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The separation of the faint cosmological background signal from bright astrophysical foregrounds
remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with
the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and
point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect.
Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for
both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the “EoR
window” from foreground contamination. We present a method to infer the covariance of foreground
residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate
our method by setting limits on the power spectrum using a three hour integration from the 128-tile
Murchison Widefield Array. Observing between 167–198 MHz, we find at 95% confidence a best
limit of ∆2(k) < 3.7× 104 mK2 at comoving scale k = 0.18hMpc−1 and at z = 6.8, consistent with
existing limits.

PACS numbers: 95.75.-z, 95.75.Kk, 98.80.-k, 98.80.Es

I. INTRODUCTION

Tomographic mapping of neutral hydrogen using its
21 cm hyperfine transition has the potential to directly
probe the density, temperature, and ionization of the in-
tergalactic medium (IGM), from redshift 50 (and possibly
earlier) through the end of reionization at z ∼ 6. This
unprecedented view of the the so-called “Cosmic Dawn”
can tightly constrain models of the first stars and galax-
ies [1–4] and eventually yield an order of magnitude more
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precise test of ΛCDM than current probes [5].

Over the last few years, first generation instruments
have made considerable progress toward the detection
of the power spectrum of the 21 cm emission during the
epoch of reionization (EoR). Telescopes such as the Low
Frequency Array (LOFAR [6]), the Donald C. Backer
Precision Array for Probing the Epoch of Reionization
(PAPER [7]), the Giant Metrewave Radio Telescope
(GMRT [8]), and the Murchison Widefield Array (MWA
[9–11]) are now operating, and have begun to set limits
on the power spectrum. GMRT set some of the earli-
est limits [8] and both PAPER [12] and the MWA [13]
have presented upper limits across multiple redshifts us-
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ing small prototype arrays. PAPER has translated its
results into a constraint on the heating of the IGM by
the first generation of X-ray binaries and mini-quasars
[14] and has placed the tightest constraints so far on the
power spectrum [15] and the thermal history of the IGM
[16].

Despite recent advances, considerable analysis chal-
lenges remain. Extracting the subtle cosmological signal
from the noise is expected to require thousand hour ob-
servations across a range of redshifts [17–22]. Even more
daunting is the fact that the 21 cm signal is probably at
least four orders of magnitude dimmer than the astro-
physical foregrounds—due both to synchrotron radiation
from our Galaxy and from other galaxies [23–28].

Recently, simulations and analytical calculations have
established the existence of a region in cylindrical Fourier

space—in which 3D Fourier modes ~k are binned into to k‖
modes along the line of sight and and k⊥ modes perpen-
dicular to it—called the “EoR window” that should be
fairly free of foreground contamination [22, 29–36]. Ob-
servations of the EoR window confirm that it is largely
foreground-free [13, 26] up to the sensitivity limits of cur-
rent experiments. The boundary of the EoR window is
determined by the volume and resolution of the observa-
tion, the intrinsic spectral structure of the foregrounds,
and the so-called “wedge.”

Physically, the wedge arises from the frequency depen-
dence of the point spread function (PSF) of any interfer-
ometer, which can create spectral structure from spec-
trally smooth foregrounds in our 3D maps (see [35] for
a rigorous derivation). Fortunately, in k‖-k⊥ space, in-
strumental chromaticity from flat-spectrum sources is re-
stricted to the region below

k‖ = θ0
DM (z)E(z)

DH(1 + z)
k⊥, (1)

where DH ≡ c/H0, E(z) ≡
√

Ωm(1 + z)3 + ΩΛ, and

Dm(z) ≡
∫ z

0
dz′/E(z′) with cosmological parameters

from [37]. The size of the region is determined by θ0, the
angle from zenith beyond which foregrounds do not sig-
nificantly contribute. While most of the foreground emis-
sion we observe should appear inside the main lobe of the
primary beam, foreground contamination from sources in
the sidelobes are also significant compared to the signal
[38, 39]. A conservative choice of θ0 is therefore π/2,
which reflects the fact that the maximum possible delay
a baseline can measure corresponds to a source at the
horizon [30]. Still, this foreground isolation is not fool-
proof and can be easily corrupted by miscalibration and
imperfect data reduction. Further, slowly varying spec-
tral modes just outside the wedge are also affected when
the foreground residuals have spectral structure beyond
that imprinted by the chromaticity of the interferometer.

To confidently detect the 21 cm EoR power spectrum,
we need rigorous statistical techniques that incorporate
models of the cosmological signal, the foregrounds, the
instrument, the instrumental noise, and the exact map-
making procedure. With this information, one may use

estimators that preserve as much cosmological informa-
tion as possible and thoroughly propagate errors due to
noise and foregrounds through the analysis pipeline.

The development of such statistical techniques has pro-
gressed rapidly over the past few years. The quadratic
estimator formalism was adapted [40] from previous work
on the cosmic microwave background [41] and galaxy
surveys [42]. It was accelerated to meet the data vol-
ume challenges of 21 cm tomography [43] and refined to
overcome some of the difficulties of working with real
data [13]. Further, recent work has shown how to rig-
orously incorporate the interferometric effects that cre-
ate the wedge [35, 36, 44], though they rely on precision
instrument modeling, including exact per-frequency and
per-antenna primary beams and complex gains. A sim-
ilar technique designed for drift-scanning telescopes us-
ing spherical harmonic modes was developed in [45, 46],
which also demonstrated the need for a precise under-
standing of one’s instrument.

However, at this early stage in the development of
21 cm cosmology, precision instrument characterization
remains an active area of research [47–51]. We thus pur-
sue a more cautious approach to foreground modeling
that reflects our incomplete knowledge of the instrument
by modeling the residual foreground covariance from the
data itself. As we will show, this mitigates systematics
such as calibration errors that would otherwise impart
spectral structure onto the foregrounds, corrupting the
EoR window. While not a fully Bayesian approach like
those of [52] and [53], our technique discovers both the
statistics of the foregrounds and the power spectrum from
the data. Our foreground models are subject to certain
prior assumptions but are allowed to be data-motivated
in a restricted space. However, by working in the con-
text of the quadratic estimator formalism, we can benefit
from the computational speedups of [43]. This work is
meant to build on those techniques and make them more
easily applied to real and imperfect data.

This paper is organized into two main parts. In Sec-
tion II we discuss the problem of covariance modeling in
the context of power spectrum estimation and present a
method for the empirical estimation of that foreground
model, using MWA data to illustrate the procedure.
Then, in Section III, we explain how these data were
taken and reduced into maps and present the results of
our power spectrum estimation procedure on a few hours
of MWA observation, including limits on the 21 cm power
spectrum.

II. EMPIRICAL COVARIANCE MODELING

Before presenting our method of empirically model-
ing the statistics of residual foregrounds in our maps,
we need to review the importance of these covariances
to power spectrum estimation. We begin in Section II A
with a brief review of the quadratic estimator formalism
for optimal power spectrum estimation and rigorous er-
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ror quantification. We then discuss in Section II B the
problem of covariance modeling in greater detail, high-
lighting exactly which unknowns we are trying to model
with the data. Next we present in Section II C our em-
pirical method of estimating the covariance of foreground
residuals, illustrated with an application to MWA data.
Lastly, we review in Section II D the assumptions and
caveats that we make or inherit from previous power
spectrum estimation work.

