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Many inflation models predict that primordial density perturbations have a nonzero three-point correlation
function, or bispectrum in Fourier space. Of the several possibilities for this bispectrum, the most comm-
mon is the local-model bispectrum, which can be described as a spatial modulation of the small-scale (large-
wavenumber) power spectrum by long-wavelength density fluctuations. While the local model predicts this
spatial modulation to be scale-independent, many variants have some scale-dependence. Here we note that this
scale dependence can be probed with measurements of frequency-spectrum distortions in the cosmic microwave
background (CMB), in particular highlighting Compton-y distortions. Dissipation of primordial perturbations
with wavenumbers 50 Mpc−1 . k . 104 Mpc−1 give rise to chemical-potential (µ) distortions, while those with
wavenumbers 1 Mpc−1 . k . 50 Mpc−1 give rise to Compton-y distortions. With local-model non-Gaussianity,
the distortions induced by this dissipation can be distinguished from those due to other sources via their cross-
correlation with the CMB temperature T . We show that the relative strengths of the µT and yT correlations
thus probe the scale-dependence of non-Gaussianity and estimate the magnitude of possible signals relative to
sensitivities of future experiments. We discuss the complementarity of these measurements with other probes
of squeezed-limit non-Gaussianity.

The prevailing paradigm for the origin of the primordial
density perturbations inferred from fluctuations in the cosmic
microwave background (CMB) and from large-scale galaxy
surveys is that they arose as quantum fluctuations during a
quasi-de-Sitter phase (“inflation”) of expansion in the early
Universe [1]. Inflation generally predicts a spectrum of pri-
mordial perturbations that is nearly, but not precisely, scale-
invariant, consistent with current measurements. It also gener-
ically predicts that these perturbations should be very close to,
but not precisely, Gaussian (i.e., have only small connected
correlations beyond the two-point correlation function). The
amplitude and detailed form of this non-Gaussianity varies
considerably between models and is usually specified in terms
of a three-point function, or “bispectrum” in Fourier space [2].

The local model bispectrum, which peaks in the squeezed
limit k2 ' k3 � k1 (where k1 ≤ k2 ≤ k3 are the three
Fourier modes being correlated) appears in a number of sim-
ple inflation models [3, 4] and has thus become a standard
workhorse. Local-model non-Gaussianity has been sought in
the CMB [4–7], in large-scale structure [8], and through the
scale-dependent biasing [9–12] it induces in galaxy clustering
at large scales.

It has also recently been shown [13, 14] that local-model
non-Gaussianity will induce spatial correlations between the
CMB temperature fluctuation and chemical-potential (µ) dis-
tortions as a function of position on the sky. These µ distor-
tions arise from dissipation of primordial perturbations with
wavenumbers 50 Mpc−1 . k . 104 Mpc−1 at redshifts z '
5 × 104 − 2 × 106 [15–17]. In the local model, the amplitude
of these small-scale perturbations is modulated by the long-
wavelength curvature perturbation that also gives rise to large-
angle temperature fluctuations, thus inducing a µT correlation
[13, 14]. These µT correlations therefore probe local-model
non-Gaussianity at wavenumbers 50 Mpc−1 . k . 104 Mpc−1

far smaller than those accessible with CMB temperature fluc-
tuations, galaxy surveys, or even future 21cm observations
[18].

Still, the local-model bispectrum is just one of an infinitude
of different types of bispectra. Large classes of bispectra have
arisen from different ideas for inflation [19–22], and no short-
age of phenomenological parametrizations have been consid-
ered.

In this paper we point out that the correlation of CMB
Compton-y distortions with the large-angle temperature fluc-
tuation can be used, in tandem with the µT correlation, to
probe different types of non-Gaussianity. Dissipation of pri-
mordial perturbations with wavenumbers1 1 Mpc−1 . k .
50 Mpc−1 gives rise to Compton-y distortions to the CMB
[16]. However, these spectral distortions have been largely
disregarded because they are not easily distinguished from
larger Compton-y signals from the intergalactic medium at
low redshifts. Non-Gaussianity may, however, induce a yT
correlation that could allow this dissipation-induced y distor-
tion to be isolated from late-time effects (e.g., [23, 24]) by
means of its angular dependence. But even without being able
to distinguish different contributions, one can still derive con-
servative upper limits using yT correlations. Since y and µ
distortions probe different wavenumbers, the relative strength
of the yT and µT distortions can be used to probe the scale
dependence of primordial non-Gaussianity, extending previ-
ous considerations of just the µT correlation [25].

