
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Black hole initial data without elliptic equations
István Rácz and Jeffrey Winicour

Phys. Rev. D 91, 124013 — Published  3 June 2015
DOI: 10.1103/PhysRevD.91.124013

http://dx.doi.org/10.1103/PhysRevD.91.124013


Black hole initial data without elliptic
equations

István Rácz §, ♯ and Jeffrey Winicour ♭, ♮

§Wigner RCP,

H-1121 Budapest, Konkoly Thege Miklós út 29-33., Hungary

♭Department of Physics and Astronomy,

University of Pittsburg, Pittsburgh, PA, 15260, USA

Abstract

We explore whether a new method to solve the constraints of Einstein’s

equations, which does not involve elliptic equations, can be applied to provide

initial data for black holes. We show that this method can be successfully

applied to a nonlinear perturbation of a Schwarzschild black hole by establishing

the well-posedness of the resulting constraint problem. We discuss its possible

generalization to the boosted, spinning multiple black hole problem.

1 Introduction

The prescription of physically realistic initial data for black holes is a crucial ingredient
to the simulation of the inspiral and merger of binary black holes and the computation
or the radiated gravitational waveform. Initialization of the simulation is a challenging
problem due to the nonlinear constraint equations that the data must satisfy. The
traditional solution expresses the constraints in the form of elliptic equations. Here
we consider a radically new method of solving the constraints which does not require
elliptic solvers [1]. We show, at least for nonlinear perturbations of Schwarzschild
black hole data, that the Hamiltonian and momentum constraints lead to a well-posed
strongly hyperbolic problem whose solutions satisfy the full constraint system. The
possibility of extending this approach to binary black holes offers a simple alternative
way to provide boundary conditions for the initialization problem that might prove
to be more physically realistic.
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The inspiral and merger of a binary black hole is expected to be the strongest
possible source of gravitational radiation for the emerging field of gravitational wave
astronomy. The details of the gravitational waveform supplied by numerical sim-
ulation is a key tool to enhance detection of the gravitational signal and interpret
its scientific content. It is thus important that the initial data does not introduce
spurious effects into the waveform. Such “junk radiation” is common to all current
methods for supplying initial data and appears early in the simulation as a high fre-
quency component of the waveform. This can be a troublesome feature with regard
to matching the waveform in the nonlinear regime spanned by the simulation to the
post-Newtonian chirp waveform provided by perturbation theory. The initial param-
eters governing the black hole spins, mass ratio and ellipticity of the binary orbit have
to be adjusted to include the effect of this transitory period. As a result, it becomes
difficult to match exactly to the parameters governing the post-Newtonian orbit. In
addition, although the high frequency component of the junk radiation appears to
dissipate after some early transitory period, there is no quantitative measure of its
low frequency component which might affect the ensuing waveform.

All initialization methods presently in use reduce the constraint problem to a
system of elliptic equations, which require boundary conditions at inner boundaries
in the strong field region surrounding the singularities inside the black holes, as well
as at an outer boundary surrounding the system. The new method we consider here
only requires data on the outer boundary, which is in the weak field region where
the choice of boundary data can be guided by asymptotic flatness. The constraints
are then satisfied by an inward “evolution” of the hyperbolic system along radial
streamlines.

The initial data for solving Einstein’s equations consist of a pair of symmetric
tensor fields (hij , Kij) on a smooth three-dimensional manifold Σ, where hij is a
Riemannian metric and Kij is interpreted as the extrinsic curvature of Σ after its
embedding in a 4-dimensional space-time. The constraints on a vacuum solution (see
e.g. Refs. [2, 3]) consist of

(3)

R +
(

Kj
j

)2 −KijK
ij = 0 , (1.1)

DjK
j
i −DiK

j
j = 0 , (1.2)

where
(3)
R and Di denote the scalar curvature and the covariant derivative operator

associated with hij , respectively.
The standard approach to solving the constraints is based upon the conformal

method, introduced by Lichnerowicz [4] to recast the Hamiltonian constraint (1.1)
as an elliptic equation and later extended by York [5, 6] to reduce the momentum

2



constraint (1.2) also to an elliptic system. For a review of the historic implementation
of this method in numerical relativity see [7].