A. Quadratic Power Spectrum Estimator Review

The fundamental goal of power spectrum estimation is
to reduce volume of data by exploiting statistical sym-
metries while retaining as much information as possible
about the cosmological power spectrum [41]. We seek to
estimate a set of band powers p using the approximation
that

P (k) ≈
∑
α

pαχα(k), (2)

where P (k) is the power spectrum as a function of
wavevector k and χα is an indicator function that equals
1 wherever we are approximating P (k) by pα and van-
ishes elsewhere.

Following [13, 40, 43], we estimate power spectra from
a “data cube”—a set of sky maps of brightness temper-
ature at many closely spaced frequencies—which we rep-
resent as a single vector x̂ whose index iterates over both
position and frequency. From x̂, we estimate each band
power as

p̂α =
1

2
Mαβ (x̂1 − µ)

T
C−1C,β C−1 (x̂2 − µ)− bα. (3)

Here µ = 〈x̂〉, the ensemble average of our map over
many different realizations of the observation, and C is
the covariance of our map,

C = 〈x̂x̂T〉 − 〈x̂〉〈x̂〉T. (4)

C,β is a matrix that encodes the response of the covari-
ance to changes in the true, underlying band powers;
roughly speaking, it performs the Fourier transforming,
squaring, and binning steps one normally associates with
computing power spectra.1 Additionally, M is an invert-
ible normalization matrix and bα is the power spectrum
bias from non-signal contaminants in x̂. In this work, we
follow [13] and choose a form of M such that Σ ≡ Cov(p̂)
is diagonal, decorrelating errors in the power spectrum
and thus reducing foreground leakage into the EoR win-
dow. In order to calculate M and Σ quickly, we use the
fast method of [43] which uses fast Fourier transforms and
Monte Carlo simulations to approximate these matrices.

1 For a derivation of an explicit form of C,β , see [40] or [43].

Finally, temporally interleaving the input data into two
cubes x̂1 and x̂2 with the same sky signal but indepen-
dent noise avoids a noise contribution to the bias bα as in
[13]. Again following [13], we abstain from subtracting a
foreground residual bias in order to avoid any signal loss
(as discussed in II C 3).

B. What Does Our Covariance Model Represent?

Our brightness temperature data cubes are made
up of contributions from three statistically independent
sources: the cosmological signal, x̂S ; the astrophysical
foregrounds, x̂FG; and the instrumental noise x̂N . It fol-
lows that the covariance matrix is equal to the sum of
their separate covariances:

C = CS + CFG + CN . (5)

Hidden in the statistical description of the different
contributions to our measurement is an important sub-
tlety. Each of these components is taken to be a par-
ticular instantiation of a random process, described by
a mean and covariance. In the case of the cosmologi-
cal signal, it is the underlying statistics—the mean and
covariance—which encode information about the cosmol-
ogy and astrophysics. However, we can only learn about
those statistics by assuming statistical isotropy and ho-
mogeneity and by assuming that spatial averages can
stand in for ensemble averages in large volumes. In the
case of the instrumental noise, we usually think of the
particular instantiation of the noise that we see as the
result of a random trial.

The foregrounds are different. There is only one set
of foregrounds and they are not random. If we knew
exactly how the foregrounds appear in our observations,
we would subtract them from our maps and then ignore
them in this analysis. We know that we do not know
the foregrounds exactly and so we choose to model them
with our best guess, µFG. If we define the cosmological
signal to consist only of fluctuations from the brightness
temperature of the global 21 cm signal, then the signal
and the noise both have µS = µN = 0. Therefore, we
start our power spectrum estimation using Equation (3)
by subtracting off our best guess as to the foreground
contamination in our map. But how wrong are we?

The short answer is that we do not really know that ei-
ther. But, if we want to take advantage of the quadratic
estimator formalism to give the highest weight to the
modes we are most confident in, then we must model the
statistics of our foreground residuals. If we assume that
our error is drawn from some correlated Gaussian distri-
bution, then we should use that foreground uncertainty
covariance as the proper CFG in Equation (3).

So what do we know about the residual foregrounds in
our maps? In theory, our dirty maps are related to the
true sky by a set of point spread functions that depend
both on position and frequency [44]. This is the result
of both the way our interferometer turns the sky into
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measured visibilities and the way we make maps to turn
those visibilities into x̂. In other words, there exists some
matrix of PSFs, P such that

〈x̂〉 = Pxtrue. (6)

The spectral structure in our maps that creates the wedge
feature in the power spectrum is a result of P.

We can describe our uncertainty about the true sky—
about the positions, fluxes, and spectral indices of both
diffuse foregrounds and points sources—with a covariance
matrix CFG,true [40, 43], so that

CFG = PCFG,truePT. (7)

This equation presents us with two ways of modeling the
foregrounds. If we feel that we know the relationship be-
tween our dirty maps and the true sky precisely, then we
can propagate our uncertainty about a relatively small
number of foreground parameters, as discussed by [40]
and [43], through the P matrix to get CFG. This tech-
nique, suggested by [44], relies on precise knowledge of
P. Of course, the relationship between the true sky and
our visibility data depends both on the design of our
instrument and on its calibration. If our calibration is
very good—if we really understand our antenna gains
and phases, our primary beams, and our bandpasses—
then we can accurately model P.

If we are worried about systematics (and at this early
stage of 21 cm tomography with low frequency radio in-
terferometers, we certainly are), then we need a comple-
mentary approach to modeling CFG directly, one that we
can use both for power spectrum estimation and for com-
parison to the results of a more theoretically motivated
technique. This is the main goal of this work.

C. Empirical Covariance Modeling Technique

The idea of using empirically motivated covariance ma-
trices in the quadratic estimator formalism has some his-
tory in the field. Previous MWA power spectrum analy-
sis [13] used the difference between time-interleaved data
cubes to estimate the overall level of noise, empirically
calibrating Tsys, the system temperature of the elements.
PAPER’s power spectrum analysis relies on using ob-
served covariances to suppress systematic errors [14] and
on boot-strapped error bars [12, 14]. A similar technique
was developed contemporaneously with this work and
was used by [15] to estimate covariances.

CFG has far more elements than we have measured
voxels—our cubes have about 2 × 105 voxels, meaning
that CFG has up to 2×1010 unique elements. Therefore,
any estimate of CFG from the data needs to make some
assumptions about the structure of the covariance. Since
foregrounds have intrinsically smooth spectra, and since
one generally attempts to model and subtract smooth
spectrum foregrounds, it follows that foreground residu-
als will be highly correlated along the line of sight. Af-
ter all, if we are under-subtracting foregrounds at one

frequency, we are probably under-subtracting at nearby
frequencies too. We therefore choose to focus on em-
pirically constructing the part of CFG that corresponds
to the frequency-frequency covariance—the covariance
along the line of sight. If there are nf frequency chan-
nels, then that covariance matrix is only nf×nf elements
and is likely dominated by a relatively small number of
modes.

