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Polyspectra searches for sharp oscillatory features in cosmic microwave sky data

J.R. Fergusson, H.F. Gruetjen,∗ E.P.S. Shellard, and B. Wallisch†

Centre for Theoretical Cosmology, DAMTP, University of Cambridge, CB3 0WA, UK

Despite numerous efforts, the search for oscillatory signatures in primordial spectra has not pro-
duced any convincing evidence for feature models to date. We undertake a thorough search for
signatures of sharp features in the WMAP9 power spectrum and bispectrum as well as in the
Planck power spectrum. For the first time, we carry out searches in both the power spectrum and
bispectrum simultaneously, employing well-defined look-elsewhere statistics to assess significances in
a rigorous manner. Developing efficient methods to scan power spectrum likelihoods for oscillatory
features, we present results for the phenomenological bare sine and cosine modulations, allowing
validation against existing Planck Likelihood surveys, as well as templates that include the correct
sharp feature scaling. In particular, we study degeneracies between feature and cosmological pa-
rameters. For frequencies beyond the scale set by the acoustic peaks, the dependencies are realised
through uninteresting adjustments of the comoving distance to last scattering. Hence, it is sufficient
to keep cosmological parameters fixed and employ Gaussian approximations to the likelihood as a
function of the feature model amplitude. In cases where results can be compared to the literature,
our method shows excellent agreement. We supplement results from the Planck Likelihood with an
analysis based on the Planck SMICA component separation map that, working on the assumption
that the component separation algorithm is reliable, allows for the inclusion of a larger sky fraction.
In principle, this allows us to place the most stringent constraints to date on the amplitudes of
feature models in the temperature power spectrum. Invoking the WMAP bispectrum, we perform
a combined power spectrum and bispectrum survey. We use and slightly generalise statistics devel-
oped in previous work to reliably judge the significance of large feature model amplitude estimates.
We conclude that our results are entirely consistent with a featureless realisation of a Gaussian
cosmic microwave background.

PACS numbers: 98.80.Cq, 98.80.-k, 98.80.Es

I. INTRODUCTION

In recent decades, significant advances have been made
in our understanding of the early Universe. The infla-
tionary paradigm has emerged as the best explanation of
how our Universe began predicting it to be flat, isotropic
and homogeneous with an approximately scale invariant
power spectrum of primordial fluctuations. Apart from
the tensor to scalar ratio r, which is constrained to be
less than r < 0.11 (95% limit) [1], there is traditionally
only one quantity, the spectral index ns parametrising
deviations from scale invariance of the primordial power
spectrum, that can be used to distinguish between dif-
fering inflationary models. Despite the observational ev-
idence that ns ≈ 0.96 [1], constituting a deviation from
scale invariance at the four-sigma level, this constraint
still leaves a plethora of viable candidates.

An exciting possibility that could provide further in-
sight into the physics driving inflation is the presence of
an oscillatory scale dependence of the primordial spectra.
A well-studied scenario causing such oscillatory features
are violations of the slow-roll conditions during the era
of horizon exit which do not spoil inflation (cf. e.g. the
review article [2]). These can either arise due to sharp
features in the slow-roll parameters (including the speed
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of sound) [3–8], an oscillatory component in their evolu-
tion [9–12] or a combination of both (cf. e.g. Ref. [13, 14]).
In particular, it has been shown that feature models can
generate possibly observable non-Gaussianity with char-
acteristic bispectrum shapes. This allows to look for sig-
natures in higher-order correlation functions which can
lower the threshold for a detection. It has been shown
that the modulations to the power spectrum and the bis-
pectrum are closely linked and typically oscillate with the
same underlying frequency [2, 7–9, 15–19].

Inspired by these ideas many searches for feature
models have been undertaken in WMAP and Planck
cosmic microwave background (CMB) data. Most of
these focused on the power spectrum either targeting
specific models, e.g. Refs. [11, 20–32], or using model-
independent approaches, e.g. Refs. [33–38]. A search for
oscillatory signals in the bispectrum was first undertaken
in WMAP data [39] and more recently using the Planck
data [40]. So far, none of these searches have produced
convincing evidence for the existence of features in the
primordial spectra.

In this work, we will focus on the signatures of sharp
features using templates that will be thoroughly dis-
cussed in Sec. II and App. A. We do not only work
with phenomenological sine and cosine modulations to
the spectra, but also investigate whether the correct k-
dependent scalings predicted by the theory of sharp fea-
tures impact the results.

The primary goals of this work are fourfold. First, we
develop efficient pipelines to scan power spectrum likeli-
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hoods for the presence of sharp features. In the process,
we study degeneracies between cosmological and feature
model parameters and argue that, except for very low
frequencies, it is sufficient to keep cosmological param-
eters fixed to their best-fit values in a power spectrum
survey. Secondly, we construct a likelihood based on
the Planck Spectral Matching Independent Component
Analysis (SMICA) [41]. While this allows for a compar-
ison and cross-validation of the two methods, the main
advantage is that the SMICA map in principle provides
us with a larger accessible sky fraction. Working on the
assumption that the SMICA cleaning algorithm is reli-
able, we can extend the included sky fraction and, thus,
significantly lower the error bars on feature models. This
provides clues as to whether or not large signals observed
in the Planck Likelihood could be candidates for actual
features.

Thirdly, we combine the power spectrum results with
WMAP bispectrum results in the spirit of a combined
survey proposed in Ref. [42]. As will be discussed in de-
tail below, finding large results at the same frequencies
could provide us with further evidence for a feature. Fi-
nally, we employ and slightly generalise the statistics de-
veloped in Ref. [42] to rigorously assess the significance
of the findings in the individual and combined surveys
throughout this work.

The paper is organised as follows. We start in Sec. II
by introducing and motivating the power spectrum and
bispectrum templates we study. Further details are pro-
vided in App. A. We go on to describe and validate our
pipelines in Sec. III. In particular, we study degenera-
cies between the cosmological and the additional feature
model parameters in the power spectrum in Sec. III A.
While Sec. III A 1 is focused on the Planck Likelihood,
our power spectrum analysis of the Planck SMICA com-
ponent separation map is detailed in Sec. III A 2. Sec-
tion III B then provides an outline of the bispectrum
pipeline employed on the WMAP data.

Our main results are presented in Sec. IV. Sec-
tions IV A and IV B discuss the results of individual
Planck power spectrum and WMAP bispectrum surveys.
In particular, we compare the power spectrum results ob-
tained from the Planck Likelihood with those obtained
from the SMICA map for different sky fractions to inves-
tigate whether the inclusion of more data reinforces the
observed signals. Section IV C goes on to combine the
power spectrum results from the WMAP Likelihood as
well as the Planck Likelihood and SMICA map with the
WMAP bispectrum. Throughout Sec. IV we employ the
statistics developed in Ref. [42] to rigorously judge the
significance of our findings and discuss to what extent
the data is consistent with a featureless Gaussian CMB.
To do this we slightly generalise the work in Ref. [42] as
detailed in App. B. Finally, we summarise our results and
conclude in Sec. V.

II. FEATURE MODELS: OSCILLATING
POLYSPECTRA

As in a previous publication [42], we continue to
study a linearly-spaced template with the power spec-
trum PR(k) and the bispectrum shape S(k1, k2, k3) given
by

∆PR
PR,0

(k) =AP sin (2ωk + φP ) , (1)

S(k1, k2, k3) =
(k1k2k3)2

∆4
R(k∗)

B(k1, k2, k3)

=AB sin(ωK + φB) , (2)

where K = k1 + k2 + k3, PR,0(k) is the power spectrum
in the absence of any feature, ∆2

R(k) = k3/(2π2)PR,0(k)
is the dimensionless power spectrum and k∗ is a fiducial
momentum scale. We will refer to this template as PS1,
Eq. (1), and BS1, Eq. (2), respectively, to distinguish
them from the modified templates, PS2 and BS2, that
will be introduced below. Note that for a given feature
the same frequency ω appears in both the modulation to
the power spectrum and the oscillatory running of the
bispectrum. The frequency ω is a dimensionful quantity
with units of Mpc, but, for brevity, we suppress units
when quoting frequencies throughout this work. The
phases φP and φB and especially the amplitudes AP and
AB are typically model-dependent so that this template
has five parameters.

Such oscillatory spectra are well-motivated theoreti-
cally. While other models are also known to produce os-
cillations1, a well-explored example is the appearance of
sharp features in the slow-roll parameters or the speed of
sound during inflation. A rigorous treatment in the case
of the power spectrum involves the Generalised Slow Roll
(GSR) framework (cf. e.g. Ref. [4]) while the bispectrum
is studied using the in-in formalism (cf. e.g. Ref. [2]) with
possible GSR corrections to the mode functions [45].

In this work, we are mostly interested in the behaviour
of the oscillatory spectra for ωk � 1. The reason for this
is that for extended oscillations, the contribution to the
overall S/N (signal-to-noise) in the CMB from low mul-
tipoles is small, so that nearly all the S/N comes from
l > O(102) corresponding to k > O(10−2). Low frequen-
cies ω . 140 are strongly degenerate with cosmological
parameters as shown explicitly in Sec. III A 1 and we will
be mainly interested in large frequencies with ω � 102.
Thus, for these models most of the S/N generically comes
from regions with ωk � 1 so that it is justified to scan
for these models based on their behaviour for ωk � 1.

Rather than rigorously calculating polyspectra em-
ploying the GSR method and the in-in formalism, we

1 See for example Refs. [43, 44] for a discussion of non-standard
vacuum choices that produce sinusoidal modulations to the
power spectrum.
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provide a simplified discussion in App. A that allows us
to extract the leading-order behaviour for ωk � 1 and
motivates our templates. In the case of the power spec-
trum, simple solution matching across a sharp feature, as
is done in App. A 1, shows that one generally expects a
feature in single-field inflation to generate linearly-spaced
oscillations where the leading-order behaviour for ωk � 1
is given by a component ∼ cos(2ωk) and a suppressed
component ∼ sin(2ωk)/(ωk). This is consistent with rig-
orous results from the GSR approximation in the liter-
ature [5]. The relative magnitude of these terms is de-
termined by the jumps in the slow-roll parameters at the
location of the feature. This statement is general in the
sense that it also applies to inflation with non-standard
kinetic terms where sharp features in the speed of sound
can occur. In fact, features in ε and cs are (nearly) de-
generate at the level of the power spectrum2.

The case of the bispectrum is briefly discussed in
App. A 2. Extracting the leading-order behaviour with
the in-in formalism shows that the scaling of the bis-
pectrum for a sharp feature in the slow-roll parameters
is given by a component ∼ (ωK)2 cos(ωK) and a sup-
pressed component ∼ (ωK) sin(ωK) in single-field infla-
tion. While steps in the speed of sound give rise to os-
cillatory signals in the bispectrum as well, they typically
produce a different shape, hence breaking the near de-
generacy found in the power spectrum. In this work, we
focus on the former case.