A major obstacle in prescribing black hole initial data is the presence of a sin-
gularity inside the black hole. The initial strategy for handling the singularity was
the excision of the singular region inside the black hole [8]. In this case, an artificial
inner boundary condition for the elliptic system is posed on boundaries inside the
apparent horizons surrounding the individual black holes. Other strategies have since
been proposed. One is the puncture method in which the initial hypersurface extends
though a wormhole to an internal asymptotically flat spatial infinity, which is then
treated by conformal compactification [9]. Here the freedom in the choice of confor-
mal factor governing the compactification enters as an effective boundary condition.
In addition, it is known that the puncture quickly changes its nature. In fact, early
attempts to simulate binary black holes failed until it was realized that the punctures
must be allowed to move. Studies of this feature in the case of a single black hole
revealed that the puncture quickly transits from the internal spatial infinity to an
internal timelke infinity [10]. This realization has given rise to the trumpet version
of initial data, in which the initial Cauchy hypersurface extends to an internal time-
like infinity with asymptotically finite surface area [10, 11]. Trumpet data offers a
promising alternative to puncture data but its merits have not yet been extensively
explored in binary black hole simulations [12].

Coupled to these techniques for avoiding singularities is the choice of initial time
slice. For example, there are many ways to prescribe Schwarzschild initial data de-
pending, say, upon whether the initial Cauchy hypersurface is time symmetric or
horizon penetrating. Here we will focus on initial data in Kerr-Schild form [13, 14],
which for the Schwarzschild case corresponds to ingoing Eddington-Finklestein coordi-
nates, which extend from spatial infinity to the singularity and penetrate the horizon.
The new approach to solving the constraints that we consider becomes degenerate
for a time symmetric initial slice, whose extrinsic curvature vanishes. However, time
symmetric space times contain as much ingoing as outgoing gravitational waves, so
they are not the appropriate physical models for studying binary waveforms. Al-
though our focus here is on data in Kerr-Schild form, we do not wish to imply that
this approach would not work for puncture or trumpet data.

A very attractive feature of Kerr-Schild initial data is that it provides a preferred
Minkowski background to construct boosted black holes by means of a Lorentz trans-
formation. Two independent ways of prescribing Kerr-Schild initial data have been
proposed. In one version, the 4-dimensional aspect of the Kerr-Schild ansatz is pre-
served as much as possible [15]. This leads to a workable scheme for superimposing
non-spinning black holes but the generalization to the spinning case remains prob-
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lematic. In the other case, the Kerr-Schild ansatz is loosened to a 3-dimensional
version that allows superposition of multiple spinning black holes [16]. This has been
implemented to provide data for boosted, spinning binary black holes and plays an
important role in current simulations [17].

There are several variants to the new method of solving the constraints proposed
in [1, 18, 19, 20], depending upon which components of the initial data are assigned
freely. They all avoid elliptic equations. Here we apply the simplest of these variants
to the initial data problem for black holes. In this variant, the Hamiltonian and
momentum constraints constitute a strongly hyperbolic system which only requires
data on a 2-surface surrounding the black holes.

In Sec. 2, we review this new approach. In Sec. 3, we show that the require-
ments for well-posedness of the underlying algebraic-hyperbolic constraint problem
are satisfied by a Schwarzschild black hole described in Kerr-Schild form. In Sec. 4,
we present an explicit proof that nonlinear perturbations of Schwarzschild black hole
data in Kerr-Schild form lead to a well-posed strongly hyperbolic problem.

In Sec. 5, we conclude with a discussion of the possibility of extending this ap-
proach to general data for a system of boosted, spinning multiple black holes. We
show how the initial metric data for multiple black holes can be freely prescribed in 4-
dimensional superimposed Kerr-Schild form for the individual boosted, spinning black
holes. Two pieces of extrinsic curvature data, which represents the two gravitational
degrees of freedom, can also be freely prescribed by superimposing the individual
black hole data. The remaining extrinsic curvature data is then determined by the
algebraic-hyperbolic constraint system. In a linear theory, the superposition of such
non-radiative data would lead to a non-radiative solution. This suggests that this new
method may offer an alternative approach to suppressing junk radiation and to con-
trolling the effect of initial data on a binary orbit. However, due to the nonlinearity
of Einstein’s equations, there is no guarantee that, in the strong field region between
the individual black holes, this superimposed free data does not introduce spurious
radiation. A completely analytic resolution of these issues does not seem possible.
A major motivation for this paper is to encourage the numerical experimentation
necessary to explore the merit and feasibility of this new approach.