Below, we first present a simple calculation, based upon
the configuration-space description (rather than the Fourier-

1 While modes with k . 1 Mpc−1 also damp and create a y-distortion, after
recombination the effective heating rate for these perturbations is much
lower than at smaller scales [16, 17].
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space description in prior work [13, 14]) of local-model non-
Gaussianity and the µT correlation. This calculation illus-
trates clearly that the µT correlation arises from large-scale
modulation of small-scale modes. The generalization to yT
correlations is thus clear. We then parametrize the type of non-
Gaussianity probed by the combination of µT and yT correla-
tions and estimate the sensitivity of future experiments. We
close by discussing the complementarity of these measure-
ments with other probes of squeezed-limit non-Gaussianity.

To begin, the average µ and y distortions induced, with
Gaussian initial conditions, by dissipation of primordial per-
turbations are given by

〈µ〉 ≈

∫
d log k ∆2

R(k)Wµ(k), (1a)

〈y〉 ≈
∫

d log k ∆2
R(k)Wy(k), (1b)

where ∆2
R

(k) is the primordial curvature power spectrum, and
Wµ(k) and Wy(k) define k-space window functions to account
for the acoustic-damping and thermalization physics. Al-
though more accurate expressions for the k-space window
functions have been discussed [17, 26, 27], here we will use
the simple approximations,

Wµ(k) ≈ 2.3
[
e−2k2/k2

D,µ − e−2k2/k2
D,µy

]
, (2a)

Wy(k) ≈ 0.4
[
e−2k2/k2

D,µy − e−2k2/k2
D,y

]
, (2b)

where kD(z) ' 4.1 × 10−6 (1 + z)3/2 Mpc−1 is the diffusion
damping scale at redshift z. This quantity is evaluated at the
initial and final redshifts at which µ and y distortions are pro-
duced, assuming that the transition between µ and y happens
abruptly at z ' 5 × 104 [28, 29]. Thus, kD,µ = kD(2 × 106) '
1.1 × 104 Mpc−1, kD,µy = kD(5 × 104) ' 46 Mpc−1, and
kD,y = kD(1090) ' 0.15 Mpc−1. Evaluating the expressions
in Eq. (1) using ∆2

R
(k) ' 2.4× 10−9 (k/0.002 Mpc−1)ns−1, with

ns ' 0.96 [30], yields 〈µ〉 ' 1.9 × 10−8 and 〈y〉 ' 4.2 × 10−9,
in good agreement with more detailed computations [16].

Since the angle subtended by a causal region at the surface
of last scatter is ∼ 1◦, we see in the CMB ∼ 40, 000 causally
disconnected Universes. If primordial perturbations are Gaus-
sian, then the amplitude ∆2

R
(ksmall) of primordial perturbations

on the small scales ksmall that induce spectral distortions will
be the same everywhere. If, however, there is local-model
non-Gaussianity, then the power spectrum ∆2

R
(ks, ~x) for small-

scale modes ks will differ from one causal patch centered at
position ~x to another. The fluctuation will moreover be corre-
lated with the long-wavelength curvature fluctuation R(~x).

This can be understood simply from the configuration-
space description of local-model non-Gaussianity. The local-
model curvature perturbation at position ~x is written,

R(~x) = r(~x) +
3
5

fnlr2(~x), (3)

in terms of a Gaussian random variable r(~x). We then write
R(~x) = RL(~x) + Rs(~x), where RL(~x) is the part of R(~x) that
comes from long-wavelength Fourier modes and Rs(~x) that

from short-wavelength Fourier modes, and similarly write
r(~x) = rL(~x) + rs(~x). By writing

RL + RS = rL + rs +
3
5

fnl

[
r2

L + 2rLrs + r2
s

]
, (4)

we infer that the small-scale curvature fluctuation in the pres-
ence of some fixed long-wavelength curvature fluctuation
RL(~x) is, to linear order in fnl,

Rs(~x) = rs(~x)
[
1 +

6
5

fnlRL(~x)
]
. (5)

Thus, the fractional change in small-scale power in a region
of a fixed long-wavelength curvature fluctuation is

δ
〈
R2

〉
〈
R2〉 ≈ 12

5
fnlRL(~x). (6)

We thus infer that, with local-model non-Gaussianity, the
(fractional) chemical-potential fluctuation in a given region
of the sky is given simply by the long-wavelength curvature
perturbation in that region at the surface of last scatter.

