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We show that Solar System tests can place very strong constraints on K-mouflage models of
gravity, which are coupled scalar field models with nontrivial kinetic terms that screen the fifth
force in regions of large gravitational acceleration. In particular, the bounds on the anomalous
perihelion of the Moon imposes stringent restrictions on the K-mouflage Lagrangian density, which
can be met when the contributions of higher order operators in the static regime are sufficiently
small. The bound on the rate of change of the gravitational strength in the Solar System constrains
the coupling strength β to be smaller than 0.1. These two bounds impose tighter constraints than
the results from the Cassini satellite and Big Bang Nucleosynthesis. Despite the Solar System
restrictions, we show that it is possible to construct viable models with interesting cosmological
predictions. In particular, relative to Λ-CDM, such models predict percent level deviations for
the clustering of matter and the number density of dark matter haloes. This makes these models
predictive and testable by forthcoming observational missions.

PACS numbers: 98.80.-k, 04.50.Kd

I. INTRODUCTION

K-mouflage is one of the three types of screening mech-
anisms [1], together with chameleon and Vainshtein, for
scalar modifications of gravity with a conformal coupling
to matter [2]. Roughly speaking, these three mechanisms
can be distinguished by what triggers their implementa-
tion: K-mouflage operates in regions where the gravita-
tional acceleration is large enough; chameleons [3, 4] are
at play when the Newtonian potential is large; and Vain-
shtein [5] is active when the spatial curvature becomes
significant. For the cases of K-mouflage and Vainshtein,
Newtonian gravity can be preserved deep inside the so-
called K-mouflage or Vainshtein radii [6, 7], which are
defined as the distances from the center of a spherical
source within which the nonlinearities of the scalar field
Lagrangian become significant and, therefore, the screen-
ing effects come into play. These two mechanisms share
in common the fact that the screening efficiency (roughly
determined by the size of these radii) depends solely on
the properties of the gravitational source, as opposed to
chameleons, for which there is also a dependence on the
density of the environment where the sources live.

The existence of screening mechanisms, however, gives
only the models a chance to pass Solar System tests of
gravity [8]. In other words, it is still necessary to in-
vestigate further the conditions that make the screen-
ing mechanisms efficient enough to cope with the current
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observational bounds. For instance, even well within the
K-mouflage radius, the total force may still exhibit a non-
Newtonian component (i.e. a radial dependence that dif-
fers from 1/r2), which albeit small, could still be large
enough to induce detectable perturbations in the orbits
of planets and moons. Currently, Lunar Laser Ranging
experiments [9–12], constrain the anomalous perihelion
of the Moon at the 10−11 level, which can then be used
to constrain the K-mouflage Lagrangian density term,
K(χ) (cf. Eq. (3)). The function K(χ) is a nonlinear
function (to ensure screening) of the kinetic energy term
χ = −(∂ϕ)2/2M4, where ϕ is the K-mouflage scalar field
and M4 the dark energy scale. In this paper, we shall
use the anomalous perihelion of the Moon to determine
the constraints on the shape of K(χ) for static configu-
rations of ϕ. The static regime is that relevant for very
small scales like the Solar System [13], which in our met-
ric sign convention (see next section) implies χ < 0. In
this regime, we shall also make use of the bounds im-
posed by the Cassini satellite [14] on the magnitude of
fifth forces in the Solar System and check that we satisfy
the constraints provided by laboratory experiments.

On cosmological scales, the dynamics of ϕ become im-
portant, χ > 0, which broadens the range of tests that
can be used to constrain K-mouflage models. On the
one hand, in the Jordan frame, where matter couples
to gravity minimally, Newton’s constant becomes locally
time-dependent due to the cosmological evolution of the
scalar field [15]. We shall show that this can be used to
place constraints on the coupling strength β (cf. Eq. (7))
by using the results from the same Lunar Laser Ranging
experiment mentioned above, which currently constrains
the rate of change of the gravitational strength at the
10−12 yr−1 level [16]. On the other hand, the formation
of large scale structure is also affected by the K-mouflage
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field [17–19]. Although the precision of cosmological data
is not as good as that from local tests, one can still im-
pose some constraints by requiring that the cosmological
behavior should not differ too much from standard Λ-
CDM.

In this paper, we first identify the requirements on the
static (χ < 0) and dynamical (χ > 0) branches for K-
mouflage models to comply with the current data, and
then we attempt to design K(χ) functions that interpo-
late between these two branches in observationally and
theoretically viable manners. A main result of this pa-
per is that, although the small scale constraints do limit
significantly the functional forms allowed for K(χ), it
is nevertheless possible to construct functions that ex-
hibit percent level modifications on the growth of struc-
ture relative to Λ-CDM. This is mainly because on larger
scales the K-mouflage screening effect becomes less effi-
cient, which can have an impact on the nonlinear matter
power spectrum and halo mass functions, as we show us-
ing the results from semi-analytical models of structure
formation. The size of the differences to Λ-CDM are
within the ballpark of future observational missions such
as Euclid [20] or LSST [21], which makes these models
predictive and therefore testable.

The paper is organized as follows. In Sec. II, we intro-
duce K-mouflage models and we summarize their main
properties. In Sec. III, we focus on the small-scale regime
(χ < 0), which applies to Solar System scales, and where
we consider the constraints from the anomalous perihe-
lion of the Moon and the result from Cassini. We briefly
recall the main aspects of the cosmological evolution and
growth of large scale structure in K-mouflage models in
Sec. IV. In Sec. V, we analyse the connection between
the time dependence of the gravitational strength and
the cosmological evolution of ϕ. In Sec. VI we summa-
rize all the constraints and we build models that satisfy
them. Sec. VII is devoted to the analysis of the cosmo-
logical dynamics of both the background and the mat-
ter density perturbations in the models constructed in
Sec. VI. Finally, we conclude in Sec. VIII. We discuss
superluminality and causality issues in the appendix.

II. THE K-MOUFLAGE MODEL

Following previous works [13, 17–19], we consider
scalar field models where the action in the Einstein frame
has the form

S =

∫

d4x
√−g

[

M2
Pl

2
R+ Lϕ(ϕ)

]

+

∫

d4x
√

−g̃ L̃m(ψ̃
(i)
m , g̃µν), (1)

where g is the determinant of the Einstein frame metric

tensor gµν , and ψ̃
(i)
m are various matter fields defined in

the Jordan frame. This also defines the Einstein-frame
Newton’s constant as 8πG = M−2

Pl . The K-mouflage

scalar field ϕ is explicitly coupled to matter through the
Jordan-frame metric g̃µν , which is given by the conformal
rescaling

g̃µν = A2(ϕ) gµν , (2)

and g̃ is its determinant (here and throughout, quantities
with a tilde are defined in the Jordan frame). In this
paper, we consider models with a non-standard kinetic
term

Lϕ(ϕ) = M4K

(

X

M4

)

with X = −1

2
∂µϕ∂µϕ. (3)

We use the signature (−,+,+,+) for the metric. Here,
M4 is an energy scale of the order of the current energy
density of the Universe (i.e., set by the cosmological con-
stant), to recover the late-time accelerated expansion of
the Universe.

It is convenient to introduce the dimensionless kinetic
energy χ by,

χ =
X

M4
= − 1

2M4
∂µϕ∂µϕ. (4)

Then, as described in [17], the canonical behavior (i.e.,
K ∼ χ ∝ −(∂ϕ)2/2), with a cosmological constant ρΛ =
M4, is recovered at late time in the weak-χ limit if we
have:

χ→ 0 : K(χ) ≃ −1 + χ+ ..., (5)

where the dots stand for higher-order terms. We shall
impose this limit to all the models that we analyse. The
Klein-Gordon equation that governs the dynamics of the
scalar field ϕ is obtained from the variation of the action
(1) with respect to ϕ

1√−g∂µ
[√−g ∂µϕ K ′

]

− d lnA

dϕ
ρE = 0, (6)

which differs from the usual Klein-Gordon equation by
having an extra term due to the coupling of the scalar
field to matter, and where ρE = −gµνTµν is the Einstein-
frame matter density. A prime denotes partial differenti-
ation with respect to χ, e.g.K ′ = dK/dχ. For simplicity,
we assume that β = MPld lnA/dϕ is a constant, which
implies

A(ϕ) = eβϕ/MPl . (7)

The normalization of the first two terms in Eq.(5) only
defines the normalization of the constant M4 and of the
field ϕ (except for its sign), therefore it does not imply
any loss of generality. Similarly, the sign of β in Eq.(7)
can be absorbed in the sign of ϕ, therefore we can choose
β > 0 without any loss of generality.

