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Non-Gaussianity in the distribution of inflationary perturbations, measurable in statistics of the
cosmic microwave background (CMB) and large scale structure fluctuations, can be used to probe
non-trivial initial quantum states for these perturbations. The bispectrum shapes predicted for
generic non-Bunch-Davies initial states are non-factorizable (“non-separable”’) and are highly oscil-
latory functions of the three constituent wavenumbers. This can make the computation of CMB
bispectra, in particular, computationally intractable. To efficiently compare with CMB data one
needs to construct a separable template that has a significant similarity with the actual shape
in momentum space. In this paper we consider a variety of inflationary scenarios, with different
non-standard initial conditions, and how best to construct viable template matches. In addition
to implementing commonly used separable polynomial and Fourier bases, we introduce a basis of
localized piecewise spline functions. The spline basis is naturally nearly orthogonal, making it easy
to implement and to extend to many modes. We show that, in comparison to existing techniques,
the spline basis can provide better fits to the true bispectrum, as measured by the cosine between
shapes, for sectors of the theory space of general initial states. As such, it offers a useful approach
to investigate non-trivial features generated by fundamental properties of the inflationary Universe.

I. INTRODUCTION

We are fortunate to live in a time when cosmologi-
cal datasets can probe the Universe in exquisite detail.
In particular, the cosmic microwave background (CMB)
provides a rich source of information about the very early
Universe, and is an especially precise probe of the infla-
tionary paradigm. An important question that we are
now in a position to probe, more thoroughly than ever,
is: what is the initial quantum state of inflationary fluc-
tuations? It is usually taken to be the Bunch-Davies
state, but from the point of view of treating inflation
as an effective theory it is not unreasonable to consider
the choice of state to be open, subject to the conditions
that it allow for inflation to occur and that it be con-
sistent with field theoretic precepts. Explicit examples
of scenarios that give rise to non-Bunch-Davies initial
conditions for inflation can be found in [1-6]. Assum-
ing that the initial state is more general than the free
vacuum, such as a Bogoliubov transform of the Bunch-
Davies state or even a mixed state, we can calculate its
imprint on cosmological observables like the power spec-
trum and bispectrum of inflationary perturbations, and
in turn those of CMB temperature anisotropies [2, 3, 7—
22]. Whether these effects can actually be observed in
cosmological data depends on the extent of departure
from a Bunch-Davies state, the number of e-folds of in-
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flation beyond the minimum required, and of course the
sensitivity of our experiments [23-25].

Given these choices, how can we narrow down the pos-
sibilities? The initial state of perturbations will leave
its imprints on their correlation functions, for example,
logarithmic oscillatory modulations in the CMB power
spectrum [26]. Higher order correlators, such as the bis-
pectrum [27, 28], are extremely sensitive to deviations
from the Bunch-Davies state. The bispectrum carries in-
formation both about the amplitude of the correlations,
typically encoded in fyr,, as well as of preferred config-
urations in momentum space; the three momenta must
form a triangle, but the shape of the triangle is sensi-
tive to both the interactions of the inflaton, including
the mixing with gravity, as well as the initial state.

The bispectrum for general initial states is highly os-
cillatory and cannot be written in a separable form, i.e.
as a product of separate functions of the three momen-
tum modes. This makes the study of these states via the
bispectrum computationally difficult. For such shapes
we usually construct a basis of separable functions and
rewrite the desired shape as a sum over many such ba-
sis functions, for example, using a polynomial basis [29],
Fourier basis [30], or divergent basis [31].! As long as
the original and reconstructed shapes are very similar
and have a significant overlap, or in other words have a
cosine close to unity, we can look for signatures of the

1 In special shape-specific cases, other basis sets can be used:
for example, feature or resonant models exhibiting linear or
logarithmic oscillations, respectively, can be efficiently recon-
structed through a one-dimensional (1D) expansion in the sum
of wavenumbers, ki + k2 + k3 [32, 33].



reconstructed shape in the CMB bispectrum and be as-
sured that the result will be an accurate reflection of what
we would have obtained for the real shape. Non-Bunch-
Davies shapes, however, can be difficult to efficiently de-
scribe with existing bases [28-31]. This leaves open the
possibility that signatures of general initial states could
still be present, yet undetected, in the CMB data.

In this paper we describe a new basis of piecewise spline
functions and use it to fit non-Bunch-Davies shapes of
the bispectrum. The spline basis consists of polynomial
functions defined locally, between various points called
“knots” in 3D space [34, 35]. This makes it particularly
suitable for smoothing and interpolating data with com-
plex patterns, and in our case, for capturing localized
features of any complicated shape of the bispectrum. An-
other immediate advantage of defining localized functions
is that the basis functions are orthogonal to a good ap-
proximation, and there is no need to perform a Gram-
Schmidt-like orthogonalization process on the basis func-
tions. Instead, the basis-fitting algorithm we adopt does
not rely on having an orthonormal basis. This makes
the spline basis easy to implement and to extend, using
a large number of mode functions to capture fine fea-
tures in the bispectrum. We find that the spline basis
performs at least as well as the polynomial and Fourier
bases in describing most non-Bunch-Davies shapes, and
for many shapes offers significant improvements (in the
cosines) over existing techniques.

The remaining paper is organized as follows. In section
IT we briefly review how we define the initial conditions
for the perturbations and obtain the bispectrum for gen-
eral initial states. We describe the spline basis in section
IIT and use it to fit non-Bunch-Davies shapes in section
IV. We conclude in section V with a summary and dis-
cussion on the scope of this work. Appendices A and
B contain details on calculations of the correlation func-
tions for general initial states, and appendix C describes
our numerical implementation of the spline basis.

II. NON-BUNCH-DAVIES SHAPES

We usually describe primordial correlation functions
in terms of the curvature perturbation ((t, ), since this
quantity is conserved outside the horizon [36]. It is de-
fined as the perturbation in the local scale factor a(t);
the metric perturbation h;;(¢, ¥) is then written as h;; =
a?e%8;;. In an effective field theory setting, (¢, Z) is re-
lated to the Goldstone mode of time reparameterization
symmetry breaking, usually denoted as w(t,Z) [37, 38].
In this section we describe how the choice of initial state
for the perturbation ((¢,Z) (or equivalently = (¢, %)) af-
fects the primordial bispectrum B¢ (k1, k2, k3) defined via
<C:]-€‘1 CE2C53> = (271')3(53 (]fl + ko + kig)Bc(kil, ko, k‘3).