The same is true for the large-angle temperature
fluctuation—it is determined primarily by the curvature fluc-
tuation at the surface of last scatter and has magnitude
∆T/T ≈ R/5. Therefore, for multipole moments ` . 100 that
probe causally disconnected regions at the surface of last scat-
ter, the cross-correlation between the (fractional) chemical-
potential fluctuation ∆µ/µ ≈ δ

〈
R2

〉
/
〈
R2

〉
and the tempera-

ture fluctuation ∆T/T has a power spectrum,

CµT
`
≈ 12 fnlCTT

` . (7)

This easily obtained result agrees with Ref. [13], noting that
their CµT

`
is for the µ fluctuation, rather than the fractional µ

fluctuation. The µ autocorrelation caused by non-Gaussianity
is Cµµ

`
≈ 144 f 2

nlC
TT
` . Here we assumed that the trispectrum

contributions are negligible. As our derivation clarifies, the
µT correlation arises from the squeezed limit of the bispec-
trum, the part of the bispectrum that modulates small-scale
power. For completeness, we include the large-angle temper-
ature power spectrum,

CTT
` =

2π
25

∆2
R

`(` + 1)
'

6.0 × 10−10

`(` + 1)
. (8)

If the non-Gaussianity is scale-invariant, the yT and yy corre-
lations are the same as the µT and µµ correlations (all in terms
of ∆y/y and ∆µ/µ)

CyT
`
≈ 12 fnlCTT

` , Cyy
`
≈ 144 f 2

nlC
TT
` . (9)

If, however, the non-Gaussianity is scale-dependent (see,
e.g., Refs. [31–37]), then the value of fnl that describes cor-
relations between the long-wavelength (kL . 0.01 Mpc−1)
modes responsible for large-angle CMB temperature fluc-
tuations and short-wavelength modes (50 Mpc−1 . k .
104 Mpc−1) responsible for the µ distortion, may differ from
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the value of fnl that describes correlations between long-
wavelength modes and 1 Mpc−1 . k . 50 Mpc−1 modes re-
sponsible for the dissipation-induced y distortions.

We therefore parametrize the scale-dependent non-
Gaussianity in terms of a scale-dependent non-Gaussianity
parameter fnl(ks) defined by the squeezed-limit (ks ≡ k2 '

k3 � k1 ≡ kL) curvature bispectrum,

BR(k1, k2, k3) '
12
5

fnl(ks)PR(ks)PR(kL), (10)

defined from〈
R~k1
R~k2
R~k3

〉
≡ (2π)3δ(3)(~k1 + ~k2 + ~k3)BR(k1, k2, k3) (11)

for kL . 0.01 Mpc−1. We then define two parameters,
f y
nl ≡ fnl(ks ' 7 Mpc−1) and f µnl ≡ fnl(ks ' 740 Mpc−1)

to parametrize the non-Gaussianity on µ and y scales, re-
spectively. Here, the fnl parameter is evaluated roughly
at the log-midpoints of the y- and µ-distortion k intervals,
which defines the y- and µ-distortion pivot wavenumbers
ky ' 7 Mpc−1 and kµ ' 740 Mpc−1, respectively. Although
the scale-dependence of fnl is often modeled in the litera-
ture as a power law in wavenumber k, this parametrization
does not accommodate the possibility, which arises in curva-
ton and multi-field models [34, 38–40], that fnl may change
sign with scale. The above parametrization is therefore more
general. We note that the k1 ≡ kL � k2 ' k3 ≡ ks
bispectrum in Eq. (10) is the squeezed limit of the com-
mon bispectrum parametrization (e.g., [41]), BR(k1, k2, k3) =

(6/5)
[
fnl(k1)P(k2)P(k3) + perms

]
, of scale-dependent non-

Gaussianity. Our results are thus easily compared with many
other results on scale-dependent non-Gaussianity.

We estimate the detectability of the µT signal following
Ref. [13] assuming a noise power spectrum Cµ,n

`
' w−1

µ e`
2/`2

max

with w−1/2
µ ≈

√
4π (µmin/ 〈µ〉) and lmax ' 100. Note again that

ours is a power spectrum for ∆µ/µ, as opposed to the power
spectrum for µ in Ref. [13], where µmin is the smallest de-
tectable µ monopole, which is estimated to be µmin ' 10−8 for
PIXIE [42] and µmin ' 10−9 for PRISM [43]. We then obtain
the smallest detectable (at ∼ 1σ) µT correlation to arise for

f µnl ' 220
(
µmin

10−9

) (
〈µ〉

2 × 10−8

)−1

. (12)

Although the dissipation-induced average y distortion is ex-
pected to be ' 5 times smaller than the µ distortion (see es-
timate above), the experimental sensitivity to y is ' 5 − 10
times better [42, 44]. Assuming a PRISM detection limit of
ymin ' 2 × 10−10, we thus infer a comparable smallest non-
Gaussianity parameter,

f y
nl ' 220

( ymin

2 × 10−10

) (
〈y〉

4 × 10−9

)−1

, (13)

that will engender a detectable yT correlation. These esti-
mates are obtained assuming a roughly scale-invariant spec-
trum of primordial perturbations. If for some reason the small-
scale power-spectrum amplitude is increased in the y range

(1 Mpc−1 . k . 50 Mpc−1) or µ range (50 Mpc−1 . k .
104 Mpc−1), the smallest detectable f y

nl and f µnl, respectively,
will be decreased by a similar factor. In this case, the ho-
mogeneous values of y and µ will also be increased [17]. The
detection limits obtained from the µ and y autocorrelations are
typically a few times weaker, since in contrast to the temper-
ature cross-correlations noise dominates the µ distortion mea-
surements.

