MRI should remain unaffected at low magnetic
field strengths.

In the viscous regime (B > Bc), the importance of neutrino
effects is determined by the value of the Elasser number ε =
v2
A/(νΩ) where vA is the Alfven speed and

ν =
2Eν

15ρ0(κ̄a + κ̄s)
(37)

is the effective viscosity due to neutrinos. Viscosity affects the
growth of the MRI for Eν <∼ 1. For B ∼ Bc, and the condi-
tions observed in our simulation, we would get ε ∼ 1 (and the
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Elasser number then grows as B2). Accordingly, within the
simple model used here, neutrinos could plausibly affect the
growth of the MRI for B ∼ Bc. But for ε ∼ 1, these effects
are mild, and neutrinos are not expected to have any effect for
B � Bc or B � Bc.

G. Impact of the neutrino treatment

Having performed simulations with both a leakage scheme
and the M1 formalism, we can now obtain better estimates of
the impact that an approximate treatment of the neutrinos has
on the evolution of a post-merger accretion disk.

1. Comparison with a leakage scheme

We can first look at differences between the leakage simula-
tions and the M1 simulations. Not surprisingly, the two meth-
ods provide reasonable qualitative agreement for the global
properties of the high density regions of the disk: the sim-
ulations with neutrino leakage capture the formation of the
disk, its early protonization and later re-neutronization, and
the global temperature evolution due to the initial expansion
of the disk, neutrino cooling and shock heating. Lacking
neutrino absorption, the leakage simulation however tends to
maintain larger temperature differences between neighboring
regions of the disk. It underestimates the timescale necessary
for the disk to cool down, and the magnitude of its protoniza-
tion. More quantitatively, the average electron fraction in the
leakage simulation is lower by ∆Ye ∼ 0.05, and the average
temperature is lower by ∆T = (0.5−0.8) MeV. Additionally,
without neutrino absorption the evolution of the fluid compo-
sition in low-density regions is entirely unreliable. The com-
position of the tidal tail material falling back onto the black
hole and of the outflows are thus radically different.

There are also significant differences in the neutrino lumi-
nosities, for the electron neutrinos by a factor of two about
10 ms after merger (5 ms after the beginning of the simula-
tion), and by about 30% by the end of the simulation. For
heavy-type neutrinos, the difference is typically a factor of
2− 4, presumably because of the steeper dependence of their
emissivities on the temperature of the disk. We show the lu-
minosities for the leakage scheme, the M1 scheme, and the
predictions of the leakage scheme for the value of the hydro-
dynamic variables obtained when evolving the system with
the M1 scheme on Fig. 16. The first thing to note is that,
since the leakage scheme measures the instantaneous energy
loss at each point of the domain while the luminosities in the
M1 scheme are measured through the neutrino fluxes at the
outer boundary of the computational domain, there is natu-
rally a time shift between the two predictions. Even taking
that time shift into account, however, it is quite clear that the
electron neutrino luminosity is larger in the leakage scheme,
while the heavy-lepton neutrino luminosity is larger in the
M1 scheme. The electron antineutrino luminosities cannot be
distinguished within the uncertainties due to the time shift in
the measurements. Looking at the predictions of the leakage
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FIG. 16. Luminosities for the different neutrino species as a function
of time. Solid curves show the M1 results. Dashed curves show re-
sults using a leakage scheme. Thin dot-dashed curves show the pre-
diction of the leakage scheme, but for the value of the hydrodynamic
variables obtained by evolving the disk with the M1 scheme. Heavy-
lepton neutrino luminosities νx are for all 4 species combined.

scheme within the M1 simulation allows us to differentiate
between the error due to the instantaneous estimate of the lu-
minosity, and the error due to the diverging evolution of the
hydrodynamics variables. We see that by the end of the sim-
ulation, both sources of error are important. The impact of
the diverging evolutions of the hydrodynamics variables can
also be seen in Fig. 17, which shows the average energy of
the neutrinos for the M1 and leakage simulations (computed
through the leakage scheme in both cases, as we do not have
any information about the neutrino spectrum in the M1 code).
We observe differences of ∼ (1 − 2) MeV in the predicted
average energy of the neutrinos at late times, for all species.
This is comparable to the expected error in the determination
of these energies through the leakage scheme.

Overall, these results appear consistent with the expected
limitations of a leakage scheme. We also performed leakage
simulations with two different methods to compute the opac-
ities, to check whether the differences observed between the
leakage and M1 schemes could be due to differences in the es-
timated neutrino opacities. But the differences between these
two simulations were well below the estimated errors in the
leakage scheme.

2. Impact of the gray approximation

By looking at M1 simulations using different energy-
averaging approximations, we can also attempt to estimate er-
rors related to the use of a gray scheme. We use two different
gray approximations which, in our test of neutrino-matter in-
teractions in a post-bounce supernova profile, bracketed the
solution obtained with an energy-dependent code (see Ap-
pendix E). Clearly, as an error estimate, this is a poor sub-
stitute for a comparison with an energy-dependent radiation
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FIG. 17. Average neutrino energy for the different neutrino species
as a function of time. Solid curves show the results from the M1 sim-
ulation. Dashed curves show results using a leakage scheme. Heavy-
lepton neutrino energies (νx) are for all 4 species combined. Note
that for both simulations, the energy is computed using the number
and energy source terms from the leakage scheme, as the gray M1
scheme does not contain information about the neutrino spectrum

transport code. Unfortunately, such a simulation remains too
costly to perform with the SpEC code at this point. We find
that differences in the average properties of the disk, although
measurable, are much smaller than the differences between
the M1 simulations and the leakage simulations. The average
electron fraction varies by ∆Ye < 0.01, and the average tem-
perature by ∆T < 0.1 MeV. The total neutrino luminosities
agree, for all species, within ∼ 20%.

We also performed a simulation in which the gray opaci-
ties were computed assuming that the neutrinos obey a Fermi-
Dirac distribution with temperature T equal to the fluid tem-
perature and equilibrium chemical potential µν , a method
which significantly underestimates neutrino opacities: low
density regions can have T ∼ 1 − 2 MeV while neutrinos
are mostly emitted in regions with T >∼ 5 MeV. The result-
ing differences are significantly smaller than in the test of the
neutrino-matter coupling presented at the end of the appen-
dices. In fact, in the core of the disk, the errors are similar to
the differences between the two M1 simulations using differ-
ent prescription for the emissivities. Where the two methods
differ, unsurprisingly, is in the composition of the outflows:
when assuming an equilibrium distribution at the fluid tem-
perature for the neutrinos, the electron fraction of the outflows
is consistently ∆Ye = 0.05 lower than when using the more
realistic neutrino energies computed from the temperature in
the emitting regions. This confirms our assumption that the
electron fraction in the outflows is significantly affected by
neutrino absorption.