In this section, we will present an approach to solving
this problem in a way that faithfully reflects the com-
plex spectral structure introduced by an (imperfectly cal-
ibrated) interferometer on the bright astrophysical fore-
grounds. As a worked example, we use data from a short
observation with the MWA which we will describe in de-
tail in Section III. We begin with a uniformly weighted
map of the sky at each frequency, a model for both point
sources and diffuse emission imaged from simulated vis-
ibilities, and a model for the noise in each uv-cell as a
function of frequency.

The idea to model CFG empirically was put forward
by Liu [54]. He attempted to model each line of sight as
statistically independent and made no effort to separate
CFG from CN or to reduce the residual noisiness of the
frequency-frequency covariance.

Our approach centers on the idea that the covariance
matrix can be approximated as block diagonal in the uv
basis of Fourier modes perpendicular to the line of sight.
In other words, we are looking to express CFG as

CFGuu′vv′ff ′ ≈ δuu′δvv′Ĉff ′(k⊥), (8)

where k⊥ is a function of
√
u2 + v2. This is the ten-

sor product of our best guess of the frequency-frequency

covariance Ĉ and the identity in both Fourier coordi-
nates perpendicular to the line of sight. In this way, we
can model different frequency-frequency covariances as
a function of |u| or equivalently, k⊥, reflecting that fact
that the wedge results from greater leakage of power up
from low k‖ as one goes to higher k⊥. This method also
has the advantage that C becomes efficient to both write
down and invert directly, removing the need for the pre-
conditioned conjugate gradient algorithm employed by
[43].

This approximation is equivalent to the assumption
that the residuals in every line of sight are statistically
independent of position. This is generally a pretty ac-
curate assumption as long as the primary beam does
not change very much over the map from which we es-

timate the power spectrum. However, because Ĉff ′(k⊥)
depends on the angular scale, we are still modeling corre-
lations that depend only on the distance between points
in the map.

While we might expect that the largest residual voxels
correspond to errors in subtracting the brightest sources,
the voxels in the residual data cube (the map minus the
model) are only weakly correlated with the best-guess
model of the foregrounds (we find a correlation coefficient
ρ = 0.116, which suggests that sources are removed to
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roughly the 10% level, assuming that under-subtraction
dominates). As we improve our best guess of the model
foregrounds through better deconvolution, we expect ρ
to go down, improving the assumption that foregrounds
are block diagonal in the uv basis. We will now present
the technique we have devised in four steps, employing
MWA data as a method demonstration.

1. Compute sample covariances in uv annuli

We begin our empirical covariance calculation by tak-
ing the residual data cubes, defined as

x̂res ≡ x̂1/2 + x̂2/2− µ, (9)

and performing a discrete Fourier transform2 at each fre-
quency independently to get x̃res. This yields nx × ny
sample “lines of sight” (uv-cells for all frequencies), as
many as we have pixels in the map. As a first step to-

ward estimating Ĉ, we use the unbiased sample covari-
ance estimator from these residual lines of sight. How-
ever, instead of calculating a single frequency-frequency

covariance, we want to calculate many different Ĉres ma-
trices to reflect the evolution of spectral structure with
k⊥ along the wedge. We therefore break the uv plane

into concentric annuli of equal width and calculate Ĉres
uv

for each uv cell as the sample covariance of the NLOS−2
lines of sight in that annulus, excluding the cell consid-
ered and its complex conjugate. Since the covariance is
assumed to be block diagonal, this eliminates a poten-
tial bias that comes from downweighting a uv cell using
information about that cell. Thus,

Ĉres
uv,ff ′ =

∑
other u′,v′

in annulus

(
x̃res
u′v′f − 〈x̃res

f 〉
)(

x̃res
u′v′f ′ − 〈x̃res

f ′ 〉
)∗

NLOS − 2− 1
,

(10)
where 〈x̃res

f 〉 is an average over all u′ and v′ in the annu-
lus. We expect this procedure to be particularly effective
in our case because the uv coverage of the MWA after
rotation synthesis is relatively symmetric.

As a sense check on these covariances, we plot their
largest 30 eigenvalues in Figure 1. We see that as |u|
(and thus k⊥) increases, the eigenspectra become shal-
lower. At high k⊥, the effect of the wedge is to leak
power to a range of k‖ values. The eigenspectrum of
intrinsically smooth foregrounds should be declining ex-
ponentially [55]. The wedge softens that decline. These
trends are in line with our expectations and further moti-
vate our strategy of forming covariance matrices for each
annulus independently.

2 For simplicity, we used the unitary discrete Fourier transform
for these calculations and ignore any factors of length or invese
length that might come into these calculations only to be can-
celled out at a later step.
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FIG. 1. The evolution of the wedge with k⊥ motivates us
to model foregrounds separately for discrete values of k⊥.
In this plot of the thirty largest eigenvalues of the observed
residual covariance (which should include both noise and fore-
grounds) sampled in six concentric annuli, we see steeper de-
clines toward a noise floor for the inner annuli than the outer
annuli. This is consistent with the expected effect of the
wedge—higher k⊥ modes should be foreground-contaminated
at higher k‖.

Because we seek only to estimate the foreground por-

tion of the covariance, the formal rank deficiency of Ĉres
uv

is not a problem.3 All we require is that the largest (and
thus more foreground-dominated) modes be well mea-
sured. In this analysis, we used six concentric annuli to
create six different frequency-frequency foreground co-
variances. Using more annuli allows for better modeling
of the evolution of the wedge with k⊥ at the expense of
each estimate being more susceptible to noise and rank-
deficiency.

2. Subtract the properly projected noise covariance.

The covariances computed from these uv lines of sight
include contributions from the 21 cm signal and instru-
mental noise as well as foregrounds. We can safely ig-
nore the signal covariance for now as we are far from the
regime where sample variance is significant. We already
have a theoretically-motivated model for the noise (based
on the uv sampling) that has been empirically rescaled
to the observed noise in the difference of time-interleaved
data (the same basic procedure as in [13]). We would like
an empirical estimate of the residual foreground covari-
ance alone to use in CFG and thus must subtract off the
part of our measurement we think is due to noise vari-
ance.