We see that even though the templates PS1 and BS1,
Eqs. (1) and (2), have the correct oscillatory behaviour
that we encounter in the phenomenology of sharp fea-
tures, they do not correctly capture the scalings of all
the components. Hence, we also search for modulations
that include the correct scalings using the templates

∆PR
PR,0

=AP

(
cosφP

fP (ω)

ωk
sin (2ωk) + sinφP cos (2ωk)

)
,

(3)

S =AB (cosφBfB(ω)(ωK) sin(ωK)

+ sinφB(ωK)2 cos(ωK)
)
, (4)

where fP (ω) and fB(ω) are functions chosen to give equal
S/N to the sine and the cosine components and the an-
gles φP , φB ∈ [0, π) parametrise the relative magnitudes.
These templates will be referred to as PS2, Eq. (3), and
BS2, Eq. (4), respectively.

We emphasise that while these templates should be
reliable for ωk � 1, the behaviour of the solutions for
ωk . 1 is much more complicated and requires a careful

2 In the context of the GSR framework this degeneracy between
features in the inflaton potential and in the speed of sound has
been demonstrated for example in Ref. [5]. The degeneracy is
only broken by minor differences at small k that are observation-
ally nearly irrelevant due to the poor S/N at low multipoles and
do not contribute to our discussion of the ωk � 1 behaviour.

treatment. We argued previously that this region con-
tributes very little S/N. However, in the case of the tem-
plate PS2, the 1/(ωk) suppression can assign a larger
fraction of the overall S/N to this region. To avoid this
problem we will restrict our analysis for the template
PS2 to multipoles l ≥ 50, enforcing that for ω � 100
only k with ωk ≥ 1 contribute to feature model ampli-
tudes. This solution clearly comes with a loss in S/N for
those feature models that have most of their support in
the region l ≤ 50. These models would benefit from a
more rigorous treatment. We will discuss this point in
more detail in Sec. IV A 2.

We conclude this section with a few remarks on the
validity of the sharp feature limit (cf. App. A). As has
been discussed in Refs. [46, 47], strictly speaking, the
sharp feature limit is not under perturbative control.
This can be seen naively by considering the ratio of
the quadratic and cubic Lagrangian that should satisfy
L3/L2 � 1. The couplings in the cubic Lagrangian di-
verge as the sharp feature limit is taken and violate this
bound which indicates that the theory becomes strongly
coupled. Hence, features that can be studied within the
framework of perturbation theory can only have a small,
but finite width. The finite width typically manifests
itself as an exponentially decaying envelope multiplying
the feature templates. Effects on wavenumbers k which
where deep inside the horizon at the time of the feature
are suppressed. For the frequency range we are studying
it is sensible to assume that very sharp, but still pertur-
bative, features produce a signature in the power spec-
trum that is largely unaffected by the envelope in the
signal-dominated region of Planck. Thus, these types of
features should be well described by the templates PS1
and PS2 without an envelope. We are using WMAP data
with lmax = 600 to study the bispectrum. In this case it
is also sensible to assume that very sharp, but still per-
turbative, features are captured by the templates BS1
and BS2 without taking the envelope into account.

III. METHODS

A. Power spectrum: a dual pipeline

The analysis of the power spectrum is performed em-
ploying a dual pipeline based on the Planck 2013 data
release. Our search for feature models in the power spec-
trum uses both the Planck power spectrum Likelihood as
well as a pseudo-Cl (PCL) likelihood based on the Planck
component separation maps [41]. While the former in-
corporates a more rigorous modelling of experimental ef-
fects such as noise anisotropies and beam uncertainties,
the latter allows, for example, to easily change the in-
cluded sky fraction and use larger parts of the CMB sky
that, assuming successful component separation, should
be clean of foregrounds. We provide an outline of the
two approaches in Secs. III A 1 and III A 2, respectively.

As previously pointed out and confirmed in this work,
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the likelihood function has many local maxima associated
with different frequencies ω. This is a serious obstacle for
a standard Markov Chain Monte Carlo (MCMC) analy-
sis as the likelihood is difficult to explore. Therefore, we
introduce a grid in the frequency ω as has been done in
previous works [23, 25, 26, 42]. The spacings were taken
to be ∆ω = 10 unless stated otherwise. We also intro-
duce a grid in the phase φ with ∆φ = 0.1π. However,
as will be further discussed in Sec. III A 3, adopting the
methods discussed below it usually suffices to perform the
analysis only for the pure sine component, φ = 0, and the
pure cosine component, φ = π/2. All other phases are
straightforwardly related to these two cases.

For any given frequency ω and phase φ we only vary
the amplitude AP and find the best fit while keeping all
cosmological, foreground and nuisance parameters fixed
and set to their best-fit values without the presence of
any feature. We will argue and verify in Sec. III A 1 that
this is entirely sufficient for a search for linearly-spaced
feature models with frequencies ω � 100 which are be-
yond the oscillation patterns imprinted on the CMB due
to the acoustic oscillations.

1. Planck Likelihood

a. Fast extraction of feature model amplitudes from
the Planck Likelihood Unsurprisingly, keeping the six
cosmological ΛCDM parameters As, ns, Ωbh

2, Ωch
2, θA

and τ as well as the foreground and nuisance parameters
fixed, the Planck Likelihood is very nearly Gaussian3 in
the feature model amplitude AP for any given ω and φ.
We verified this empirically by plotting the likelihood,
but it can also be understood in a straightforward fashion
by noting that the high-l log-likelihood, which dominates
the S/N, is based on the fiducial Gaussian approximation
[48–50] given by

− 2 logL = χ2 ≡
(
Ĉl1 − Cl1

)
∆l1l2

(
Ĉl2 − Cl2

)
, (5)

where Ĉl and ∆l1l2 = 〈∆Ĉl1∆Ĉl2〉 are the pseudo-Cl
(PCL) estimates and covariance matrix, respectively.
The covariance matrix is evaluated for a fiducial model
and kept fixed, explaining the name. If we only vary the
feature model amplitude, we have Cl = C0,l + AP δCl
in linear theory and, therefore, it is evident that L as a
function of AP is a Gaussian.

Rather than thoroughly exploring the likelihood using
MCMC techniques, it is thus possible to simply calculate
the best-fit amplitude ÂP and the variance σ2 = 〈∆Â2

P 〉

3 While the high-l part of the likelihood should be Gaussian as
pointed out below, there can be deviations due to the non-
Gaussian nature of the low-l likelihood. Furthermore, non-linear
corrections to the modulations of the Cl from lensing might cause
very slight deviations from a perfect Gaussian shape of the like-
lihood as a function of AP .

by fitting a Gaussian through three points. In practice,
we sample the likelihood on a coarse grid in the amplitude
AP using a version of CAMB [51] modified to include the
additional feature degrees of freedom. In order to cor-
rectly resolve the oscillations over the entire frequency
range, we make sure that the accuracy settings are cho-
sen appropriately4. In particular, we enforce calculation
of the transfer functions at each l for large frequencies
ω ≥ 1000. Then, we pick the amplitude with the lowest
χ2 from this small set of samples5 and two points approxi-
mately a distance σ to the left and right and calculate the
corresponding Gaussian. The mean of this Gaussian is
the best-fit amplitude ÂP and its variance gives 〈∆Â2

P 〉.
The whole process is very fast making scans over large
frequency ranges feasible.

We also performed an MCMC exploration with
CosmoMC [53] only varying AP for frequencies up to
ω = 2000 enforcing a stringent convergence criterion of
R−1 < 0.01 to exclude the possibility that non-Gaussian
corrections to the likelihood have a large effect. We found
excellent agreement of the mean and standard deviation
of the posterior amplitude distribution with the Gaus-
sian approximation described above in accordance with
the expectation that the likelihood should be very nearly
Gaussian.

To quantify our results, we assign a significance ĀP to
the best-fit amplitudes according to

ĀP =
ÂP

〈∆Â2
P 〉

1
2

. (6)

From a Bayesian point of view this significance measures
how inconsistent the posterior amplitude distribution is
with AP = 0. However, this significance can also be inter-
preted from a frequentist point of view. Under the fidu-
cial Gaussian approximation, the maximum-likelihood
estimate ÂP is normally distributed with mean 〈ÂP 〉 = 0
under the null hypothesis (AP = 0) with the same vari-

ance 〈∆Â2
P 〉. Hence, Eq. (6) is also the frequentist sig-

nificance corresponding to the p-value of measuring an
amplitude at least as big as ÂP . Finally, we note for

4 For increasing frequency, we adjust the CAMB accuracy param-
eters ‘accuracy boost’ and ‘l sample boost’ to enforce a denser
wavenumber sampling, a decrease in integration step sizes and a
denser sampling in l when interpolating the Cl [52]. We explic-
itly checked that our settings are sufficient to resolve oscillations
at a given ω by ensuring that our results are unaffected by a
further increase in accuracy parameters. A detailed study of ac-
curacy settings in the context of feature searches can be found
in Ref. [23]. We generally chose to be more conservative using
(accuracy boost, l sample boost) = (3, 30) for ω < 600, (4, 40)
for ω < 1000 and (8, 50) for ω ≥ 1000. Especially at lower
frequencies this is likely to be excessively accurate and further
optimisation is possible.

5 This is just a rough estimate for the actual best-fit amplitude due
to the limited number of samples from the likelihood. We em-
phasise that the actual best-fit amplitude is calculated by fitting
a Gaussian.
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later reference that for the fiducial Gaussian approxima-
tion mentioned above, the likelihood improvement, which
is often quoted, is simply given by

− 2∆ logL = −Ā2
P . (7)

b. Comparison with a full MCMC analysis The
analysis outlined above does not explore the possibility of
further likelihood improvements coming from varying the
cosmological parameters. Hence, one might be worried
that the method does not identify big likelihood improve-
ments or, equivalently, significant feature model ampli-
tudes with large ĀP reliably. The purpose of this section
is to show that for frequencies larger than the scale of
acoustic oscillations, ω � 100, varying the amplitude
alone is sufficient to correctly determine the significant
feature model signals and the maxima in likelihood im-
provement.

To do this, we compare results obtained from the
Planck Likelihood by first fixing all cosmological, fore-
ground and nuisance parameters to their best-fit values
and then just varying the feature model amplitude as
above to an analysis, where the six cosmological and
14 foreground and nuisance parameters6 are varied si-
multaneously with the amplitude AP . For the latter,
we assume the same priors on the cosmological, fore-
ground and nuisance parameters as the Planck collabora-
tion (see Tables 1 and 4 in Ref. [1]) and a flat prior with
−0.3 ≤ AP ≤ 0.3 on the feature amplitude. We run eight
CosmoMC chains until they satisfied the convergence crite-
rion R− 1 < 0.02 in the least-converged parameter with
the actual convergence being closer to 0.01 and below for
most cases. Additionally, we also checked that the results
are unaffected by a more stringent convergence criterion.

Let us first formulate some expectations to interpret
the results. As already discussed in Ref. [42], we expect
strong degeneracies between feature models and the cos-
mological parameters below the scale set by the sound
horizon at last scattering (LS), ω ≈ 140. The oscilla-
tions due to features effectively alter the acoustic peak
structure which can mimic the effects of changing other
parameters. These degeneracies are expected to largely
disappear for ω > 140. However, as has been mentioned
elsewhere (see e.g. Ref. [25]), even for high-frequency os-
cillations there still is a further subtle effect that can lead
to dependencies between the feature model amplitude
and the cosmological parameters. For a feature model
with primordial frequency ω in k-space, the frequency
ωl in l-space observed in the power spectrum is approxi-
mately given by

ωl ∼
2ω

η∗
, (8)

6 We note that the other foreground and nuisance parameters in-
corporated in the Planck Likelihood are analytically marginalised
over as in Ref. [1].