For observationally interesting cases, we have |A−1| .
0.1 (see for instance [17–19] or the discussion in Sec. V).
Therefore, higher-order terms in lnA(ϕ) would only make
small quantitative changes with a negligible impact on
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our conclusions. Next, we shall first analyse the solutions
to the Klein-Gordon equation for spherically symmetric
static configurations. Then we investigate the solutions
in a cosmological setting, where the dynamics of ϕ be-
come important.

III. LOCAL DYNAMICS

In this section we study the model predictions for Solar
System scales, where we work in the Einstein frame. We
assume the fields are static, which is a valid approxima-
tion since we consider time scales that are much shorter
than the cosmological ones. In this case, Ā(ϕ̄), asso-
ciated with the slow running of the cosmological back-
ground, is approximately constant and the Einstein and
Jordan frames are equivalent. 1 To simplify notations
we drop the subscript “E” in this section and we denote
c the speed of light. One can split the scalar field as

ϕlocal(r, t) = ϕ̄(t) + ϕ(r), (8)

where ϕ̄ is the uniform value associated with the cosmo-
logical background and ϕ(r) is the perturbed component
on which we focus in this section. The cosmological back-
ground plays no role in this section, apart from setting
the value of the coupling factor β ≃ d ln Ā/dϕ̄.

A. Static case

For a source with density ρ, the static Klein-Gordon
equation becomes (see [13] for details)

∇r · (∇rϕ K
′) =

βρ

c2MPl
, (9)

with χ = −c2(∇rϕ)
2/(2M4), from which one can obtain

a first order algebraic equation for ∇rϕ

∇rϕ K
′ =

2βMPl

c2
(∇rΨN +∇r × ~ω), (10)

where ΨN is the Newtonian potential, given by the usual
Poisson equation

∇2
r
ΨN = 4πGρ, (11)

and ~ω is a divergence-free potential vector (which must
be determined alongside with ϕ).

The right-hand side of the Poisson equation also in-
volves the fluctuations of the scalar field energy density
δρϕ, but as shown in Ref. [13], this would only introduce

1 In Sec. V, we shall relax the static approximation when we study
the slow time variation of Newton’s gravitational strength in the
Jordan frame.

negligible effects compared to the fluctuations of the mat-
ter density.

The spatial fluctuations of the coupling function A(ϕ)
can also be neglected in most cases (see [13, 18] and
Eq. (54) below), except in the Euler equation or the
geodesic equation Eq. (19) below, which involve the gra-
dient of A(ϕ) that gives rise to the fifth force associated
with the scalar field gradient. In a similar fashion, we
work in the weak gravitational field and non-relativistic
limit, so that the metric fluctuations ΨN only appear in
the Euler equation or the geodesic equation (19) below
through the gradient ∇rΨN. For the spherical config-
urations we consider here, ~ω = 0, which allows one to
analyse the dynamics of the system and the scalar force
due to ϕ in a more straightforward manner.

The fifth force generated by the K-mouflage field is
given by [13]

Fϕ ≡ − βc2

MPl
∇rϕ = −2β2

K ′
∇rΨN. (12)

The K-mouflage screening mechanism relies on the fact
that, in the nonlinear regime, i.e. deep inside the K-
mouflage radius, the factor K ′ becomes large, which sup-
presses the fifth force relative to the Newtonian one,
FN = −∇rΨN (note that |Fϕ| ∼ |FN/K

′|). The im-
plementation of the screening can be illustrated in a few
steps (see also [13]). For a spherical matter distribution
ρ(r) with mass profile

M(r) =

∫ r

0

dr′ 4πr′2 ρ(r′), (13)

the Klein-Gordon equation (10) can be written as

dϕ

dr
K ′ =

βM(r)

c2MPl4πr2
, with χ = − c2

2M4

(

dϕ

dr

)2

. (14)

We define the “K-mouflage screening radius” RK by [13,
18]

RK =

(

βM

4πcMPlM2

)1/2

, (15)

whereM =M(R) is the total mass of the object of radius
R. Then, by introducing the rescaled dimensionless vari-
ables x = r/RK , m(x) =M(r)/M and φ(x) = ϕ(r)/ϕK ,
with

ϕK = M2RK/c, (16)

the integrated Klein-Gordon equation (14) becomes

dφ

dx
K ′ =

m(x)

x2
, with χ = −1

2

(

dφ

dx

)2

, (17)

which can also be written as

√

−2χK ′(χ) =
m(x)

x2
. (18)
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A unique solution of the Klein-Gordon equation is al-
ways guaranteed when

√−2χK ′(χ) is a monotonic de-
creasing function over χ < 0, which grows up to +∞
as χ → −∞. This is assumed in the following 2 and it
implies K ′ +2χK ′′ > 0. A test particle outside the mat-
ter distribution evolves according to the non-relativistic
equation of motion

d2r

dt2
= −∇rΨN − βc2

MPl
∇rϕ, (19)

which becomes the same as in standard gravity, provided
one interprets the equation with a total potential that is
the sum of the fifth force one δΨ

δΨ =
βc2

MPl
ϕ, (20)

with the Newtonian potential ΨN. For a spherical body
we can consider radial trajectories and the scalar field
gradient is given by Eq. (17)

dϕ

dr
=
ϕK
RK

m(x)

x2K ′
. (21)

Outside the spherical body we have m(x) = 1 and we
obtain the equation of motion

d2r

dt2
= −GM

r2

(

1 +
2β2

K ′(χ(r))

)

. (22)

This equation shows that the standard gravitational law
acquires extra terms proportional to β2/K ′. This can be
captured by defining an effective gravitational strength

Geff(r) =

(

1 +
2β2

K ′(χ(r))

)

G (23)

which depends on the distance from the central object.
As the test particle gets deeper inside the K-mouflage
radius, then m/x2 ≫ 1 and K ′(χ(r)) becomes larger.
If K ′(χ(r)) becomes large enough, then the correction
term in Eq. (23) becomes negligible and Newton’s law
is retrieved. Next, we investigate the conditions for this
correction to be small enough to evade the constraints
on the anomalous perihelion of the Moon set by Lunar
Laser Ranging experiments [22].

B. Perihelion constraints

1. Constraint on the kinetic function

The explicit dependence on r of the correction to New-
ton’s law implies that orbits are perturbed and in par-
ticular that there is an anomalous perihelion for objects

2 See [13] for a more detailed study of this case, and the relaxation
of the scalar field to its equilibrium state, as well as a discussion
of badly-behaved cases where there are no well-defined static
profiles, i.e. when

√
−2χK ′(χ) is not a monotonic function that

decreases from +∞ to zero, as χ varies from −∞ to zero.

like the Moon orbiting around the Earth. The perihelion
angular advance is given by

δθ = πr
d

dr

[

r2
d

dr

(ε

r

)

]

, (24)

where ε is the ratio between the fifth-force and Newtonian
potentials

ε =
δΨ

ΨN
=

βc2ϕ

MPlΨN
= − βc2rϕ

MPlGM
, (25)

and where we have used ΨN = −GM/r. This gives ex-
plicitly

ε

r
= − βc2ϕ

MPlGM
, (26)

and, using Eq. (14), one gets the variation

d

dr

(ε

r

)

= − 2β2

K ′r2
. (27)

This implies that the anomalous perihelion is given by

δθ = πr
d

dr

[−2β2

K ′

]

= 2π
β2

K ′2
xK ′′ dχ

dx
, (28)

where, recall, x = r/RK . Using the fact that, outside the
spherical source the Klein-Gordon equation (18) yields

√

−2χK ′(χ) =
1

x2
=

(

RK
r

)2

, (29)

then, its derivative with respect to χ gives the spatial
variation of χ as

dx

dχ
= − x

4χ

c2s
c2
, (30)

where we have defined the speed of scalar spherical waves
around the massive object [13]

c2s =
K ′ + 2χK ′′

K ′
c2 > c2. (31)

This yields our final result for the anomalous perihelion
advance

δθ = −8π
β2

K ′

χK ′′

K ′

c2

c2s
, (32)

as expressed solely in terms of χ and of the Lagrangian
function K and its derivatives. This expression contains
the factor β2/K ′, which, as we have seen in Eq. (23) con-
trols the amplitude of the fifth force. The Cassini satellite
results constrain this amplitude in the Solar System in

such a way that 2β2

K′
< 10−5 [14]. On the other hand, the

Lunar Ranging experiment implies for the Earth-Moon
system that |δθ| ≤ 2 × 10−11. Thus, the Lunar Ranging
constraint is much stronger than the Cassini bound and
will prove to be the main source of constraints on the
form of K(χ) on the static branch χ < 0 (cf. Sec. VI
below). The only sensible way of complying with this
bound is to reduce χK ′′/K ′ in the static case, which also
gives cs ≃ c. This can be achieved by suppressing the
contribution of the nonlinear terms in K(χ) when χ < 0.
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2. Constraint on the running of the coupling β

Throughout this paper, we focus on the case of a con-
stant coupling strength β, which corresponds to the ex-
ponential coupling function (7). However, we may also
consider more general coupling functions where β would
now depend on time and space through the variations
of the scalar field ϕ. This would not change our results
for the kinetic function K(χ) and the typical amplitude
of the coupling β, because |ϕ/MPl| (which goes to zero
at high redshift) does not grow beyond 0.5 for observa-
tionally interesting models, as seen in Eqs.(48) and (54)
below. Hence the variations of β are small in realistic
models.