3. Limitations of the M1 closure

Finally, when analyzing our results, it is worth noting once
more the limitations of the M1 closure. Crossing beams, caus-
tics, and strongly focused beams are known to be problematic
when using the M1 closure. Some examples of these issues
can be found in the tests presented in Appendix E. Accord-
ingly, the results of our simulations cannot be trusted close to
the spin axis of the black hole, where neutrinos from all re-
gions of the disk cross. Because of the relativistic beaming of
the neutrinos, the energy density in that region is already low,
but unphysical radiation shocks cause an even larger decrease.
Unfortunately, the neutrino radiation in the polar region can
have important consequences on the post-merger evolution of
the system. Indeed, neutrino-antineutrino annihilations into
electron-positron pairs deposit energy in this low-density re-
gion, and affect the matter density there. The formation of
a relativistic jet, desirable if black hole-neutron star mergers
are to produce short gamma-ray bursts, is quite sensitive to
baryon-loading in the polar regions, but on the other hand
could be helped by the energy deposition. The exact impact of
the neutrinos in that context remains an open question, which
can only be answered with an improved treatment of the neu-
trinos, and a better understanding of the jet forming mecha-
nism.

V. CONCLUSIONS

We present a new module of the SpEC code [18], allow-
ing us to study the effects of neutrinos within a fully general
relativistic - hydrodynamics code. The neutrinos are modeled
using the M1 formalism, in which the first two moments of the
neutrino distribution function are evolved (energy and fluxes).
Although the formalism can in theory be energy-dependent,
we limit ourselves to an energy-integrated version of the code,
due to the high cost of energy-dependent simulations. We of-
fer here a detailed description of the implementation of the M1
algorithm in SpEC, as well as a series of tests assessing our
ability to study the evolution of neutrinos in flat and curved
spacetimes, and their interaction with matter.

We also discuss the first simulation with both radiation
transport and a general relativistic code of the evolution of an
accretion disk produced by a typical black hole-neutron star
merger. We use as initial conditions a snapshot of an existing
SpEC simulation using a simpler treatment of the neutrinos
(leakage scheme) [32], right as the accretion disk begins to
form and neutrino effects become important. This provides us
with realistic initial conditions for the accretion disk, at least
compared to the more commonly used equilibrium tori. As
we neglect magnetic fields and all material falling back on
the disk on timescales longer than 20 ms, we limit ourselves
to a relatively short evolution, up to 20 ms after merger. We
find that the evolution of the forming accretion disk is initially
dominated by the circularization of the disk material. The disk
expands and contracts in a cycle of about 6 ms. These oscilla-
tions are the main driver of the evolution of the average disk
properties at early times. As the disk circularizes, however,
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these oscillations are rapidly damped.
Neutrinos cause a global cooling of the disk, but on a rela-

tively long timescale of order 50 ms. On the timescale of this
simulation, neutrinos have however other important effects.
First, they drive the composition evolution of the core of the
disk. The disk rapidly protonizes, reaching an average elec-
tron fraction Ye ∼ 0.2 (a larger value than predicted by the
leakage scheme [32]). The electron fraction then more slowly
decreases as the disk starts to cool down. Second, neutrinos
cause changes in the electron fraction of the outer parts of the
disk, and of the disk outflows. Although initially neutron rich,
by the end of the simulations these regions have Ye > 0.3
(Ye ∼ 0.4 in the outflows). These low density regions above
the disk would be the first to be unbound by disk winds and
viscously-driven outflows [61–63, 79], and their higher initial
electron fraction could thus affect the composition of late time
outflows, their nucleosynthesis output, and the light curve of
associated electromagnetic transients. Third, energy transport
by the neutrinos homogenize the temperature distribution in
the disk, with cold regions absorbing higher energy neutrinos
and hot regions radiating much more strongly. Finally, neu-
trinos will deposit energy and create electron-positron pairs
in the low-density polar regions. This could plausibly affect,
positively or negatively, the formation of relativistic jets in
that region. Unfortunately, neutrino-antineutrino annihilation
in low density regions is not modeled within our formalism.
As opposed to what was observed in simulations of protoneu-
tron stars [81], we also estimate that the impact of neutrino
transport on the growth of the magnetorotational instability is
likely to be small to inexistant in post-merger accretion disks.

We also find that, because the disk is very compact, and
forms around a rapidly rotating black hole (χBH = 0.87), rel-
ativistic effects are significant. Most of the radiation comes
from a region with mildly relativistic velocities (v ∼ 0.5c).
Accordingly, the neutrinos are beamed tangentially to the
disk, causing strong anisotropies in the neutrino luminosity.
Light bending and gravitational redshift also naturally affect
the luminosity and neutrino spectrum. The luminosity is low
in the equatorial plane, due to the disk shadow, and in the po-
lar regions, due to beaming (although the evolution of polar
regions with the M1 closure is unreliable). We note that even
though a black hole spin χBH = 0.87 might seem large, this
should be fairly typical of a black hole-neutron star merger
in which an accretion disk forms. Indeed, for the most likely
black hole masses, slowly spinning black holes cannot disrupt
the neutron star before it plunges into the black hole [55].

A number of simulations using approximate treatments of
gravity have also considered the impact of neutrinos on disk
evolutions, with methods generally more advanced than con-
temporary general relativistic simulations (e.g. [25, 56, 63,
77, 82]), and/or capable to evolve the system over longer
timescales (e.g. [60–62]). However, direct comparisons with
our results are difficult. This is in part because of the impor-
tance of relativistic effects for accretion disks around rapidly
spinning black holes, and also because simulations which do
not include general relativistic effects typically start from ei-
ther an idealized equilibrium torus, or from the result of a
merger in which the neutron star was disrupted by tidal ef-

fects modeled by a pseudo-Newtonian potential, whose real-
ism close to a rapidly spinning black hole is difficult to assess.
Our simulation shows that general relativistic effects signifi-
cantly impact the neutrino radiation and the disk formation,
and the forming accretion disk is more compact and hotter
than in non-relativistic studies. An important application of
our results would in fact be to provide better initial conditions
for long-term disk evolutions, or for nucleosynthesis studies
requiring a detailed knowledge of the disk structure and com-
position (e.g. [83]).

Finally, we note that the joint effects of shocks during the
disk circularization, instabilities at the disk/tail interface, and
neutrino absorption unbinds a small amount of material in the
polar regions (∼ 3 × 10−4M�). This might seem negligible
compared to the material ejected dynamically in the equatorial
plane during the disruption of the neutron star (∼ 0.06M�).
However, this ejecta could be important because it is unbound
in a direction in which no material has been ejected so far,
and could thus impact the formation of a relativistic jet. Addi-
tionally, over longer timescales, we expect neutrino-powered
winds to become active and eject material in the polar regions,
maybe of the order of 1% of the mass of the disk. Later
on, viscously-driven outflows could eject a more significant
amount of material (probably 5%− 25% of the disk). But the
outflows observed here will be the outermost layer of ejected
material in the polar region. Their opacity might affect the
properties of electromagnetic transients for observers in direc-
tions close to the spin axis of the black hole. From our simu-
lations, it appears that most of the matter in these outflows is
too neutron rich and cold to avoid strong r-process nucleosyn-
thesis and the formation of high-opacity lanthanides, and thus
that these early outflows could obscure later disk winds. How-
ever, we caution that the ejected mass and geometry of the
outflows are likely to depend on the parameters of the binary,
and thus that it would be dangerous to draw overly generic
conclusions from a single initial configuration.