ωpeak

ω

2Δlogℒ

Δη*

0.

FIG. 1. An idealised sketch of the behaviour of the comoving
distance to LS η∗ in the vicinity of a peak in the feature
model likelihood. The blue curve represents the likelihood
improvement as a function of ω measured when only varying
the amplitude and keeping all cosmological parameters fixed
to their best-fit values. The red curve shows the behaviour
of ∆η∗ = η∗ − η∗,0 attempting to tune the resulting l-space
frequency ωl to match ωl,peak.

where η∗ is the comoving distance to LS. The latter de-
pends on the expansion history of the universe and thus
on the ΛCDM parameters. For a given point on the grid
of feature models, the frequency ω is fixed. However, if we
decide to vary the cosmological parameters, we effectively
allow some freedom in the frequency that is ultimately
compared to the data. If there is a large signal at some
ωl,peak in the data, we see a peak at ωpeak ∼ η∗,0ωl,peak/2
in the computations where the cosmological parameters
are kept fixed. Here, η∗,0 is the best-fit value of η∗ with-
out allowing for feature models that we used in these
runs. For this particular value ω = ωpeak we expect
that allowing the cosmological parameters to vary will
not have any impact on the best fit. It should still have
the same feature model parameters and we should still
find a best fit with η∗,BF = η∗,0. However, if the fre-
quency is slightly lower than ωpeak, we expect that the
best-fit cosmological parameters get shifted such that η∗
decreases in an attempt to arrange ωl ∼ 2ω/η∗ ∼ ωl,peak.
Similarly, if ω is slightly larger than ωpeak, we expect η∗
to increase in order to produce a better fit to the feature
in the data. These expectations are summarised in Fig. 1
where the behaviour of ∆η∗ = η∗−η∗,0 around a peak in
the likelihood improvement is shown schematically.

With this heuristic picture in mind we proceed to study
results extracted from the Planck Likelihood. In this sec-
tion, we decrease the frequency spacing to ∆ω = 5 for
ω ∈ [220, 450] (even smaller values are chosen in the vicin-
ity of the likelihood peaks) in order to better resolve the
peaks in the amplitude estimates and expected jumps in
∆η∗. Figure 2 compares the amplitudes obtained with
and without varying the cosmological, foreground and
nuisance parameters. The amplitude estimates ÂP are
plotted for φ = 0.5π where the feature template reduces
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FIG. 2. Comparison of the oscillation amplitudes obtained from an MCMC analysis of the Planck Likelihood sampling over all
cosmological, foreground and nuisance parameters (all params) and the fast method where all parameters are kept fixed and

the likelihood is assumed to be Gaussian in the amplitude AP (amp only). In the former case, we take ÂP to be the mean
of the posterior amplitude distribution as we find this to be numerically more stable than the best fit. In the latter case, we
use the best-fit amplitudes obtained from the Gaussian approximation. We checked that this gives almost exactly the same
answer as the mean of the corresponding posterior distribution due to the near perfect Gaussianity of the likelihood in this
case (see discussion in the main text). For each frequency the results are displayed for φ = 0.5π. The main plot shows the
difference between the amplitudes normalised by the standard deviation as calculated from the Gaussian approximation. A
direct comparison of the amplitudes is shown as an inset. Good agreement is found for ω & 200.

to a bare cosine, ∆PR ∼ cos(2ωk). For ω & 200 this
shows good agreement between the values obtained from
the two approaches. We emphasize that this is not only
true for the slice shown, but also for all other values of
the oscillation phase φ. Evidently, any remaining degen-
eracies have little effect on the measured amplitudes for
large frequencies.

However, the degeneracy with η∗ discussed above can
indeed be observed at higher ω. Figure 3 shows the likeli-
hood improvements for ω in the range [230, 445] obtained
from just varying the amplitude together with the values
of η obtained from runs where all parameters are varied.
The qualitative behaviour shown in Fig. 1 is clearly recog-
nisable at the likelihood peaks for ω & 300. For smaller
frequencies this effect can still be observed, but is less
prominent due to more complicated degeneracies in this
region not captured by this simple model. The presence
of these residual low-ω degeneracies is also suggested by
the small differences in the amplitude measurements near
the peaks in the region 200 . ω . 300 in Fig. 2.

Summing up, for ω � 140 a search for features where
only the amplitude is varied is sufficient and any remain-
ing degeneracies with cosmological parameters are small.
Our results suggest that any further effects can be ex-
plained by an adjustment of the comoving distance to
LS. Such an effect does not lead to bigger peaks in the
likelihood improvement. It only allows frequencies close
to a peak to benefit slightly, but does not change the
likelihood improvement measured for the actual peak fre-

quency.

2. Fast quadratic estimate based on the SMICA map

To search for feature models in the Planck SMICA
component separation map [41] we construct a simple
PCL likelihood as in previous work [42]. Using the
SMICA map has the advantage that we can extend the
included sky fraction compared to the Planck Likelihood
[1, 50] allowing in principle for more stringent tests of
feature models7.

As has become standard, we use a PCL likelihood
based on cross correlators to analyse the power spectrum
[1, 50, 54]. The Planck component separation analysis
published two maps for each foreground cleaning method
as part of the 2013 data release. A map of the full CMB
temperature sky (which is supposed to be clean of fore-
grounds) that we will refer to as T (n̂) and a half-ring-
half-difference (HRHD) map that we refer to as N(n̂).
The latter is obtained by running the foreground clean-
ing pipeline on the data from the first and second half of
each stable pointing period and taking half the difference

7 Whether the results are reliable depends on the performance of
the foreground cleaning scheme in regions of higher contamina-
tion. We will discuss this point in more detail below.
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FIG. 3. The behaviour of the comoving distance to LS, η∗, as a function of frequency ω (red). η∗ is obtained by varying all
cosmological, foreground and nuisance parameters as well as the amplitude AP . We plot ∆η∗ = η∗ − η∗,0 where η∗,0 is the
best-fit value setting AP = 0. Also plotted is the likelihood improvement Ā2

P obtained by keeping all parameters fixed and
employing a Gaussian approximation to the likelihood as discussed in the main text (blue). For each frequency the result is
plotted for φ = 0.5π. The shaded area indicates where one expects further residual degeneracies with cosmological parameters
and the idealised picture presented in Fig. 1 does not fully apply. For ω & 300 one can clearly identify the predicted behaviour
of η∗ in the vicinity of the likelihood peaks. Dashed vertical lines are drawn at the approximate locations of peak frequencies
ωpeak as a guide.

of the results. It can be thought of as an estimate of the
noise in the final temperature map [41].

The data enters the likelihood through the power spec-
trum estimates

ĈXl = ĈTl − ĈNl , (9)

where ĈTl and ĈNl are the power spectra of the T and N
maps and we use the standard PCL estimates obtained
via

Ĉl1 = (M−1)l1l2C̃l2 , C̃l =
1

2l + 1

∑
m

|alm|2 , (10)

with Ml1l2 the standard PCL coupling matrix for a given
mask [55]. The subscript X indicates that we think of
this power spectrum effectively as a cross spectrum. The
rationale behind this is the following: If we define the
maps

T1(n̂) =
T (n̂) +N(n̂)

2
, T2(n̂) =

T (n̂)−N(n̂)

2
(11)

and think of the T map as the half-ring-half-sum (HRHS)
map, then the half-ring (HR) maps T1 and T2 correspond
to the foreground cleaned maps obtained from the first
and second half of each stable pointing period. The cross-
correlator between these two maps is then given by

C̃T1×T2
l =

∑
m(a1

lm)∗a2
lm

2l + 1

=

∑
m

(
(aTlm)∗aTlm − (aNlm)∗aNlm

)
2l + 1

≡ C̃Xl . (12)

This argument is obviously only entirely correct if the
foreground cleaning procedures are exactly linear in all

input maps, which is not the case for all foreground clean-
ing schemes. However, for the purpose of this analysis we
will assume this is a good approximation and treat ĈXl
as a cross-correlator that should then also carry no noise
bias8.

As in Ref. [42] we apodise the masks by approximate
convolution with a Gaussian beam of FWHM 0.5◦ to min-
imise leakage using the procedure outlined in Ref. [56].
We approximate the PCL log-likelihood with the fiducial
Gaussian approximation [48–50] introduced in Eq. (5).
As the fiducial model we simply use a smoothed version
of the power spectrum ĈXl together with a smoothed

version of the power spectrum ĈNl to model the noise
contribution to the covariance9. We employ the analytic
approximations from Ref. [48] to calculate the covari-
ance matrices. These approximations assume an approx-
imately constant power spectrum. To account for small

8 There is another caveat here that there can be correlations be-
tween the noise in the first and second half of the pointing pe-
riods. Such correlations spoil the independence of the noise re-
alisation in the two HR maps and would thus lead to a noise
bias in the cross-correlator. This minor issue leads to small un-
derestimates of the noise in the HR maps and was discussed in
Ref. [41]. We will ignore this here.

9 The fiducial model and the noise spectrum only enter the covari-
ance approximation and should roughly correspond to the true
power spectrum underlying the data and the actual noise power
spectrum. To obtain good approximations, we simply use the
PCL estimates of these spectra given by ĈX

l and ĈN
l . As we

are only including multipoles with l ≥ 50 the scatter in these
estimates is not very significant. However, to further reduce this
scatter, we smooth the PCL spectra l(l + 1)ĈX

l and ĈN
l over a

width ∆l ≈ 20 by convolution with a Gaussian.
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leakage effects we correct for slight underestimates of the
variance using an improved analytic approximation [56].

In order to calculate the covariance matrices we have
to assume a noise model for the HR maps. In the analysis
below we just model the noise as isotropic and Gaussian
with a power spectrum given by a smoothed version of
2 ĈNl . While the noise is clearly not isotropic in reality10,
we find that this assumption does not seem to affect the
feature searches presented in this work at any significant
level11. Due to significant deviations from a Gaussian
distribution at low l the fiducial Gaussian approximation
is not reliable in this region. Hence, we only consider
the multipole range 50 ≤ l ≤ 2000. As we are mainly
interested in extended oscillations, the loss in S/N from
discarding the low multipoles is negligible. Naively, as-
suming lmax ∼ 2000, the region 2 ≤ l ≤ 50 should con-
tribute only a fraction of O(10−3) to the total S/N. How-
ever, this estimate does not take into account the specific
shape of the oscillatory feature model templates that are
increasingly damped in amplitude due to the convolution
with the transfer functions and lensing. Furthermore, it
is well-known that there is a dip in the power spectrum
at 20 . l . 30 [1, 50] that may have some weight. To
quantify this, we explicitly checked the influence of the
low-l likelihood on the results for the PS1 template in
the Planck Likelihood analysis and found shifts in the
amplitudes of at most ∼ 0.3 sigma and usually far be-
low. This is a rather small effect although larger than
the naive S/N consideration suggests, which is likely due
to the anomaly mentioned previously.