Starting with the Einstein-Hilbert action, we can cal-
culate the action for scalar perturbations directly in
the (-gauge. Writing down the most general Lorentz-
invariant scalar-tensor theory with second order equa-

tions of motion results in the Horndeski action for the
perturbations [39-43].2 For P(X, ¢) models of inflation,
with X = —g,,0"¢9"¢,® the leading order in slow-roll
Horndeski action at cubic order in the perturbations is
given by

2
S = /d?’xdtas{; [Cz - 23(82-6)2] + A8+ ApC?
As 9
+ ?C(azC) } + Sboundary . (1)

Here we have set Mp; =1, ¢ = —H/H2 is the slow-roll
parameter, cs is the sound speed for perturbations, and
the couplings A; — A3 are given by
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=~ The boundary terms in eq. (1) are important and in
ge&neral do contribute to the bispectrum when the initial
state is different from the Bunch-Davies vacuum; here we
assume for simplicity that the initial state for {(¢, Z) is de-
fined in such a way as to cancel these boundary terms. It
is also worth noting that the action in eq. (1) is equivalent
to that obtained using an effective field theory approach
[37, 38] up to boundary terms, and the bispectrum for
general initial states agrees between the two actions, as
shown in [44].

The usual method to obtain correlation functions of
¢(t, ) is to use in-in perturbation theory [45-52]. The
initial state can be input as a density matrix defined at
the initial time to [20]; for simplicity we will assume that
the initial density matrix is pure and Gaussian.* Dou-
bling the fields on the plus and minus branches of the
in-in contour, we can calculate the Green’s function cor-
responding to the quadratic (or “free”) part of the action
in eq. (1), including the effect of a general initial state;

2 The Horndeski action does not describe ghost inflation, however,
which can be included in an effective field theory setting. An-
other example outside the Horndeski domain is Hor&va-Lifshitz
gravity, in which Lorentz invariance is explicitly broken.

The action for many single scalar field models of inflation can be
written as S = %fd4:p\/jg[R+ 2P(X, ¢)], with ¢ controlling
the dynamics of both the background and perturbations.

Here by “pure” we are distinguishing between pure and mixed
quantum states. Mathematically speaking, Tr (p?) = 1 for pure
states, while Tr (p?) < 1 for mixed states, p being the density
matrix. Relaxing the pure state assumption leads to qualitatively
very similar results to what we discuss here. By “Gaussian” we
mean that the action describing the initial state is quadratic.



details of this calculation can be found in the appendix
of [20]. The Green’s function for {(¢, %) is found to be

¢ N é 1 G++(77>77,) G+7(77777/)
Gi1m) = o atmatr) (G'an,n') G:(nm’)> ’
(5)

where 7 is the conformal time defined as n = [ dt/a and
the factor out front comes from rewriting the quadratic
action in terms of the canonically rescaled field x(t, %),
¢= % x. The functions G £(n,n) are given by
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and the mode functions f,? (n) are solutions to the sec-
ond order differential equation resulting from the Green’s
function equation,

>

FE() = aZhi(n) + BEhE(n)

— 212 (10) Argr(m)0(no — 1) . (10)

The last term above is an additional contribution from
the initial density matrix, Ay being the kernel that mul-
tiplies the Cg C‘_"E term in the initial state action [20]; it
does not, however, contribute to the bispectrum, and so
we will ignore it in our discussion. The Bogoliubov co-
efficients a,?, Bkz are functions of kernels in the initial
density matrix, the mode functions, and time derivatives
of the mode functions all at the initial time, and satisfy

=B, By = ai", |og I — |Bk>\2 = 1. Finally, the
functlon hi(n) is defined at leading order in slow-roll as

() = —5(on) PHS (~edn), ()

where Hé}; is a Hankel function. The Bunch-Davies
choice consists of setting the initial time 7y — —oo, the
initial density matrix to unity, and additionally o = 1,
B; = 0 so that the mode function f; (n) picks out the
positive frequency solution proportional to =<7

The time 7 at which the initial conditions are set can
be taken to be a constant time in the past at the on-
set of infation, or can be considered as a scale-dependent
quantity, no(k). In the latter case, the initial conditions
for each k mode are set at the time when the physical
momentum corresponding to this mode csk/a(ng) (with
a(no) = —1/(noH) during inflation, at leading order)
crosses a fixed energy scale A of new physics. The Bo-
goliubov transform in eq. (10) is correct for either choice
of ng. In appendix A we show that for a scale-dependent
initial time, this solution leads to the well-known oscil-
lations in the late-time power spectrum [10, 11]. We use

both choices of initial time in section IV when we ap-
ply the spline basis to non-Bunch-Davies shapes of the
bispectrum.

Let us now discuss how general initial states modify the
bispectrum. Observables, such as the bispectrum, can be
calculated using any combination of plus and minus fields
on the in-in contour. For Gaussian initial states, we can
calculate the three-point function in the perturbations as

(GEera ) m = (¢ e et m)

X exp [ (5(3 5(3)7” >G’ (12)

where S®) is the cubic part of the action in eq. (1) writ-
ten in momentum space, with conformal time deriva-
tives, and with the time integral running from 7y to 7.
The subscript “G” indicates that Wick contractions on
the right are carried out using the Gaussian theory. At
leading order in slow-roll, only the three operators ¢3,
¢¢2, and ((0;¢)? contribute, and we can write the three-

as a

point function at late times <Cf ¢t Cf> )] .