With these results demonstrating the ability of the SpEC
code to evolve neutrinos within the moment formalism, we
are now in a position to improve on the short simulations pre-
sented here. The gray scheme used in this work, which would
be inadequate for the study of core collapse supernovae, ap-
pears at this point sufficient for the study of neutron star merg-
ers.
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Appendix A: Closure relation

The choice of a closure P ij(E,Fk) is the main approxima-
tion used in the moment formalism. In this work, we use the
M1 closure, which relies on an interpolation between the ex-
pected closure relation in the optically thin and optically thick
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regimes. Although we evolve E and Fi, the closure relation
is generally easier to express as a function of the fluid frame
quantities J andHµ. Following [43], we define the parameter
ζ as

ζ2 =
HαHα

J2
, (A1)

such that ζ ∼ 0 in the optically thick limit and ζ ∼ 1 in the
optically thin limit. The closure is then

P ij =
3χ(ζ)− 1

2
P ijthin +

3(1− χ(ζ))

2
P ijthick . (A2)

By default, we use the Minerbo closure [45]

χ(ζ) =
1

3
+ ζ2 6− 2ζ + 6ζ2

15
. (A3)

In the optically thin limit, we then use

P ijthin =
F iF j

F kFk
E . (A4)

Although this expression is exact in the limit E2 = F iFi,
Shibata et al. [43] have shown that it does not respect causality
when E2 > F iFi. However, proposed alternatives have more
serious limitations [43], and P ijthin only matters when E2 ∼
F iFi.

For the optically thick limit, we choose

Sµνthick = hµν
Jthick

3
, (A5)

which is equivalent to

Jthick =
3

2W 2 + 1

[
(2W 2 − 1)E − 2W 2F ivi

]
, (A6)

γαβH
β
thick =

Fα

W
+

Wvα

2W 2 + 1

[
(4W 2 + 1)viF

i − 4W 2E
]
.

P ijthick can then be computed from Eq. (14).
In practice, because P ij is a function of ζ, which itself de-

pends on J,Hα, which are themselves functions of P ij , the
equations that we just described can only be solved through
the use of a root-finding algorithm. We thus define

R(ζ;E,Fi) =
ζ2J2 −HαHα

E2
, (A7)

and solve for R(ζ;E,Fi) = 0 using a Newton-Raphson algo-
rithm (with ζ initialized at its last computed value at the given
point). In Eq. (A7), J and Hµ are computed from E, Fi and
Pij , where Pij is now itself a known function of E, Fi and ζ.
Because the neutrino moments typically vary slowly, only a
few iterations are required to get an accurate estimate of ξ. If
cases in which the Newton-Raphson algorithm does not con-
verge in 10 iterations, we fall back onto a simpler bisection
method.

Appendix B: Energy integrated source terms

To evolve the energy-integrated moments E and Fi of the
neutrino distribution function f(ν), we need to define the
energy-integrated emissivity η̄ and energy-averaged opacities
(κ̄a, κ̄s) of the fluid. In theory, these source terms are func-
tions of f(ν). However, as we only evolve energy-integrated
moments, we do not know the neutrino spectrum, and have
instead to rely on estimates of f(ν). There are multiple ways
to do so, and we detail the various choices that we have im-
plemented below. We note that a number of those choices rely
on information obtained from a simpler leakage scheme for
the treatment of neutrino cooling [31] (e.g. average energy
of neutrinos, optical depth), so that even when we evolve the
neutrino radiation using the moment formalism, we still leave
the leakage scheme turned on — but without coupling it to the
fluid equations. Although having to mix the leakage scheme
and the moment formalism is not ideal, we believe that the
improvements observed in the neutrino absorption rates when
leveraging information from the leakage scheme about the av-
erage energy of neutrinos in optically thin regions (see below)
are worth the price of running both schemes together. It may
be possible to entirely abandon the leakage scheme if the same
information could be reliably extracted by other means. The
energy of the neutrinos is largely set by the temperature of the
fluid in the region where neutrinos decouple from the matter,
i.e. when ζ changes from ζ ∼ 0 in the optically thick regions
to ζ ∼ 1 in the optically thin regions. Doing this reliably, if it
is at all possible, would however require some fine-tuning and
experimentation.

We can first compute the source terms assuming that the
neutrinos obey a Fermi-Dirac distribution with temperature T
and chemical potential µν . In that case, we have

f(ν) =
1

1 + exp [(εν − µν)/(kBT )]
, (B1)

where εν is the neutrino energy, µν the neutrino chemical po-
tential, kB the Boltzmann constant, and T the temperature of
the fluid.

We now have to choose the value of the chemical potentials
µν(ρ0, T, Ye). The value of the chemical potentials for neu-
trinos in equilibrium with the fluid, µeq

ν , is taken directly from
the equation of state table. We consider two different choices
for µν : either we set µν = µeq

ν everywhere, or we make the
same choice as in many leakage codes,

µν = µeq
ν (1− e−τν ) , (B2)

which is chosen so that µν → 0 in the optically thin region.
We will refer to these two choices as ‘equilibrium’ and ‘leak-
age’ chemical potentials. The choice of µν in the low optical
depth regions does not matter much in practice when using
our default method for the computation of the source terms
(described below), but can have an effect in some of the alter-
native schemes that we tested.

The energy integrated source terms are then computed as
in our leakage code [31] (which is itself based on the GR1D
code [49], and previous work by Ruffert et al. [22], Rosswog
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and Liebendorfer [82] and Burrows et al. [46]): we compute
the absorption opacity due to electron and positron capture,
the free streaming emission due to e+e− pair annihilation,
plasmon decay and nucleon-nucleon Bremsstrahlung, and the
scattering opacities due to elastic scattering on nucleons and
heavy nuclei. We note however that, for the emissivity in opti-
cally thick regions, we use the free streaming emissivity, while
the leakage scheme replaces the emissivity by the diffusion
rate in those regions. Indeed, diffusion through the optically
thick regions is handled naturally when using the moment for-
malism.

In order to guarantee that the neutrinos are in equilibrium
with the fluid in the optically thick regions, we then com-
pute the free streaming emission due to charge current re-
actions and the absorption due to pair processes through an
energy-integrated version of Kirchhoff’s law. At a given en-
ergy εν , Kirchhoff’s law gives us a relation between the emis-
sivity η(εν), the absorption opacity κa(εν), and the equilib-
rium spectrum of the neutrino radiation Bν(εν) 5:

η(εν) = κa(εν)Bν(εν) . (B3)

The absorption opacity entering the evolution equations for E
and Fi, on the other hand, is the energy averaged

κ̄a =

∫∞
0
κa(εν)I(εν)dεν∫∞
0
I(εν)dεν

, (B4)

where I(εν) is the specific intensity of the neutrino radiation.
In our code, when computing κ̄a from η̄ (for pair processes),
or η̄ from κ̄a (for charged-current reactions), we assume that
Iν = Bν . Then, we have

η̄ =

∫ ∞
0

η(εν)dεν =

∫ ∞
0

κa(εν)Bν(εν)

≈ κ̄a
∫ ∞

0

Bν(εν)dεν . (B5)