On the other hand, we can investigate whether the
very small bound on the anomalous perihelion, |δθ| ≤
2×10−11, provides interesting constraints on the possible
amount of running of β. For a general coupling function
A(ϕ) the fifth-force potential reads as δΨ = c2 ln(A/Ā)
and the perihelion advance (24) gives

δθ = πr
d

dr

[

−r
2c2

GM
β

MPl

dϕ

dr

]

, (33)

where we used again ΨN = −GM/r. If β depends on
space, the Klein-Gordon equation (9) cannot be exactly
integrated as in Eq.(14). However, the fluctuations of β
can be neglected at first order, hence we can still approx-
imate dϕ/dr by Eq.(14). This yields

δθ = πr
d

dr

[

−2β2

K ′

]

= −4π
β

K ′
r
dβ

dr
+2π

β2

K ′2
r
dK ′

dr
. (34)

The second term is the one that was already obtained in
Eq.(28) for constant β. Focusing on the first term and
using again Eq.(14), we obtain the contribution to the
anomalous perihelion due to spatial variation of β as

δθ = 8π
ΨN

c2
β2β′

K ′2
. (35)

Here we defined

β =MPl
d lnA

dϕ
, β′ =MPl

dβ

dϕ
=M2

Pl

d2 lnA

dϕ2
, (36)

the dimensionless derivative of the coupling with respect
to ϕ/MPl. We shall see in Sec. VI C that, because of
the small prefactor ΨN/c

2, the bound on the perihelion
advance only gives a very loose bound on the derivative
β′, which does not provide useful information on the cou-
pling function A(ϕ). This is consistent with the fact that
fluctuations of the scalar field ϕ and of A can be neglected
in most places, except as the source of the fifth force that
explicitly involves the gradient of A.

C. Laboratory tests

Measurements of the orbits of planets in the Solar
System constrain the deviations from General Relativ-
ity, through Eq.(23) or Eq.(32). In addition, laboratory

experiments, such as the ones using atom interferometry
and measuring the acceleration induced by a test mass
of a few grams over distances of a few centimeters, also
constrain the amplitude of the fifth force in Eq. (23) to
a 10−4 accuracy [23, 24]. Thus laboratory experiments
place constraints on 2β2/K ′ in the static case, but in
an even more non-linear regime than the Cassini space-
craft or the Lunar Ranging experiment. Indeed, labora-
tories on the surface of the Earth are further inside the
K-mouflage radius of the Earth than the Moon.

IV. COSMOLOGY

Before analysing the constraints on K-mouflage mod-
els obtained from regimes where the dynamics of ϕ are
important (χ > 0), we first briefly recap the equations
relevant for the cosmological evolution of the background
and of linear perturbations. For further details, we refer
the reader to [17] for a study of the background expansion
history, to [18] for a study of large scale structure forma-
tion and to [19] for a study of the model predictions for
the Cosmic Microwave Background (CMB) temperature
and lensing potential power spectra.

A. Background

Considering only spatially-flat Universes, the Einstein
equations lead to the usual Friedmann equations [17],

3M2
PlH

2 = ρ̄E + ρ̄ϕ, (37)

−2M2
PlḢ = ρ̄E + ρ̄ϕ + p̄ϕ (38)

where ρE , ρϕ and pϕ, are, respectively, the matter and
scalar field energy densities and pressure in the Einstein
frame:

ρ̄ϕ = −M4K̄ + ˙̄ϕ2 K̄ ′, p̄ϕ = M4K̄. (39)

The overbar denotes uniform background quantities, and
the dimensionless field χ (Eq. (4)) simplifies as

χ̄ =
˙̄ϕ2

2M4
. (40)

It is convenient to introduce the rescaled matter density
ρ,

ρ = A−1ρE , (41)

which satisfies the standard conservation equation. The
Klein-Gordon Eq. (6) is now given by

d

dt

(

a3 ˙̄ϕK̄ ′
)

= −dĀ

dϕ̄
ρ̄ a3. (42)

We can also define an effective scalar field energy density

ρeffϕ = ρϕ + [A(ϕ)− 1]ρ, (43)
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which satisfies the standard conservation equation (the
pressure pϕ is not modified [17])

˙̄ρeffϕ = −3H(ρ̄effϕ + p̄ϕ). (44)

Under these definitions, the Friedmann equations (37)-
(38) become

3M2
PlH

2 = ρ̄+ ρ̄effϕ , (45)

−2M2
PlḢ = ρ̄+ ρ̄effϕ + p̄ϕ. (46)

We define also the time-dependent cosmological parame-
ters

Ωm =
ρ̄

ρ̄+ ρ̄effϕ
, Ωeff

ϕ =
ρ̄effϕ

ρ̄+ ρ̄effϕ
, weff

ϕ =
p̄ϕ
ρ̄effϕ

. (47)

At early times, we have ϕ̄→ 0 and A(ϕ) is normalized
by A(0) = 1 [17]. For observationally interesting mod-
els, we have A ∼ 1 (|A − 1| . 0.1) until today [17, 19]
(see also the discussion on the constraints from Big Bang
Nucleosynthesis (BBN) below). From Eq. (42), one can
then write

˙̄ϕ ∼ − βρ̄t

MPlK̄ ′
,

βϕ̄

MPl
∼ − β2

K̄ ′
. (48)

B. Linear Perturbations

On large scales, the evolution modes, D±(η), of small
linear density fluctuations satisfy the equation [18]

d2D

dη2
+

(

1− 3weff
ϕ Ωeff

ϕ

2
+ ǫ2

)

dD

dη
− 3

2
Ωm(1 + ǫ1)D = 0,

(49)
where η = ln a is the number of e-foldings. The functions
ǫ1 and ǫ2 are time-dependent only and they are given by

|ǫ1| =
∣

∣

∣

∣

Ā− 1 +
2Āβ2

K̄ ′

∣

∣

∣

∣

∼
∣

∣

∣

∣

β2

K̄ ′

∣

∣

∣

∣

, (50)

and

ǫ2 =
d ln Ā

dη
=

β

MPl

dϕ̄

dη
∼ − β2

K̄ ′
. (51)

In Eq. (50) the sign of ǫ1 cannot be determined a priori

because the terms (Ā − 1) ≃ βϕ̄/MPl and 2Āβ2/K̄ ′ are
typically of opposite signs and of the same order. In
Eq. (49), ǫ1 mimics the effects of a modified Newton’s
gravitational strength on the linear growth of structure,
while ǫ2 appears as a friction term. Both these terms are
of order β2/K̄ ′, just like the case of ϕ̄ in Eq. (48).

The reader might note that whereas in the cosmologi-
cal linear equation (49) Newton’s gravitational strength
appears to be amplified by a factor (1+ ǫ1), in the static
case (23) we found a factor (1 + 2β2/K ′) and in Eq.(52)
below we have a slow drift given by A2. These differences

come from the fact that they apply to different regimes,
which also involve different sets of approximations. This
explicitly shows that modifications of gravity, as defined
from the Lagrangian of the theory, can have subtle effects
that are not captured by a unique rescaling of Newton’s
gravitational strength.

More precisely, the linear evolution equation (49) ap-
plies to the cosmological density field in the Einstein
frame, where the energy-momentum tensor is not con-
served because of the time-dependent conformal map-
ping (2) to the Jordan frame that defines the matter
Lagrangian. This slow drift between the Einstein and
Jordan frames gives rise to the factors Ā in Eqs.(50)
and (51). In contrast, the static equation (23) applies
to small-scale systems over time scales that are short as
compared with the Hubble time, so that the cosmologi-
cal variation of Ā and the expansion of the Universe can
be neglected. Then, non-conservation terms of the form
ρd ln Ā/dt can be neglected and there is no difference
between the Einstein- and Jordan-frame density fields
[thus, with Ā ≡ 1 Eq.(51) gives ǫ2 = 0 and Eq.(50) gives
back ǫ1 = 1 + 2β2/K̄ ′, as in Eq.(23), except that K̄ ′ is
the cosmological background value of the kinetic func-
tion whereas in Eq.(23) it is the local perturbed value
associated with the compact object]. Finally, Eq.(52)
gives the cosmological drift of Newton’s coupling in the
Jordan frame, as opposed to the Einstein-frame evolu-
tion equation (49) (where by definition Newton’s cou-
pling is indeed constant) and to the static equation (23)
(where cosmological drifts are neglected as compared
with the system time-scale, such as the orbital period
of the planet). Thus, these differences come from the
fact that we consider different time and length scales,
and different frames.