3 In fact, the rank of Ĉres
uv is NLOS − 3 if NLOS − 2 ≤ nf .
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To get to ĈFG
uv from Ĉres

uv , we subtract our best guess

of the portion of Ĉres
uv that is due to noise, which we

approximate by averaging the noise model variances in all
the other uv cells in a the annulus at that given frequency,
yielding

ĈN
uv,ff ′ =

1

NLOS

∑
other u′,v′

in annulus

δuu′δvv′δff ′CNuu′vv′ff ′ . (11)

Note, however, that ĈN
uv is full rank while Ĉres

uv is typ-
ically rank deficient. Thus a naive subtraction would
over-subtract the noise variance in the part of the sub-

space of ĈN
uv where Ĉres

uv is identically zero. Instead, the
proper procedure is to find the projection matrices Πuv

that discard all eigenmodes outside the subspace where

Ĉres
uv is full rank. Each should have eigenvalues equal to

zero or one only and have the property that

ΠuvĈ
res
uvΠT

uv = Ĉres
uv . (12)

Only after projecting out the part of ĈN
uv inside the un-

sampled subspace can we self-consistently subtract our
best guess of the noise contribution to the subspace in
which we seek to estimate foregrounds. In other words,

we estimate ĈFG
uv as

ĈFG
uv = Ĉres

uv −ΠuvĈ
N
uvΠ

T
uv. (13)

We demonstrate the effectiveness of this technique in
Figure 2 by plotting the diagonal elements of the Fourier

transform of Ĉres
uv and ĈFG

uv along the line of sight. Sub-
tracting of the noise covariance indeed eliminates the ma-
jority of the power in the noise dominated modes at high
k‖, thus we expect it also to fare well in the transition
region near the edge of the wedge where foreground and
noise contributions are comparable.

3. Perform a k‖ filter on the covariance.

Despite the relatively clean separation of foreground
and noise eigenvalues, inspection of some of the
foreground-dominated modes in the top panel of Figure
3 reveals residual noise. Using a foreground covariance
constructed from these noisy foreground eigenmodes to
downweight the data during power spectrum estimation
would errantly downweight some high k‖ modes in addi-
tion to the low k‖ foreground-dominated modes. To avoid
this double counting of the noise, we allow the foreground
covariance to include only certain k‖ modes by filtering

ĈFG
uv in Fourier space to get ĈFG,filtered

uv . Put another
way, we are imposing a prior on which Fourier modes
we think have foreground power in them. The resulting
noise filtered eigenmodes are shown in the bottom panel
of Figure 3.

In practice, implementing this filter is subtle. We inter-

polate ĈFG over the flagged frequency channels using a

cubic spline, then symmetrically pad the covariance ma-
trix, forcing its boundary condition to be periodic. We
then Fourier transform, filter, inverse Fourier transform,
remove the padding, and then re-zero the flagged chan-
nels.

Selecting a filter to use is also a subtle choice. We
first keep modes inside the horizon wedge with an added
buffer. For each annulus, we calculate a mean value of
k⊥, then use Equation (1) to calculate the k‖ value of
the horizon wedge, using θ0 = π/2. Although the litera-
ture suggests a 0.1 to 0.15hMpc−1 buffer for “suprahori-
zon emission” due to some combination of intrinsic spec-
tral structure of foregrounds, primary beam chromatic-
ity, and finite bandwidth [26, 56], we pick a conservative

0.5hMpc−1. Then we examine the diagonal of ĈFG (Fig-
ure 2) to identify additional foreground modes, this time
in the EoR window, due to imperfect bandpass calibra-
tion appearing as spikes. One example is the peak at
k‖ ∼ 0.45hMpc−1. Such modes contribute errant power
to the EoR window at constant k‖. Since these modes
result from the convolution of the foregrounds with our
instrument, they also should be modeled in CFG in or-
der to minimize their leakage into the rest of the EoR
window.

One might be concerned that cosmological signal and
foregrounds theoretically both appear in the estimate of
CFG that we have constructed, especially with our con-
servative 0.5hMpc−1 buffer that allows foregrounds to
be discovered well into the EoR window. For the pur-
poses of calculating C−1(x̂ − µ) in the quadratic esti-
mator in Equation (3), that is fine since its effect is to
partially relax the assumption that sample variance can
be ignored. However, the calculation of the bias depends
on being able to differentiate signal from contaminants
[40, 41, 43].

The noise contribution to the bias can be eliminated by
cross-correlating maps made from interleaved timesteps
[13]. However, we cannot use our inferred CFG to sub-
tract a foreground bias without signal loss. That said,
we can still set an upper limit on the 21 cm signal. By
following the data and allowing the foreground covari-
ance to have power inside the EoR window, we are min-
imizing the leakage of foregrounds into uncontaminated
regions and we are accurately marking those regions as
having high variance. As calibration and the control of
systematic effects improves, we should be able to isolate
foregrounds to outside the EoR window, impose a more
aggressive Fourier filter on CFG, and make a detection
of the 21 cm signal by employing foreground avoidance.

4. Cut out modes attributable to noise.

After suppressing the noisiest modes with our Fourier
filter, we must select a cutoff beyond which the fore-
ground modes are irrecoverably buried under noise. We

do this by inspecting the eigenspectrum of ĈFG,filtered
uv .

The true CFG, by definition, admits only positive eigen-
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FIG. 2. Examing the diagonal elements of the observed residual and inferred foreground covariance matrices in Fourier space
reveals the effectiveness of subtracting model for the noise covariance. In red, we plot the observed residual covariance, which
contains both foregrounds and noise. As a function of k‖, the two separate relatively cleanly—there is a steeply declining
foreground portion on the left followed by a relatively flat noise floor on the right. The theory that the righthand portion is
dominated by noise is borne out by the fact that it so closely matches the observed noise covariance, inferred lines of sight
of x1 − x2, which should have only noise and no sky signal at all. The regions where they differ significantly, for example at
k‖ ∼ 0.45hMpc−1 , are attributable to systematic effects like the MWA’s coarse band structure that have not been perfectly

calibrated out. For the example covariances shown here (which correspond to a mode in the annulus at k⊥ ≈ 0.010hMpc−1),
we can see that subtracting a properly projected noise covariance removes most of the power from the noise-dominated region,
leaving only residual noise that appears both as negative power (open blue circle) and as positive power (closed blue circles)
at considerably lower magnitude.

values (though some of them should be vanishingly
small).

By limiting the number of eigenvalues and eigenvectors
we ultimately associate with foregrounds, we also limit
the potential for signal loss by allowing a large portion of
the free parameters to get absorbed into the contaminant
model [15, 57]. When measuring the power spectrum
inside the EoR window, we can be confident that signal
loss is minimal compared to foreground bias and other
errors.

We plot in Figure 4 the eigenspectra of Ĉres
uv , ĈFG

uv ,

and ĈFG,filtered
uv , sorted by absolute value. There are

two distinct regions—the sharply declining foreground-
dominated region and a flatter region with many nega-
tive eigenvalues. We excise eigenvectors whose eigenval-
ues are smaller in absolute value than the most negative
eigenvalue. This incurs a slight risk of retaining a few
noise dominated modes, albeit strongly suppressed by
our noise variance subtraction and our Fourier filtering.

Finally we are able to construct the full covariance Ĉ
using Equation (8).