The µ and y spectral distortions in any given causal patch
at the surface of last scatter come from the dissipation of
small-scale modes within that patch. There is a finite num-
ber N ∼ (kλ)3 of such modes in this patch, where k is the
largest relevant wavenumber (104 Mpc−1 and 50 Mpc−1 for µ
and y distortions, respectively), and λ ∼ 100 Mpc the the size
of the causal patch at the surface of last scatter. There will
therefore be Poisson fluctuations of amplitude ∼ N−1/2 in the
value of the µ and y distortions in any such patch. The mean-
square fractional µ fluctuation in a patch of angular size θ will
thus be,(

∆µ

µ

)2

θ

=

∫
`d`
2π

C` |W` |
2 ∼ `2C`

∣∣∣
`∼θ−1 ∼

(
H0

kmaxθ

)3

,

where W` is the window function for a circle on the sky of
radius θ, and the last (approximate) equality is the Poisson-
fluctuation amplitude. We therefore infer fluctuations Cyy

`
∼

6 × 10−15 (`/100) and Cµµ
`
∼ 6 × 10−25 (`/100) well below

those from measurement noise.
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FIG. 1. The different k-space windows responsible for different ob-
servables. The CMB anisotropies are visible at k . 0.1 Mpc−1, where
the smale-scale cut-off is introduced by Silk damping. Compton-y-
distortions are formed by the damping of modes with 1 Mpc−1 .
k . 50 Mpc−1, while µ-distortions are created by modes with
50 Mpc−1 . k . 104 Mpc−1. Additional large-scale temperature
power can be created by modes at 104 Mpc−1 . k [45]. Those with
104 Mpc−1 . k . 105 Mpc−1 can be constrained using the primor-
dial helium abundance [46, 47], while modes with 105 Mpc−1 . k
are erased before neutrino decoupling and thus would only lead ad-
ditional large-scale temperature fluctuations.

Before the yT correlations considered here can be used to
probe or constrain primordial non-Gaussianity, it will be nec-
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essary to consider the cross-correlation of the Compton-y dis-
tortion from intergalactic gas in the late Universe with the
contribution to the large-angle temperature fluctuation from
the integrated Sachs-Wolfe effect. We anticipate that lensing
reconstruction can be used to separate out this late-time yT
correlation. We also anticipate that this contribution can be
distinguished by a different ` dependence.

An additional source of yT correlations could arise from
the damping of primordial magnetic fields [48]. In spite of
the large uncertainty in the amplitude of primordial magnetic
fields, the scale-dependence is again generally expected to dif-
fer from the one caused by non-Gaussianity. However, a more
detailed study is required.

The constraints to the squeezed-limit bispectrum from µT
and yT correlation considered here will be complemented on
the longer- and shorter-wavelength ends by other measure-
ments. Searches for non-Gaussianity in CMB fluctuations and
in galaxy surveys probe wavenumbers k . 0.1 Mpc−1. There
are other searches for the scale-dependent bias that arises
from non-Gaussianity [9–11]. These probe squeezed-limit
non-Gaussianity primarily on wavenumbers k . 1 Mpc−1 [12]
(those that are most important for determining the abundance
of the galaxies being correlated). Dissipation of acoustic
modes with wavelengths 104 Mpc−1 . k . 105 Mpc−1 pro-
duce entropy in the primordial plasma after BBN [46, 47].
The long-wavelength modulation induced by squeezed-limit
non-Gaussianity on these scales will then give rise to a small
isocurvature fluctuation correlated with the primordial adia-

batic perturbation [46]. Finally, modes with 104 Mpc−1 . k
can give rise to additional large-scale temperature fluctuations
caused by non-Gaussianity [45]. Depending on the sign of the
correlation, this could also produce a lack of power on large
scales (which could also affect the values of cosmological pa-
rameters inferred from these temperature fluctuations).

We find it interesting that there are thus now prospects
to probe the amplitude of squeezed-limit non-Gaussianity on
a continuum of distance scales from the largest (∼Gpc) ac-
cessible to those on scales nearly eight orders of magnitude
smaller, with CMB, large-scale structure, scale-dependent bi-
asing, yT correlations, µT correlations, and small-scale en-
tropy production. This complement of measurements will
thus allow the determination of the functional dependence of
fnl(ks), without necessarily assuming a specific parametriza-
tion (e.g., power-law) for its scale-dependence.
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