V. TIME VARIATION OF G

In Sec. III, we have neglected the effects of the cosmo-
logical evolution on the predictions for the Solar System,
since we considered timescales that are much shorter than
the Hubble scale. However, in K-mouflage models, the
conformal mapping of Eq. (2) implies that in the Jor-
dan frame, where matter couples minimally, Newton’s
gravitational strength, G̃, should be time-varying. This
can be understood as follows. Let us consider the con-
formal transformation from the Einstein to the Jordan
frame. Since, the Ricci scalar and

√−g transform, re-

spectively, as R = A2R̃ + ..., (where the dots stand for
additional terms associated with derivatives of A), and√−g = A−4

√−g̃, then one has G̃ = A2G = A2/8πM2
Pl.

That is, G̃ becomes time-varying due to the background
evolution of Ā(ϕ̄). This time variation of Newton’s gravi-
tational strength in the Jordan frame can be constrained
in two ways: (a) through the comparison between the

local value of G̃ and that at the time of BBN, and (b)
through the impact on the trajectories of planets and
moons in the Solar System.
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Starting with the BBN case, a value of Newton’s con-
stant which would be different during BBN compared to
the one inferred from local measurements would be tan-
tamount to a change in the Hubble rate and therefore
would lead to a discrepancy in the formation of the ele-
ments. Such a change cannot exceed about ten percent
[25, 26]. In the Jordan frame we have

G̃ = A2(ϕ)G ≈
(

1 +
2βϕ

MPl

)

G, (52)

which implies the bound

β

MPl
|ϕ̄BBN − ϕlocal| . 0.05. (53)

At the time of BBN, we have ϕ̄BBN = ϕ̄(z ∼ 1010) ≃ 0.
The local value of the scalar field is given by Eq.(8). In
Sec. III, we neglected the contribution from the back-
ground part, ϕ̄, since we were interested only in the ad-
ditional r-dependence in the force law. Here, however,
we should take it into account, and from Eq. (48) we
have βϕ̄/MPl ∼ β2/K̄ ′ ∼ β2 (because K̄ ′ ≃ 1 at low
redshifts). From Eq. (12), we have that the perturbed
part of the scalar field, ϕ(r), is of order βϕ(r)/MPl ∼
β2ΨN/K

′c2 ≪ β2, because K ′ ≫ 1 in the Solar Sys-
tem (see Sec. VI A below) and ΨN/c

2 ≪ 1 (in the Solar
System we have ΨN/c

2 ∼ 10−6). Altogether we have

|ϕ(r)| ≪ |ϕ̄(t)| and A(ϕlocal) ≃ Ā, (54)

and Eq. (53) implies

β2 . 0.05. (55)

A second type of constraint on the rate of change of the
gravitational strength comes from the change with time
of the trajectories of planets and moons. This has been
monitored by the Lunar Laser Ranging experiments for
the Earth-Moon system [16]. Recalling that G̃ ≃ Ā2G,
then its rate of change is given by

d ln G̃
dt̃

=
2ǫ2

1 + ǫ2
H̃ ≈ 2ǫ2H̃, (56)

where H̃ and t̃ are the Hubble rate and the time in the
Jordan frame (which are related to the Einstein-frame

ones by H̃ = H(1 + ǫ2)/Ā and dt̃ = Ādt), and we have
used Eq. (51). Hence we find a direct link between the
behaviour of cosmological density perturbations and the
Lunar Ranging constraint. The current bound gives that
|d ln G̃/dt̃|now . 10−12 yr−1 [16]. In particular, taking as
a reference value h = 0.67 (althought this value is not
critical for the conclusions) we find that the constraint
on ǫ2 reads

|ǫ2|now . 7.3× 10−3. (57)

From Eq. (51) we can see that this gives a constraint
on the ratio β2/K̄ ′ today. In fact, this is a strong con-
straint on the coupling β of the K-mouflage field to mat-
ter, which is independent of the details of the kinetic

function K(χ). At late times, χ̄ goes to zero, and we
typically have χ̄ ≪ 1 today, as well as, K ′ ≃ 1, from
Eq. (5). Therefore, we find

β . 10−1, (58)

which is a tighter bound than the BBN constraint of
Eq. (55).

In the Einstein frame, the variation of G with time
is replaced by a variation of the masses of fundamental
particles as mψ = Ām0

ψ where m0
ψ is the mass in the

Jordan frame. In particular, we can see that the ratio
mψ/MPl of fundamental particle masses over the Planck
scale is frame-invariant. For bound states such as the
protons, and as long as the QCD phase transition can be
modelled in the Jordan frame where no coupling of gluons
to the scalar field is present, the masses in the Einstein
frame are still proportional to Ā. This guarantees that
the proton to electron mass ratio mp/me is independent
of time and no constraint on K-mouflage can be drawn
from the bounds on the variations of mp/me from quasar
absorption lines.

From Eqs. (50) and (51), ones notes that ǫ1 and ǫ2
are of the same order. Consequently, the bound that Lu-
nar Ranging tests place on ǫ2, translates also into similar
bounds to ǫ1, which highlights an interesting connection
between Solar System constraints and the growth of stru-
cuture on cosmological scales. In particular, from the
above bounds one expects deviations from standard Λ-
CDM to be of the order of a few percent [18, 19]. On the
other hand, the Lunar Ranging test does not constraint
the past behaviour of the model, when χ̄ deviates from
zero. Therefore one must still investigate the cosmolog-
ical impact of the functional form of K(χ) when χ & 1.
This shall be done in part of the discussion of the next
section.

VI. CONSTRAINING THE MODELS

In this section, we summarise the constraints on K-
mouflage models discussed above and also other stability
conditions presented previously in the literature [13, 17,
18] We also build models that satisfy them.

A. Combined Constraints

The cosmological regime corresponds to χ > 0, with
χ→ +∞ at early times and χ→ 0 at late times. To avoid
ghosts we must have K ′ > 0 and K ′ + 2χK ′′ > 0 [17],
as fluctuations δϕ around the cosmological background
ϕ̄ propagate with a speed c̄s given by

c̄2s =
K̄ ′

K̄ ′ + 2χ̄K̄ ′′
c2 < c2. (59)

This is formally the inverse of Eq.(31), but in Eq.(59)
χ = χ̄ > 0 is the homogeneous time-dependent cos-
mological background, whereas in Eq.(59) χ < 0 is the
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small-scale static solution. The function
√
χK ′(χ) must

also increase monotonically up to +∞, so that we have
a well-defined cosmological behavior up to high redshifts
[13, 17], which again implies K ′ + 2χK ′′ > 0. Requiring
that the dark energy component becomes negligible with
respect to the matter density at early times implies that
K(χ) grows faster than χ (e.g., as a power law χm with
m > 1, see Ref. [17]). The marginal case, where ρ̄ϕ grows
as 1/t2 in the early matter era (like the matter density)
but is a small fraction of the matter density, corresponds
to a constant K̄ ′ with K̄ ′ ≫ 1. Moreover, one can also
impose that the growth of large scale structures should
not differ too much from Λ-CDM. A reasonable maxi-
mum deviation can be placed at the few percent level
today, which leads to the bound β2/K̄ ′ . 10−2, from
Eqs. (50)-(51). This requires β2 . 10−2 because K̄ ′ ≃ 1
today. This bound also ensures that the BBN constraint,
Eq. (55), is satisfied. Therefore, the cosmological con-
straints are:

cosmological constraints: semi-axis χ > 0,

K ′ > 0, K ′ + 2χK ′′ > 0, (60)

√
χK ′(χ) → +∞ for χ→ +∞, (61)

K ′ ≫ 1 for χ≫ 1, β . 0.1. (62)

The small-scale static regime corresponds to χ < 0.
To avoid singular behaviors and to ensure well-defined
solutions for any matter density profiles, we must have
K ′ > 0 and

√−χK ′(χ) monotonic and unbounded over
χ < 0 [13] [recall also the discussion about Eq. (18)].
This latter condition also implies K ′ + 2χK ′′ > 0 and
ensures that the c2s > 0, where cs given in Eq.(31) is the
propagation speed around a static background. Thus, we
have the very general small-scale conditions:

small-scale constraints: semi-axis χ < 0,

K ′ > 0, K ′ + 2χK ′′ > 0, (63)

√−χK ′(χ) → +∞ for χ→ −∞. (64)

Note that instead of
√−χK ′(χ) → +∞ at infinity it may

be sufficient to go to infinity at a finite negative value of
χ. In addition, the Solar System dynamics corresponds to
χ < −χ∗, as we are far in the nonlinear regime, where we
denote by (−χ∗) the transition between the linear regime,
where K ′ ≃ 1 and the kinetic function is governed by the
first two terms of the expansion (5), and the nonlinear
regime where K ′ ≫ 1:

small-scale highly nonlinear regime: χ < −χ∗,

with − χ∗ < 0 and K ′(−χ∗) ≫ 1. (65)

The Cassini bound on the amplitude of fifth forces in
the Solar System implies that the scalar field should be
sufficiently screened locally. From Eq. (23) this requires
that

Solar System screening:
β2

K ′
≤ 10−5 for χ ∼ χs.s.