In linear theory, especially ignoring lensing, the ob-
served CMB power spectrum given the six ΛCDM pa-
rameters pi and a feature model is given by

Cl(pi, A) = CΛCDM
l (pi) +AP δCl(pi, ω, φ) . (13)

If AP δCl is a small contribution to the power spectrum,
which it always is in this work, the lensed power spec-
trum can be written in the same way by linearising the
effect of lensing and defining δCl := ∂C lensed

l /∂AP . In
principle, determining the maximum-likelihood estimate
for the amplitude ÂP ≡ ÂML

P requires all parameters to
be varied simultaneously. As we showed in Sec. III A 1,
it is sufficient for the purpose of this study to set the
ΛCDM parameters to their best-fit values obtained by
assuming a featureless model and only vary the ampli-
tude AP for any given ω and φ. We thus compute the

10 Anisotropy in the noise arises at the very least due to the highly
anisotropic scanning strategy of Planck. To a lesser extent it is
also conceivable that the foreground cleaning methods introduce
anisotropies in the noise patterns of the final maps.

11 To test this, we also constructed a likelihood assuming an
anisotropic noise pattern based on the average hit counts of the
143 and 217 GHz maps. While the χ2 values shift slightly, the
significances with which various feature models are detected seem
to be largely unaffected. Therefore, we stick to a simple isotropic
model.

lensed feature model templates for each point on the grid
assuming the best-fit ΛCDM cosmology employing CAMB
[51] with sufficiently high precision settings to ensure that
the oscillations are accurately resolved.

As we only vary the amplitude AP , the best fit can be
found as a simple quadratic estimate12 given by

ÂP =
2

NP
δCl1(∆−1)l1l2

(
Ĉl2 − CΛCDM

l2

)
, (14)

NP = 2δCl1(∆−1)l1l2δCl2 (15)

for any ω and φ. The variance of the estimates is sim-
ply given by 〈Â2

P 〉 = 2/NP so that we can extract the
normalised amplitude estimates, Eq. (6), via

ĀP =

(
2

NP

) 1
2

δCl1(∆−1)l1l2

(
Ĉl2 − CΛCDM

l2

)
. (16)

This leads to very quick scans over the full frequency
range. The estimator is essentially the optimal quadratic
estimator for the amplitude AP except for well-known
and small suboptimalities due to the slightly lossy
data compression in PCL power spectrum estimates (cf.
Ref. [57] and references within).

3. A comment on the phase φ

Even though the methods discussed above are suffi-
ciently fast that one can simply introduce a grid in the
phase φ as well and obtain significances ĀP (ω, φ) for each
point on a sufficiently dense (ω, φ)-grid, we emphasise
that this is typically not necessary. This is particularly
evident from Eq. (16). For all feature models considered
in this work it can be written as

ĀP (φ) =
NP (0)

1
2

NP (φ)
1
2

cosφĀP (0) +
NP (π/2)

1
2

NP (φ)
1
2

sinφĀP (π/2)

(17)
suppressing the frequency ω. The normalisation fac-
tors can be easily calculated and the dependence on
the data is only through the two estimates ĀP (0) and
ĀP (π/2). Further simplifications occur due to the fact
that the sine and cosine components are in all cases very
nearly uncorrelated already for moderately high frequen-
cies, 〈ÂP (ω, 0)ÂP (ω, π/2)〉 ≈ 0, and, furthermore, we

have 〈Â2
P (ω, 0)〉 ≈ 〈Â2

P (ω, π/2)〉 . The latter holds au-
tomatically for the bare sine and cosine modulations of
the template PS1 and is arranged through the fP (ω)
factor in the case of the template PS2. This implies

12 We introduce a redundant factor of 2 in the definition of the
quadratic estimator here for consistency with the standard op-
timal power spectrum estimator and the optimal bispectrum es-
timator later on. This definition implies 〈Â2

P 〉 = 2!/NP in line

with 〈Â2
B〉 = 3!/NB for the bispectrum.
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NP (φ) ≈ NP (0) ≈ NP (π/2) so that we arrive at the
simple relation

ĀP (ω, φ) =
ÂP (ω, φ)

〈Â2
P (ω, φ)〉 12

= cosφĀP (ω, 0) + sinφĀP (ω, π/2) . (18)

Even though we made use of the form of the quadratic
estimator, we expect that the same reasoning can be ap-
plied to the Planck Likelihood owing to the fact that it
is largely based on the fiducial Gaussian approximation
that gave rise to Eq. (14). We checked this explicitly and
for all the results presented in Sec. IV this is an extremely
good approximation.

Note that with minimal modifications, this discussion

also applies to the bispectrum estimator that will be dis-
cussed below. Refs. [58, 59] make use of this property
in their search for oscillatory models in the bispectrum
where it is sufficient to evaluate the estimator for the sine
and the cosine component only.

B. Bispectrum: optimal fNL estimator

To constrain feature models via the bispectrum we use
a modified version of the modal polynomial pipeline that
was used in the 2013 Planck analysis [40, 60–62]. This is
an implementation of the standard optimal bispectrum
estimator. The optimal estimator for the bispectrum am-
plitude of a feature model ÂB , in the diagonal covariance
approximation, reads

ÂB =
1

NB

∑
limi

Gl1l2l3m1m2m3
bl1l2l3 (al1m1al2m2al3m3 − 3〈al1m1al2m2〉al3m3)

Cl1Cl2Cl3
, (19)

where b is the theoretical bispectrum of the feature model
defined by

〈al1m1
al2m2

al3m3
〉 = Bl1l2l3m1m2m3

= Gl1l2l3m1m2m3
bl1l2l3 (20)

and G is the Gaunt integral, which is the projection of
the angular part of the primordial delta function. The
normalisation of the estimator is

NB ≡
∑
lili

(
Gl1l2l3m1m2m3

bl1l2l3
)2

Cl1Cl2Cl3
. (21)

The pipeline breaks the bispectrum being constrained
into a set of orthonormal separable basis bispectra which
dramatically reduces computation time and allows us to
constrain all frequencies, within resolution, simultane-
ously. The approach was first described in Ref. [63] and a
fully realised version was first implemented in Ref. [64].
It was recently extended to polarisation in preparation
for the next round of Planck papers in Ref. [65], which
also included many other small advances. Here, we use
the temperature only version of this pipeline on WMAP9
year data [66] restricting ourselves to lmax = 600. This
reduction in range coupled with the increase in the num-
ber of basis functions from 600 to 2000 allows us to cover
a frequency range six times larger than in the first Planck
analysis extending up to ω = 1000. For the WMAP data
we use the weighted average of the V and W channels
with weights 1.0 and 0.9, respectively. The linear term
and variance is computed from 500 simulations gener-
ated with the fiducial power spectrum combined with
white anisotropic noise created from the coadded hit-
count maps. The simulations were then masked and dif-
fusively inpainted to reduce mode coupling in the mul-
tipoles. We use a frequency grid with a stepwidth of

∆ω = 20, which is sufficient for a WMAP-type survey as
discussed in Sec. IV B and App. B.

IV. RESULTS

A. Power spectrum surveys

1. Bare sine and cosine: results for the template PS1

We present the results for the template PS1 for both
the Planck Likelihood and the SMICA map masked with
the U73 mask in Fig. 4. Each plot consists of a top
panel with a density plot of the normalised amplitude
ĀP as defined in Eq. (6) and a bottom panel showing the
maximum Ā2

P found for any phase φ at a given frequency
ω. We remind the reader that the latter corresponds to
the maximum likelihood improvement observed at that
frequency.

The results show clear similarities. However, there are
evidently differences. We emphasise that due to the dif-
ferent sky fractions included in the analysis one should
not expect the results to match exactly13. Even if we
assume that a given method exactly accounts for all sys-
tematics and noise properties of the data, inclusion of
more data necessarily shifts the observed peaks. The
Planck Likelihood is based on the CL49 and CL31 mask

13 In addition, the low-l likelihood is included in the Planck Like-
lihood search, but not in the SMICA analysis. As already dis-
cussed in Sec. III A 2, this can give rise to further minor devia-
tions in the measured amplitudes.
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FIG. 4. Amplitudes ĀP for the template PS1 up to ω = 4000 as obtained from the Planck Likelihood (top) and based on the
SMICA map masked with an apodised version of the U73 mask with fsky = 0.61 (bottom). In each plot the bottom panel
shows the maximum Ā2

P at a given ω, corresponding to the maximum likelihood improvement at that frequency.

with a sky fraction of fsky = 0.49 and fsky = 0.31, re-
spectively, so that significantly more data is included14 in
the SMICA analysis with fsky = 0.61. Note that this im-
plies that, assuming the foreground cleaning procedure is
reliable, tighter constraints on feature models can be ob-
tained from the SMICA map (cf. Fig. 7). We quantified
how correlated the results are and arrived at the conclu-
sion that the differences between the Planck Likelihood
and SMICA results can be explained by the differences
between the masks used in the two analyses.

The results for the Planck Likelihood are in very good
agreement with the corresponding Fig. 3 in Ref. [26]
where a similar search has been performed using a differ-
ent method. Their approach relies on a Taylor expansion

14 One should keep in mind that sky fractions do not fully reflect
the difference in the underlying datasets. The CL31 and CL49
masks are not simply larger versions of the U73 mask, but there
are parts of the sky that are masked by the U73 mask, but not by
the CL31 or CL49 mask. This leads to larger differences between
the results than might be expected just based on the ratio of sky
fractions.

of the power spectrum in the cosmological parameters
which allows for faster sampling when varying all pa-
rameters as the derivatives of the transfer functions can
be precomputed [25]. Then, a Metropolis-Hastings algo-
rithm is used to find the best fit. By adopting sampling
schemes tailored to the problem, further improvements in
computational efficiency are possible [27]. Note that we
argued previously in Sec. III A 1 b that this is not nec-
essary for linearly-spaced oscillations and accurate am-
plitude estimates as well as likelihood improvements can
be extracted using the numerically very efficient and reli-
able methods proposed in Sec. III that keep cosmological
parameters fixed to their best-fit values. The striking
agreement with Ref. [26] is a further validation of this
claim.

We find the overall best fit at ω ∼ 3710 using both our
approaches with a significance of about 3.5 sigma corre-
sponding to 2∆ logL ≈ 12. Reference [26] reports the
maximum likelihood improvement to be 2∆ logL ≈ 13
at ω = 3670 (note that their frequency definition differs
from ours by a factor of two), which is part of the same
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peak structure15.
The natural question that arises when studying the re-

sults is whether or not the large signals in various places
present significant evidence for feature models. A generic
property of feature model surveys is that one scans over a
large number of effectively independent models. Each of
these can fit fluctuations in the noise16 by chance so that
we expect large results in a large survey simply because
we compared a vast number of models to the data. The
look-elsewhere effect that arises for the oscillatory fea-
ture models under investigation was studied in Ref. [42].
There it was argued that the distribution of the maxi-
mum significances observed in an individual survey can
be well-described analytically and gives rise to a look-
elsewhere-adjusted significance according to

S = 2
1
2 Erf−1

[(
Fχ, 2

(
ĀP
))Neff

]
. (22)

Here, Neff quantifies the effective number of independent
models and Fχ, 2(x) is the cumulative distribution func-
tion (CDF) of the χ-distribution with two degrees of free-
dom. Equivalently, one can define an effective step width
in frequency ∆ωeff according to

∆ωeff =
ωmax − ωmin

Neff − 1
. (23)

This effective step width is related to the degree of corre-
lation between nearby frequencies and can be understood
as a rough estimate of the separation in frequency ω at
which models become effectively independent. For the
type of models under investigation ∆ωeff is independent
of frequency and depends mainly on lmax of the experi-
ment.