By >Rs ks n—0
sum of contributions from each of these three operators.
To calculate the three-point function in eq. (12) at late
times we need the function Gi’++ (0,7') and its derivative
6,]/Gi7++(0,77’) for ' > no; using eqs. (6), (10) (discard-
ing the 6(ny — n) term), and (11) these are given by
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and
p) ¢+ / HQCST], icskn’ b —icskn’
Gy (0,n) = 1ok (ake + bre )7
(14)
where we have defined the functions
ar, = (o = B7)ax”, (15)
by = — (o —B7) By™- (16)

Using these in eq. (12) and performing the time integrals
we find that the contributions to the bispectrum from
the three operators are given by
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and
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where “c.c.” denotes complex conjugate and
i ak 1=0
c](c) — {bk i1 (20)

The functions ]-23, fcgg, and Fpc)2 are written out
explicitly in appendix B. The above equations give us
the leading order result for the bispectrum for general
initial states. The non-Bunch-Davies contributions to
the bispectrum are strongly peaked in the flattened limit
k1 = ko + k3 (assuming that k; is the largest momentum
mode) and in the squeezed limit k3 < k1 = ko. (We show
these enhancements and discuss apparent divergences in
both limits in appendix B.) Further, these shapes are
highly oscillatory, which makes them even harder to con-
strain using the CMB bispectrum. In the next section
we discuss the spline basis that we use to rewrite these
shapes as a sum of separable functions.

IIT. THE SPLINE BASIS

B-splines, short for “basis splines”, are a well-
established, and conceptually simple, mathematical for-
malism for curve fitting, using a set of piecewise poly-
nomial functions [34, 35]. For a basis in one dimension,
one chooses a set of “knots”, {xo, z1,...,2N}, represent-
ing the points at which the polynomial function pieces
are joined, and the degree ¢ of the polynomials. For ex-
ample, a 1D spline basis spanning 0 < z < 1 with a set
of six piecewise cubic polynomials is shown in fig. 1. As
an explicit example of the functional form of the basis,
one of the basis functions shown in the figure is

9 (42 — 1822 + 212°)

Bi(x) 0<z<
x =
' 1 (8 — 361 + 5422 — 272%)

1
ngf

N WI Wl

B,(x)

FIG. 1: Example spline basis generated from knots at x =
{0,0,0,0,1/3,2/3,1,1,1,1} and polynomials of degree ¢ = 3.

The numerical coefficients defining the spline basis for in-
put knots and ¢ are easily generated using existing soft-
ware libraries in many languages.

A general 1D function, f(z), can be expanded, and
approximated, using the spline basis,

N-1
= ) oBy(x). (22)
n=0

The expansion coefficients are computed by first tabu-
lating a sample of (x;, f;) values, where f; = f(z;), cor-
responding to M data points, and finding the values of
{@,} that minimize the least-squares function,

LS = Ji:( Zan Z>2- (23)

i=1

In practice, this requires solving the linear system of
equations given by BT Ba = BT f, where B here is an
M x N matrix containing the values of B, (x;).

Similarly, we can generate a higher-dimensional basis
by multiplying 1D b-splines together. For example, a 3D
b-spline fit for a shape® can be expressed as

N-1

ko J
> > Aiji[Bi(ky)B(ka) Bi(ks)

j=0 i=0
+ perms] , (24)

S/(klv kQ; k3) -
k=0

<.

where “perms” refers to permutations of ki, ko, and k3.
We note that the number of relevant (7,7, k) combina-
tions in such a fit is not N3, because each spline mode is
symmetric in the three wavenumbers, and not all (4, j, k)
combinations will correspond to a spline mode that is

5 A shape function is usually denoted by S(k1, ka2, k3), not to be
confused with the action S.



non-zero for wavenumber combinations that can form a
closed triangle. In the 2D and 3D cases, efficient algo-
rithms solving for the expansion coefficients A;;;, already
exist in the literature [53]. We illustrate how to use the
spline basis further through explicit examples and include
snippets of our numerical codes in appendix C.

In contrast to other bases used to create non-Gaussian
templates made of globally varying functions, such as
polynomial, Fourier, and divergent functions, the spline
basis consists of a set of localized modes, each of which
describes only a small region of the allowed k-space.
This makes the spline basis very well-suited to describ-
ing shapes such as those of non-Bunch-Davies models,
that are characterized by highly-peaked features concen-
trated on very flattened triangles. Because of the local-
ization of spline modes, the modes are by construction
nearly orthogonal, and no orthogonalization procedure
(such as Gram-Schmidt) is used in our implementation.
Avoiding any explicit orthogonalization is an advantage,
as orthogonalizing the polynomial /Fourier basis sets via
Gram-Schmidt is numerically unstable, and requires very
high precision throughout to create a basis with a large
number of modes.%

IV. FITTING NON-BUNCH-DAVIES SHAPES

In this section we consider two non-Bunch-Davies
shapes included in Planck’s analysis that were not well-
reconstructed in multipole-space using the polynomial
modal expansion, Sxgp1 and Sxspa [28].” We also con-
sider a set of generalized non-Bunch-Davies shapes, Ség,

Seiz, and Se(ac)2 .8 with different assumptions for the ini-
tiai time boundary cs79 and its potential wavenumber de-
pendence, cs|ng| = 10° Mpe, (A/H)/ (ki + ka + k3), and
(A/H)/k1, where we allow A/H to be 10 or 103, rep-
resenting a physically-motivated range of values. These
shapes span a wide variety of possible non-Bunch-Davies
features in the bispectrum, and allow us to compare our
results with previous analyses.

6 The numerical instability of the classical Gram-Schmidt algo-
rithm can be partially mitigated by instead adopting the mod-
ified Gram-Schmidt algorithm, which is what we have imple-
mented in generating the polynomial and Fourier modes.

“In the notation of [28], Sxp; here is equal to
(k1k2ks)2BYBP/ (242 f{BP?), where i = 1,2.

8 The shapes S<-3, 5«-2, and SC(Q()z here are related to
corresponding leading order non-Bunch-Davies correc-
tions to the bispectrum; for example, Sg‘g (k1, k2, k3) =

(k1k2k3)2[f<-3(—k1,k2,k3,no) +  Fealky, —ka, ks,mo)  +

J:C'g(kl,kQ,—kg,’no) + C.C.], where we have set ap, = 1

and by, = 0.01. In general by, can have some scale-dependence
as long as it does not spoil constraints from backreaction of the
energy density in the initial state. Whatever choice is made for
by, should be applied consistently in the case of a joint analysis
of the power spectrum and bispectrum.