(66)
where K ′ must be evaluated at values χs.s. that corre-
spond to the Solar System regime, that is, at distances
of order one a.u. from the Sun. This is well within the
K-mouflage radius of the Sun itself, which means that
χs.s. < −χ∗ and large values of K ′ in this regime are
consistent with the requirement K ′(0) = 1. More pre-
cisely, using that M4 ∼ ρ̄de0 is roughly the mean dark
energy density today, then we obtain from Eq. (15) that
the K-mouflage radius of an object of mass M is given
by

RK(M) ≃
√

βM

M⊙

3470 a.u.. (67)

Thus, for β ∼ 0.1, the K-mouflage radius of the Sun is
RK(M⊙) ∼ 1097 a.u., which is much larger than the size
of the orbits of all Solar System major bodies (Neptune
and Pluto being at about 30 and 40 a.u.). Moreover, the
integrated Klein-Gordon equation (29) gives for the Solar
System regime:

√−χs.s.K
′
s.s. ∼ 106. (68)

In practice, the constraint (66) means that we require

K ′ ≫ 1 for χ≪ −χ∗, (69)

which automatically ensures that the general conditions
(64) are satisfied. Alternatively, one could also have
very small values of the coupling parameter β, but this
would yield a cosmology virtually indistinguishable from
Λ-CDM, rendering the K-mouflage scenario less interest-
ing. In particular, if we assume β ∼ 0.1, so that devi-
ations from the Λ-CDM cosmology are not completely
negligible, we require K ′ > 103 for χ≪ −χ∗.

From the constraints on the anomalous perihelion of
the Moon, Eq. (32), we have

Moon perihelion:
β2

K ′

|χK ′′|
K ′ + 2χK ′′

≤ 8× 10−13

for χ ∼ χm.e., (70)

where χm.e. corresponds to the Earth-Moon system. The
K-mouflage radius of the Earth is about 2 a.u., and
the distance between the Earth and the Moon is d ≃
2.6 × 10−3 a.u., which gives [RK(M⊕)/d]

2 ∼ 0.6 × 106.
Therefore, the Sun and the Earth have about the same
impact on the scalar field configuration at the location
of the Moon. In practice, this means that the value of χ
associated with the perihelion constraint is roughly the
same as that associated with the Cassini bound (66):

χm.e. ∼ χs.s.. (71)
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In other words, the constraints of Eqs. (66) and (70) ap-
ply both to the regime set by Eq. (68).

Laboratory experiments give a constraint on the New-
tonian force of order 10−4, which means from Eq.(23)
that we have

laboratory:
β2

K ′
≤ 10−4 for χ ∼ χlab. (72)

In this case, the screening is induced by the gravitational
field of the Earth. Since RK(M⊕) ≃ 2 a.u., we have at
the surface of the Earth [RK(M⊕)/R⊕]

2 ∼ 2 × 109, and
Eq.(29) gives

√−χlabK
′
lab ∼ 109. (73)

This means that laboratory experiments constrain the K-
mouflage model much further into the nonlinear regime
than the Cassini or Lunar Ranging probes, with typically
|χlab| ≫ |χs.s.|. As described in Sec. VII A below, as
explicit models that pass all constraints we shall consider
simple models where K ′ converges to a large constant
value K∗ in the nonlinear regime |χ| ≫ χ∗. Then, the
constraint (72) on K ′ is less stringent but close to the
Solar System one (66).

Finally, the Lunar Laser Ranging constraint on the
local rate of change of Newton’s gravitational strength,
Eq. (58), implies

bound on the time-dependence of G̃ : β ≤ 0.1. (74)

B. Possible kinetic functions

From Eqs. (62) and (74), we note that the cosmological
and local (Earth-Moon system) constraints on the cou-
pling parameter happen to be of the same order, β . 0.1.
In terms of the kinetic function K(χ), the cosmological
and small-scale constraints apply to different branches,
χ > 0 and χ < 0, respectively. Therefore, there seems
to remain some freedom in the choice of the function K.
The main requirements are that K ′ should be large in
both limits χ → ±∞, which ensures screening in both
the early-time cosmology and the small-scale dynamics.
However, in addition to this, we also have that in the
small-scale regime, around χs.s. < 0, the kinetic func-
tion is very strongly constrained by the perihelion bound,
Eq. (70).

In order for the function K(χ) to satisfy the above re-
quirements, one cannot avoid some degree of fine-tuning.
A simple way to see this is to note that power-law behav-
iors cannot easily match the constraints. For instance,
the Solar System regime, Eq. (68), requires a large de-
gree of nonlinearity for K(χ), far away from the low-
order expansion of Eq. 5 which would give K ′ ∼ 1 and
(−χs.s.) ∼ 1012 from Eq. (68), and would fail to sat-
isfy the screening criterion, Eq. (66). This suggests that
(−χs.s.) ≫ 1 is far in the nonlinear regime of the function
K(χ), where K ′ is also much greater than unity. How-
ever, this is not sufficient to satisfy the perihelion con-
straint, Eq. (70). Thus, considering a power-law behavior

K ′(χ) ∼ (−χ)m, with m > 0, we have |χK ′′| ∼ K ′. The
perihelion constraint, Eq. (70), is much stronger than the
Cassini constraint, Eq. (66), and we obtain for β ∼ 0.1
the lower bound K ′ > 1010. Then, Eq. (68) would actu-
ally imply (−χs.s.) < 10−8. Therefore, such a power-law
regime would need to occur very close to the origin, with
K ′ going from 1 to 1010 as χ goes from 0 to −10−8, that
is, χ∗ < 10−8. This would be an extremely finely-tuned
kinetic function K(χ).

To achieve this quick growth ofK ′(χ), we may consider
functions that diverge at a finite negative value −χ∗ < 0,
such as K ′(χ) ∼ (χ + χ∗)

−m with m > 0. Then, sat-
urating the upper bound of Eq. (70) with the condition
of Eq. (68) gives (χ + χ∗) ∼ 10−10 (for m = 1) and
χ∗ ∼ 10−8. Therefore, including singular kinetic func-
tions does not remove the need of extreme fine tuning
and again requires a very quick departure from the low-
χ expansion (5).

The way out is to suppress the second derivative K ′′,
that is, to look for kinetic functions such that

χ≪ −χ∗ : |χK ′′| ≪ K ′. (75)

This means that ln(K ′) must grow much more slowly
than ln(−χ) for χ → −∞. Typically, this corresponds
to models where K ′ converges to a constant (although a
logarithmic growth could also be possible),

χ→ −∞ : K ′ → K∗ ≫ 1, (76)

with the relation (68) giving K∗ ∼ 106/
√−χs.s.. Then,

the Cassini bound, Eq. (66), implies for β ∼ 0.1:

if β ∼ 0.1 : K∗ > 103 and χ∗ < 106, (77)

which also ensures that the laboratory constraint (72) is
satisfied. On the other hand, if we require (−χs.s.) & 1,
so that the transition from K ′(0) = 1 to K∗ does not
take place in a very small interval, to avoid extreme fine
tuning, we have the upper bound

if χ∗ & 1 : K∗ < 106. (78)

Thus, we obtain a finite range for the possible values of
K∗. In particular, it happens that too large values of K ′

are ruled out if we wish to avoid too much fine tuning.
Moreover, Eq. (70) yields

|χs.s.K
′′
s.s.|

K ′
s.s.

. 10−10K ′
s.s. < 10−4, (79)

which means that we must have converged to the asymp-
totic value of K ′ at the 10−4 level at least.

