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Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin
angular momentum and quadrupole moment), have recently been found to be interrelated in a
manner that is approximately insensitive to their internal structure. Such approximately universal
relations are useful to break degeneracies in data analysis and model selection for future radio,
X-ray and gravitational wave observations. Although the pressure inside compact stars is most
likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example
due to magnetic fields or phase transitions in their interior. We here investigate whether pressure
anisotropy affects the approximate universal relations, and if so, whether it prevents their use in
future astrophysical observations. We achieve this by numerically constructing slowly-rotating and
tidally-deformed, anisotropic, compact stars in General Relativity to third order in stellar rotation
relative to the mass shedding limit. We adopt simple models for pressure anisotropy where the
matter stress energy tensor is diagonal for a spherically symmetric spacetime but the tangential
pressure differs from the radial one. We find that the equation of state variation increases as one
increases the amount of anisotropy, but within the anisotropy range studied in this paper (motivated
from anisotropy due to crystallization of the core and pion condensation), anisotropy affects the
universal relations only weakly. The relations become less universal by a factor of 1.5–3 relative to
the isotropic case when anisotropy is maximal, but even then they remain approximately universal
to 10%. We find evidence that this increase in variability is strongly correlated to an increase in
the eccentricity variation of isodensity contours, which provides further support for the emergent
approximate symmetry explanation of universality. Whether one can use universal relations in actual
observations ultimately depends on the currently-unknown amount of anisotropy inside stars, but
within the range studied in this paper, anisotropy does not prevent the use of universal relations
in gravitational wave astrophysics or in experimental relativity. We provide an explicit example of
the latter by simulating a binary pulsar/gravitational wave test of dynamical Chern-Simons gravity
with anisotropic neutron stars. The increase in variability of the universal relations due to pressure
anisotropy could affect their use in future X-ray observations of hot spots on rotating compact stars.
Given expected observational uncertainties, however, the relations remain sufficiently universal for
use in such observations if the anisotropic modifications to the moment of inertia and the quadrupole
moment are less than 10% of their isotropic values.

PACS numbers: 04.30.Db,04.50Kd,04.25.Nx,97.60.Jd

I. INTRODUCTION

Compact relativistic stars, such as neutron stars (NSs)
and quark stars (QSs), are excellent testbeds to probe nu-
clear and gravitational physics. Their extreme internal
density and strong gravity provide access to a regime that
is far-removed from that attainable with ground-based
laboratories. In particular, observations of compact stars
may soon provide information about one of the areas with
largest uncertainties in nuclear physics: the equation of
state (EoS) (i.e. the relation between pressure and den-
sity) at nuclear and supranuclear densities. This could be
achieved through the independent measurement of their
mass and radius [1–6], since the mass-radius relation de-
pends sensitively on the EoS [7–9]. One way to obtain
such independent measurements is by observing the pulse
profile produced by hot spots on the surface of compact
stars [10, 11] with an X-ray telescope, like NICER [12].
This pulse profile, however does not just depend on the
star’s mass and radius, but also on its moment of iner-
tia, quadrupole moment and higher multipole moments.
Degeneracies between these quantities and the mass and

radius prevent measuring the latter accurately, unless the
degeneracies can be broken.

Compact stars also provide a unique window into the
gravitational interaction in extreme gravitational envi-
ronments. General Relativity (GR) has passed a plethora
of tests with flying colors [13–15], but these typically
involve quasi-stationary environments with weak grav-
itational fields, relative to those possible in the vicin-
ity of compact stars. Tests of GR with the latter al-
low us to confirm Einstein’s theory in a regime that has
been mostly-unexplored: the “strong-field.” For exam-
ple, in certain scalar tensor theories [16, 17] sufficiently
compact stars can spontaneously scalarize, i.e. develop
a non-trivial scalar field anchored to the star, a strong-
field modification of GR that has now been stringently
constrained with binary pulsar observations [18–20]. An-
other way to test GR with compact stars is through
the measurement of their mass and radius, since the
mass-radius relation depends sensitively on the under-
lying gravitational theory [21–30]. Such a test, however,
is strongly degenerate with the star’s EoS.