For any non-separable primordial shape S, and given a
choice of basis {M,,}, one can compute a separable fit S’
that approximates S as a linear combination of separable
basis functions,

S/(k/’]_,kQ,kg) = ZanMn(klak27k3)' (25)

The similarity between the original shape and its fit is
quantified by a cosine,

(5,5")

55 = e e

(26)

where the inner product is defined in Fourier space with
a choice of weighting,

<S, S/> = /dVT S(kl,kg,kg)sl(kl,kQ,kg)w(kl,kz,kg).
(27)

The volume Vr includes only those combinations of kq,
ko, and ks that can form a closed triangle, with each
wavenumber satisfying ki, < k1, ko, k3 < kmax, where
kmin = 1073 Mpc™' and kpax = 0.1 Mpc™'. The
weight w(k1, ko, k3) is typically taken to be either unity
or 1/(k1 + ka2 + k3), where the latter choice is meant
to represent a more accurate reflection of the scaling of
the covariance of the CMB bispectrum, such that the
Fourier-space cosine is closer to the multipole-space co-
sine between the CMB bispectra corresponding to the
shapes S and S’. However, in general we find that both
choices result in similar cosines. In our analysis, we use
a unit weight for the 3D Fourier basis fits and all 2D fits,
and a weight of 1/(ky + ko + k3) for the remaining fits.

In this section we implement the existing polynomial
and Fourier basis methods, and additionally our new ba-
sis of piecewise splines, to obtain separable fits to non-
Bunch-Davies shapes. In each case, we quantify the per-
formance of the basis by computing the cosine as a func-
tion of an increasing number of modes used in the fit.

We use the polynomial basis described in [29] and the
Fourier basis described in [30]. In each case, three 1D
functions based on either polynomials or sines/cosines of
k; are multiplied together to form 3D separable functions,
that are then orthogonalized using a Gram-Schmidt algo-
rithm to create a basis of 3D orthonormalized and separa-
ble functions, called {R,} for polynomials and {F,,} for
Fourier modes. Since the basis functions are orthonormal
in each case, the expansion coefficients {«,, } can be com-
puted through inner products between S and the basis
functions, ay, = (S, R,) or ay, = (S, Fy,).

Alternatively, in the spline basis expansion, three 1D
piecewise spline functions are multiplied together to form
a basis of 3D separable spline functions {B,}. In this
case, each mode is highly localized in a region of Fourier
space, so any two modes are orthogonal by construction
unless they have peaks that overlap. While the lack of
strict orthogonality means that the expansion coefficients



in the spline basis cannot be computed using simple inner
products, existing algorithms can solve for the coefficients
efficiently [53] (also see appendix C).

In the subsections that follow, we present polynomial,
Fourier, and spline basis fits to a variety of non-Bunch-
Davies shapes.

A. Snep: and Snp2

The cosines for polynomial, Fourier, and spline fits to
these shapes are shown in the upper left panel of fig.
2. We find that the polynomial expansion produces a
better fit than the Fourier basis, and polynomial cosines
typically increase slowly beyond about 100 modes for
Snep: and 50 modes for Sygpz, indicating that lower
order modes contribute most to the fits. While it is pos-
sible that increasing the number of polynomial or Fourier
modes will increase the cosines further, during our analy-
sis we found that generating large polynomial and Fourier
basis sets is computationally very demanding. The sep-
arable modes are orthogonalized using a Gram-Schmidt
algorithm, which is known to be numerically unstable,
and the instabilities become more severe as higher order
polynomials are used. On the other hand, the spline ba-
sis expansion as we have implemented it does not require
orthogonalization, so in comparison a large number of
modes can easily be generated and used in the separable
fits. In the case of Sygp1 and Sxsp2, we find that the
spline expansion performs similarly well as the polyno-
mial expansion when 200 modes are used, and better fits
can be achieved by using a larger number of modes.

B. Ség, Sgéz, and S¢(s¢)z with k-independent csno

These shapes have oscillatory features that grow with
the size of the triangle (i.e. with k1) and in the flattened
and squeezed limits. With cs|ng| = 10> Mpc, the set of
200 polynomial modes produces a cosine of 0.52 for S,
and 0.80 for S;s», as shown in the upper right panel of
fig. 2. While these modes produce a higher cosine than
a set of 200 spline functions, better fits can be generated
with a larger set of splines.

C. Sgsy See2y and Se(pey2 with k-dependent csmo

For small A/H, we find that the shapes are easily re-
constructed with both the polynomial and spline meth-
ods using < 200 modes, as shown in lower left panel

9 The shape for S((B()z is sufficiently similar to Sgg‘g that its fits
are not shown separately in the figures.

of fig. 2. The oscillatory features are of low enough fre-
quency that lower order polynomials are sufficient to cap-
ture most of the features of these shapes, and the spline
functions also do not need to have a very fine resolu-
tion. If the initial conditions are set at 10/kp, rather
than 10/(k1 + k2 + k3), then the oscillatory features are
of somewhat higher frequency; for either shape, however,
the large global features still allow both the polynomial
and spline bases to efficiently reconstruct these shapes.

For cases with k-dependent cg19 and larger values
of A/H, the oscillations have a much higher frequency
than what can be captured by polynomials, and we
find that the spline reconstructions perform similarly
poorly. However, the k-dependence of c4my, whether it
be (A/H)/(k1 + ko + k3) or (A/H)/kq, allows the shapes
to be rewritten as functions of only two free parameters:
the ratios © = k3/ky and y = ka/k;. In terms of z and
y, the oscillation frequency does not increase drastically
throughout the allowed parameter space, which makes it
easier to generate good 2D fits. The advantage of rewrit-
ing scale-invariant shapes such as these in terms of two
free parameters for computing k-space cosines and CMB
bispectra has been discussed in earlier works [54].