2 A new approach to the constraints

We assume that the topology of Σ allows a smooth foliation by a one-parameter family
of homologous two-surfaces. In the application to black hole initial data, we assume
for simplicity a foliation Sρ by topological spheres described by the level surfaces
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ρ = const of a smooth function.
Choose now a vector field ρi on Σ such that ρi∂iρ = 1. Then the unit normal n̂i

to Sρ has the decomposition

n̂i = N̂
−1

[ ρi − N̂ i ] , (2.1)

where the ‘lapse’ N̂ and ‘shift’ N̂ i of the vector field ρi are determined by n̂i = N̂∂iρ

and N̂ i = γ̂i
j ρ

j , with γ̂i
j = δij − n̂in̂j .

The 3-metric hij on Σ then has the 2 + 1 decomposition

hij = γ̂ij + n̂in̂j , (2.2)

where γ̂ij is the metric induced on the surfaces Sρ. The extrinsic curvature K̂ij of
Sρ is given by

K̂ij = γ̂l
i Dl n̂j =

1
2
Ln̂γ̂ij . (2.3)

The extrinsic curvature Kij of Σ, which forms part of the initial data, has the
decomposition

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] +Kij , (2.4)

where κ = n̂kn̂l Kkl, ki = γ̂k
i n̂

l Kkl and Kij = γ̂k
iγ̂

l
j Kkl. Here we use boldfaced

symbols to indicate tensor fields tangent to Sρ. In addition, we shall denote the

trace and trace free parts of K̂ij and Kij by K̂ l
l = γ̂kl K̂kl, K

l
l = γ̂kl

Kkl,
◦
K̂ij =

K̂ij − 1
2
γ̂ij K̂

l
l and

◦
Kij = Kij − 1

2
γ̂ij K

l
l, respectively.

By replacing the initial data set (hij, Kij) by the seven fields (N̂, N̂ i, γ̂ij,
◦
Kij,κ,ki,K

l
l),

the Hamiltonian and momentum constraints (1.1) and (1.2) can be expressed as [1]
(see also [18, 19, 20])

Ln̂(K
l
l)− D̂l

kl + 2 ˙̂nl
kl − [κ− 1

2
(Kl

l) ] (K̂
l
l) +

◦
Kkl

◦
K̂kl = 0 , (2.5)

Ln̂ki + (Kl
l)
−1[κ D̂i(K

l
l)− 2klD̂ikl ] + (2Kl

l)
−1D̂i [

(3)

R−
◦
Kkl

◦
K

kl ]

+(K̂ l
l)ki + [κ− 1

2
(Kl

l) ] ˙̂ni − ˙̂nl ◦
Kli + D̂l ◦

Kli = 0 , (2.6)

where κ is determined by

κ = (2Kl
l)
−1[

◦
Kkl

◦
K

kl + 2kl
kl − 1

2
(Kl

l)
2 −(3)

R ] , (2.7)

D̂i and R̂ denote the covariant derivative operator and scalar curvature associated
with γ̂ij, respectively, and ˙̂nk = n̂lDln̂k = −D̂k(ln N̂). Here (2.7) provides an al-
gebraic solution to the Hamiltonian constraint (1.1) (for more details see [1]). The
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four quantities (κ,ki,K
l
l) are subject to the constraints whereas the remaining eight

variables (N̂, N̂ i, γ̂ij,
◦
Kij) are freely-specifiable throughout Σ. Here

◦
Kij encodes the

two free gravitational degrees of freedom.
Given the free data (N̂, N̂ i, γ̂ij,

◦
Kij), the equations (2.6)-(2.7) were shown to com-

prise a first order strongly hyperbolic system for the vector valued variable (Kl
l,ki)

provided κ and K
l
l are of opposite sign,

κK
l
l = −C2 , C 6= 0. (2.8)

It was also verified in [1] that, given the values of (ki,K
l
l) on some “initial” surface S0

satisfying (2.8), solutions to the nonlinear system (2.5)-(2.7) exist (at least locally)
in a neighborhood of S0, and that the fields (hij , Kij) built up from these solutions
satisfy the full constraint system (1.1)-(1.2).