One can break these degeneracies when probing nu-
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clear physics or gravitational physics by using relations
among stellar observables that do not depend sensitively
on the EoS. By “observables,” we here mean quantities
that characterize the exterior gravitational field of the
star, such as its mass, radius, moment of inertia and
higher multipole moments associated with their shape.
The level to which such relations must be EoS-insensitive
or approximately universal depends on the accuracy of
the astrophysical observation in which they are intended
to be used. For example, if one wishes to use the pulse
profile of hot spots on the surface of NSs to measure their
radius to 5% accuracy, it suffices if the relation between
the moment of inertia and the quadrupole moment is
EoS-insensitive to at least 5%.

The search for approximately universal relations be-
tween observables is not new [7, 31–48], but recently a
certain set was discovered that is special for two rea-
sons [49, 50]. First, the EoS-insensitivity of these rela-
tions is typically larger than that found in other observ-
ables, with EoS-variability at the percent level. Second,
the relations involve quantities that enter observables di-
rectly and are related to the multipole moments of the
exterior gravitational field of the star, such as its mo-
ment of inertia (I), its spin angular momentum (J), its
quadrupole moment (Q) and its tidal deformability (or
Love number) (λ). The subset of approximately univer-
sal relations between I, λ and Q is commonly referred
to as the I-Love-Q relations. Although these approxi-
mately universal relations were first discovered studying
slowly-rotating and unmagnetized NSs with barotropic
and isotropic EoSs [49, 50], they were immediately ex-
tended to stars with different EoSs [51], large tidal de-
formation [52], rapid rotation [53–56], strong magnetic
fields [57], non-barotropic EoSs [58] and to non-GR the-
ories [49, 50, 59–62]. The possible origins of such uni-
versality were studied in [63, 64], with a purely analytic
approach developed in [65–67].

The I-Love-Q relations have direct applications to nu-
clear physics, experimental relativity and gravitational
wave physics. For example, the relation between I and
Q can be used to eliminate the I-Q degeneracy in the X-
ray pulse profile of hot spots on the surface of compact
stars [68, 69]. Another example is the use of the relation
between I and λ to carry out GR tests with combined
binary pulsar and GW observations, irrespective of the
EoS. Such tests could be particularly powerful, for ex-
ample allowing constraints that are six orders of magni-
tude stronger than current Solar System and table-top
experiment bounds [49, 50] on certain quadratic gravity
theories [70, 71]. One can also use the relation between
Q and λ to break the Q-J degeneracy in the observation
of GWs emitted during the late, quasi-circular, inspiral
of NS binaries [49, 50].

Because of their multi-faceted nature and wide appli-
cability to different branches of physics and astrophysics,
it is important to determine all possible physical pro-
cesses that may render the I-Love-Q relations more EoS-
sensitive, and thus, less universal. One such physical

process is pressure anisotropy in the interior of compact
stars, i.e. the interior pressure in the radial direction be-
ing different from that in the polar or azimuthal direc-
tions. Do we expect NSs to be strongly anisotropic and
have a large anisotropic pressure component? Several
studies exist (see [72] for a review) that suggest the exis-
tence of several sources of anisotropy, such as stellar solid
or superfluid cores [73–75], relativistic nuclear interac-
tions [76, 77], strong magnetic fields [78–87], pion con-
densation [88], phase transitions [89] or crystallization of
the core [90]. In fact, relatively simple, two-fluid models
with normal and superfluid components are mathemati-
cally equivalent to a single anisotropic fluid [72, 91].