Admittedly, there still remains some tuning, as we re-
quire that K ′(χ) goes from unity at χ = 0 to an asymp-
totic value between 103 and 106 at large negative χ. This
transition, however, does not need to be very sharp, as
it can take place over an interval that can be as large
as χ∗ ∼ 106. Nevertheless, it still requires introducing a
parameter K∗ & 103 for the asymptotic constant slope
of the kinetic function. We note also that this cannot
be obtained using a logarithmic growth of K ′, which, al-
though consistent with Eq. (75), as ln(χ∗) < ln(106), it
is not sufficient to generate factors of order 103.
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C. Running of the coupling β

The Newtonian potential of the Sun at the orbit of the
Earh is ΨN/c

2 ≃ −10−8 (the potential of the Earth at
the orbit of the Moon gives the smaller value −10−11).
Then, Eq.(35) gives the constraint

β2

K ′2
|β′| ≤ 8× 10−5. (80)

For β = 0.1 and K∗ = 103 this yields

|β′| < 8000. (81)

Therefore, in contrast with the kinetic function K(χ),
the bound on the perihelion advance does not provide
useful constraints on the shape of the coupling function
A(ϕ) [generic functions of the form A(βϕ/MPl) would
have β′ ∼ β2 ∼ 10−2]. This is due to the small prefactor
ΨN/c

2 that appears in Eq.(35).

VII. EXPLICIT MODELS THAT PASS ALL

CONSTRAINTS

A. Constructing models

A family of models which satisfy the properties ob-
tained in Sec. VI B is given by

K ′ = 1 +K∗

χn

χn∗ + χn
, n even integer, (82)

which is well defined over the full real axis (hence the
choice of even integers for the exponent n) and goes to
K∗ at large |χ|, with the constraints

β = 0.1, K∗ ≥ 103, χ∗ <
1012

K2
∗

. (83)

This ensures that the Cassini bound Eq. (66) is satisfied
with |χs.s.| > χ∗ from Eq. (68), as well as the laboratory
constraint (72). Then, the perihelion constraint Eq. (70)
yields

χ∗ <

(

K∗

n
10−10

)1/n
1012

K2
∗

. (84)

As seen in Eq. (78), we should have K∗ < 106 if we wish
to avoid tuning χ∗ to values that are smaller than unity.
This agrees with Eq. (84), which in such cases is more
stringent than the last Eq. (83). In particular, this gives:

n = 2 : χ∗ <
107

K
3/2
∗

, n→ ∞ : χ∗ <
1012

K2
∗

. (85)

In the remainder of this section we focus on the sim-
plest model with n = 2, which corresponds to

K(χ) = −1 + χ+K∗[χ− χ∗ arctan(χ/χ∗)], (86)
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FIG. 1: Upper panel: kinetic function K(χ) for the arctan
models of Eq. (86), with (K∗, χ∗) = (103, 1) (I, blue
and crosses), (K∗, χ∗) = (104, 1) (II, brown and squares),
(K∗, χ∗) = (103, 102) (III, green and circles), and the cu-
bic model of Eq. (94) with K0 = 1 (IV, red and continuous
line). We show 1 + K, which is an odd function of χ, with
1 + K ≥ 0 for χ ≥ 0. Lower panel: derivative K′(χ) for the
same models. It is an even function of χ.

with the low-χ expansion

χ→ 0 : K(χ) = −1 + χ+
K∗

3

χ3

χ2
∗

− K∗

5

χ5

χ4
∗

+ ... (87)

We consider the following three models,

(I) : K∗ = 103, χ∗ = 1, (88)

(II) : K∗ = 104, χ∗ = 1, (89)

(III) : K∗ = 103, χ∗ = 102, (90)

all with β = 0.1 and which satisfy the small-scale con-
straints of Eqs. (83) and (85), as well as the cosmological
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constraints. In particular, in each case we have

(I) : χs.s. ∼ −106, β2
per < 500,

c2s
c2

− 1 ∼ 10−12, (91)

(II) : χs.s. ∼ −104, β2
per < 0.5,

c2s
c2

− 1 ∼ 10−8, (92)

(III) : χs.s. ∼ −106, β2
per < 0.05,

c2s
c2

− 1 ∼ 10−8, (93)

where χs.s. is obtained from Eq.(68) and βper is the upper
bound from Eq.(70). Thus, β = 0.1 is consistent with the
perihelion constraint for these three models. We can also
note that the speed of scalar waves given by Eq.(31) is
always very close the speed of light (in the Solar System).
Therefore, superluminality in the scalar sector is highly
suppressed.

We show these kinetic functions in Fig. 1, as a function
of |χ|. The models (I) and (II) correspond to a late tran-
sition from the K ′ ≃ K∗ to K ′ ≃ 1 regimes, with two
possible values for K∗. Therefore, during most of the
cosmological evolution K ′ ≫ 1, which means that the
scalar field is screened and departures from Λ-CDM are
small. The model (III) corresponds to an early transi-
tion, so that in a large range of redshifts we have K ′ ≃ 1
and deviations from Λ-CDM are of order β2 = 10−2.
These behaviors are explicitly shown in the middle panel
of Fig. 2.

For simplicity we consider the simple rational function
of Eq. (82), which is even and leads to the same behavior
in the two regimes χ → ±∞. However, there is a great
freedom on the positive range χ > 0, the only constraint
being that K ′(χ) ≫ 1 for χ≫ 1. For instance, we could
add to Eq. (86) any function K+(χ) that is negligible for
(−χ) ≫ 1 and satisfies K ′

+(0) = 0, K ′
+(χ) +K∗ ≫ 1 at

large χ, such as K+(χ) = exp(χ3).
For comparison with previous works [13, 17–19], we

also consider the purely cubic model

(IV) : K(χ) = −1 + χ+K0χ
3. (94)

This can also be seen as an effective model for moder-
ate values of χ, probed by cosmology, while leaving the
large negative regime (−χ) ≫ 1 unspecified, where the
function K(χ) needs to be modified as described above
to satisfy Solar System constraints. This model is also
shown in Fig. 1, for the case K0 = 1. For most of the
cosmologically relevant values of χ, 0 ≤ χ . 10, the phe-
nomenology of model (IV) lies between that of models
(I) and (III).

B. Theoretical consistency

We have seen above that the models (I-III) satisfy the
quantitative constraints associated with cosmological and
Solar System tests. In addition, they satisfy the generic
theoretical consistency requirements. The four models
(I-IV) have an even derivative K ′(χ) > 0 and the func-
tions W±(y) = yK ′(±y2/2) are monotonically increasing

up to infinity over y ≥ 0. As shown in Refs. [13, 17],
this ensures that these models are well behaved. More
specifically, a static scalar field profile exists for any mat-
ter density profile (branch W−(y), see Eq. (18)) and the
background Klein-Gordon equation can be integrated up
to arbitrarily high redshifts where ρ̄ → ∞. Moreover,
there are also no ghosts nor small-scale instabilities. This
corresponds to the constraints (60)-(61) and (63)-(64).
When the function K ′(χ) is even these two sets of con-
straints actually coincide.

As noticed in Eq.(31), the speed of scalar waves around
static backgrounds is greather than the speed of light. As
seen from Eqs.(91)-(93), it is actually extremely close to c
in the highly nonlinear regime, which applies to the Solar
System. Superluminality is sometimes associated with
possible violations of causality, although such patholog-
ical behaviors can also be encountered within General
Relativity (for exact solutions such as the Gödel metric
that do not describe realistic metrics), see the discussions
in [27] and [28]. We argue in the appendix that space-
time does not have closed time-like loops for realistic K-
mouflage models, in particular for the models (I-III) of
Eqs.(88)-(90). Therefore, the small superluminality in
the Solar System does not lead to causality problems.

C. Cosmological evolution

From the Klein-Gordon Eq. (6), one can show [17] that
the time derivative of the cosmological background value
ϕ̄ of the scalar field scales with time as

˙̄ϕ ∼ − β

MPlK ′
ρt, and χ̄ ∼ β2

K ′2

H2

H2
0

. (95)

At late times we have

z → 0 : K̄ ′ ≃ 1, χ̄ ∼ β2 = 10−2, ρ̄ϕ ≃ ΩΛ0

Ωm0
ρ̄, (96)

where ΩΛ0 and Ωm0 are the dark energy and matter cos-
mological parameters today. At early times we have, for
the models (I), (II), and (III),

z ≫ 1 : K̄ ′ ≃ K∗, χ̄ ∼ β2

K2
∗

H2

H2
0

, ρ̄ϕ ∼ β2

K∗

ρ̄. (97)

Thus, in the early matter era, the ratio ρ̄ϕ/ρ̄ goes to a
small constant, which in our case is constrained by the
Cassini bound Eq. (66) to be smaller than 10−5 (this is
because we assume the two regimes χ → ±∞ have the
same functional form). Thus, there remains a very small
residual fraction of the scalar field energy density. For
the model (IV) of Eq. (94), where K ′(χ) goes to infinity
for χ → +∞, ρ̄ϕ/ρ̄ → 0 at high redshift. In all cases,
ρ̄ϕ/ρ̄rad goes to zero at high redshift in the radiation
dominated era.