3 The free and constrained Schwarzschild data

The successful application of this new approach to the constraint problem depends
upon a judicious choice of gauge, determined by the lapse of the initial Cauchy hy-
persurface Σ, and a judicious choice of foliation Sρ. We begin by considering data in
Kerr-Schild form, in which the space-time metric has the form

gab = ηab + 2Hℓaℓb , gab = ηab − 2Hℓaℓb , (3.9)

where H is a smooth function (except at singularities) on R
4 and ℓa is null with

respect to both gab and an implicit background Minkowski metric ηab. In inertial
coordinates (t, xi) adapted to ηab,

gabdx
adxb = (−1 + 2Hℓt

2)dt2 + 4Hℓtℓidtdx
i + (δij + 2Hℓiℓj)dx

idxj , (3.10)

where ℓa = gabℓb = ηabℓb and gabℓaℓb = ηabℓaℓb = −(ℓt)
2 + ℓiℓi = 0. The Kerr-Schild

metrics also satisfy the background geodesic condition

ηbcℓc∂bℓa = 0 (3.11)

and wave equation
ηab∂a∂bH = 0. (3.12)

We can relate the Kerr-Schild metric to the 3+1 decomposition of the space-time
metric

gab = hab − nanb, (3.13)
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where na is the future directed unit normal to the t = const hypersurfaces. Choose a
time evolution field ta satisfying ta∂at = 1. Then na has the decomposition

na = N−1(ta −Na) , (3.14)

where N and Na denote the spacetime lapse and shift, determined by

N = − (tene) , na = −N∂at and Na = ha
e t

e , (3.15)

respectively.
In the Kerr-Schild spacetime coordinates (t, xi), the metric has components

gαβ =

(

−N2 +NiN
i Ni

Nj hij

)

. (3.16)

It follows that

hij = δij + 2Hℓiℓj , hij = δij − 2Hℓiℓj

1 + 2Hℓ2t
, (3.17)

N =
1

√

1 + 2Hℓ2t
, (3.18)

Ni = 2Hℓtℓi , N i = 2HN2ℓtℓ
i . (3.19)

A direct calculation of the extrinsic curvature

Kij =
1
2
Lnhij = (2N)−1[ ∂thij − (DiNj +DjNi)] (3.20)

gives

N−1Kij = − ℓt [∂i(Hℓj) + ∂j(Hℓi)] +N−2∂t(Hℓiℓj)

+ 2Hℓtℓk∂k(Hℓiℓj)−H(ℓi∂jℓt + ℓj∂iℓt). (3.21)

For a Kerr spacetime

H =
rM

r2 + a2 cos2 θ
, (3.22)

where the Boyer-Lindquist radial coordinate r is related to the Cartesian inertial
spatial coordinates xi = (x1, x2, x3) according to

r2 =
1

2

[

(ρ2 − a2) +
√

(ρ2 − a2)2 + 4a2x2
3

]

(3.23)
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with
ρ2 = x2

1 + x2
2 + x2

3 (3.24)

and

ℓa =

(

1,
rx1 + ax2

r2 + a2
,
rx2 − ax1

r2 + a2
,
x3

r

)

. (3.25)

As H and ℓa are t-independent and ℓt = 1, the extrinsic curvature (3.21) simplifies
to

Kij = −ℓtN
[

∂i(Hℓj) + ∂j(Hℓi) + 2Hℓiℓjℓ
k∂kH

]

.

Formally, for the purpose of applying the approach in Sec. 2 to a generic inspiral
and merger, it would be sufficient to show that the required sign condition (2.8) holds
for a boosted Kerr black hole. Here we restrict our investigation to the Schwarzschild
case, where the choice of foliation Sρ is guided by spherical symmetry and the alge-
braic simplicity allows a clear exposition of the approach.