In App. B we show that we have ∆ωeff ≈ 13 for a
Planck-like set-up and, therefore, we arrive at Neff ≈ 300
for our survey range. Note that this also justifies our
choice of frequency step width ∆ω = 10. Due to the
strong correlations between frequencies separated by less
than ∆ωeff this step width should be sufficiently small
to resolve all peaks in the likelihood improvement. Fig-
ure 5 shows the analytic relation between the maximum
raw significance observed and the corresponding look-
elsewhere-adjusted significance for Neff = 300 with the
respective maximum values from the Planck Likelihood
and SMICA analysis highlighted. The look-elsewhere-
adjusted significances in both cases are clearly below the
one sigma level. Loosely speaking this implies that one

15 The peak observed at this frequency in the Planck Likelihood
analysis is only marginally smaller than our best fit and recorded
at 3.3 sigma (2∆ logL ≈ 11) making it a competing maximum.
In fact, the authors of Ref. [26] also obtained this structure with
three nearby large peaks, whose likelihood improvements differ
slightly leading to a different overall best-fit value.

16 Noise in this context refers to both the cosmic variance and ex-
perimental noise. Both cause scatter in the PCL estimates that
can give rise to good feature model fits by chance.

FIG. 5. Analytic result for the distribution of maximum sig-
nificance feature model amplitudes in a survey with Neff =
300. The values obtained from the Planck Likelihood and the
SMICA analysis are highlighted.

FIG. 6. Prediction of the distribution of the integrated statis-
tic SI . The values obtained from the Planck Likelihood and
the SMICA analysis assuming Neff = 300 are highlighted.

expects roughly every other random realisation of a fea-
tureless CMB to give rise to a maximum significance at
least as big as what we observe in our CMB. Hence, we
cannot conclude that the maximum likelihood improve-
ments in the power spectrum on their own present con-
vincing evidence for feature models at the respective fre-
quencies.

In Ref. [42] a further test was suggested that addresses
the possibility that the data could present evidence for
feature models that give rise to modulations with mul-
tiple well-separated frequencies. This is different from
simply looking at the maximum significance found in a
survey as the height of all other peaks are taken into ac-
count as well. It was found that the integrated statistic
SI given by

S2
I =

∆ω

∆ωeff

∑
ω

2 Erf−1
[(
Fχ, 2

(
ĀP,ω

))Neff
]2

(24)

produces significances that agree well with a rigor-
ous look-elsewhere analysis for multi-frequency models.
Here, ∆ω is the step width in frequency of the survey
and the sum reduces to an integral over frequency in the
∆ω → 0 limit. Figure 6 shows the distribution of SI
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taken from17 Ref. [42] with the values obtained from the
Planck Likelihood and the SMICA analysis highlighted.
Again, both results are below the one sigma level indicat-
ing that the survey results are consistent with a random
realisation of a featureless Gaussian CMB.

To sum up, the results above indicate that neither the
maximum likelihood improvements nor the abundance of
further large peaks present convincing evidence for a de-
tection of features in the power spectrum based on the
Planck Likelihood or the SMICA map. Of course, this
does not exclude the possibility that the primordial power
spectrum exhibits oscillatory features and with the in-
clusion of more data a different outcome with a positive
detection might be reached.

There are several ways to make progress at this stage.
In Sec. IV C we will combine our survey with bispec-
trum results. As feature models should also produce sig-
natures in the bispectrum this can provide further evi-
dence. Without invoking the bispectrum one can only
include more data, for example the Planck polarisation
data, to lower the error bars on feature model ampli-
tudes18. Without the polarisation data at hand, the only
way to increase the amount of data is the inclusion of a
larger sky fraction. This is not possible in the framework
of the Planck Likelihood as, by construction, it only op-
erates on the cleanest parts of the sky where foregrounds
can be modelled as effective contributions to the power
spectrum.

However, the SMICA component separation algorithm
produces valid19 results on more than 80% of the sky,
defined by the validation mask20 of the algorithm. The
validation mask was published as part of the 2013 Planck
data release and we constructed an apodised version of
it with fsky = 0.81. The larger sky fraction evidently
leads to a significant reduction in error bars as can be
seen in Fig. 7. If the large results we observe at various
frequencies are in fact signatures of real features of the
primordial power spectrum, we expect their significances
to rise. This expectation obviously necessitates that we
trust the SMICA algorithm over the region previously ex-
cluded by the U73 mask, but not by the validation mask.

17 We note that the fit stated in Ref. [42] contains a minor error.
The CDF of the statistic SI , FSI

(x), is well described by

FSI
(x) = 1− exp

(
−(a x2 + b x+ c)

)
(25)

where c = 0.102 as in Ref. [42] but a = 0.108 (rather than
a = 0.092) and b = 0.950 (rather than b = 0.876). We use the
correct values in this work even though the small changes make
little difference in the cases considered here.

18 See for example the discussions in Refs. [42, 67, 68] and references
therein.

19 As measured by a somewhat subjective criterion as described in
Ref. [41] and references therein.

20 The U73 mask is the union of the validation masks of the four
component separation algorithms used in the Planck analysis.
Some of these have significantly smaller sky fractions resulting
in the smaller sky fraction of the union mask.

FIG. 7. The standard deviations of the amplitude measure-
ments for the various analysis methods presented in this work.
The Planck Likelihood uses the CL31 (fsky = 0.31) and CL49
(fsky = 0.49) masks while the SMICA analysis was carried out
with an apodised version of the U73 mask (fsky = 0.61) and
the validation mask (fsky = 0.81). The standard deviation
evidently decreases with growing sky fraction or equivalently
more included data.

The results obtained using the validation mask in an oth-
erwise identical analysis that led to the SMICA results in
Fig. 4 are presented in Fig. 8. The large peaks observed in
Fig. 4 shrink rather than grow. This leads us to conclude
that either the regions that were previously excluded are
not faithful representations of the actual CMB due to a
failure of the component separation algorithm to isolate
the CMB component or the large signals are simply the
result of fitting the scatter of the Ĉl by chance.

2. Including the sharp feature scaling: results for the
template PS2

As pointed out in Sec. II, the template PS1 given by
Eq. (1) that we used in the previous section is not entirely
appropriate when looking for the signatures of sharp fea-
tures in the power spectrum. For these kinds of features
the sine component of the signal is generically suppressed
by a factor of 1/(ωk) giving rise to the template PS2,
Eq. (3). Hence, it is interesting to see whether the large
peaks observed in the previous section carry over to this
case.

Before presenting the results we would like to draw at-
tention to an important qualifier. The way we set up
the search for signatures of feature models places some
restrictions on the type of sharp features we can look
for. First of all, the templates are only supposed to
capture the behaviour accurately for ωk � 1. As ex-
plained in Sec. II for the template PS1 and frequen-
cies ω � 100 this is never really a problem as all the
S/N comes from wavenumbers k satisfying this condition.
While this conclusion carries over to the cosine part of
the PS2 template, the decaying sine part is more prob-
lematic. In particular, those models of the PS2 template



13

FIG. 8. Amplitudes ĀP for the template PS1 up to ω = 4000 based on the SMICA map masked with an apodised version of
the SMICA validation mask with fsky = 0.81. The bottom panel shows the maximum Ā2

P at a given ω, corresponding to the
maximum likelihood improvement at that frequency.

that have mostly a decaying sine component (φ ∼ 0 or
φ ∼ π) might in fact receive a non-negligible contribu-
tion to their S/N that comes from wavenumbers k that
violate ωk � 1. The SMICA analysis above discards
multipoles with l < 50 so that for ω � 100 this region
is not included in the estimates. To achieve the same in
the Planck analysis we discard the low-l likelihood and
only use the Planck high-l likelihood for the PS2 survey.
Then, just like in the SMICA analysis, only multipoles
with l ≥ 50 are taken into account. For those models of
the PS2 template that receive significant S/N contribu-
tions from l < 50 (i.e. those with φ ∼ 0 or φ ∼ π) this is
evidently a suboptimal solution and an analysis that uses
templates that capture the exact low-l behaviour would
produce better constraints on these models.

A further closely related limitation comes from the fact
that we assume that the primordial power spectrum is
linear in the feature model amplitude. While this should
be a good approximation for amplitudes up to O(0.1),
it clearly breaks down for amplitudes that would imply
order unity modulations. In extreme cases these would
lead to negative values of the primordial power spectrum.
The correct templates in these cases have to be obtained
from an appropriate non-linear GSR approximation [4].
Again, this problem never occurs when looking for the
template PS1 as can be easily seen from the standard de-
viations on the amplitude ÂP shown in Fig. 7. For these
models the modulations of the primordial power spec-
trum never become of order unity21. However, for the
decaying sine component of the template PS2 the sharp
rise of the modulation amplitude towards small k can

21 Unless we detect a signal at a significance of & 20 sigma. If
such a strong signature was detected, it should be studied sep-
arately using exact predictions for the modulations induced by
corresponding feature models. Unfortunately, we never observe
a signal that is even remotely close to this level of significance.

be problematic. The only models that are significantly
affected are those with φ ∼ 0 or φ ∼ π that contain
a large decaying sine contribution. For large frequencies
ω � 2000 a highly significant result exceeding four sigma
would imply order unity modulations at small k for these
models. Such results should be interpreted with care as
non-linear corrections to the template might have non-
negligible effects on the results.

Summing up, when studying the figures in this section
care should be taken when interpreting the results near
φ = 0 or φ = π as the results might not accurately reflect
the signature of a corresponding sharp feature or at least
can be significantly improved by an analysis that takes
into account the correct small-k behaviour.

Figure 9 shows the results for the template PS2 for
both the Planck Likelihood and the SMICA map masked
with an apodised version of the U73 mask. We see that
the large signal in the SMICA analysis at ω ∼ 1880
slightly benefits from the inclusion of the decaying sine
and is now observed at 3.7 sigma, whereas the signifi-
cance remains basically unchanged in the Planck Likeli-
hood. The best fit is still at φ ∼ 0.7π as in Fig. 4, so
is dominated by the unsuppressed cosine and should be
well in the parameter region where our analysis is valid.

On the other hand, the peak at ω ∼ 3710 shifts slightly
down in significance and is seen at 3.3 sigma in both
searches. This could imply that an interpretation in
terms of a sharp feature signal is potentially problem-
atic. The largest peak (ω ∼ 3770) in the Planck Likeli-
hood analysis is now detected at 3.8 sigma corresponding
to a likelihood improvement of 2∆ logL ≈ 14. However,
we emphasise that it receives a considerable contribution
from the decaying sine as it is seen at φ ∼ 0.8π, so an
interpretation in terms of a sharp feature might require
further investigation. Finally, the significance of the peak
at ω ∼ 2840 in the Planck Likelihood remains unchanged
at 3.2 sigma.
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FIG. 9. Amplitudes ĀP for the template PS2 (decaying sine) up to ω = 4000 based on the Planck Likelihood (top) and the
SMICA map masked with an apodised version of the U73 mask with fsky = 0.61 (bottom). In each plot the bottom panel
shows the maximum Ā2

P at a given ω, corresponding to the maximum likelihood improvement at that frequency.