D. Review of Assumptions and Caveats

Before proceeding to demonstrate the effectiveness of
our empirical covariance modeling method, it is useful
to review and summarize the assumptions made about

mapmaking and covariance modeling. Some are inher-
ited from the previous application of quadratic power
spectrum estimation to the MWA [13], while others are
necessitated by our new, more faithful foreground covari-
ance. Relaxing these assumptions in a computationally
efficient manner remains a challenge we leave for future
work.

i. We adopt the flat sky approximation as in [13, 43], al-
lowing us to use the fast Fourier transform to quickly
compute power spectra. The error incurred from this
approximation on the power spectrum is expected to
be smaller than 1% [13].

ii. We assume the expectation value of our uniformly
weighted map is the true sky (i.e., 〈x̂〉 = xtrue) when
calculating C,β in Equation 3, again following [13].
In general 〈x̂〉 is related to xtrue by P, the matrix
of point spread functions [44]. Here we effectively
approximate the PSF as position independent. Re-
laxing this approximation necessitates the full map-
making theory presented in [44] which has yet to be
integrated into a power spectrum estimation pipeline.

iii. We approximate the foreground covariance as uncor-
related between different uv-cells (and thus block di-
agonal). At some level there likely are correlations
in uv, though those along the line of sight are far
stronger. It may be possible to attempt to calculate
these correlations empirically, but it would be very
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FIG. 3. The foreground covariance we estimate from our lim-
ited data set is still very noisy and we run the risk of over-
fitting the noise in our measurements if we take it at face
value. In the top panel, we plot the eigenvectors correspond-

ing to the five largest eigenvalues of ĈFG for a mode in the an-
nulus centered on k⊥ ≈ 0.010hMpc−1. In the bottom panel,
we show dominant eigenvectors of the Fourier-filtered covari-
ance. As expected, they resemble the first five Fourier modes.
The missing data every 1.28 MHz is due to channels flagged
at the edge of the coarse bandpass of the MWA’s polyphase
filter bank—the most difficult part of the band to calibrate.

difficult considering relative strength of line-of-sight
correlations. It may also be possible to use a non-
empirical model, though that has the potential to
make the computational speedups of [43] more diffi-
cult to attain.

iv. We approximate the frequency-frequency foreground
covariance as constant within each annulus, estimat-
ing our covariance for each uv cell only from other
cells in the same annulus. In principle, even if the
foreground residuals were isotropic, there should be
radial evolution within each annulus which we ignore
for this analysis.

v. The Fourier filter is a non-trivial data analysis choice
balancing risk of noise double counting against that

0 5 10 15 20 25 30 35

C
ov

ar
ia

nc
e 

E
ig

en
va

lu
e 

(K
2
)

10-4

10-3

10-2

10-1

100

101

102

103

Observed Residual Covariance
Noise Model Subtracted Foreground Covariance
Fourier-Filtered Foreground Covariance

FIG. 4. This figure shows the evolution of the eigenvalues of
our estimated foreground covariance matrix for a mode in the
the annulus corresponding to k⊥ ≈ 0.010hMpc−1) at each
of the first three stages of covariance estimation. First we
calculate a sample covariance matrix from the residual data
cubes (shown in red). Next we subtract our best guess as to
the part of the diagonal of that matrix that originates from
instrumental noise, leaving the blue dots (open circles are
absolute values of negative eigenvalues). Then we filter out
modes in Fourier space along the line of sight that we think
should be noise dominated, leaving the black dots. Finally,
we project out the eigenvectors associated with eigenvalues
whose magnitude is smaller than the largest negative eigen-
value, since those are likely due to residual noise. What re-
mains is our best guess at the foreground covariance in an
annulus and incorporates as well as possible our prior beliefs
about its structure.

of insufficiently aggressive foreground downweight-
ing.

vi. In order to detect the 21 cm signal, we assume that
foregrounds can be avoided by working within the
EoR window. Out of fear of losing signal, we make
no effort to subtract a residual foreground bias from
the window. This makes a detection inside the wedge
impossible and it risks confusing foreground contam-
ination in the window for a signal. Only analysis of
the dependence of the measurement on z, k, k‖, and
k⊥ can distinguish between systematics and the true
signal.

III. RESULTS

We can now demonstrate the statistical techniques we
have motivated and developed in Section II on the prob-
lem of estimating power spectra from a three hour ob-
servation with the 128-antenna MWA. We begin with a
discussion of the instrument and the observations in Sec-
tion III A. In Section III B we detail the data process-
ing from raw visibilities to calibrated maps from which
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we estimate both the foreground residual covariance ma-
trix and the power spectrum. Finally, in Section III we
present our results and discuss lessons learned looking
towards a detection of the 21 cm signal.

A. Observation Summary

The 128-antenna Murchison Widefield Array began
deep EoR observations in mid-2013. We describe here
the salient features of the array and refer to [10] for a
more detailed description. The antennas are laid out over
a region of radius 1.5 km in a quasi-random, centrally-
concentrated distribution which achieves approximately
complete uv coverage at each frequency over several
hours of rotation synthesis [58]. Each antenna element
is a phased array of 16 wideband dipole antennas whose
phased sum forms a discretely steerable 25◦ beams (full
width at half maximum) at 150 MHz with frequency-
dependent, percent level sidelobes [48]. We repoint the
beam to our field center on a 30 minute cadence to cor-
rect for earth rotation, effectively acquiring a series of
drift scans over this field.

We observe the MWA “EOR0” deep integration field,
centered at R.A.(J2000) = 0h 0m 0s and decl.(J200) =
−30◦ 0′ 0′′. It features a near-zenith position, high Galac-
tic latitude, minimal Galactic emission [59], and an
absence of bright extended sources. This last prop-
erty greatly facilitates calibration in comparison to the
“EOR2” field—a field dominated by the slightly resolved
radio galaxy Hydra A at its center—which was used by
[60] and [13]. A nominal three hour set of EOR0 ob-
servations was selected during the first weeks of observ-
ing to use for refining and comparing data processing,
imaging, and power spectra pipelines [61]. In this work,
we use the “high band”, near-zenith subset of these ob-
servations with 30.72 MHz of bandwidth and center fre-
quency of 182 MHz, recorded on Aug 23, 2013 between
16:47:28−19:56:32 UTC (22.712−1.872 hours LST).

B. Calibration and Mapmaking Summary

Preliminary processing, including RFI flagging fol-
lowed by time and frequency averaging, was performed
with the COTTER package [62] on raw correlator data.
These data were collected at 40 kHz resolution with an
integration time of 0.5 seconds, and averaged to 80 kHz
resolution with a 2 second integration time to reduce the
data volume. Additionally, 80 kHz at the upper and
lower edge of each of 24 coarse channels (each of width
1.28 MHz) of the polyphase filter bank is flagged due to
known aliasing.

As in [13], we undertake snapshot-based processing in
which each minute-scale integration is calibrated and im-
aged independently. Snapshots are combined only at the
last step in forming a Stokes I image cube, allowing us
to properly align and weight them despite different pri-

mary beams due to sky rotation and periodic repointing.
While sources are forward modeled for calibration and
foreground subtraction using the full position dependent
PSF (i.e., the synthesized beam), we continue to approx-
imate it as position independent (and equal to that of
a point source at the field center) during application of
uniform weighting and computation of the noise covari-
ance.