For a Schwarzschild black hole, the spin parameter a = 0 and the Kerr-Schild
form of the metric simplifies to

H =
M

r
, ℓi =

xi

r
= ∂ir , r2 = δijx1xj , (3.26)

with lapse
N = (1 + 2H)−1/2 (3.27)

and 3-metric
hij = δij + 2Hℓiℓj . (3.28)

(Here −ℓa is a future directed ingoing null vector, which corresponds to the convention
for ingoing Eddington-Finklestein coordinates.) Thus

∂iH = −M

r3
xi , ∂j(Hℓi) =

M

r4

[

r2δij − 2xixj

]

(3.29)

and (3.26) reduces to

Kij = − 2M

r2
√
1 + 2H

(δij − [ 2 +H ] ℓiℓj ) . (3.30)

We choose the foliation Sρ by setting ρ = r, with ρi = ℓi, corresponding to the
“spatial” lapse and shift

N̂ =
√
1 + 2H , N̂ i = 0 , (3.31)
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unit normal

n̂i =
√
1 + 2H ℓi , n̂i = hijn̂j =

1√
1 + 2H

ℓi , (3.32)

and intrinsic 2-metric

γ̂ij = hij − n̂in̂j = δij − ℓiℓj , γ̂ij = δij − ℓiℓj . (3.33)

A straightforward calculation gives the extrinsic curvature components of Σ,

κ = n̂kn̂l Kkl =
2M (1 +H)

r2 (1 + 2H)3/2
, (3.34)

ki = γ̂k
in̂

l Kkl = 0 , (3.35)

Kij = γ̂k
iγ̂

l
j Kkl = − 2M

r2
√
1 + 2H

γ̂ij , (3.36)

K
l
l = γ̂kl

Kkl = − 4M

r2
√
1 + 2H

, (3.37)

and ◦
Kij = Kij − 1

2
γ̂ij K

l
l = 0 . (3.38)

Note that κ and K
l
l are globally non-vanishing and have opposite sign, in agreement

with the condition (2.8) for strong hyperbolicity.
From (2.3) along with

Ln̂γ̂ij = n̂k∂kγ̂ij + γ̂kj(∂in̂
k) + γ̂ik(∂jn̂

k) (3.39)

=
1√

1 + 2H

xk

r
∂k

[

−xixj

r2

]

+
(

δkj −
xkxj

r2

)

∂i

[

1√
1 + 2H

xk

r

]

+
(

δik −
xixk

r2

)

∂j

[

1√
1 + 2H

xk

r

]

=
2

r

√

1 + 2M
r

(

δkj −
xkxj

r2

)

,

the extrinsic curvature of the ρ = r = const foliated surfaces is given by

K̂ij =
1

r
√
1 + 2H

γ̂ij , (3.40)

so it follows that

K̂ l
l = γ̂klK̂kl =

2

r
√
1 + 2H

(3.41)

and ◦
K̂ij = K̂ij − 1

2
γ̂ij K̂

l
l = 0 . (3.42)
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4 Nonlinear perturbations of a Schwarzschild black

hole

Here we investigate nonlinear perturbations of the Kerr-Schild initial data for a
Schwarzschild black hole. In doing so, we simplify the discussion by assigning Schwarzschild
values to the freely specifiable variables (N̂, N̂ i, γ̂ij,

◦
Kij). As a result, the initial 3-

metric hij retains its Schwarzschild value and, in particular,
◦
Kij = 0 and N̂ and

(3)
R

have no angular dependence. For a more general perturbation, (N̂, N̂ i, γ̂ij,
◦
Kij) would

enter as explicit terms in the resulting system for (κ,Kl
l,ki, ).