We generate the 2D fits by defining a 2D analogue of
the polynomial/spline basis sets and the cosine. We find,
however, that to generate the same number of polynomial
modes as in the 3D case (200) requires using higher order
1D polynomials, which exacerbates the numerical issues
that we encountered in the 3D case, so for the 2D fits we
only use 100 polynomial modes with unit weight. We do
not encounter similar numerical issues in the spline fits.

We show the results for the 2D fits in the cg|ng| =
103 /(k1 + ko + k3) case in the lower right panel of fig. 2;
for c4|no| = 103 /k; the shapes have very similar features,
with the oscillations being slightly more rapid and more
difficult to represent in the latter case. 2D spline fits
achieve similar cosines as 2D polynomial fits using the
same number of modes (~ 100), while also being able
to produce higher cosines through the addition of more
modes without running into numerical issues, as shown

in fig. 3.

V. DISCUSSION

If the CMB is to be used to its full potential to eluci-
date the details of inflation, we need to be able to both
effectively characterize a wide variety of potential infla-
tionary signatures while also ensuring that this informa-
tion is accessed in a timely manner. For non-Gaussian
signatures, present in the CMB bispectrum, a potential
bottleneck in this process is the production of separable
templates that accurately match the characteristic prop-
erties of the underlying shape. This issue is particularly
acute for initial states that differ from the Bunch-Davies
state, which can generically have highly oscillatory fea-
tures whose characteristic scale can vary over the bispec-
trum configuration space.
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FIG. 3: 2D b-spline fits to Sgs (solid) and S.:2 (dashed),
where the purple, blue, orange, and red colors correspond to

spline basis sets derived from using 50, 100, 200, and 300 1D
spline functions in each dimension.

In this work we have analyzed a variety of functions to

generate templates for bispectrum shapes arising in a va-
riety of non-Bunch-Davies scenarios. We have quantified
how well different choices of separable basis functions, de-
rived from polynomials, Fourier functions, and b-splines,
can reconstruct the original non-Bunch-Davies shapes.
The spline expansion method is a new alternative choice
of basis, that we implement here for the first time, and
can be used at a reasonable computational cost to obtain
cosines that can be very close to unity.

We find that the polynomial basis is good for describ-
ing some non-Bunch-Davies shapes with large features,
and generally performs better than the Fourier basis. For
the rest of the shapes we considered, assuming the low
cosines will steadily increase with the addition of more
modes, we find that numerical difficulties prevent us from
generating enough modes to see higher cosines. For most
shapes, the spline basis performs as well as the polyno-
mial one when equal numbers of modes are chosen. The
spline basis is both numerically simpler to compute, and
does not require orthogonalization due to its localized
nature. This allows a larger number of modes to be ef-
ficiently calculated to improve the match between the



templates and the actual shapes.

The spline basis expansion method is very flexible, and
there are other ways to adapt a spline basis to target spe-
cific shapes better that we have not explored here. For
example, while our spline bases are derived from equally
spaced knots, we note that one can create a basis using
unequally-spaced knots, such that different k-space re-
gions are sampled more finely than others. Non-Bunch-
Davies shapes, where the features are sharply peaked and
localized near flattened and squeezed configurations, can
potentially be probed more efficiently by optimizing the
spline basis in this way.

Finally, while our analysis takes place in primordial
k-space, the flexibility and computational simplicity of
the spline basis approach translates directly to multipole-
space, where it complements existing approaches, such
as the polynomial basis. Utilizing a variety of basis ex-
pansion techniques ensures that the exquisite CMB data
available now, and in the future, can be used efficiently
to explore the full theory space of viable inflationary sce-
narios.
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Appendix A: Power spectrum for general initial
states

In this appendix we show that the result for the Green’s
function for general initial states in section II with a
scale-dependent initial time 1y (k) gives the correct form
of the late-time power spectrum in [10, 11]. We start with
developing a precise definition for the adiabatic vacuum
at mp — —oo or the Bunch-Davies vacuum. Let us write
the field x;(n) (defined via { = \/%%X) in terms of an-
nihilation and creation operators at the time 79, aj(no)

and aT_E(nO), and the mode functions sz (n), as

Xem) = agno)f7 () +a’ (o) fi(n). (A1)

The conjugate momentum, 7;(n) can be obtained from
the quadratic Lagrangian for xj(7); at leading order this

is given by

oL®  dxp 1da

W;(U): ax = dn—g%x,;,

(A2)

We can write 7z(n) in terms of its corresponding mode

functions gk2 (n) as

min) = =i (ag(no)gg () — o (m0)gs(m)) - (A3)

For Bunch-Davies modes we choose the positive fre-
quency solution at early times, and using a(n) =
—1/(nH) at leading order during inflation, the mode
functions are given by

1 i

e = et (1o ) an)
Csk‘ —ic

g9i (n) = o€ ok (A5)

The choice of Bunch-Davies vacuum can then be ex-
pressed as the following relationship between the field
and its conjugate momentum in the infinite past,

mr(mo) = (—icsk)xz(mo) - (A6)

Note that this does not imply that the position and mo-
mentum operators commute at all times; it is merely a
statement of how they are related at g — —oo. Equiva-
lently, in terms of the mode function f; (n) we can write

. a
dd@ L M) = (Cick) (), (AT)
N In=no

for ny — —oo. The above condition is the definition of the
adiabatic vacuum in the infinite past, or equivalently the
Bunch-Davies vacuum. As shown in [10, 55] this choice
corresponds to a minimum uncertainty state.