We use the calibration, foreground modeling, and first
stage image products produced by the Fast Holographic
Deconvolution4 (FHD) pipeline as described by [61]. The
calibration implemented in the FHD package is an adap-
tation of the fast algorithm presented by [64] with a
baseline cutoff of b > 50λ. In this data reduction, the
point source catalogs discussed below are taken as the
sky model for calibration. Solutions are first obtained
per-antenna and per-frequency before being constrained
to linear phase slopes and quadratic amplitude functions
after correcting for a median antenna-independent ampli-
tude bandpass. The foreground model used for subtrac-
tion includes models both of diffuse radio emission [65]
and point sources. In detail, the point source catalog is
the union of a deep MWA point source survey within 20◦

of the field center [66], the shallower but wider MWA
commissioning point source survey [67], and the Culgo-
ora catalog [68]. Note that calibration and foreground
subtraction of off-zenith observations are complicated by
Galactic emission picked up by primary beam sidelobes,
and are active topics of investigation [38, 39, 69]. Dur-
ing these observations a single antenna was flagged due
to known hardware problems, and 1–5 more were flagged
for any given snapshot due to poor calibration solutions.

These calibration, foreground modeling, and imaging
steps constitute notable improvements over [13]. In that
work, the presence of the slightly resolved Hydra A in
their EOR2 field likely limited calibration and subtrac-
tion fidelity as only a point source sky model was used.
In contrast, the EOR0 field analyzed here lacks any such
nearby radio sources. Our foreground model contains
∼ 2500 point sources within the main lobe and several
thousand more in the primary beam sidelobes in addi-
tion to the aforementioned diffuse map. A last improve-
ment in the imaging is the more frequent interleaving of
timesteps for the cross power spectrum, which we per-
formed at the integration scale (2 seconds) as opposed to
the snapshot scale (a few minutes). This ensures that
both x̂1 and x̂2 have identical sky responses and thus
allows us to accurately estimate the noise in the array
from difference cubes. Assuming that the system tem-
perature that contains both an instrumental noise tem-
perature and a frequency dependent sky noise tempera-
ture that scales as ν−2.55, the observed residual RMS is
consistent with Tsys ranging from 450 K at 167 MHz to
310 K at 198 MHz, in line with expectations [58].

4 For a theoretical discussion of the algorithm see [63]. The code
is available at github.com/miguelfmorales/FHD.
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As discussed in [61] and [70], FHD produces naturally-
weighted sky, foreground model, “weights”, and “vari-
ances” cubes, as well as beam-squared cubes. All are
saved in image space using the HEALPix format [71] with
Nside = 1024. Note that these image cubes are crops of
full-sky image cubes to a 16◦×16◦ square field of view, as
discussed below. The sky, foreground model, and weights
cubes are image space representations of the measured
visibilities, model visibilities, and sampling function, re-
spectively, all originally gridded in uv space using the
primary beam as the gridding kernel. The variances cube
is similar to the weights cube, except the gridding kernel
is the square of the uv space primary beam. It repre-
sents the proper quadrature summation of independent
noise in different visibilities when they contribute to the
same uv cell, and will ultimately become our diagonal
noise covariance model. The FHD cubes from all ninety-
four 112 second snapshots are optimally combined in this
“holographic” frame in which the true sky is weighted by
two factors of the primary beam, as in [13].

We perform a series of steps to convert the image cube
output of FHD into uniformly-weighted Stokes I cubes
accompanied by appropriate uv coverage information for
our noise model. We first map these data cubes onto a
rectilinear grid, invoking the flat sky approximation. We
do this by rotating the (RA,Dec) HEALPix coordinates
of the EOR0 field to the north pole (0◦,90◦), then pro-
jecting and gridding onto the xy plane with 0.2◦ × 0.2◦

resolution over a 16◦ × 16◦ square field of view. To
reduce the data volume while maintaining cosmological
sensitivity, we coarse grid to approximately 0.5◦ resolu-
tion by Fourier transforming and cropping these cubes in
the uv plane at each frequency. We form a uniformly-

weighted Stokes I cube Iuni(~θ) by first summing the XX
and YY data cubes, resulting in a naturally-weighted,

holographic stokes I cube Inat,h(~θ) = IXX,h(~θ)+IY Y,h(~θ).

Then we divide out the holographic weights cube Wh(~θ)
in uv space, which applies uniform weighting and re-
moves one image space factor of the beam, and lastly

divide out the second beam factor B(~θ): Iuni(~θ) =

F−1[FInat,h(~θ)/FWh(~θ)]/B(~θ), where F represents a

Fourier transform and B(~θ) = [B2
XX(~θ) + B2

Y Y (~θ)]1/2.
Consistent treatment of the variances cube requires uv
space division of two factors of the weights cube followed
by image space division of two factors of the beam.

Lastly, we frequency average from 80 kHz to 160
kHz, flagging a single 160 kHz channel the edge of each
1.28 MHz coarse channel due to polyphase filter bank at-
tenuation and aliasing, which make these channels dif-
ficult to reliably calibrate. Following [13], we also flag
poorly observed uv cells and uv cells whose observation
times vary widely between frequencies. In all cases, we
formally set the variance in flagged channels and uv cells
in CN to infinity and use the pseudo-inverse to project
out flagged modes [13].

FIG. 5. Our power spectrum clearly exhibits the typical
EoR window structure with orders-of-magnitude suppression
of foregrounds in the EoR window. Here we plot our estimates
for |P (k⊥, k‖)| for the full instrumental bandwidth, equiva-
lent to the range z = 6.2 to z = 7.5. Overplotted is the wedge
from Equation 1 corresponding to the first null in the primary
beam (dash-dotted line), the horizon (dashed line), and the
horizon with a relatively aggressive 0.02hMpc−1 buffer (solid
curve). In addition to typical foreground structure, we also
see the effect of noise at high and very low k⊥ where base-
line coverage is poor. We also clearly see a line of power at
constant k‖ ≈ 0.45hMpc−1, attributable to miscalibration of
the instrument’s bandpass and cable reflections [70].

C. Power Spectrum Results

We can now present the results of our method ap-
plied to three hours of MWA-128T data. We first
study cylindrically-averaged (2D) power spectra and
their statistics, since they are useful for seeing the ef-
fects of foregrounds and systematic errors on the power
spectrum. We form these power spectra with the full
30.72 MHz instrument bandwidth to achieve maximal k‖
resolution.

We begin with the 2D power spectrum itself (Figure
5) in which several important features can be observed.
First, the wedge and EoR window are clearly distinguish-
able, with foregrounds suppressed by at least five orders
of magnitude across most of the EoR window. At high
k⊥, the edge of the wedge is set by the horizon while
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at low k⊥ the cutoff is less clear. There appears to be
some level of suprahorizon emission, which was also ob-
served with PAPER in [26] and further explained by [35].
Consistent with Figure 1 we see the strongest foreground
residual power at low k⊥, meaning that there still remains
a very large contribution from diffuse emission from our
Galaxy—potentially from sidelobes of the primary beam
affecting the shortest baselines [39, 69].