In this setting, (2.5)-(2.6) reduce to

Ln̂(K
l
l)− D̂l

kl − [κ− 1
2
(Kl

l) ] (K̂
l
l) = 0 , (4.43)

Ln̂ki + (Kl
l)
−1[κ D̂i(K

l
l)− 2klD̂ikl ] + (K̂ l

l)ki = 0, (4.44)

where κ, determined by (2.7), reduces to

κ = (2Kl
l)
−1[2kl

kl − 1
2
(Kl

l)
2 −(3)

R ] . (4.45)

It is easy to check that these equations hold for a Schwarzschild solution, for which
(3)
R = 8M2

r4(1+2H)2
, n̂i∂i =

1√
1+2H

∂r, ki = 0 and neither K
l
l nor κ have angular depen-

dence.
In spherical coordinates xi = (r, xA), xA = (θ, φ),

γ̂ijdx
idxj = r2qABdx

AdxB (4.46)

where qAB is the unit sphere metric. Then (4.43)-(4.44) become

1√
1 + 2H

∂rK
l
l − D̂B

kB − [κ− 1
2
(Kl

l) ] (K̂
l
l) = 0 , (4.47)

1√
1 + 2H

∂rkA + (Kl
l)
−1[κ ∂A(K

l
l)− 2kBD̂AkB ] + (K̂ l

l)kA = 0. (4.48)

Now consider nonlinear perturbations of Schwarzschild. We denote by δV =
V − VS the deviation of a variable V from its Schwarzschild value VS. Then (4.47)-
(4.48) take the form

1√
1 + 2H

∂rδK
l
l −

qBC

r2
∂CδkB = F1, (4.49)

1√
1 + 2H

∂rδkA +
κ

Kl
l

∂AδK
l
l −

2qBD
kD

r2Kl
l

∂AδkB = FA, (4.50)
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where F1 and FA represent lower differential order terms. This is a coupled quasilinear
system for the vector valued variable Uα = (u1, uA) = (δKl

l, δkA). The system (4.49)-
(4.50) has matrix form

∂τUα = Lα
βC∂CUβ + Fα, (4.51)

where ∂τ = (1 + 2H)−1/2∂r, Fα = (F1, FA) and

L1
1C = 0, L1

BC =
1

r2
qBC , (4.52)

LA
1C = − κ

Kl
l
δCA , LA

BC =
2

r2Kl
l
qBD

kDδ
C
A . (4.53)

The requirement that (4.51) is a strongly hyperbolic system [21, 22] is that there
exists a positive bilinear form Hβγ such that L(ω)βα = HβγLα

γCωC is symmetric for
each choice of ωC . It is straightforward to check that such a symmetrizer is given by

H11 = −K
l
l

κ

, H1A = 0, (4.54)

HA1 =
2kA

κ

, HAB = r2qAB. (4.55)

The positivity of the symmetrizer for perturbations of Schwarzschild,

Hαβv
αvβ = −K

l
l

κ

(v1)2 +
2

κ

kAv
1vA + r2qABv

AvB > 0, vα 6= 0, (4.56)

follows from the near Schwarzschild approximations

−K
l
l

κ

≈ 2(1 + 2H)

1 +H
,

kA

κ

≈ 0. (4.57)

Furthermore, the ωA independence of Hαβ implies that the system is symmetric hy-

perbolic as well as strongly hyperbolic.
Given near Schwarzschild data for (Kl

l,kA) on a surface SR surrounding a Schwarzschild
black hole, strong hyperbolicity is a sufficient condition for the system (4.47 )-(4.48)
to produce a unique solution of the constraint problem in some neighborhood of SR.
Furthermore, the problem is well-posed so that the solution depends continuously on
the data. For linearized perturbations the solution extends globally to r = 0.
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5 Future prospects

We have shown that the new treatment of the constraints proposed in [1] leads to
a well-posed constraint problem for nonlinear perturbations of a Schwarzschild black
hole in Kerr-Schild form. As is generally the case for nonlinear problems, the solution
is only guaranteed locally in a neighborhood of the outer surface SR on which the
data is prescribed. The issue of a global solution to the nonlinear problem is best
explored by numerical techniques for integrating the hyperbolic system inward along
the ρ-streamlines emanating from SR.

The well-posedness of this problem extends to perturbations representing a Kerr
black hole with small spin and boost. The question whether it extends further to
a Kerr black hole with maximal spin and arbitrary boost is more complicated. Its
resolution would depend, among other things, upon a judicious choice of the foliation
Sρ and the ρ-streamlines along which the evolution proceeds. This is akin to choosing
the lapse and shift for a timelike Cauchy evolution.