The prescription to choose an adiabatic vacuum at a
finite initial time is to enforce the same condition in eq.
(A7) at a given np. This corresponds to a state which
minimizes the uncertainty at n = 7. Choosing the initial
density matrix to be unity, but still having a non-Bunch-
Davies initial state by allowing 8; # 0, i.e. with f ()
given by eq. (10) with Ay = 0, this leads to the following
relation between the Bogoliubov coefficients,

@ _ i e—2icskno )
ap 2c.kno + 1

Combining this with the usual condition |oy |27|6k> =1
we find that

(A8)

|2 o AEE +1

>

a
|y 2122
dezk2ng

(A9)
Let us now choose 79 to be a function of k such that the
physical momentum csk/a(ng) crosses some fixed high
energy scale A of new physics at 79, then

(A10)



With the above equations we can write the following so-
lution for o and j; (note that we are free to choose
any overall phase),

ap = (%) e NH (A11)
By = — (2A3H) e (A12)

For A/JH > 1 we can now write the late-time power
spectrum as

which includes a scale-dependent oscillatory term. The
argument of the oscillations is usually written as being
proportional to In(k/k,), where k, is some fixed pivot
scale. This can be seen by expanding H around the pivot
scale so that H(k) ~ H(ky)[1—e(N—-Np)+..] =~
H(kp) [1 —¢ln % +.. .}, leading to logarithmic oscilla-
tions in the power spectrum. Note that this expansion
only holds for small € and a reasonable range of scales.
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PE) = 5wy TR
H2 [1 H (2A)] (a13) Th.e fungtions Feay Fege, and Fe(ag)2 in egs. (17) - (19)
= —— |1— —sin| — , are given by
8m2ecy A H -
|
1 2 elesKamo 2 2icsno 9 9
fcs (p17p2,p37n0) k1k2k3 |: K‘lg, + K1 <K12 Kl CsnO ) ( )
1 —2K3K3 + K2K4 + K, K2K3
Feea(p1,p2,p3,70) = [ 2 2
CCQ( 1, P2, P3 770) klekg K?Kg
elea Ko 37-3 2 -4 203 | - 12 702 13
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and

Feocy2 (p1p2,p3,m0) = (eakok )3
1k2k3

eics Kino

4+ -
CsK%nO

1 [Kf—ﬂﬁK&—Kﬁ@+ﬂKﬁﬁ+ﬂKﬂ@K§

K}

{i (K} — 2K K3) + ¢s (K1 K3 + K{ K3 — 2K7 K3 — 2K, K3 K3) no

i (KAKE 2K K2KS) na}] , (B3)

where for brevity of notation we have suppressed the ex-
plicit momentum dependence of the functions K;, Ko,
and K3,

Ki(p1,p2,p3) = p1+Dp2+ D3, (B4)
Ko(p1,p2,p3) = (p1p2 + paps + p3p1)1/2 , (B5)
K3(p1,p2.p3) = (pipaps)/?. (B6)

In the next two subsections we show how one obtains
the flattened and squeezed enhancements from the func-
tions F (also see [56]). We work with the simplest func-
tion .7-"43, though the results are similar for the other two

functions (or at least for their appropriate sum) as well.

(

1. Flattened limit

The by, ar,ar, term leads to an enhanced flattened
limit (k1 ~ ko + ks, k1 being the largest momentum
mode) bispectrum. Let us first assume that by, is purely
imaginary, so that the bispectrum is proportional to the
imaginary part of F. The corresponding F function we
consider is,

2
3k koks

icskino 2 %ic.
- (—Z%W—ﬁ%>, (B7)

féa(fkla k27 k37770) =

+ =— | = =
k‘lk‘lkgkg k% k‘l



where 151 = —k1 + ko + k3. In the limit of I~€1 — 0, the
exponential can be expanded as

ciking  ic3king
2 6

klimo ek — 1 4 jeiking —
1—

(B8)

Using this in eq. (B7), and noticing that any term with
k1 in the numerator goes to zero, we find that

1

lim Fry(—k1, ko, kg o) = ———— 3.
fe1—0 s(=hu Kz, ks, o) 3(ka + k3)koks o
(B9)

For fixed 79, we can set cs|no| = 1/k«. The above limit
of the three-point function is therefore enhanced (though
not divergent) in the flattened limit. For ny(k) with large
A/H as well we see an enhancement in the flattened limit.
If we instead assume that by, is real, then the bispectrum
is still enhanced, though not in the exactly flattened limit
but in a near-flattened limit.

2. Squeezed limit

Let us now look at the ax, by,ar, piece,

2
Fis(ki, —ka, ks, = -
¢a(k1, —ka, k3, mo) P
icskamo 2 2
o - T 22 ), (B10)
Tokikoks \ K2 o

where ky = k; — l<~:2 + k3. In the squeezed limit (k3 <
k1 =~ ko) we have ky — kmin, where ki, is the smallest

momentum mode observable today. Using this in eq.
(B10) we find that

2
lim  Frs(ky, —Fki, ks, = ——
Iz:2‘>kmin CJ( ' ' ° 770) k%kfnin
icskmino 2 2i
€ 1CsT)o 2 2
i () - e

For fixed 79 and in the limit of Ky > ks, the cgng term
gives the largest contribution. This term is multiplied
with a highly oscillatory function though, and averaging
over the large argument of the cosine (real part of the ex-
ponential) we expect its contribution to vanish. The lead-
ing order contribution is then proportional to 1/(kk2, ),
which shows a strong squeezed limit enhancement. In the
limit of kmin 2 ks« or for ng(k) this argument no longer
holds and we may or may not see enhancements.'°

10 In our fits with fixed 79 in section IV we took ks« to be similar to
kmin (~ 1073 Mpc™1!) which is what the Planck team had used
in [28].
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Appendix C: B-splines fitting algorithm

In this appendix, we build on the discussion of sec-
tion IIT to describe in more detail the b-spline fitting
algorithms we have used, and illustrate b-spline fitting
examples for a simple 1D function and a 2D representa-
tion of the scale-invariant enfolded template. Snippets of
Mathematica 10 codes we have implemented are shown
here, and the same algorithms were first constructed and
explicitly shown as Matlab code in [53].

Our first example considers a spline fit to a simple 1D
function f(z), with 0 < < 1. To generate a fit, we first
make two choices: a choice of basis and a choice of data
points to fit. The spline basis is determined by a choice
of k+1 equidistant knots, {zo, 1, ..., 2k}, at which each
basis function’s degree ¢ polynomial pieces will be joined.
The b-splines in general do not have to be generated using
constant knot intervals, but for simplicity we always start
with equidistant knots, and additionally include ¢ extra
knots at each of x = 0 and « = 1 to produce a “clamped”
basis. Without these extra knots, the generated basis sets
do not have splines with non-zero amplitudes at x = 0
and x = 1, and it will be difficult to fit functions that are
non-zero at the endpoints.