At low redshifts, where χ̄ falls below χcan. = χ∗/
√
K∗,

we have K̄ ′ ≃ 1 and the model behaves like a canonically
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normalized scalar field coupled to matter in the presence
of a cosmological constant. At higher redshifts, the non-
linear structure of the scalar field Lagrangian comes into
play and K̄ ′ increases until it reaches K∗ when χ̄ is of
order χ∗. Then, the scalar field shows a K-mouflage-type
screening, due to the large derivative prefactor K ′ that
freezes the fluctuations of the scalar field. In terms of
uniform background values, this screening still leads to
the suppression of χ̄ and ρ̄ϕ by factors 1/K̄ ′2 and 1/K̄ ′.

The deviations from General Relativity and Λ-CDM
predictions are mostly sensitive to the ratio β2/K ′.
Therefore, they should increase from models (II) to (I)
to (III). Indeed, in models (I) and (II) the derivative K ′

quickly reaches the large value K∗, because χ∗ = 1, while
in model (III) it remains of order unity over a large inter-
val around χ = 0, because χ∗ ≫ 1. The deviations from
Λ-CDM are larger for model (I) than model (II) because
of the smaller value of K∗ in the former.

In Fig. 2, we plot the redshift evolution of χ̄ and K̄ ′,
and the deviations of the Hubble rate from Λ-CDM. The
figure shows that, as expected, the deviations from Λ-
CDM increase from models (II) to (I) to (III). Also, in
agreement with Fig. 1, the predictions of the cubic model
(IV) lie in between the arctan models (I) and (III), as
it gives an intermediate growth of K̄ ′ as χ̄ increases at
higher z. At z → 0 all models give the same value for
χ̄, in agreement with Eq. (95), because χ̄ ∼ β2 ≪ 1
and K̄ ′ ≃ K ′(0) = 1. The deviations from Λ-CDM for
the Hubble rate peak around z ∼ 1. All models are
normalized to the same Hubble constant H0 today and
they also recover the same Einstein-de Sitter expansion
at high redshift in the matter era, before dark energy
becomes important.

The upper panel of Fig. 3 shows that the four models
satisfy the Lunar Ranging constraint on d ln G̃/dt̃ as the
values of ǫ2 are below 0.01, in agreement with Eq. (51).
This, however, does not prevent the linear growth rate
f = d lnD+/d ln a today to be different in the different
models, as shown in the lower panel. The deviations
from Λ-CDM of the linear fluctuations follow the same
pattern as for the background cosmology. We also find
that a maximal deviation of order 2β2 is obtained for
model (III) with a large value of χ∗, which behaves like
a free scalar field coupled to matter in the recent past.
The greatest deviations from Λ-CDM, at fixed β, would
be obtained for a model where K ′ ≃ 1 over all relevant
redshifts. The results from such a model would be similar
to those of model (III).

In Fig. 4, we show the relative deviations from Λ-
CDM of the nonlinear matter power spectrum and the
halo mass function. The method used for the compu-
tation of the power spectrum is presented in [18]. It
combines one-loop perturbation theory and a halo model
and it has been tested against numerical simulations [29]
of other modified gravity scenarios such as f(R), dilaton
and symmetron models. The power spectrum deviates on
large scales by a constant which can reach a few percent.
This reflects the boost in the linear growth of structure

depicted in the lower panel of Fig. 3. In the nonlinear
regime, mode-coupling helps to boost the deviations from
standard Λ-CDM even further. In the figure, the relative
difference starts to decrease after k ∼ 1h/Mpc, which is a
consequence of having used the same halo concentration
parameters in the halo model formalism [18]. In reality,
the K-mouflage field should also affect the concentration
of dark matter haloes, which should translate in modifi-
cations of the small-scale clustering power as well. The
enhanced gravitational strength should lead to a deepen-
ing of the gravitational potentials of the haloes, making
them therefore more concentrated (see e.g. [30, 31] for
an example of this in the context of Galileon and Nonlo-
cal models of gravity, respectively). This would increase
the relative difference of Pk at high-k values. On the
other hand, the enhanced forces may also make parti-
cles inside haloes move faster. This can cause the halo
to expand slightly, and therefore, to become less concen-
trated (see e.g. [32] for an example of this in coupled
quintessence models, which are similar to unscreened K-
mouflage models). A detailed investigation of this effect
involves running dedicated N-body simulations which is
left for future work.

For the halo mass function, we take into account the
effect of K-mouflage through the spherical collapse model
[18]. The amplification of gravity by the fifth force im-
plies that a smaller initial density fluctuation δLi at a
high redshift zi is needed to produce a collapsed halo
of a given mass M at low z, as compared with the Λ-
CDM reference. Moreover, such objects are less rare
because of the faster growth of structures (e.g., of the
matter power spectrum). Both effects amplify the large-
mass tail of the halo mass function, as seen in the lower
panel of Fig. 4. More explicitly, the mass function is writ-
ten in terms of the usual scaling variable ν = δL/σ(M),

with the characteristic Gaussian tail n(M) ∼ e−ν
2/2 at

large mass, and the fifth force implies both a smaller
critical threshold δL and a greater rms density fluctua-
tion σ(M). The mass function is slightly decreased at
low masses because of mass conservation, as the integral
over the halo mass function is normalized so as to give
back the mean density of the Universe. The lower panel
of Fig. 4 shows that K-mouflage models can exhibit a
5% − 20% boost in the number density of cluster mass
haloes, 1014M⊙/h . M . 1015M⊙/h. This may offer a
clear enough signal to be observable with future surveys.

VIII. CONCLUSION

We have determined the conditions for K-mouflage
models of gravity to satisfy the stringent Solar System
tests of gravity, whilst remaining sufficiently different
from standard Λ-CDM, and hence, cosmologically in-
teresting. In particular, we have used the results from
Cassini on the amplitude of fifth-forces in the Solar Sys-
tem, and bounds from Lunar Laser Ranging experiments
on the anomalous perihelion and the rate of change of
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the gravitational strength in the Earth-Moon system.

We showed that the conformal coupling strength of
the K-mouflage field to matter is constrained as β . 0.1
(cf. Eq. (58)), by the condition that the time varia-
tion of Newton’s gravitational strength in the Jordan
frame is compatible with the Lunar Ranging bounds.
This constraint is independent of the detailed functional
form of the K-mouflage Lagrangian density term K(χ)
(cf. Eq. 3), and is also tighter than the bounds coming
from BBN (cf. Eq. (55)). By focusing on static config-
urations, which correspond to the branch χ < 0 of the
function K(χ), we have seen that the perihelion bound is
more stringent than the Cassini result in constraining the
functional form of K(χ). In particular, for K-mouflage
models to remain compatible with these tests, any non-
linear terms in K(χ < 0) should be highly suppressed
(cf. Eq. (70)). For instance, models for which K(χ) ∝ χ3

will fail to meet the Solar System requirements. On the
other hand, the shape of the coupling function A(ϕ) is
not strongly constrained.

We have presented several explicit models that satisfy
these Solar System and cosmological bounds as well as
generic theoretical consistency conditions. In particular,
these models have well defined solutions up to arbitrarily
high redshift, in the cosmological context, and for any
matter density profile, in the small-scale context. There
are no ghosts nor small-scale instabilities. Even though
scalar waves can propagate at a speed that is slightly
greater than the speed of light around small-scale static
backgrounds (with a relative difference of only 10−8 or
less in the Solar System), there are no closed time-like
loops nor causality problems, from the Solar System to
cosmological scales.

One of our main results is that, despite the constraints
on β and K(χ) from the Solar System tests, one is still
able to find a family of K(χ) functions (cf.Eq. (82)) that
has interesting and potentially testable cosmological pre-
dictions. We have investigated the main cosmological as-
pects of the models characterized by Eq. (82). For a set
of illustrative cosmological parameters, we have seen that
the linear growth of large scale structures can be boosted
by a few percent by the present day (cf. Figs. 3 and 4).
Our results from semi-analytical models of structure for-
mation also show that this difference gets amplified on
smaller scales, where the evolution of the matter density
field becomes nonlinear. Moreover, the expected number
density of cluster mass haloes shows also a 5% − 20%
enhancement, relative to Λ-CDM (cf. Fig. 4). Another
interesting aspect of these models is that their expansion
history can be slightly different from the Λ-CDM sce-
nario, with deviations at the percent level or slightly be-
low that may be constrained by observations (cf. Fig. 2).
This is different from the cases of DGP and/or f(R) mod-
els of gravity, where the expansion can follow the Λ-CDM
scenario up to very high accuracy or even exactly. This
means that the parameter space of these models can be
constrained by the position of the acoustic peaks of the
CMB tempetarure power spectrum, as investigated al-

ready in [19], but for models that fail Solar System tests.
To summarize, the models we have built up are pre-

dictive and distinguishable from other alternatives to Λ-
CDM, in the perspective of future experiments such as
Euclid [20] and LSST [21]. In the future, 21cm inten-
sity mapping both during [33] and after the completion
of the reionization [34–36] will open new windows to
test modified gravity and will help in discriminating be-
tween models and in constraining further the shape of the
K-mouflage function K(χ). Future 21cm surveys such
as with the Square Kilometre Array will probe the Uni-
verse’s expansion up to higher redshifts and the matter
power spectrum down to smaller scales, especially in the
range 2 . z . 8 of interest for the K-mouflage model.