The ultimate utility of this new approach rests upon its extension to multiple
black holes. Formally, it can be applied to the multiple black hole problem using
a modification of the superimposed Kerr-Schild data proposed in [16, 17], which is
based upon the ansatz that the initial three metric for a binary black hole is given by

hij = δij + 2H [1]ℓi
[1]ℓj

[1] + 2H [2]ℓi
[2]ℓj

[2], (5.58)

where H [n] and ℓi
[n] correspond to the Kerr-Schild data for individual boosted, spin-

ning black holes. In [16, 17], the actual 3-metric data is only conformal to (5.58),
with the conformal factor chosen to satisfy the Hamiltonian constraint.

In our new approach to the constraints, it is possible to retain the superimposed
Kerr-Schild initial data in its strict 4-dimensional form

gab = ηab + 2H [1]ℓa
[1]ℓb

[1] + 2H [2]ℓa
[2]ℓb

[2], (5.59)

where ℓa[n] are null with respect to the background Minkowski metric. This determines
the initial lapse and shift as well as the initial 3-metric (5.58) for an evolution along the
ρ-streamlines. It is is an attractive strategy because it retains much of the algebraic
simplicity of the Kerr-Schild metric, e.g. ℓa[1] and ℓa

[2] satisfy the background geodesic
equation (3.9), H [1] and H [2] satisfy the background wave equation (3.11) and the
metric can be explicitly inverted, although in a more complicated form than (3.12).

Given the background metric (5.59), the Hamiltonian constraint can be imposed
to express the extrinsic curvature component κ algebraically in terms of K

l
l and

explicitly known terms via (2.7). The extrinsic curvature components
◦
Kij = Kij −
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1
2
γ̂ij K

l
l, can be freely prescribed, say, by superposition of their individual Kerr-Schild

values. Given a suitable foliation of the initial hypersurface Sρ and vector field ρi,
the remaining components of the extrinsic curvature data, K

l
l and ki, could then

be determined from the hyperbolic system (2.5)-(2.6) obtained from the momentum
constraint. The only data necessary are the values of Kl

l and ki on a large surface
SR surrounding the system. The surface data for K

l
l and ki could be prescribed

(again tentatively) by the superposition of their individual Kerr-Schild values.
A major concern in such a scheme is the effect of caustics, where the ingoing

ρ-streamines focus, or a crossover surface SX where these streamlines from opposing
points of SR meet. For a single black hole, the streamlines can be chosen so that
the caustics and crossovers are inside the apparent horizon, where the interior can be
excised. However, for binary black hole data, although the caustics can be arranged
to lie inside the black holes, the crossover surface SX will in general span the region
between them. In that case, unless SX can be chosen to be a surface of reflection
symmetry, as in the case of data for an axisymmetric head-on collision, the inward
evolution from SR may produce a discontinuity on SX , i.e. the data induced on SX

may not be single-valued.
Considerable numerical experimentation might be necessary to deal with this issue.

The following strategy, which puts the flexibility of symmetric hyperbolic systems to
use, is only schematic. Unlike the iterative global nature of elliptic solvers, hyperbolic
evolution proceeds locally along the ρ-streamlines and can be stopped freely. This
can be utilized to adjust the crossover surface, by numerical experimentation, so that
it minimizes the discontinuity on SX along each pair of intersecting ρ-streamlines.
Then any discontinuity of the solution on SX might be removed by averaging. Since
the hyperbolic evolution of the constraint system can also proceed in the outward
ρ-direction, a smooth solution, using this averaged data on SX can then be extended
outward to SR .

The simplicity of such a scheme for binary black hole initial data is extremely
attractive. Whether it can be successfully implemented is again a matter for numerical
study. If such studies were indeed successful they would lead to questions of the
utmost physical importance: Does the resulting binary black hole initial data suppress
junk radiation? Does it give better control over the orbital and spin parameters of
a binary system? The sole data needed on a single large surface in the asymptotic
region surrounding the system distinguishes this approach from other solutions to the
constraint problem which rely on elliptic equations. Whether this feature improves
the physical content and control of the initial data is again a matter for numerical
investigation.
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