Given these inputs, existing codes, such as Mathemat-
ica’s BSplineBasis function, can recursively generate a
basis of k + ¢ b-splines such that each one is spanned by
q + 2 knots, made up of ¢ + 1 polynomial pieces, with
derivatives continuous up to order ¢ — 1. In addition,
the sum of all b-spline amplitudes at any z is unity. For
example, the b-splines in fig. 1 are easily generated by
choosing ¢ = 3 and k£ = 3 such that the knots vector
is knots = {0,0,0,0,1/3,2/3,1,1,1,1}, and execut-
ing BSplineBasis[{q,knots},i,x], where ¢ is an inte-
ger 0 <1i < k+ q—1 identifying each particular b-spline.
In this work, we vary the number and widths of the b-
splines by varying k, but always keep the degree fixed to
q=3.

Next, the choice of data points depends on how finely
we wish to sample f(z). We would like to choose a data
set consisting of M data pairs, (z;, f;), where f; = f(z;),
such that our data resolves any potentially fine features
in the function we would like to fit, without including so
many extra data points that our numerical calculation
becomes intractable. The final fit should ultimately be
insensitive to the sampling we have chosen. Again, for
simplicity, we always use equidistant sampling points x;
in our analysis, but vary the density of sampling points
by changing M.

The spline fit then approximates the original function
as

N-1
fl(x) = Z Oé”B,,L(l‘)7 (Cl)
n=0

where the expansion coefficients {a,,} are solved for by



minimizing the least-squares function,

M N-1 2
i=1 n=0

This requires solving the linear system of equations given
by BTBa = BTj?, where B is an M x N matrix contain-
ing the values of B,(z;), and is easily performed with
algorithms such as Mathematica’s LinearSolve.

We note one extension of b-splines, called p-splines,
that aims to avoid overfitting a set of input data by im-
posing smoothness on the resulting fit. Short for “penalty
b-splines”, in the p-spline method, the fit’s expansion co-
efficients are determined by both the choice of basis and
the choice of input data, plus a choice of penalty function
that generally disfavors fits with large differences between
coefficients of neighboring b-splines [57]. In this context
one would instead minimize

M N—1 2 N-1 ,
LS = Z (fl — Z aan(a?i)) + A Z (Akozj) ,
i=1 n=0 j=k

(C3)

where A is a constant that controls the smoothness of the
fit and k is the order of the penalty, a typical choice being
k = 2, such that A2aj = oj — 2aj—1 + aj—2. The use of
a penalty is optional, and its main purpose in the con-
text of data fitting is to avoid fitting any noisy features
in the data. Further, if there are not sufficiently many
data points sampling f(z), with many more splines than
data points, then without a penalty the fits may display
spurious features, as we will deliberately try to show in
the 1D example that follows.

In fig. 4 we show fits to f(z) = sin(10x)/(10z)
with different choices of data points and smooth-
ing parameter . We have fixed the knots at
{0,0,0,0,0.1,0.2,...,0.8,0.9,1,1,1,1}, yielding a basis
of 13 b-splines. We find, as illustrated in the figure,
that we can achieve good fits without introducing ex-
tra smoothing through a non-zero value of A, as long as
we fit to enough data points. So we now continue to an
example of fitting a primordial shape in two dimensions,
without a penalty.

To illustrate the b-spline fitting algorithm in two di-
mensions, we construct a basis of 2D b-splines and use it
to fit the scale-invariant enfolded template,

1

Senf(x7y) = ;y(l—x—y—ﬂ —y2-|-x3—|—y3

— o’y —xy® + 3xy), (C4)
where © = k3/k; and y = ko/k1. As in the 1D case, the
inputs to the fitting algorithms are made up of a choice
of basis and a set of data points. The basis is specified by
a choice of polynomial degree and a sequence of knots in
each of the two dimensions, x and y. In our particular ap-
plication, since we are aiming to fit shape functions that
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FIG. 4: Example 1D b-spline fits to f(z) = sin(10z)/(10x).
All fits shown have used a basis of 13 splines. In the up-
per panel, the fits have been computed using 6 data points,
sampled at z; = {0,0.2,0.4,0.6,0.8,1}. Attempting to con-
struct such a fit without smoothing [solid red] causes the
splines to produce spurious features, especially at smaller val-
ues of x, while introducing a penalty and a small amount
of smoothing [dashed red], A = 0.1, restores the fit to a
reasonable representation of the true function. The lower
panel is the same fit, except with 21 data points, sampled
at z; = {0,0.05,0.1,...,0.9,0.95,1}. In this case, the fits
with [dashed blue] and without [solid blue] smoothing are
very similar.

are symmetric in their wavenumber arguments, we only
specify the knots and degree in one dimension, and use
the same b-spline basis for the additional second dimen-
sion. The 2D b-splines are then made of products of any
two 1D splines, for example, B,,(z)B,,(y). The data are
given by (z;,y;,S(x;,y;)) and stored in Y;; = S(z;,y;),
where again some care must be taken in the choice of
sampling, which must be dense enough to capture any
small features such as oscillations that we would like to
capture in the resulting fit.

The 2D analogue of the least-squares function in eq.
(C2) is

LS = ii(ym—

i=1 j=1

N—-1N-1

Z Z aman($i>Bn(yj)> :

m=0 n=0

(C5)

To turn the problem of solving for the expansion coeffi-
cients a,,, into a linear system, we create a regression
basis C from the M x N b-spline basis matrices in each
dimension, B; and Bs, which in our case are equal. We
define

C = (Bo®e])® (e ® By) = B10By, (C6)



where ® is the Kronecker product, ® is an element-by-
element multiplication, the second equality defines the [
operation, and ey, and ey are vectors of 1’s with length
L each. In Mathematica, we define the [0 operation as
box:

box[B1_,B2_]:=Module[{K,L,eK,elL},
K=Length [B1[[1,A111]1];
L=Length[B2[[1,A11]]1];
eK=ConstantArray [1,{K}];
eL=ConstantArray[1,{L}];
KroneckerProduct [B2,{elL}]
*KroneckerProduct [{eK},B1]
]

Then by stacking the columns of the coefficients array
Oy and the data array Y;; to get vectors 5 and ¢ respec-
tively, the task of finding a solution for the coefficients
is once again reduced to solving a linear system of equa-
tions given by CTWC’B = CTWyj. Here W is a matrix
containing weights, which may be different for each data
point, but for simplicity we restrict ourselves to using a
weight of unity for all of our data.