We also see evidence for less-than-ideal behavior.
Through we identified spectral structure appearing at
k‖ ∼ 0.45hMpc−1 in Figure 2 and included it in our
foreground residual covariance, that contamination still
appears here as a horizontal line. By including it in the
foreground residual model, we increase the variance we
associate with those modes and we decrease the leakage
out of those modes, isolating the effect to only a few k‖
bins.

While Figure 5 shows the magnitude of the 2D power
spectrum, Figure 6 shows its sign using a split color scale,
providing another way to assess foreground contamina-
tion in the EoR window. Because we are taking the cross
power spectrum between two cubes with identical sky
signal but independent noise realizations, the noise dom-
inated regions should be positive or negative with equal
probability. This is made possible by our use of a power
spectrum estimator normalized such that Σ ≡ Cov(p̂) is
a diagonal matrix [43]. This choice limits leakage of fore-
ground residuals from the wedge into the EoR Window
[13].

By this metric, the EoR window is observed to be
noise-dominated with only two notable exceptions. The
first is the region just outside the wedge at low k⊥ at-
tributable to suprahorizon emission due to some com-
bination of intrinsic foreground spectral structure, beam
chromaticity, and finite bandwidth. This suggests our ag-
gressive 0.02hMpc−1 cut beyond the horizon will leave
in some foreground contamination when we bin to form
1D power spectra. As long as we are only claiming an
upper limit on the power spectrum, this is fine. A detec-
tion of foregrounds is also an upper limit on the cosmo-
logical signal. More subtle is the line of positive power
at k‖ ∼ 0.45hMpc−1, confirming our hypothesis that
the spike observed in Figure 5 is indeed an instrumental
systematic since it behaves the same way in both time-
interleaved data cubes. There is also a hint of a similar ef-
fect at k‖ ∼ 0.75hMpc−1, possibly visible in Figure 2 as
well. We attribute both to bandpass miscalibration due
to cable reflections, complicated an these frequency scales
by the imperfect channelization of the MWA’s two-stage
polyphase filter, as well as slight antenna-dependence of
the bandpass due to cable length variation [70].

Additionally, the quadratic estimator formalism relates
our covariance models of residual foregrounds and noise
to the expected variance in each band power [13, 40, 43],
which we plot in Figure 7. As we have chosen our power
spectrum normalization M such that Σ ≡ Cov(p̂) is di-
agonal, it is sufficient to plot the diagonal of Σ1/2, the
standard deviation of each band power. The EoR win-

FIG. 6. By using an estimator of the power spectrum with
uncorrelated errors between bins, we can see that most of
the EoR window is noise dominated in our power spectum
measurement. Here we show the inverse hyperbolic sine of
the power spectum, which behaves linearly near zero and log-
arithmically at large magnitudes. Because we are taking a
cross power spectrum between two data cubes with uncorre-
lated noise, noise dominated regions are equally likely to have
positive power as negative power. Since we do not attempt
to subtract a foreground bias, foreground contaminated re-
gions show up as strongly positive. That includes the wedge,
the bandpass line at k‖ ≈ 0.45hMpc−1 (see Figure 5), and
some of the EoR window at low k⊥ and and relatively low k‖,
consistent with the suprahorizon emission seen in [26].

dow is seen clearly here as well. There is high variance
at low and high k⊥ where the uv coverage is poor, and
also in the wedge due to foreground residuals. It is par-
ticularly pronounced in the bottom left corner, which is
dominated by residual diffuse foregrounds.

As our error covariance represents the error due both
to noise and foregrounds we expect to make in an esti-
mate of the 21 cm signal, it is interesting to examine the
“signal to error ratio” in Figure 8—the ratio of Figure 5
to Figure 7. The ratio is of order unity in noise dominated
regions—though it is slightly lower than what we might
naively expect due to our conservative estimate of Σ [13].
That explains the number of modes with very small val-
ues in Figure 7. In the wedge and just above it, however,
the missubtracted foreground bias is clear, appearing as
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FIG. 7. By including both residual foregrounds and noise in
C, our model for the covariance, we can calculate the expected
variance on each band power in p̂, which we show here. We
see more variance at high (and also very low) k⊥ where we
have few baselines. We also see high variance at low k‖ con-
sistent with foregrounds. We see the strongest foregrounds
at low k⊥, which implies that the residual foregrounds have
a very strong diffuse component that that we have much to
gain from better diffuse models to subtract. We also also see
that foreground-associated variance extends to higher k‖ at
high k⊥, which is exactly the expected effect from the wedge.
Both these observations are consistent with the structure of
the eigenmodes we saw in Figure 1. Because we have cho-
sen a normalization of p̂ such that the Cov(p̂) is diagonal,
this is a complete description of our errors. Furthermore, it
means that the band powers form a mutually exclusive and
collectively exhaustive set of measurements.

a high significance “detection” of the foreground wedge
in the residual foregrounds. The bandpass miscalibration
line at k‖ ∼ 0.45hMpc−1 also appears clearly due both
to foreground bias and possibly an underestimation of the
errors. Hedging against this concern, we simply project
out this line from our estimator that bins 2D power spec-
tra into 1D power spectra by setting the variance of those
bins to infinity.

Though useful for the careful evaluation of our tech-
niques and of the instrument, the large bandwidth data
cubes used to make Figures 5 and 6 encompass long pe-
riods of cosmic time over which the 21 cm power spec-

FIG. 8. The foregrounds’ wedge structure is particularly clear
when looking at the ratio of our measured power spectrum to
the modeled variance, shown here. Though the variance in
foreground residual dominated parts of the k⊥-k‖ plane are
elevated (see Figure 7), we still expect regions with signal to
error ratios greater than one. This is largely due to the fact
that we choose not to subtract a foreground bias for fear of
signal loss. This figure shows us most clearly where the fore-
grounds are important and, as with Figure 6, it shows where
we can hope to do better with more integration time and
where we need better calibration and foreground modeling to
further integrate down.

trum is expected to evolve. The cutoff is usually taken
to be ∆z <∼ 0.5 [5]. These large data cubes also violate
the assumption in [43] that channels of equal width in
frequency correspond to equal comoving distances, justi-
fying the use of the fast Fourier transform. Therefore, we
break the full bandwidth into three 10.24 MHz segments
before forming spherically averaged power spectra, and
estimate the foreground residual covariance and power
spectrum independently from each. We bin our 2D power
spectra into 1D power spectra using the optimal estima-
tor formalism of [13]. In our case, since we have chosen
M such that Σ is diagonal, this reduces to simple inverse
variance weighting with the variance on modes outside
the EoR window or in the k‖ ∼ 0.45hMpc−1 line set to
infinity.

In Figure 9 we show the result of that calculation as
a “dimensionless” power spectra ∆2(k) ≡ k3P (k)/2π2.
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We choose our binning such that the window functions
(calculated as in [13] from our covariance model) were
slightly overlapping.

Our results are largely consistent with noise. Since
noise is independent of k‖ and k ≈ k‖ for most modes

we measure, the noise in ∆2(k) scales as k3. We see
deviations from that trend at low k where modes are
dominated by residual foreground emission beyond the
horizon wedge and thus show elevated variance and bias
in comparison to modes at higher k. Since we do not
subtract a bias, even these “detections” are upper limits
on the cosmological signal.