As Bν is a known function of the fluid properties, this equa-
tion can easily be enforced. In optically thick regions, this
prescription will be accurate, as it maintains the equilibrium
between the fluid and the neutrino radiation. In optically thin
regions, on the other hand, the neutrino radiation can be far
from equilibrium. Computing charged-current interactions
from the energy-integrated Kirchhoff’s law assuming an equi-
librium spectrum can affect the relative emission of electron
neutrinos and antineutrinos, and thus the evolution of the elec-
tron fraction in low-density regions. We thus consider an alter-
native to the application of Kirchhoff’s law when computing
the emissivity of charged-current reactions: we can smoothly
interpolate between the value of the emissivity η̄K predicted
by the application of Kirchhoff’s law and the emissivity η̄free

predicted by Ruffert et al. [22] for free emission in an optically
thin region, using

η̄ = η̄Kf(τν) + η̄free[1− f(τν)] , (B6)

5 Note that Eq. B3 is always true for charged-current reactions, but only in
the equilibrium limit for pair processes.

with

f(τν) = 1 if τν > 2

= 0 if τν < 2/3

=
τν − 2/3

4/3
otherwise . (B7)

Note that even when using this corrected emissivity, the opac-
ity due to charged-current reactions is not modified. Accord-
ingly, this corrected emissivity no longer satisfies Eq. (B5).
Although apparently more ad-hoc than the previous method,
this prescription gives the best results in our test of neutrino-
matter interactions (see Appendix E). This is probably be-
cause the energy integrated emissivity η̄free was specifically
meant to approximate the emissivity in optically thin regions.
We note that the deviations from Kirchhoff’s law for the en-
ergy integrated κ̄a and η̄free come from the approximations
made in computing energy-averaged Pauli blocking factors, as
well as from neglecting the electron rest mass and the differ-
ence between the neutron and proton masses when integrating
over neutrino energies.

Finally, we can go one step further in improving our evo-
lution scheme by noting that for most reactions considered
here, including the dominant charged-current reactions, the
absorption and scattering cross-sections scale like ε2ν . This
means that in low-temperature regions, where the fluid is
much colder than the neutrinos (which, presumably, are emit-
ted in higher temperature regions), we largely underestimate
κ̄a,s. We can thus apply the correction

κ̄a,s → κ̄a,s

[
max

{
1,

(
〈ε2ν,leak〉
〈ε2ν,fluid〉

)}]
, (B8)

where 〈ε2ν,leak〉 is the average of ε2ν predicted by the leakage
scheme (taken over the entire grid) while

ε2ν,fluid =
F5(ην)

F3(ην)
T 2 (B9)

is the average of ε2ν for neutrinos in equilibrium with the
fluid. The average is weighted by the energy density of neu-
trinos and not the number density of neutrinos, as we are in-
terested in the energy-averaged κ̄a,s given by Eq. (B4). In
our tests (see Appendix E), we find that using this corrected
value of κ̄a,s significantly improves the agreement between
the gray scheme used in this work and energy-dependent radi-
ation transport.

We thus leave open three choices when computing the
source terms. The chemical potential can be obtained from
its equilibrium value or using the ‘leakage’ prescription. The
emissivity of charged-current reactions in the optically thin
limit can be obtained from the opacities of the fluid using the
energy-integrated version of Kirchhoff’s law or from a direct
estimate of the emissivity. And finally, the opacities in low
temperature regions can be obtained by assuming equilibrium
between the neutrinos and the fluid, or by applying a correc-
tion for the higher energy of the neutrinos. Our default algo-
rithm is to apply the energy correction to κ̄a,s, to compute η̄
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in optically thin regions from a direct estimate of the emissiv-
ity, and to use the equilibrium chemical potential everywhere
(although that latest choice has nearly no impact when com-
bined with our prescription for η̄). We should however note
that, even though these choices lead to significant differences
in our test based on the evolution of the post-bounce config-
uration of a core collapse simulation, they are in much better
agreement in the case of binary mergers.

Appendix C: Computation of the fluxes at cell faces

When computing the fluxes at cell faces for the evolution
of Ẽ and F̃i, we first use shock-capturing methods to estimate
the value of (E,Fi/E) at cell faces from their value at cell
centers. For the simulations presented in this paper, we use
the 2nd order minmod reconstruction (see e.g. [84, 85]), al-
though higher order reconstruction methods are available in
SpEC (the fluid variables at cell faces, for example, are re-
constructed using the WENO5 algorithm [86, 87]). These re-
construction methods are used with both left- and right-biased
stencils, leaving us with two reconstructed values UL and UR
for the evolved variable U = (Ẽ, F̃i) and F̄ iL and F̄ iR for the
fluxes F̄ i = (αF̃ i − βiẼ, αP̃ ij − βiF̃j). The fluxes at cell
interfaces are then approximated by the HLL formula

F̄ =
c+F̄L + c−F̄R − c+c−(UR − UL)

c+ + c−
, (C1)

where c+ and c− are the absolute values of the largest right-
and left-going characteristic speeds of the evolution system
(or zero if there is no left/right going characteristic speeds).
For the characteristic speeds λ1,2 at a cell interface along di-
rection d, we use

p = α
vd

W
, (C2)

r =
√
α2gdd(2W 2 + 1)− 2W 2p2 , (C3)

λ1,thin = −βd − α |F
d|√

F iFi
, (C4)

λ1,thick = min (−βd +
2pW 2 − r
2W 2 + 1

,−βd + p) , (C5)

λ2,thin = −βd + α
|F d|√
F iFi

, (C6)

λ2,thick = min (−βd +
2pW 2 + r

2W 2 + 1
,−βd + p) , (C7)

λi =
3χ(ζ)− 1

2
λi,thin +

3(1− χ(ζ))

2
λi,thick .(C8)

where the characteristic speeds in the optically thick and thin
limits are taken from [43] and the interpolation between the
two regimes uses the same formula as for the closure.

This prescription works well in optically thin regions. In
the optically thick limit, however, these fluxes do not properly
reproduce the diffusion rate of the neutrinos through the fluid.
We thus apply corrections to the flux F̄E of Ẽ [88]

F̄E,corr = aF̄E + (1− a)F̄E,asym , (C9)

with

a = tanh
1

κ̄∆xd
, (C10)

κ̄i+1/2 =
√

(κ̄a + κ̄s)i(κ̄a + κ̄s)i+1 , (C11)

and where half-integer indices refer to values of the opacities
at cell faces while integer indices refer to value of the opac-
ities at cell centers. Here, d is the direction in which we are
reconstructing, ∆xd =

√
gdd(∆xdgrid)2 is the proper distance

between two grid points along that direction, and ∆xdgrid the
coordinate grid spacing along that direction. The asymptotic
flux in the fluid rest frame, which corresponds to the flux in
the diffusion limit, is [19]

Hα = − 1

3κ̄
∂αJthick . (C12)

Using this and equation A5 in equation 13 gives the asymp-
totic observer frame flux

F̄E,asym =
√
γ

(
4

3
W 2αvdJthick − βdE

)
−αW

3κ̄

(
γdi + vdvi

)√
γ
dJthick

dxi
. (C13)

Numerically, this term can be fairly complex to evaluate. It
requires derivatives of the neutrino energy density in the fluid
frame along all coordinate directions, estimated at cell faces.
In practice, we compute the first and second term of F̄E,asym

separately. For the second term, which models the diffusion of
neutrinos, all quantities are estimated by averaging the values
at neighboring cell centers, except for κ̄, which is given by
Eq. (C11), and dJ/dxd, for which we use(

dJ

dxd

)
i+1/2

=
Ji+1 − Ji

∆xd
. (C14)

For the first term, which represents the advection of neutrinos
with the fluid, we make separate estimates from the left and
right states (UL, UR). For both states, we also compute the
advection speed

cadv = −βd + 4α
W 2

2W 2 + 1
vd . (C15)

If both speeds are positive, we use the value computed from
UL. If both are negative, we use the value computed from UR.
If their signs disagree, the advection term is set to zero.