For modest amounts of data and numbers of b-splines,
one can quickly solve for the coefficients in this straight-
forward way. For large data sets and numbers of b-
splines, however, this approach becomes computationally
cumbersome due to the large size of C. While it is still
possible to numerically solve for the coefficients a,, us-
ing a low-level language like C(++) or Fortran, we have
instead used algorithms developed for higher level lan-
guages, such as Matlab in [53], using only vector and
matrix operations. This has the benefit of being easier
to implement, while still being able to sidestep much of
the memory storage and speed issues typical of a more
brute-force approach in a high-level language. Instead
of starting with a calculation of C' in the brute-force ap-
proach, the algorithm from [53] that we have adopted
computes CTWC and CTW ¢ using only B. We refer the
reader to [53] for a detailed discussion of how the method
itself is devised and constructed, or to see the equivalent
Matlab code, and present here an implementation of the
b-spline fitting algorithms in Mathematica.

The normal equations can be efficiently constructed
and solved, given an input of data in Y and information
about the data sampling and b-spline basis in B:

get2dfit [Y_,B_]:=Module[{m,n,W,R,r,
F,a,A},
m=Length [Y[[1,A11]1]];
n=Length[B[[1,A11]]17;
W=ConstantArray[1,{m,m}];
R=Transpose [B].(W*xY).B;
r=ArrayReshape [R,{n*n,1}];
F=Transpose [box[B,B]].W.box[B.B];
F=ArrayReshape[F,{n,n,n,n}];
F=TensorTranspose [F,Cycles{{3,2}}]11];
F=ArrayReshape [F,{n*n,n*n}];
a=LinearSolve[F,r];
A=ArrayReshape[a,{n,n}]
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FIG. 5: Cosines between the enfolded shape and the 2D b-
spline fits generated by a basis with 10 splines per dimension.

After the matrix of coefficients is solved for, we con-
struct the final fit through two steps. First, we map
the coefficients output as A from get2dfit to a new
set of coefficients that corresponds to a 2D basis of
splines which is symmetric in its two arguments, so
that each 2D basis mode is a sum of up to two terms:
B;(x)B;(y) + Bj(x)B;(y). Second, in building up the fit,
mode by mode, we start with the modes that contribute
most to the fit. Since the b-splines in a choice of basis
have similar shapes and amplitudes, we use the magni-
tude of the A;; coefficient as a proxy for gauging how
much any particular b-spline contributes to a fit’s overall
cosine with the original shape. This motivates building
up a fit by adding in modes, starting with those that
have the largest |A;;|. The cosine is then computed in
the usual way, through an inner product over (z, y)-space
between the original shape Senr and the fit.

As an example, we use a basis of 10 splines in each
dimension constructed by choosing £ = 7 and ¢ = 3,
and use as our data set a grid of uniformly spaced (z,y)
values from taking 50 samples in each dimension, to com-
pute the matrix of coefficients A;;, using the algorithms
box and get2dfit above. The total number of symmet-
ric modes is then 55, and the modes are ordered by their
corresponding values of largest to smallest |4;;| to pro-
duce the cosines in fig. 5. A visual comparison of the full
fit using 55 modes and the original enfolded template is
given in fig. 6.

For our 3D fits, the fitting method is the same: a choice
of b-spline basis and data set make up the inputs to the
algorithm, which returns an array A,,,, containing the
expansion coefficients that approximate the input shape
as S/(klak27k3) = ZmnpAmnp Bm(kl)Bn(k2)Bp(k3)
However, due to the higher dimensionality of the prob-
lem, we must introduce a new function, rho, to gen-
eralize the matrix product to the product of a matrix
and a 3D array. Below, we show Mathematica code for
rho[A,B,p], which computes the normal matrix product
between rows of A and the p* column of B, resulting in
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FIG. 6: The original template Sent(x,y) [upper panel] and
its b-spline fit using a set of 55 modes [lower panel]. The
amplitudes range from 0 (violet) to 1 (red) in both panels.

a product, C, which has the same dimensions as B:

rho[A_,B_,p_]:=Module[{sa,sb,n,ip,
cycles ,sbip,prodsbip,tempB,C},
sa=Dimensions [A];
sb=Dimensions [B];
n=Length[sb];
ip=Join[Range[p+1,n],Range[1,p-11];
Which [
p==1,cycles=Cycles [{}],
p==2,cycles=Cycles [{{1,3,2}}],
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p==3,cycles=Cycles [{{1,2,3}}]1];
tempB=TensorTranspose [B,cycles];
sbip=sb[[ipl];
prodsbip=Product [sbip[[i]],
{i,1,Length[sbipl}];
tempB=ArrayReshape [tempB ,{sb[[p]],
prodsbip}];
C=Transpose [A] . tempB;
C=ArrayReshape [C, Join[{sa[[2]1},
sb[[ip]11];
C=TensorTranspose [C,
InversePermutation[cycles]]

]

Given this definition of rho, the 3D b-spline fit coeffi-
cients are calculated using get3dfit:

get3dfit[Y_,B_]:=Module[{m,n,W,F,R,A},
m=Length [Y[[1,1,A11]]1];
n=Length[B[[1,A11]11]1;
W=ConstantArray[1,{m,m,m}];
F=rho[box[B,B],W,1];
F=rho[box[B,B],F,2];
F=rho[box[B,B],F,3];
R=rho[B,Y*W,1];

R=rho[B,R,2];

R=rho [B,R,3];

F=ArrayReshape [F,{n,n,n,n,n,n}];
F=TensorTranspose [F,

Cycles [{{3,2,4,5}}]1];
F=ArrayReshape [F,{n"3,n"3}];
A=LinearSolve [F,

ArrayReshape[R,{n"3,1}]]1;
A=ArrayReshape[A,{n,n,n}]

]
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