A number of barely significant “detections” are ob-
served at higher k. Though we excise bins associated
with the k‖ ∼ 0.45hMpc−1 line, the slight detections
may be due to leakage from that line. At higher z, the
feature may due to reflections from cables of a differ-
ent length, though some may beplausibly attributable to
noise. Deeper integration is required to investigate fur-
ther.

Our best upper limit at 95% confidence is ∆2(k) <
3.7× 104 mK2 at k = 0.18hMpc−1 around z = 6.8. Our
absolute lowest limit is about two times lower than the
best limit in [13], though the latter was obtained at sub-
stantially higher redshift and lower k, making the two
somewhat incomparable. Our best limit is roughly three
orders of magnitude better than the best limit of [13] over
the same redshift range, and the overall noise level (as
measured by the part of the power spectrum that scales
as k3) is more than two orders of magnitude smaller.
This cannot be explained by more antenna tiles alone; it
is likely that the noise level was overestimated in [13] due
to insufficiently rapid time interleaving of the data cubes
used to infer the overall noise level.

Although one cannot directly compare limits at dif-
ferent values of k and z, our limit is similar to the
GMRT limit [8], 6.2 × 104 mK2 at k = 0.50hMpc−1

and z = 8.6 with 40 hours of observation, and remains
higher than best PAPER limit [15] of 502 mK2 between
k = 0.15hMpc−1 and k = 0.50hMpc−1 and z = 8.4
with 4.5 months of observation.

In Figure 9 we also plot a theoretical model from
[72] predicting that reionization has ended by the low-
est redshift bin we measure. We remain more than three
orders of magnitude (in mK2) from being able to de-
tect that particular reionization model, naively indicat-
ing that roughly 3000 hours of data are required for its
detection. This appears much larger than what previ-
ous sensitivity estimates have predicted for the MWA
(e.g. [58]) in the case of idealized foreground subtraction.

However, much of this variance is due to the residual
foregrounds and systematics in the EoR window identi-
fied by our empirical covariance modeling method, not
thermal noise (see Figure 7). More integration will not
improve those modes unless it allows for a better under-
standing of our instrument, better calibration, and better
foreground models—especially of diffuse emission which
might contaminate the highly sensitive bottom left cor-

ner of EoR window. Eliminating this apparent “supra-
horizon” emission, seen mostly clearly as detections in
Figure 8 below k ≈ 0.2hMpc−1, is essential to achieving
the forecast sensitivity of the MWA [58]. If we can do, we
may still be be able to detect the EoR with 1000 hours or
fewer. This is especially true if we can improve the sub-
traction of foregrounds to the point where we can work
within the wedge, which can vastly increase the sensitiv-
ity of the instrument [56, 58]. On the other hand, more
data may reveal more systematics lurking beneath the
noise which could further diminish our sensitivity.

IV. SUMMARY AND FUTURE DIRECTIONS

In this work, we developed and demonstrated a method
for empirically deriving the covariance of residual fore-
ground contamination, CFG, in observations designed to
measure the 21 cm cosmological signal. Understanding
the statistics of residual foregrounds allows us to use the
quadratic estimator formalism to quantify the error asso-
ciated with missubtracted foregrounds and their leakage
into the rest of the EoR window. Due to the complicated
interaction between the instrument and the foregrounds,
we know that the residual foregrounds will have compli-
cated spectral structure, especially if the instrument is
not perfectly calibrated. By deriving our model for CFG

empirically, we could capture those effects faithfully and
thus mitigate the effects of foregrounds in our measure-
ment (subject to certain caveats which we recounted in
Section II D).

Our strategy originated from the assumption that the
frequency-frequency covariance, modeled as a function of
|u|, is the most important component of the foreground
residual covariance. We therefore used sample covari-
ances taken in annuli in Fourier space as the starting
point of our covariance model. These models were ad-
justed to avoid double-counting the noise variance and
filtered in Fourier space to minimize the effect of noise
in the empirically estimated covariances. Put another
way, we combined our prior beliefs about the structure
of the residual foregrounds with their observed statistics
in order to build our models.

We demonstrated this strategy through the power
spectrum analysis of a 3 hour preliminary MWA data
set. We saw the expected wedge structure in both our
power spectra and our variances. We saw that most of
the EoR window was consistent with noise and we un-
derstand why residual foregrounds and systematics af-
fect the regions that they do. We were also able to
set new MWA limits on the 21 cm power spectrum from
z = 6.2-7.5, with an absolute best 95% confidence limit of
∆2(k) < 3.7×104 mK2 at k = 0.18hMpc−1 and z = 6.8,
consistent with published limits [12, 14].

This work suggests a number of avenues for future re-
search. Of course, improved calibration and mapmak-
ing fidelity—especially better maps of diffuse Galactic
structure—will improve power spectrum estimates and
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FIG. 9. Finally, we can set confident limits on the 21 cm power spectrum at three redshifts by splitting our simultaneous
bandwitdh into three 10.24 MHz data cubes. The lowest k bins show the strongest “detections,” though they are attributable
to suprahorizon emission [26] that we expect to appear because we only cut out the wedge and a small buffer (0.02hMpc−1)
past it. We also see marginal “detections” at higher k which are likely due to subtle bandpass calibration effects like cable
reflections. The largest such error, which occurs at bins around k‖ ∼ 0.45hMpc−1 and can be seen most clearly in Figure

8, has been flagged and removed from all three of these plots. Our absolute lowest limit requires ∆2(k) < 3.7 × 104 mK2 at
95% confidence at comoving scale k = 0.18hMpc−1 and z = 6.8, which is consistent with published limits [8, 12–15]. We
also include a simplistic thermal noise calculation (dashed line), based on our observed system temperature. Though it is not
directly comparable to our measurements, since it has different window functions, it does show that most of our measurements
are consistent with thermal noise. For comparison, we also show the theoretical model of [72] (which predicts that reionization
ends before z = 6.4) at the central redshift of each bin. While we are still orders of magnitude away from the fiducial model,
recall that the noise in the power spectrum scales inversely with the integration time, not the square root.

and allow deeper integrations without running up against
foregrounds or systematics. Relaxing some of the map-
making and power spectrum assumptions discussed in
Section II D may further mitigate these effects. A start-
ing point is to integrate the mapmaking and statistical
techniques of [44] with the fast algorithms of [43]. The
present work is based on the idea that it is simpler to
estimate CFG from the data than from models of the in-
strument and the foregrounds. But if we can eliminate
systematics to the point where we really understand P,
the relationship between the true sky and our dirty maps,
then perhaps we can refocus our residual foreground co-
variance modeling effort on the statistics of the true sky
residuals using the fact that CFG = PCFG,truePT. Ob-
taining such a complete understanding of the instrument
will be challenging, but it may be most rigorous way
to quantify the errors introduced by missubtracted fore-
grounds and thus to confidently detect the 21 cm power
spectrum from the epoch of reionization.
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