Figure 10 displays the best-fit models for the SMICA
analysis at ω ∼ 1880 and ω ∼ 3710, respectively. Also
plotted are the corresponding PS1 templates. One can
clearly see how the decaying sine alters the low-l be-
haviour. At high l the best-fit PS1 and PS2 templates
are identical up to a shift in phase and amplitude of the
modulations.

The statistics to discuss the look-elsewhere-adjusted
significance were developed focusing on the template PS1
[42]. There are differences in the correlation structure
of the templates PS1 and PS2 as can be seen directly
by comparison of Figs. 4 and 9. While the cross sec-
tion through the density plot at φ = 0.5π must be the
same (the templates are identical in this case), the de-
caying sine is more correlated in frequency which results
in broader peak patterns around φ = 0 and φ = π 22.
With this caveat in mind it should be clear from Fig. 5

22 Heuristically, the suppression of oscillations with increasing l can
be thought of as effectively introducing a lower lmax beyond
which oscillations are negligible. This implies a larger effective
step width ∆ωeff and, hence, broader peak patterns (cf. App. B).

that none of the results will give rise to significant im-
provements once the look-elsewhere effect is taken into
account. In particular, the highest result with ĀP ≈ 3.8
at ω ∼ 3770 in the Planck Likelihood analysis is roughly
at the one sigma level.

Finally, repeating the same analysis for the validation
mask as in the previous section does not lead to an ex-
pected increase in significance as can be seen in Fig. 11.
Both large results observed in the SMICA analysis above
(cf. Fig. 9) decrease in significance. In particular, the
strongest result seen in Fig. 9 at ω ∼ 1880 drops be-
low the three sigma level. Again, we emphasise that the
meaningfulness of these results depends on the reliabil-
ity of the component separation method over the entire
region of the sky not excluded by the validation mask.

B. WMAP bispectrum survey

1. Bare sine and cosine: results for the template BS1

The results for the template BS1 extracted from
WMAP 9-year data up to ω = 1000 are shown on the
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FIG. 10. Best-fit models based on the SMICA analysis for the template PS1 at ω = 1880 with φ = 0.7π and ω = 3710 with
φ = 0.2π, respectively, with the corresponding fits of the template PS2.

FIG. 11. Amplitudes ĀP for the template PS2 (decaying sine) up to ω = 4000 based on the SMICA map masked with an
apodised version of the validation mask with fsky = 0.81. The bottom panel shows the maximum Ā2

P at a given ω, corresponding
to the maximum likelihood improvement at that frequency.

left of Fig. 12. As in the corresponding plot for the
power spectrum, the upper panel shows a density plot
of the normalised amplitudes ĀB , while the lower panel
shows the maximum measured Ā2

B at a given frequency.
The highest peak is found at ω ∼ 800 with a significance
of about 2.8 sigma.

To judge whether the observed peaks are at a signifi-
cant level after the look-elsewhere effect has been taken
into account, we can again make use of the statistic
Eq. (22) with an appropriate choice of Neff. For an analy-
sis with lmax = 600 and WMAP noise level it is shown in

App. B that we have23 ∆ωeff ≈ 50. This implies that for
a survey covering a frequency range up to ω = 1000 we
have Neff ≈ 20. The significance of a given ĀB based on
Eq. (22) is presented in Fig. 13 and the value determined
from the WMAP survey presented in this work is high-
lighted. The measured amplitudes are evidently below

23 Note that the ratio of the values of ∆ωeff for WMAP and Planck,
50 and 13 respectively, is in reasonable agreement with a rough
estimate of an effective lmax of the two experiments, ∼ 600 and
∼ 2000, as one would expect based on how oscillatory templates
should be correlated on a given domain (cf. App. B).
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FIG. 12. Amplitudes ĀB for the template BS1 (left) and BS2 (right) up to ω = 1000 as obtained from the WMAP data. In
each plot the bottom panel shows the maximum Ā2

B at a given ω.

FIG. 13. Analytic model for the distribution of the maxi-
mum significance feature model amplitude ÂB in a survey
with Neff = 20. The value obtained from the WMAP data is
highlighted.

the one sigma level implying that none of the observed
peaks on their own present evidence for an oscillation in
the bispectrum.

As in the power spectrum analysis above, we also con-
sider the integrated statistic SI from Eq. (24) evaluated
on the WMAP bispectrum data which is shown in Fig. 14.
Just as in the case of the single peak statistic, we arrive
at a value below the one sigma level meaning that the
abundance of large peaks is entirely consistent with a
Gaussian featureless CMB.

2. Including the sharp feature scaling: results for the
template BS2

As in the case of the power spectrum, we pointed out
in Sec. II, that the bispectrum template BS1 given by
Eq. (2) that we used in the previous section does not
correctly capture the sharp feature scaling of the shape.
The sine component of the signal generically comes with
a factor of ωK while the cosine component is multiplied

FIG. 14. Distribution of the integrated statistic SI . The
value obtained from the WMAP bispectrum survey assuming
Neff = 20 is highlighted.

by a factor of (ωK)2. We included these scalings in our
template BS2, Eq. (4). We go on to investigate whether
the inclusion of these scalings changes the results from
the previous section.

The results for the template BS2 extracted from
WMAP 9-year data up to ω = 1000 are shown on the
right of Fig. 12. There are clear similarities to the re-
sults for the template BS1 without the correct scaling on
the left. This is particularly true for the sine component
(φ ∼ 0 and φ ∼ π) showing very correlated patterns in
the two plots. However, the cosine component seems to
be strongly affected by the inclusion of the (ωK)2 scaling
causing qualitative differences. Generally, the correlation
width in frequency seems to have decreased.

None of the peaks have substantially gained in signif-
icance due to the inclusion of the sharp feature scaling
with the maximum amplitude still being ĀB ≈ 2.8. If
we use the same statistic as for the BS1 template, it
should be clear from Fig. 13 that the results do not ex-
ceed the one sigma level. Again with the caveat in mind
that the distribution of the maximum amplitudes might
be slightly affected due to the different correlation struc-
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ture of the template BS2 (cf. Sec. IV A 2), we are led to
conclude that no convincing evidence for the presence of
sharp features in the WMAP bispectrum alone can be
extracted in this frequency range.

C. Combined power spectrum and bispectrum
survey

In Ref. [42] a natural statistic was introduced to iden-
tify evidence for feature models in a combined survey.
We expect feature models to exhibit the same frequency
ω in both the power spectrum and the bispectrum (cf.
App. A). However, other parameters such as the relative
amplitude of the signal in the bispectrum compared to
the power spectrum, AB/AP , are very model-dependent.
Thus, it is sensible to construct the maximum significance
joint amplitude estimate Ā at a given ω by maximising
over the ratio AB/AP (and the phases of the oscillation,
φP and φB). This results in [42]

Ā =
(
Ā2
P + Ā2

B

) 1
2 , (26)

where ĀP and ĀP are the individual (normalised) power
spectrum and bispectrum amplitudes at that frequency.

An analytic model for the distribution of the maxi-
mum joint amplitude estimate found in a combined sur-
vey, analogous to Eq. (22) that holds in the case of an
individual survey, was presented in Ref. [42]. The es-
sential difference is that in this case the CDF of the χ-
distribution with two degrees of freedom is replaced by
the corresponding distribution with four degrees of free-
dom giving

S = 2
1
2 Erf−1

[(
Fχ,4

(
Ā
))Neff

]
. (27)

Similarly, for a combined survey the integrated statistic
SI , analogous to Eq. (24), is given by

S2
I =

∆ω

∆ωeff

∑
ω

2 Erf−1
[(
Fχ,4

(
Āω
))Neff

]2
. (28)

In both of these definitions an appropriate choice of Neff

is required. In the case of combining surveys with iden-
tical ∆ωeff as in Sec. IV C 1 the choice is obvious. The
choice of Neff for a combined survey with different ∆ωeff

is discussed in Sec. IV C 2.

1. WMAP bispectrum and WMAP power spectrum

The results for the template PS1 up to ω = 1000 as
extracted from the WMAP likelihood using the efficient
methods described in Sec. III A 1 are shown in Fig. 15.
They agree very well with the corresponding figure in
Ref. [25] as expected.

Before proceeding to perform a combined analysis we
would like to point out that the WMAP power spectrum

FIG. 15. Amplitudes ĀP for the template PS1 up to ω = 1000
based on the WMAP likelihood. As in previous figures, the
bottom panel shows the maximum Ā2

P at a given ω, corre-
sponding to the maximum likelihood improvement at that
frequency.

results below ω = 1000 are curiously low with a maxi-
mum of ĀP ≈ 1.4. We remind the reader that we expect
Neff = 20 for WMAP and the given frequency range as
discussed above. Simply employing the analytic model
for the distribution of the maximum amplitude from
Ref. [42] we find that such a low maximum should only
occur roughly once in 10 000 realisations which would
make the absence of peaks in this region a four sigma
anomaly. The analytic distribution is not entirely ac-
curate for judging very low-significance results as it was
not designed for this purpose. Closer inspection using
MC sampling shows that this anomaly is likely around
the three sigma level. At the present stage it is unclear
whether this is simply due to an unlikely realisation of
the low-frequency scatter around ΛCDM or due to a step
in the data processing that systematically eliminates low-
frequency oscillations.

The values of the squared combined amplitude esti-
mates Ā2 obtained from combining the WMAP bispec-
trum survey with the WMAP power spectrum up to
ω = 1000 are shown in Fig. 16. Due to the absence of
large peaks in the WMAP power spectrum in this region
most of the contributions to Ā2 come from the bispec-
trum. Furthermore, the small peaks that can be seen in
the power spectrum do not match those in the bispec-
trum. Hence, we do not expect this combined survey to
present us with more significant evidence.

The statistics discussed above confirm this. The re-
sult from the statistic for the maximum joint amplitude
estimate, Eq. (27), is shown in Fig. 17. It is well be-
low the one sigma level and noticeably lower than the
corresponding result for the bispectrum only analysis,
Fig. 13. The result from evaluating the integrated statis-
tic, Eq. (28), is shown in Fig. 18. Again, the result is low
and dropped compared to its value for the bispectrum
only analysis in Fig. 14. The decrease in significance as
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FIG. 16. Individual amplitudes Ā2
P and Ā2

B and combined
amplitude estimates Ā2 at a given ω obtained from combin-
ing the WMAP bispectrum survey with the WMAP power
spectrum survey up to ω = 1000.

FIG. 17. Analytic model for the distribution of the maximum
amplitude estimate Ā in a combined survey with Neff = 20.
The value for the combined WMAP bispectrum and WMAP
power spectrum analysis is highlighted.

judged by these statistics is due to the absence of large
results in the power spectrum in this region and the mis-
match of peaks in the power spectrum and bispectrum.
The larger look-elsewhere effect that arises in a combined
search with more parameters is in this case not matched
by corresponding larger observed significances Ā.

2. WMAP bispectrum and Planck/SMICA power spectrum

The values of Ā2 obtained from combining the WMAP
bispectrum survey with the Planck Likelihood up to
ω = 1000 are shown on the left of Fig. 19. The corre-
sponding results for the SMICA power spectrum survey
are shown on the right. As Ā2 is simply the sum of the
contributions from the individual surveys, it inherits the
highly irregular shape with many local maxima.