A simpler correction is also applied to the flux F̄F of F̃i,
following [89]

F̄F,corr = A2F̄F + (1−A2)
F̄F,R + F̄F,L

2
, (C16)

with

A =
1

κ̄∆xd
. (C17)
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Appendix D: Implicit time stepping

The collisional source terms in equations (16-17) can be
very stiff in optically thick regions. If we were to treat those
source terms explicitly, we would need to use prohibitively
small time steps. Accordingly, we will split the evolution
equations into implicit and explicit terms. The variables
(Ẽn+1, F̃i,n+1) evolved from (Ẽn, F̃i,n) by taking a time step
dt are given by

Ẽn+1 − Ẽn
dt

+ ∂j(αF̃
j
n − βjẼn) (D1)

= α
(
P̃ ijn Kij − F̃ jn∂j lnα− S̃αn+1nα

)
,

F̃n+1 − F̃n
dt

+ ∂j(αP̃
j
i,n − β

jF̃i,n)− αS̃αn+1γiα (D2)

=
(
−Ẽn∂iα+ F̃k,n∂iβ

k +
α

2
P̃ jkn ∂iγjk

)
.

Solving this exactly would require the use of a four-
dimensional non-linear root-finder algorithm to get
(Ẽn+1, F̃n+1). To limit the cost of each time step, we
instead use a linear approximation to S̃αn+1,

S̃αn+1 =
√
γη̄uα +AαẼn+1 +BαjF̃j,n+1 , (D3)

where the coefficients Aα and Bαj are computed assuming
that the closure factor ξ and the angle between the neutrino
flux Fi and the fluid velocity vi are constant. The system then
reduces to four linear equations for (Ẽn+1, F̃i,n+1), which
can be simply solved by the inversion of a 4 × 4 matrix at
each point and for each neutrino species. To ensure that this
procedure is reasonable, however, we need an estimate of the
time stepping error – which will help us choose the time step
dt. We consider four different types of errors.

• Large fluxes may cause the explicit portion of the time
stepping algorithm to be unstable. We thus require that

dt <
αF Ẽ + αAbs max (Ẽ)

|∂j(αF̃ j − βjẼ)|
(D4)

at any point where the denominator is positive. For
post-merger evolutions, we typically choose αF = 0.3
and αAbs = 0.001. The maximum is taken over the
entire computational domain.

• Strong coupling of the neutrino radiation to the fluid
can cause large oscillations in the fluid quantities when
the radiation transport code is first turned on, causing
the evolution to be unstable. These swings, when they
occur, are particularly noticeable in the evolution of the
electron fraction Ye. Accordingly, we define

εY =
|∆Ye|
αRel

ρ0

ρ0 + αAbs max (ρ0)
, (D5)

where ∆Ye is the change in Ye over the last neutrino
time step due to the coupling between the fluid and the
neutrino radiation. For post-merger evolutions, we use
αRel = 0.01.

• The implicit portion of the time step might be inaccu-
rate, for example because of the linearization of S̃α.
Accordingly, we solve the implicit problem twice: once
with a time step dt, and once using two time steps
dt/2. The explicit terms are kept identical for both time
steps, but the linearization of S̃α is recomputed at the
intermediate point t + dt/2. For any variable U , we
thus have two estimates U1 and U2 for U(t + dt), us-
ing respectively one and two intermediate time steps.
We can then obtain a second-order accurate estimate
U(t + dt) = 2U2 − U1 and an estimate of the error,
δU = U2 − U1. We then define

εE =
δẼ

αRelẼ + αAbs max (Ẽ)
, (D6)

εF =
γijδF̃iδF̃j

αRelẼ + αAbs max (Ẽ)
, (D7)

as the errors from the implicit time step.

• Errors in the evolution of Ẽ and F̃i can cause Ẽ
to become negative, or the fluxes to violate causality
(γijF̃iF̃j > Ẽ2). To be safe, we additionally define

ε′E =
|Ẽ|

αRelẼ + αAbs max (Ẽ)
(D8)

when Ẽ < 0 and

ε′F =
γijF̃iF̃j − Ẽ2

αRelẼ + αAbs max (Ẽ)
(D9)

when γijF̃iF̃j > Ẽ2. In practice, we find that these
errors are generally smaller than εE , εF .

After taking a time step, we then define a global error ε as the
largest error among all points, all neutrino species, and all five
errors εF , εE , εY , ε′E , ε

′
F . If the inequality (D4) is not satisfied

or if ε > 10, we reject the last time step and start again with a
new time step given either by (D4) or by

dt′ = dt

√
0.9

ε
. (D10)

Otherwise, we accept the time step and set the next time step
for the evolution of neutrinos to be

dt′ = dt

√
0.9

max (ε, 0.3)
. (D11)

Finally, if dt′ is larger than the time step required for the neu-
trino evolution to catch up with the fluid evolution, we take a
time step bringing the two sets of equations to the same time.
In practice, for most of the post-merger evolution, the code
ends up taking a single neutrino time step for each GR-Hydro
time step, as can be expected for a quasi-equilibrium radia-
tion field. The adaptive time stepping algorithm is thus mostly
useful to get stable evolutions when the neutrino radiation is
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FIG. 18. Energy density for the single beam test, after ∆t = 0.4.
The black arrows show the flux Fi.

first turned on, as well as during the plunge of the neutron
star into the black hole. Occasionally, taking 2-3 neutrino
time steps per hydrodynamical time step can also be neces-
sary when time stepping is limited by the Courant condition,
which is more restrictive for neutrinos than for the fluid.

Appendix E: Code Tests

In order to test the ability of our code to perform neu-
trino transport simulations in compact binary mergers, we per-
form a series of tests showing that the moment formalism has
been properly implemented in SpEC, that it suffers from the
same known limitations as in other codes, and finally that
the choices made when averaging emissivities and opacities
still allow us to reproduce reasonably well the output of an
energy-dependent code in a spherically symmetric test evolv-
ing a post-bounce configuration taken from a core collapse
supernova simulation.

1. Single beam in flat spacetime

The simplest test that we perform is the propagation of a
beam of radiation in vacuum and for a flat spacetime. We use
a 3-dimensional grid with spacing ∆x = 0.01 and bounds
0 ≤ x ≤ 1, 0 ≤ y ≤ 0.2 and 0 ≤ z ≤ 0.2. The field
variables are frozen for x < 0.1, with the condition E = 1,
Fi = (0.9999999, 0, 0) inside of a “beam” confined to 0.05 ≤
y ≤ 0.15, 0.05 ≤ z ≤ 0.15, and are suppressed by a factor of
10−10 in the region outside of the beam.