In future work, we believe it would be of interest to
perform more focused studies of the cosmological con-
straints in these models, by following, for instance, the
line of work of [19]. It would also be interesting to study
more accurately the predictions for nonlinear structure
formation by running N-body simulations. Such studies
should provide a clearer picture for how these types of
modifications to gravity can impact on several cosmolog-
ical observables, which should help in the interpretation
of the results form future observational missions.
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Appendix A: Superluminality and Causality

In this appendix, we elaborate on the superluminality
of scalar perturbations and its link with causality. We
have seen in the main text that K-mouflage models pass-
ing the Solar System tests are such that scalar perturba-
tions around a static background propagate with a speed
greater than the speed of light. This may cause insta-
bilities and in particular a loss of causality with signals
being transmitted to the past, i.e. the existence of time-
like closed curves. This issue was tackled for K-essence
models in [27]. We follow a similar method here. Let
us first expand the K-mouflage action to second order
in π, where ϕ = ϕ̄ + π. Here ϕ̄(x, t) is a background
configuration that may depend on scale and time [in the
small-scale static regime ϕ̄(x) only depends on position,
whereas in the large-scale cosmological regime ϕ̄(t) is the
homogeneous cosmological background]. We also denote
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χ̄ = −ḡµν∂µϕ̄∂νϕ̄/2M4, K̄ ′ = K ′(χ̄) and K̄ ′′ = K ′′(χ̄).
The second order part of the action reads

S2 =
1

2

∫

d4x
√
−g
[

−K̄ ′∂µπ∂µπ +
K̄ ′′

M4
(∂µϕ̄∂µπ̄)

2

]

.

(A1)
It is convenient to define the disformal metric

Gµν = γ−1

(

K̄ ′gµν − K̄ ′′

M4
∂µϕ̄∂νϕ̄

)

(A2)

with

γ = (K̄ ′)3/2(K̄ ′ + 2χ̄K̄ ′′)1/2 > 0. (A3)

Note that thanks to the properties (60) and (63), the K-
mouflage scenarios that we consider have K ′ > 0 and
K ′ + 2χK ′′ > 0 over all χ, so that the metric Gµν

is well defined. Defining the inverse matrix Gµν by
GµαG

αν = δνµ (i.e., Gµν is not given by gµαgνβG
αβ) and

the determinant G = det(Gµν ), we have

G = γ2 g, (A4)

where g = det(gµν), and the second order action can also
be written as

S2 =
−1

2

∫

d4x
√
−GGµν ∂µπ∂νπ. (A5)

The disformal metric Gµν is the metric felt by the scalar
perturbation and we can check from Eq.(A4) that it is
Lorentzian. Therefore, initial-value problems for π are
well posed on any smooth spacelike Cauchy surface Σ for
the metric Gµν , the solution is unique and propagates
causally (see Sec.10 in [28]). In the static case, we re-
trieve that the Klein-Gordon equation is hyperbolic with
a propagation speed cs given by Eq.(31) (for small wave-
lengths), whereas around the cosmological background
we recover the propagation speed c̄s given by Eq.(59)
(for high frequencies).

In general, the propagation of π occurs in the disformal
metric Gµν . Space-time equipped with the metric Gµν is
stably causal, i.e. there is no time-like closed loops (in-
cluding for infinitesimal deviations from the metric Gµν),
provided there exists a globally defined function f on all
space-time which is time-like, i.e. Gµν∂µf∂νf < 0 [28].
Following [27], we look for a “global time” f that ap-
plies to both geometries gµν and Gµν and thus guaran-
tees the absence of closed causal loops. A simple choice
is to choose the cosmic time t, which clearly satisfies the
required property for the metric gµν . Considering the
Newtonian gauge, which describes all systems that we
study in this paper, from the cosmological background
and perturbative regime down to the Solar System,

ds2 = gµνdx
µdxν = −(1+2ΨN)dt

2+a2(t)(1− 2ΨN)dx
2,

(A6)
where ΨN is the Newtonian potential, we have

gµν∂µt∂νt =
−1

1 + 2ΨN
< 0 for ΨN > −1/2. (A7)

Since we focus on systems with |ΨN| ≪ 1 (e.g., ΨN ∼
10−6 in the Solar System), we have gµν∂µt∂νt < 0. On
the other hand, we obtain

Gµν∂µt∂νt = −K̄
′(1 + 2ΨN) + K̄ ′′(∂0ϕ̄)

2/M4

γ(1 + 2ΨN)2
, (A8)

whence

Gµν∂µt∂νt < 0 for C ≡ K̄ ′ + K̄ ′′ (∂0ϕ̄)
2

M4
> 0, (A9)

where we used the approximation 1 + 2ΨN ≃ 1. Around
the cosmological background, where χ̄ = (dϕ̄/dt)2/2M4,
we obtain C = K̄ ′ + 2χ̄K̄ ′′, whence C > 0. Around a
static background, we obtain C = K̄ ′ whence C > 0.

For more general backgrounds, we can see from
Eq.(A9) that C > 0 as soon as K̄ ′′ ≥ 0, which for the
models (I-IV) of Eqs.(88)-(90) and (94) corresponds to
χ̄ ≥ 0. On the semiaxis χ̄ < 0, we have seen that
C ≃ K̄ ′ > 0 in the static limit, |∂ϕ̄/∂t| ≪ |∇ϕ̄|. There-
fore the remaining case corresponds to |∂ϕ̄/∂t| ∼ |∇ϕ̄|,
where time and spatial derivatives are of the same order,
and with χ̄ < 0, that is, |∂ϕ̄/∂t| < |∇ϕ̄|. Then, we have

χ̄ < 0, K̄ ′′ < 0 : C & K̄ ′ − |K̄ ′′χ̄|, (A10)

as we assume χ̄ ∼ −(∂ϕ̄/∂t)2/2M4 ∼ −(∇ϕ̄)2/2M4. In
the linear unscreened regime, |χ̄| ≪ 1, this gives C &
K̄ ′ ≃ 1, whence C > 0. In the highly nonlinear screening
regime, |χ̄| ≫ 1 [more precisely χ̄ < −χ∗ as in (65)], we
have seen in Eqs.(75) and (79) that |χ̄K̄ ′′| ≪ K̄ ′, because
of the perihelion constraint. Therefore, on these nonlin-
ear scales we obtain C ≃ K̄ ′ > 0, whether we are in the
static limit, |∂ϕ̄/∂t| ≪ |∇ϕ̄|, or not, |∂ϕ̄/∂t| ∼ |∇ϕ̄|, and
we have already seen that C > 0 when |∂ϕ̄/∂t| > |∇ϕ̄|
because it implies χ̄ > 0 and K̄ ′′ > 0 in our models.
Note that the regime |∂ϕ̄/∂t| ∼ |∇ϕ̄| is unlikely to oc-
cur in practice in small-scale systems, because the qua-
sistatic approximation applies very well, even for rela-
tively fast matter density evolutions with matter flow ve-
locities of order v ∼ c/10 [13]. Therefore, we usually have
|∂ϕ̄/∂t| ≪ |∇ϕ̄|, which directly gives C ≃ K̄ ′ > 0.

Thus, we conclude that gµν∂µt∂νt < 0 and
Gµν∂µt∂νt < 0 and there are no closed causal
loops around usual astrophysical and cosmological back-
grounds with ΨN > −1/2. This analysis fails close to
neutron stars or black holes, where ΨN becomes large,
but this is not related to the K-mouflage model as it al-
ready appears in the metric gµν in Eq.(A7). Then, one
must look for another global time coordinate, or over a
large volume around the compact object, but we leave
this analysis of more extreme astrophysical situations to
future work.
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FIG. 2: Upper panel: variation of χ̄(z) as a function of the
redshift for the models of Fig. 1. All models have β = 0.1
Notice the universal behaviour of χ̄ at small redshift given by
(95) with K′ ≃ 1. Middle panel: variation of K̄′ = dK/dχ(χ̄)
as a function of the redshift for the same models. Lower
panel: relative deviation of the Hubble rate from the Λ-CDM
prediction for the same models.
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FIG. 3: Upper panel: variation of ǫ2(z) as a function of the
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tion of the growth factor from the Λ-CDM prediction for the
same models.
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