Again, we would like to decide whether or not any of
these joint amplitude estimates present significant evi-
dence. In the present case, there is a further complica-

FIG. 18. Distribution of the integrated statistic SI . The
values obtained from the combined WMAP bispectrum and
WMAP power spectrum survey assuming Neff = 20 is high-
lighted.

tion related to the fact that we are combining a WMAP
bispectrum survey with Planck power spectrum surveys.
These two types of surveys have different ∆ωeff due to
their different noise levels and lmax. Hence, it is not im-
mediately clear which value to plug into Eq. (23) to ex-
tract the correct value of Neff. In App. B it is shown that
Eq. (27) is an excellent model for the distribution of the
maximum Ā if Neff is taken to be the arithmetic mean of
the values ofNeff for the individual surveys. Equivalently,
the ∆ωeff of the combined survey is the harmonic mean of
the values of ∆ωeff of the individual surveys. This gives
∆ωeff ≈ 21 for the combined survey. For a frequency
range up to ω = 1000 this corresponds to Neff ≈ 48.

The corresponding distribution with the values for the
two combined surveys highlighted is shown in Fig. 20.
Both of these combined surveys give a result well below
the one sigma level. Note that this result is a combination
of the fact that the individual surveys show no significant
peaks below ω = 1000 as is evident from Figs. 4 and 12
and the fact that the largest peaks in this region occur
at different frequencies and, hence, do not enhance each
other. More precisely, there are peaks with Ā2

P , Ā
2
B ≈ 8

in both the power spectrum and the bispectrum survey.
If these were located at the same ω, they would produce
a joint estimate approaching the two sigma level.

Using the appropriate values for the combined survey,
∆ωeff ≈ 21 and Neff ≈ 48, we arrive at the results pre-
sented in Fig. 21. The integrated statistic SI produces
low values in both cases.

V. SUMMARY AND CONCLUSIONS

In this paper, we undertook a thorough search for sig-
natures of sharp features in Planck and WMAP9 data.
For the first time, we carried out searches in both the
power spectrum and bispectrum simultaneously, employ-
ing well-defined look-elsewhere statistics to assess signif-
icances in a rigorous manner.

We developed highly efficient methods to scan the
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FIG. 19. Individual amplitudes Ā2
P and Ā2

B and combined amplitude estimates Ā2 at a given ω obtained from combining
the WMAP bispectrum survey with either the Planck Likelihood (left) or the SMICA power spectrum survey (right) up to
ω = 1000.

FIG. 20. Analytic model for the distribution of the maximum
amplitude estimate Ā in a combined survey with Neff = 48.
The values for the two combined surveys considered in this
work are highlighted.

FIG. 21. Distribution of the integrated statistic SI . The
values obtained from the two combined surveys considered in
this work assuming Neff = 48 are highlighted.

power spectrum for sharp oscillatory features with fre-
quencies larger than the comoving sound horizon at LS,
ω � 140. Demonstrating that in this case the only de-
generacies of feature degrees of freedom with cosmologi-
cal parameters are realised through uninteresting adjust-

ments of the comoving distance to LS η∗, we argue that
it is entirely sufficient to introduce a grid in frequency,
keep the cosmological parameters fixed and only vary the
feature model amplitude. In particular, varying η∗ does
not produce bigger maximum likelihood improvements
so that there is no risk of missing possibly interesting re-
sults adopting this simplified procedure. The only effect
of a change is that frequencies close to a given peak in the
likelihood improvement can benefit by an appropriate ad-
justment that changes the resulting effective oscillation
in Cl to match the one observed in the data.

Given that power spectrum likelihoods are very nearly
Gaussian in the amplitude of feature models, the use of
time consuming MCMC runs is not required and the best-
fit amplitude and a corresponding significance can be ex-
tracted by fitting a Gaussian. We validated against a full
MCMC analysis and found excellent agreement.

We employed these methods to scan the Planck Like-
lihood and also a likelihood based on the SMICA com-
ponent separation maps for the signatures of sharp fea-
tures. The latter has the advantage that, working on
the assumption that the foreground cleaning is reliable,
a larger sky fraction can be included providing in prin-
ciple the strongest constraints on oscillatory features in
the temperature power spectrum to date.

For our search we used both the phenomenological bare
sine and cosine modulations (template PS1) and also in-
cluded the correct sharp feature scaling (template PS2)
up to ω = 4000. The Planck Likelihood scans in the case
of the template PS1 agree very well with the correspond-
ing results in Ref. [26] further validating our method.
The SMICA map produces consistent results with com-
parably large likelihood improvements in the same places.
To investigate further, we also used the SMICA valida-
tion mask for the analysis including a substantially larger
sky fraction and, therefore, lowering the error bars by
nearly a factor of two. Rather than gaining in signifi-
cance the large peaks disappear. If we trust the cleaning
procedure in regions of higher contamination, this should
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be interpreted as evidence that the large peaks are the re-
sult of fitting the scatter in the power spectrum estimates
by chance and not a true signal.

The latter point of view is supported by the statis-
tics developed in Ref. [42] to judge the look-elsewhere-
adjusted significances of findings in feature model sur-
veys. According to these statistics, neither the maximum
significance nor the abundance of large peaks in the sur-
vey are in any way surprising with significances below
the one sigma level. This implies that our realisation of
the CMB is entirely consistent with a featureless primor-
dial power spectrum. The inclusion of the sharp feature
scaling has an effect on the results, but does not lead to
very significant gains.

We went on to study the WMAP bispectrum up to
frequencies ω = 1000. While various peaks can be iden-
tified, neither the phenomenological bare sine and cosine
modulations nor the inclusion of the correct sharp feature
scaling in the bispectrum give rise to significant results
after look-elsewhere adjustment. To perform a combined
search in the slightly simpler case of two surveys with the
same effective frequency step width ∆ωeff, we first used
WMAP power spectrum data. In the process, we noticed
that there is a curious absence of peaks in the power spec-
trum likelihood improvement over this frequency range
constituting a roughly three sigma anomaly. With this
in mind, it is not surprising that this joint analysis does
not lead to any evidence for features.

Slightly generalising the statistics to allow for different
∆ωeff, we combined the WMAP bispectrum data with
Planck Likelihood and SMICA power spectrum surveys.
Again, none of the results are at a statistically significant
level. This is a combination of the fact that the individual
surveys show no highly significant results, but also due to
the fact that peaks do not occur at matching frequencies.

Summing up, neither the inclusion of more sky fraction
in the framework of the SMICA analysis nor the inclusion
of the correct sharp feature scaling produce power spec-
trum likelihood improvements that are significant after
accounting for the look-elsewhere effect and can thus be
interpreted as evidence for features. Invoking the WMAP
bispectrum up to ω = 1000 in a combined survey does
not change this conclusion. The results are all perfectly
consistent with fitting the scatter of the power spectrum
estimates assuming a featureless Gaussian CMB.

It will be interesting to see how the upcoming Planck
polarisation data will change these results. Oscillatory
features should be more prominent in polarisation due
to less severe suppression by the transfer functions so
that we can expect substantially lower error bars. A
scan of the Planck bispectrum should also be available
in due course, allowing a combined analysis to be carried
out over the entire frequency range and providing further
discovery potential.

We expect that similar methods to those presented in
this work can be employed to search for other feature
model templates. In particular, the sharp feature limit
modulations could be generalised to allow for envelopes

in the power spectrum and bispectrum. Furthermore,
while we focused on the bispectrum shape that arises
from features in the slow-roll parameter ε, it is also of
some interest to look for the characteristic shape gener-
ated by features in the speed of sound.
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Appendix A: Sharp features in single field inflation

The aim of this section is to briefly motivate the tem-
plates we use to search for sharp feature signatures in the
power spectrum and bispectrum. More detailed studies
of the effects of sharp features can be found elsewhere
(cf. Refs. [2, 4, 7, 8] and references therein). We focus on
single field inflation with action

S =

∫
d4x
√
−g
(
R

2
+ P (X,φ)

)
, (A1)

where P is an arbitrary function of X = −1/2(∂µφ)2 and
φ, R is the Ricci scalar and we set the reduced Planck
mass Mpl = 1 for convenience.

In all of this appendix we assume that the sharp fea-
tures can be dealt with perturbatively. As already dis-
cussed at the end of Sec. II this places an upper bound
on the sharpness of features that can be studied [46, 47].
The finite width has the effect of introducing an enve-
lope that exponentially suppresses the modulations in the
power spectrum for wavenumbers that were deep inside

http://www.esa.int/Planck
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the horizon at the time of the feature. The treatment in
this appendix does not take the effects of a finite width
into account and, thus, the envelopes are absent. We ar-
gued in Sec. II that this is a reasonable idealisation when
looking for the signatures of very sharp, but still pertur-
bative features over the multipole ranges considered in
this work.

1. Power spectrum

From Eq. (A1) one can deduce the quadratic part of
the action for the scalar curvature perturbation ζ

S2 =

∫
d4x

(
a3ε

c2s
ζ̇2 − aε(∂iζ)2

)
(A2)

=
1

2

∫
d3xds

(
(v′)2 − (∂iv)2 +

z′′

z
v2

)
, (A3)

where we introduced the variable s following Ref. [70]
with ds = −csdτ = −cs/adt and defined v = zζ with

z2 =
2εa2

cs
. (A4)

Intuitively, the variable smeasures the comoving distance
sound can travel until the end of inflation at τ = 0. Here
and in what follows ′ denotes derivatives with respect to
s. Varying the action we obtain the Mukhanov-Sasaki
equation of motion for the Fourier modes vk:

v′′k +

(
k2 − z′′

z

)
vk = 0 . (A5)

To lowest order in slow-roll we simply have z′′/z ∼ 2/s2.
Nonetheless, this term can become very large if there is a
sharp feature present at some s0 in either of these param-
eters as it also contains the first and second derivatives
of ε and cs.

To study the behaviour of the solution for arbitrary
deviations from slow-roll one can make use of the gen-
eralised slow roll (GSR) technique. However, since we
are mainly interested in sharp features that cause high-
frequency oscillations, there is an easy way to get insight
into the generic behaviour of the resulting power spec-
tra. Let us assume that ks0 � 1 so that the z′′/z-term
is unimportant except in a vicinity of the sharp feature,
where the derivatives can become large. We can then
think of the effect of this term on such a mode as24

z′′

z
∼ 2

s2
+
A

s
δ(s− s0) +

B

2
δ′(s− s0) (A6)

for some real coefficients A and B, where A receives con-
tributions from jump discontinuities in ε and cs or their

24 Cf. Ref. [71] where a similar approach was taken to derive an
analytic approximation to the power spectrum modulations in
the context of sharp steps in brane inflation.

derivatives. B incorporates contributions proportional to
δ′ and is only affected by jump discontinuities in ε or cs,
but not their derivatives. With this picture it is easy to
deduce the effect of the feature. Choosing Bunch-Davies
initial conditions for s→∞ we have

v(s) =

{
1√
2k

exp (iks), s > s0

C1√
2k

exp (iks) + C2√
2k

exp (−iks), s < s0
(A7)

around s0. Here, we made use of the assumption ks0 � 1
so that the z′′/z term can be ignored except at the loca-
tion of the feature and the solutions to the Mukhanov-
Sasaki equation are plane waves.