The results of this test are shown in Fig. 18, at a time
t = t0 + 0.4. As expected, the beam propagates in a straight
line and at the speed of light. Numerical errors cause a slight
widening of the beam, but by only one grid spacing at an
energy density around 10−3Ebeam. The beam front is also
smoothed upstream of the beam, with an exponential decay
of about 10−1/2 per grid point. This pattern establishes itself
quickly as the beam leaves the frozen region, and then propa-
gates at the speed of light with the beam.

We then performed the same test, but for a beam no longer
propagating along a coordinate direction. In this case, we
freeze the region with x < 0.03 or y > 0.17, and set
Fi = (0.8,−0.6, 0) in the beam region. The results are shown
in Fig. 19. The main difference with the aligned beam is that
the edges of the beam are not as sharp (while the front of the

FIG. 19. Energy density for the oblique beam test, after ∆t = 0.2.
The arrows show the flux Fi.

FIG. 20. Energy density for the shadow test after ∆t = 1. The
arrows show the flux Fi.

beam is slightly sharper). The exponential decay of the energy
away from the beam is now about the same in all directions.

2. Shadow

We now consider a uniform radiation field with E = 1
and Fi = (0.9999999, 0, 0), hitting a sphere of optically
thick material. In this test, we set the absorption opacity
κ̄a = 106 within a sphere of radius rS = 0.05 and centered
on cS = (0.5, 0.1, 0.1). The grid is identical to the one used
for the beam tests. The results of the evolution are shown in
Fig. 20.

The M1 closure is known to perform well for such a test,
in which we expect to see the shadow of the optically thick
sphere in the fields for x > 0.5 (see e.g. [90]). Indeed, we
observe a clear shadow behind the sphere, with the formation
of two independent beams each having properties similar to
those observed in the previous tests. Our implementation of
the M1 formalism thus appears to properly project the shadow
of optically thick objects.

3. Single beam in curved spacetime

As our simulations require the evolution of the neutrinos
close to a black hole, we want to determine how well the
M1 formalism performs in a strongly curved spacetime. To
do so, we perform another set of tests on beams propagat-
ing in vacuum, but now in a black hole spacetime. These
tests are largely inspired from those presented in McKinney
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FIG. 21. Energy density in steady-state for a 2D beam in a Kerr-
like spacetime, with the beam emitted from r = 7M − 8M and
M the mass of the non-spinning central black hole. The solid lines
show null geodesics bounding the expected location of the beam.
The simulation is performed in full 3D, but the metric and beam are
independent of z.

et al. [90] (on their Fig. 13 and Sec. 5.9). The tests in [90]
are performed in 2D in spherical polar coordinates, however,
while the SpEC code always uses 3D cartesian grids for radia-
tion hydrodynamics. For the sake of comparison, we thus first
consider a “Kerr-like” spacetime in which the metric is set by
gµν(t, x, y, z) = gKerrµν (0, x, 0, z), with gKerrµν the Kerr met-
ric for a non-spinning black hole, in Kerr-Schild coordinates.
This metric is unphysical, but allows us to consider effectively
2D beams without having to develop an axisymmetric version
of our code. In all tests, the beams are emitted from a region
of width ∆z = M in the x = 0 plane, in which E = 1 and
the flux is chosen so that FiF i = 0.998E2 and αF i − βiE
is along the x-axis. We use a grid spacing ∆x = 0.2M (i.e.
the beam is initially 5 grid points wide), where M is the black
hole mass.

We first consider a beam emitted from a relatively large dis-
tance, 7M < z < 8M , shown in Fig. 21. The energy density
in the beam decreases as the neutrinos get farther from the
black hole, in part due to the gravitational redshift (about a
10% effect over the length of the beam on the grid), and in
part due to the spreading of the beam caused by the gravita-
tional bending of the radiation. Within the accuracy shown
in the previous tests, the beam remains otherwise well con-
tained within the region delimited by the null geodesics de-
fined by x(t = 0) = (0, 0, 8M), dr/dt(t = 0) = 0 and
x(t = 0) = (0, 0, 7M), dr/dt(t = 0) = 0 (shown as solid
black lines on the figure).

We now move on to a beam initially closer to the black hole,
with 3M < z < 4M . The inner edge of the beam then lies
on the unstable circular photon orbit. Both the gravitational
redshift effect and the divergence of the null geodesics are
much stronger in this case, so that the beam widens and its
energy density decreases quickly as the beam orbits the black
hole. The results of the simulation are shown in Fig. 22. As
before, we can check that the beam remains mostly within the
region predicted for free-streaming massless particles.

Finally, we consider the same configuration but in full 3D.

FIG. 22. Same as in Fig. 21, but with the beam emitted from r =
3M − 4M . As before, the solid lines trace null-geodesics.

FIG. 23. Same as Fig. 22, but using the full 3-dimensional Kerr-
metric and a beam of finite transverse size.

The background metric is now that of a non-spinning black
hole in Kerr-Schild coordinates. In 3D, the null geodesics fol-
lowed by our beam converge towards the equatorial plane, and
should all cross on the z = 0, y = 0 axis. The numerical re-
sults are shown in Fig. 23. As in the 2D test, the widening of
the beam is consistent with the predictions obtained by trac-
ing null geodesics. The decrease in energy density due to the
widening of the beam in the xy-plane and to the gravitational
redshift is however compensated by the collapse of the beam
along the z-axis, at least until the beam crosses the x-axis. In
the z < 0 plane, the beam should rapidly widen again along
the y-axis. In practice, however, the beam remains slightly
more collimated than expected in that region. Although the
qualitative differences are fairly mild in this case, it is a first
indication of the problems intrinsic to the use of the M1 for-
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FIG. 24. Contours of constant energy density for the crossing beams
test. The contours are for 10%, 1% and 0.1% of the original energy
density of the beams.

malism, which we will made clearer in the next test.

4. Crossing beams

The problems with converging beams, which we alluded to
in the previous section, can be more easily observed if we con-
sider a much simpler setup: two crossing beams in flat space-
time. As we do not include any interaction between neutrinos,
except indirectly through the effective opacity due to the in-
verse reactions of thermal processes, the two beams should
simply pass through each other. However, this does not occur
when using the moment formalism with the M1 closure. We
show in Fig. 24 what happens when such a system is evolved:
the beams collide and form a wider, single beam along the
average direction of propagation of the crossing beams. This
is, effectively, due to the difference between the approximate
form of the second moment of the distribution function in the
analytical M1 closure, and its true second moment.

This inability of the M1 formalism to deal with crossing
beams, and the inaccuracies existing in the presence of con-
verging beams, means that the evolution of the moments of
the neutrino distribution function in the region along the polar
axis of the black hole, as well as close to the inner edge of the
disk, is not entirely reliable. The M1 formalism performs very
well for diverging free-streaming neutrinos (which is what we
see in most of the regions surrounding the disk), and in opti-
cally thick regions (as in the core of the disk, see next test).
But its performance in regions in which higher moments of
the distribution function are required to properly model the
neutrino pressure is, by definition, quite poor (see also [90]).