But even if there were a source for anisotropy inside
compact stars, one may expect isotropy to be eventually
restored. In fact, any restoring force, such as gravity in
the strong field, is expected to pull back the compact
stellar structure to its isotropic state on the fluid’s in-
ternal time scale. Given this, it is not clear that NSs
should have anisotropic pressure, and if they somehow
do, how anisotropic they should be and what mathemat-
ical model best describes it. We will here put our per-
sonal bias aside and take an agnostic view when asking
the following questions1:

1. How does pressure anisotropy affect the I-Love-Q
and other universal relations in NSs and QSs?

2. Does pressure anisotropy spoil the use of such rela-
tions to break degeneracies in various observations?

We answer these questions by numerically construct-
ing slowly-rotating and tidally-deformed NSs and QSs
to third order in a perturbative expansion in χ, a di-
mensionless parameter constructed from the ratio of the
star’s spin angular momentum to its mass squared. We
assume a scalar anisotropy model for simplicity, where
the matter stress energy tensor for a spherically sym-
metric background is assumed diagonal and the amount
of anisotropy is captured by a single parameter. Slowly-
rotating, anisotropic NSs had already been constructed
to linear order in χ in GR [92, 93] and in scalar-tensor
theories [93], but we here extend these calculations to
third order. We model pressure anisotropy through the
simple and phenomenological scheme of Horvat et al. [94]
(the H model), as well as the scheme of Bowers and
Liang [95] (the BL model). Although the latter is un-
physical, i.e. the pressure anisotropy does not vanish in
the non-relativistic limit2, it is still useful to gain a better
analytical understanding of the physical scenario, which
can then be applied to numerical results obtained in the
H model.

1 These questions were already addressed in [57] for a particular
example where a large amount of anisotropy is produced by very
strong magnetic fields.

2 The non-relativistic limit or the Newtonian limit here means
the leading-order expansion in the gravitational field strength at
the stellar surface, or equivalently an expansion in the stellar
compactness (the ratio of the stellar mass to the stellar radius).
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FIG. 1. (Color online) (Top panels) Relations between the reduced moment of inertia Ī = I/M3
∗ and the reduced tidal

deformability λ̄2 = λ2/M
5
∗ (left) and between the reduced quadrupole moment Q̄ = −Q/(M3

∗χ
2) and the reduced octupole

moment S̄3 = −S3/(M
4
∗χ

3) (right) for a sequence of NSs (with an APR EoS) and QSs (with a SQM3 EoS) with various
anisotropy parameters λH. The quantities used to adimensionalize these observables are M∗, the mass of the compact star in
the non-rotating limit, and χ = J/M2

∗ , with J the magnitude of the spin angular momentum. The single parameter along the
sequence is the stellar mass (or compactness). For reference, we show the NS mass with an APR EoS and isotropic pressure

M
(APR,0)
∗ on the top axis, where the superscript 0 refers to λH = 0. (Bottom panels) Fractional relative difference between the

relations for anisotropic stars and isotropic stars. Observe that the relations are at most affected to ∼ 2% in the I-Love case
and ∼ 10% in the S3-Q case due to anisotropy.

A. Executive Summary

Let us first focus on the effect of pressure anisotropy on
the universal relations [question (1)]. Following [93, 96],
we consider anisotropic stars in the H model with the
anisotropic parameter λH ∈ (−2, 2), where the isotropic
limit is recovered when λH = 0. Such a choice is mainly
motivated from anisotropy due to crystallization of the
core [90] and pion condensation [88]. Table I shows
the maximum variability on different relations when one
keeps the EoS fixed and varies λH (first row) and when
one keeps λH fixed to its largest value and varies the EoS.
For comparison, the third row shows the EoS variability
for isotropic stars [49, 50, 56], restricted to the same EoSs
and stable compact stars considered in this paper, and
working to leading order in spin. Observe first that the
maximum amount of anisotropy increases the level of EoS
variability in all relations by a factor of 1.5–3. Nonethe-
less, all relations considered remain EoS universal to bet-
ter than 10%. Observe, however, that when the EoS is
fixed, the anisotropic variability of the relations is slightly
larger. Thus, the total variability (EoS plus anisotropy)
of the relations is roughly a factor of 2–4 larger than the
EoS-variability in the isotropic case. One must then con-
clude that, for the range of anisotropy studied here, the
approximately universal relations remain approximately
universal, but to a lesser degree than for isotropic stars.