To match the solutions at s0 we need two boundary
conditions. In order for v′′k to be proportional to δ′vk we
need a jump in vk itself,

vk|s+0 − vk|s−0 =
B

2
vk|s+0 . (A8)

This assumes that the jump is not too big so that it is
justified to take vk|s+0 on the right-hand side of the equa-

tion. The second boundary condition can be obtained
from integrating the equation across the step and taking
the limit of vanishing integration range. Again assuming
that the jump is small enough so that we can safely take
vk ∼ vk|s+0 we arrive at

v′k|s+0 − v
′
k|s−0 =

A

s0
vk|s+0 −

B

2
v′k|s+0 . (A9)

These two boundary conditions result in

C1 =1 +
iA

2ks0
, (A10)

C2 =− 1

2

(
B +

iA

ks0

)
exp (2iks0) . (A11)

Including the correct s→ 0 behaviour of v(s) the power
spectrum is given by

PR(k) = lim
ks→0

∣∣∣∣v(s)

z

∣∣∣∣2 ∼ H2

4k3εcs

∣∣∣
ks�1

|C1 − C2|2 (A12)

so that we arrive at

PR(k) = PR,0(k) (1 + ∆PR) (A13)

= PR,0(k)

(
1− A

ks0
sin (2ks0) +B cos (2ks0) + . . .

)
.

This simple calculation shows that in general single
field inflation, the dominant modulations to the power
spectrum due to a sharp feature in the ks0 ≡ ωk �
1 limit are a constant cosine and a sine that is sup-
pressed by a factor 1/(ωk). Here, we identified the fea-
ture location s0 with the frequency ω, that we used to
parametrise the oscillatory feature templates in our anal-
ysis. Eq. (A13) can be rewritten in the form of Eq. (3)
by introducing the overall amplitude AP and the phase
φP .
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The result is general in the sense that it applies in-
dependent of whether the feature arises due to sharp
changes in the slow-roll parameter ε or in the speed of
sound cs. This is consistent with the rigorous GSR re-
sults in Ref. [5]. For ωk . 1 the behaviour of the solu-
tion is much more complicated and requires a rigorous
GSR treatment. The S/N in the CMB at multipoles
with low l is poor so that nearly all the S/N for ex-
tended oscillations comes from l > O(102) corresponding
to k > O(10−2). As we are mainly interested in large
frequencies, ω � 102, this means that most of the S/N
generically comes from regions with ωk � 1 so that it is
justified to scan for these models in the power spectrum
assuming this limit.

2. Higher order correlators: the bispectrum

Higher order correlators are extracted using the in-in
formalism treating the interaction terms in the higher
order actions perturbatively. In the spirit of the discus-
sion above we only provide a brief discussion here that
motivates the bispectrum shapes which are studied in
this work. Thorough treatments can be found elsewhere
[2, 72].

The tree-level bispectrum in the in-in formalism is ob-
tained via

〈ζ~k1(te)ζ~k2(te)ζ~k3(te)〉

:=(2π)3δ(~k1 + ~k2 + ~k3)B(k1, k2, k3)

=2<

−i te∫
−∞

dt〈ζ~k1(te)ζ~k2(te)ζ~k3(te)HI(t)〉

 , (A14)

where te denotes cosmic time at the end of inflation and
HI is the interaction Hamiltonian. The leading-order bis-
pectrum arises from the cubic action S3. The degeneracy
between sharp features in the speed of sound and features
in ε is broken at the level of the bispectrum. In this work
we specialise on features in ε. In this case the important
term is [2, 45]

S3 ⊃
∫

dτd3x
1

2
a2εη′ζ2ζ ′ , (A15)

where we simply set cs = 1 for simplicity so that s = −τ .
The leading-order bispectrum arising from the corre-
sponding interaction Hamiltonian then is

B(k1, k2, k3)

=<

i(∏
i

uki(τe)

) τe∫
−∞

dτ
ε

τ2H2
η′

(∏
i

u∗ki

)′ ,
(A16)

where τe = τ(te) is the conformal time at the end of infla-
tion, the uk(τ) are the standard slow-roll mode functions

uk(τ) =
τH√
4εk

(
1− i

kτ

)
exp (−ikτ) (A17)

and we made use of the fact that a ∼ −τ/H during
inflation.

As in the previous section we investigate the case where
the slow-roll parameters acquire singular behaviour so
that η′ has a δ and a δ′ component,

η′ ∼ Cδ(τ − τ0) +D τδ′(τ − τ0) . (A18)

Here, C and D are again largely arbitrary coefficients
related to the jump in the first and second derivative of
ε. The first term gives a contribution

B ∼ 1

(k1k2k3)
3
2

<

[
ε

τ2H2

(∏
i

u∗ki

)′ ∣∣∣
τ0

]
, (A19)

where we discarded factors that only affect the amplitude
and do not contribute to the scale dependence.

We are interested in the behaviour for Kτ0 ≡ (k1 +
k2 + k3)τ0 � 1 as in the case of the power spectrum. In
this case the mode functions can be well approximated
as

uk(τ) ∼ τH√
4εk

exp (−ikτ) (A20)

and the leading-order behaviour is obtained by letting
the derivative act on the exponential. This results in

B ∼ τ0K

(k1k2k3)2
< [i exp (−ikτ0)]

∼ (τ0K) sin(τ0K)

(k1k2k3)2
(A21)

up to an overall factor independent of k.
The second term in Eq. (A18) containing δ′ gives

B ∼ 1

(k1k2k3)
3
2

<

( ε

τH2

(∏
i

u∗ki

)′)′ ∣∣∣
τ0

 . (A22)

Again isolating the leading-order behaviour in τ0K by
letting the derivatives only act on the exponential in the
mode functions, we obtain

B ∼ (τ0K)2

(k1k2k3)2
< [exp (−ikτ0)]

∼ (τ0K)2 cos(τ0K)

(k1k2k3)2
. (A23)

Note that the second term also produces terms ∼
(τ0K) sin(τ0K) similar to the first term. We can sim-
ply add these terms to the contribution arising from the
first term and write the net leading-order bispectrum as

B(k1, k2, k3) =
AB

(k1k2k3)2
(cosφBfB(ω)(ωK) sin(ωK)

+ sinφB(ωK)2 cos(ωK)
)
,

(A24)
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where we identified the feature location with the fre-
quency ω = −τ0 as in the previous section. This shows
that a given feature produces modulations with the same
ω in both the power spectrum and the bispectrum. Here,
fB(ω) is a factor introduced to give equal S/N to the two
terms and φB parametrises their relative contribution as
in Sec. II.

Appendix B: Statistics

For the statistics that we apply to judge the signifi-
cance of findings, the knowledge of the effective number
of frequencies Neff in a survey or, equivalently, the ef-
fective frequency step width ∆ωeff, related to Neff via
Eq. (23), is required. The purpose of this appendix is to
determine ∆ωeff for a WMAP-like and Planck-like sur-
vey. For the combined power spectrum and bispectrum
survey in Sec. IV C we also need to determine an over-
all ∆ωeff when combining two surveys that do not have
identical ∆ωeff. The latter is a straightforward extension
of the methods already presented in Ref. [42].

Based on the results in Ref. [42], we generally assume
that the effective step width is the same for a power spec-
trum and bispectrum survey based on the same CMB ex-
periment (i.e. identical noise level and l-range). Hence,
to determine ∆ωeff it is sufficient to focus on the com-
putationally simpler power spectrum. Sky coverage does
not have any significant effects on the correlations be-
tween models of different frequency. Hence, we create
10 000 full sky Gaussian CMB realisations for both the
WMAP and Planck scenario. In each case we use a stan-
dard concordance ΛCDM power spectrum, multiply by
the beam function of the given experiment and add the
appropriate noise level. In the WMAP case we use mul-
tipoles up to lmax = 600 while in the Planck case we set
lmax = 2000, which is the lmax used in our SMICA analy-
sis25. We then extract feature model amplitudes employ-
ing the fast quadratic estimator discussed in Sec. III A 2
covering frequencies up to ω = 4000.

Throughout this section we focus on the template PS1,
i.e. the bare sine and cosine modulations. The corre-
sponding distribution of the maximum significance Ā
found in the mock surveys is shown in Fig. 22.

25 The Planck Likelihood includes multipoles up to l = 2500 in some
frequency bands, but we do not expect such high multipoles to
contribute to the feature S/N due to noise and foregrounds that
swamp the already heavily suppressed (due to transfer functions
and lensing) signal. Hence, choosing lmax = 2000 to extract Neff

should be reliable.

FIG. 22. Distribution of the maximum amplitude estimate
ĀP (or ĀB) in a power spectrum (or bispectrum) only survey
covering frequencies up to ω = 4000 and using the templates
PS1 (or BS1). We plot MC results for a WMAP-like and
Planck-like survey together with the analytic models of the
distributions with Neff = 300 and Neff = 80 respectively.
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FIG. 23. Distribution of the maximum amplitude estimate
Ā in a combined survey up to ω = 4000 where one survey is
based on WMAP and the other on Planck data. We plot MC
results together with an analytic model of the distribution
of Ā in a combined survey with Neff = 190. Note that this
choice of Neff is the mean of the corresponding values of the
individual surveys.

We also plot the analytic models of the distribution ac-
cording to Eq. (22) for appropriate choices of the param-
eter Neff. We observe very good agreement between the
analytic models and the MC results as already reported
in Ref. [42]. For Planck, the extracted value of Neff = 300
for this survey corresponds to ∆ωeff ≈ 4000/300 ≈ 13
while for WMAP Neff = 80 gives ∆ωeff ≈ 50. Note
that these values are in good agreement with the gen-

eral expectation that the correlation width in frequency
of oscillatory modes should decay as 1/lmax.

To address the question of the appropriate choice of
Neff for a combined survey we remind the reader that the
statistic we are using to detect evidence for feature mod-
els is given by the maximum significance joint amplitude
estimate Ā = (Ā2

P + Ā2
B)

1
2 obtained for any relative am-

plitude at a given ω. Just as in the case of the individual
surveys we can extract an MC estimate of the distribu-
tion of the maximum Ā in a combined survey by using the
10 000 WMAP-like and Planck-like realisations described
above. Again, we scan for feature models up to ω = 4000.
The corresponding results are shown in Fig. 23. We also
plot the analytic model for the distribution of Ā in a com-
bined survey, Eq. (27), for the appropriate choice of Neff.
First of all, there is again very good agreement between
MC simulations and the analytic model, showing that
the model is also valid for combining surveys with differ-
ent ∆ωeff. This is a slight generalisation of the results
presented in Ref. [42]. Furthermore, it is evident that
the overall Neff for the combined survey can be taken to
be the arithmetic mean of the values of Neff of the two
individual surveys. In particular, in the present case we
obtain Neff = (300 + 80)/2 = 190 for the combined sur-
vey. This means that the overall ∆ωeff for a combined
survey is obtained as the harmonic mean of the effective
step widths of the individual surveys ∆ωeff,1 and ∆ωeff,2,
i.e.

∆ωeff =
2

∆ω−1
eff,1 + ∆ω−1

eff,2

. (B1)
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