5. Optically thick radiative sphere

The tests presented above are mainly intended to determine
how well our code can evolve the neutrino moments for var-
ious geometric configurations in the free-streaming limit. In
order to evolve neutron stars and the optically thick accretion
disks created as a result of neutron star mergers, we also need
to determine whether we can properly model optically thick
regions and, more importantly maybe, how closely we can re-
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FIG. 25. Energy density of neutrinos at t = 2 for the emitting sphere
tests with κ̄ = 5 and κ̄ = 1010. The numerical results are shown by
circles/squares while the solid lines are the analytical predictions.

produce the transition between optically thick and optically
thin regions. Indeed, these will determine how well we can
predict the neutrino luminosity from neutron stars and accre-
tion disks.

We first consider optically thick radiative spheres, for
which we have an analytical solution for the distribution func-
tion [91]:

f(r, µ) = b[1− exp(−κ̄s(r, µ))] (E1)

for a sphere of radius rs and absorption opacity κ̄, and for
µ = cos(θ) with θ the angle between the neutrino momentum
and the radial direction. The function s(r, µ) is given by

s(r, µ) = rµ+ rsg(r, µ) [r < rs; −1 < µ < 1] , (E2)

= 2rsg(r, µ) [r ≥ rs;
√

1−
(rs
r

)2

< µ < 1] ,

= 0 otherwise ,

with

g(r, µ) =

(
1−

(
r

rs

)2

(1− µ2)

)
. (E3)

We can then obtain the exact solution by numerical integra-
tion of f(r, µ) over µ. In this test, we consider two differ-
ent regimes. First we use a sphere of moderate optical depth
(rs = 1, κ̄ = 5), which is fairly typical of the conditions
in post-merger accretion disks. Then, we use a sphere of ex-
tremely high optical depth (rs = 1, κ̄ = 1010), which pro-
vides a sharp neutrinosphere similar to what may be found
at the surface of a neutron star. In both cases, we use a 3-
dimensional Cartesian grid with grid spacing ∆x = 0.04. The
results of the numerical evolutions are compared with the ex-
act solution in Fig. 25. We find good agreement between the
two solutions. For the most optically thick case, this is mostly
a consequence of the corrections to high optical depth regions
described in Appendix C. The configuration with κ̄ = 5, on
the other hand, has a very small correction to the fluxes, as
κ̄∆x = 0.2 < 1.
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FIG. 26. Temperature after 8 ms of evolution for the evolution of
a post-bounce configuration, in the region in which the temperature
evolution is most affected by the gray approximation.

6. Neutrino emission and coupling with matter in a
post-bounce configuration

As a last test of our code, we consider a 1D profile con-
structed as a spherical average from a 2D, Newtonian, multi-
neutrino energy, multi-neutrino angle neutrino transport sim-
ulation at 160 ms after core bounce [92]. Since we spheri-
cally average the 2D simulation, do not use precisely the same
nuclear equation of state and neutrino opacities, and freeze
the hydrodynamics, the initial profile is slightly out of equi-
librium. Therefore, this provides a good test of the lepton
and energy coupling and a venue for comparing with energy-
dependent transport. Similar tests were carried on with this
profile for testing Monte Carlo transport [93]. We compare
the SpEC results with the output of the GR1D code [49]. For
this test, GR1D uses an energy-dependent M1 scheme with
12 energy groups, and was itself shown to agree well with
the results of full transport codes [94]. During this test, the
matter density is fixed and the fluid is assumed to be at rest.
But the internal energy and electron fraction of the fluid are
coupled to the neutrino evolution. We perform this test with
various choices of gray schemes: with the standard SpEC
methods described in Appendix B (SpEC-Std), with the av-
erage energy of neutrinos always obtained by assuming equi-
librium between the neutrinos and the fluid (i.e. ignoring the
correction given by Eq. B8, SpEC-Tfl), and without the cor-
rection B6 to the charged-current emissivities in low-opacity
regions (SpEC-ηK). The SpEC simulations, which are per-
formed with the full 3D code assuming octant symmetry, have
a fairly coarse resolution of 6 km at the lowest resolution,
3 km at the medium resolution, and 1.5 km at the highest res-
olution.

We first compare radial profiles of the fluid variables T and
Ye after 8 ms of evolution, shown in Figs. 26-27. The tem-
perature profiles agree well with the GR1D results, as long
as we correct the average energy of neutrinos according to
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FIG. 27. Electron fraction Ye after 8 ms of evolution for the evolution
of a post-bounce configuration.

Eq. B8. If we do not, the absorption of neutrinos in the low-
density regions is widely underestimated – and in particular,
the code completely misses the existence of a gain region at
r > 100 km. With correction B8, the heating in the gain re-
gion is reproduced better, but now occurs faster than expected.
This is due to an overestimate of the average energy of neutri-
nos. Whether or not we modify the emissivities according to
equation B6 does not appear to affect the temperature evolu-
tion.

The evolution of the electron fraction Ye is more sensitive to
the choices made when energy-integrating. With our standard
choices, we find results close to GR1D, while the composi-
tion is widely inaccurate when neglecting correction B8, and
the equilibrium composition can in some regions be wrong by
∆Ye ∼ 0.05 when neglecting correction B6. The grid resolu-
tion does not significantly affect these results, except close to
r = 0.

Finally, we observe over 20 ms the neutrino luminosity ex-
tracted on a sphere of radius r = 250 km, and compare the
average energy-squared 〈ε2leak〉 predicted by the leakage (and
used to compute opacities in colder regions) and the same
quantity measured by the energy-dependent M1 code. We find
that the luminosities are accurate to∼ 10% for νe and νx, and
to 20% − 30% for ν̄e. For comparison, the luminosities pre-
dicted by the leakage scheme are off by factors of 2-3 for νe
and ν̄e (but are very good for νx), while the errors due to the
finite grid resolution are∼ 5%−10%. The energies

√
〈ε2〉 are

typically overestimated by the leakage scheme, by up to 50%.
This causes the larger-than-expected heating rate observed in
the gain region (r >∼ 90 km). The reason for these large er-
rors is that the neutrino energies in the hot, highly degenerate
matter present at high optical depth are very large and sig-
nificantly affect the average energy (due to weighting of the
electron number emission rate by the square of the neutrino
energies). In practice, however, these high energy neutrinos
are thermalized as they propagate through the optically thick
regions. Significant improvements in

√
〈ε2〉 can be obtained
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if we define

〈ε2〉 =

∫
Rν(x)〈ε2ν(x)〉min (1, exp[τthreshold − τ ]) dV∫

Rν(x) min (1, exp[τthreshold − τ ]) dV
,

(E4)
where Rν is the neutrino number emission predicted by the
leakage scheme, and τ is the optical depth. Any value of the
threshold τthreshold ∼ 1 − 10 allows us to recover

√
〈ε2〉 to

within 20% for νe and ν̄e, and within 30% for νx. In all cases,
the finite resolution error is negligible compared with the er-
ror due to the gray approximation. We have checked that these
variations are indeed due to the gray approximation, and not
to the specific implementation of the M1 scheme in SpEC: an
energy-dependent version of the M1 code in SpEC, which can
easily be used in this case due to the relatively low compu-
tational cost of the test problem and the lack of gravitational
redshift or velocity gradients, agrees with the GR1D results.

These results are already much better than if we got the
neutrino energies by assuming equilibrium with the fluid: in
the gain region, the equilibrium average neutrino energies are√
〈ε2〉 ∼ 5 − 10 MeV while the actual average neutrino en-

ergies are
√
〈ε2〉 ∼ 10 − 25 MeV. And indeed, with this

corrected 〈ε2〉, heating in the gain region agrees well with the
results of the GR1D simulations. The correction also causes
changes to the evolution of Ye, with results with and without
correction B6 to the emissivities now bracketing the GR1D
results (with typical errors ∆Ye ∼ 0.02). The simulation
without correction B6 still slightly overestimates Ye around
r ∼ 100 km, while with correction B6 the simulation now
slightly underestimates Ye in that same region.

Such errors would be very significant in the context of
core collapse supernova simulations, where properly model-
ing neutrinos is critical to the explosion mechanism. In com-
pact binary mergers, however, the impact of neutrinos is more
modest. The computation of 〈ε2〉 from the leakage scheme is
also more accurate in post-merger accretion disks: the tem-
perature does not vary as much within post-merger accretion
disks as in the test presented here, the disks are only mod-
erately optically thick (τ ≤ 10), and matter within the disks
reaches densities of at most ρ0 ∼ 1012 g/cm3, at which only
electrons are degenerate. Using emissivities with and without
correction B6, we can get an estimate of the errors due to the
use of a gray scheme. These errors, discussed in the main text
of the paper, are much smaller than the errors observed in this
test. Using the M1 formalism instead of our leakage scheme
then significantly improves our ability to determine the cool-
ing time and composition evolution of the disk, and gives us a
reasonable first estimate of the energy deposition in the corona
(except along the polar axis of the black hole, where the M1
approximation is unreliable).

Appendix F: Accuracy of the post-merger evolution

Most of the discussion of our simulations of the formation
of an accretion disk after a neutron star-black hole merger
(Sec. IV) focuses on the qualitative features of the system, and
on the differences between various algorithms for the evolu-

tion of neutrinos. In this section, we will discuss the accu-
racy of these results, and argue that the features of the system
discussed in Sec. IV are appropriately resolved by our simu-
lations. We identify four main sources of error. The first is
due to the finite resolution of our numerical grid during the
simulations. The second is the numerical error in the simula-
tion of the neutron star-black hole merger before we turn on
the neutrino transport code, which causes errors in the initial
conditions used for our simulations. The third is the approx-
imate treatment of the neutrinos, and in particular the use of
a gray scheme and of the M1 closure. And the fourth comes
from only turning on the neutrino transport and changing the
treatment of low-density material about 6.1 ms after merger.
The first two can be estimated through the use of simulations
at lower and/or higher resolution. The last two are more dif-
ficult to assess, and will only be rigorously measured through
the use of more advanced (and more costly) simulations. Un-
til such simulations are available, we have to rely on simpler
estimates of these errors.

To determine the importance of the first source of error, we
performed simulations of a post-merger accretion disk using
603 and 1403 points for each level of refinement, instead of
the 1003 points used in our ”standard” configuration. The
higher resolution simulation was only evolved for 1.1ms, to
verify that the solution was converging with resolution. Even
the simulation using the coarsest grid shows surprisingly good
agreement with our standard runs. The average temperature in
the disk agrees to ∆〈T 〉 ∼ 0.2 MeV and the electron fraction
to ∆〈Ye〉 ∼ 0.01. The neutrino luminosities agree to better
than 20%, and the average neutrino energies within 0.5 MeV.
This is comparable to the differences observed between var-
ious choices of gray approximations, and much smaller than
the differences between the leakage and M1 simulations. Ad-
ditionally, the difference between the standard and high reso-
lutions is, for all observed quantities, more than a factor of two
smaller than the difference between the low and standard res-
olutions. Most of those differences arise immediately after the
neutrino transport is turned on, while evolution at later times is
very similar for all numerical resolutions. Accordingly, we do
not expect numerical resolution during the post-merger evolu-
tion to be a significant source of error.

The numerical error in the simulations before we turn on
neutrino transport can easily be determined from the lower
resolution simulations of the same system performed in Fou-
cart et al. 2014 [32]. The largest error in these simulations
was in the determination of the properties of the dynamical
ejecta, which does not concern us here as that material is al-
lowed to escape the numerical grid. At the time at which we
begin the simulations with neutrino transport, we otherwise
find relative errors of less than 10% in the total mass outside
of the black hole, average temperature and average electron
fraction in the disk. Considering that the grid spacing used
in [32] was about a factor of two coarser than the grid spacing
used in the standard simulations of this paper, these are clearly
overestimates of the numerical error. The only numerical error
which could affect our results is thus the initial temperature
of the disk ,which generally decreases with resolution. The
disk could be, on average, about 0.4 MeV cooler at infinite
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resolution. This is only slightly smaller than the difference
between leakage and M1 simulations, but does not affect the
conclusion of this paper: both the leakage and M1 simulations
presented here use the same imperfect initial data. We should
also note that even our imperfect initial data remains a much
better starting point than the commonly used alternative, an
equilibrium torus of constant entropy.

The effect of an approximate treatment of the neutrinos is
discussed in Sec. IV G, to which we refer the interested reader.
Here we will simply note that our rough estimate of the er-
ror due to the use of a gray scheme is comparable to our
estimate of the error due to numerical resolution, and much
smaller than the differences between simulations using the
M1 scheme and the leakage scheme. However, a true mea-
sure of the error would require a simulation using an energy-
dependent transport scheme without the weaknesses of the M1
closure. Such a simulation is currently out of reach for our
code.

Finally, we have to consider the impact of suddenly turn-
ing on the neutrino transport code 6.1 ms after merger, and of
the use of a higher threshold for the application of atmosphere
corrections at earlier times. The only way to rigorously mea-
sure this would be to perform a simulation using the M1 code
and a lower atmosphere threshold, starting before the disrup-
tion of the neutron star. Now that we have a well-tested M1
code and good estimates of the atmosphere thresholds which
should be used after merger, we intend to perform such sim-

ulations. However, the disruption of the neutron star and ac-
cretion of the neutron star core onto the black hole is the most
computationally intensive part of the evolution, while we be-
lieve that the simulations performed here capture the most
important properties of the merger and post-merger evolution
(except for the absence of magnetic fields). Indeed, we begin
the simulation around the time at which the neutrino luminos-
ity and the electron fraction begin to significantly increase due
to the heating of the disk and the emission of neutrinos. We
also find that the disk outflows are not immediately launched
when we decrease the atmosphere threshold. At the beginning
of the simulation, those outflows are still contained by mate-
rial from the tidal tail falling onto the forming disk. It is only
about 2 ms later that outflows begin to form above the disk. A
potentially more important source of error is the transient oc-
curring when the transport code is turned on. To study its ef-
fects, we consider two possible initializations of the moments
of the neutrino distribution function. First, we initialize them
assuming that the neutrinos are in equilibrium with the fluid,
in which case the neutrino energy density is overestimated,
and the initial transient consists in a transfer of energy from
the neutrinos to the fluid and a slight decrease of the average
electron fraction. Then, we initialize the neutrino energy den-
sity to a negligible value, in which case the transient has the
opposite effect. We verify that after about 2 ms the two solu-
tions are in good agreement (at early times, this transient is of
course the largest source of error in the simulation).