Maximal Variability I-Q I-Love Q-Love S3-Q

with λH (fixed APR EoS) 7 % 2 % 8 % 9 %

with EoS (fixed λH = 2) 5 % 2 % 5 % 8 %

with EoS (fixed λH = 0) 2 % 0.7 % 2 % 5 %

TABLE I. Maximum effect of anisotropy for fixed (APR)
EoS (first row), effect of EoS variability for fixed, maxi-
mal (λH = 2) anisotropy (second row) and for vanishing
anisotropy (third row) on various approximately universal re-
lations (with S3 representing the current octupole moment).
Observe that maximal anisotropy increases the level of vari-
ability by a factor of 2–4.

Figure 1 shows the effect of anisotropy in the I-Love
(left panel) and S3-Q (right panel) relations in more de-
tail, with S3 representing the current octupole moment.
The top panels show the relations themselves, with the
EoS fixed to APR [97] for NSs and SQM3 [98] for QSs,
while the bottom panels show the fractional relative dif-
ference between each curve and the isotropic curve. In
these figures, each point represents a numerical solution
to the perturbed Einstein equations for a different value
of central density and anisotropic parameter. Thus, as
one moves from the right to the left of these panels, one
is considering a sequence of increasing mass or compact-
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ness. Observe that, on average, anisotropy affects the re-
lations by at most a few % in the I-Love case and ∼ 10%
in the S3-Q case, which confirms Table I. Notice also that
the maximum variation is realized at the largest positive
value of anisotropy, which is why λH = 2 was chosen
in Table I. The relative fractional error decreases in the
non-relativistic limit (as one considers stars with lower
compactness) because anisotropy vanishes in this limit
for the model we considered.

Are the above results robust to other anisotropy mod-
els? To answer this question, we carry out a numerical
study with the BL model and find that the relations in
the latter are very similar to that in the H model for NSs.
In particular, we semi-analytically re-derive the Newto-
nian three-hair relations for anisotropic stars, i.e. the re-
lations between the exterior multipole moments of stars
as functions of only the mass, the spin angular momen-
tum and the quadrupole moment in the non-relativistic
limit. We find that the EoS-variation in such relations is
consistent with the S3-Q universality discussed above in
the low-compactness regime.

Given the robustness of the effect of anisotropy on the
universal relations, we can search for an analytical ex-
pression that shows their dependence on the anisotropy
parameter. We consider the three-hair relations in the
non-relativistic limit and perturb the EoS about that
for incompressible matter. The latter is chosen because
the equations of stellar structure in the non-relativistic
limit possess a closed-form analytic solution for such an
EoS. We then derive the perturbed three-hair relations
analytically [66] and find that they are not modified by
anisotropy for any `th multipole moment at leading order
in the EoS deformation. This shows explicitly that the
three-hair relations are weakly affected by anisotropy in
the non-relativistic limit.

But why is it that the approximately universal rela-
tions are affected at all by anisotropy? In order to an-
swer this question, we must understand the physical ori-
gin of the approximate universality in the isotropic case.
Reference [63] suggested that the approximate universal-
ity is a consequence of the emergence of an approximate
symmetry in the high-compactness regime of stellar con-
figurations. The approximate symmetry in question is
an approximate self-similarity in the eccentricity profile
of isodensity contours. We investigated such contours
in the case of anisotropic stars and found that, indeed,
the eccentricity variation increases to roughly ∼ 40% in-
side the star. Such a variation is larger than that for
isotropic stars by a factor of four, which explains why
the EoS-variation becomes larger for anisotropic stars in
the three-hair like relations.

The effect of strong anisotropy on the I-Love-Q rela-
tions, however, does not necessarily spoil its applications
to various observations [question 2 above]. This is be-
cause observations have an intrinsic uncertainty level, so
as long as the anisotropy variability is below this level,
the I-Love-Q relations can still be used. Obviously, the
previous statement depends on the amount of anisotropy
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FIG. 2. (Color online) I-Love relation in GR and in dynami-
cal Chern-Simons gravity [70, 71]. For reference, the mass of
an isotropic star with a Shen EoS is shown in solar masses on
the top axis. Assume one measures Ī to 10% accuracy from
a double binary pulsar observation and λ̄2 to 60% accuracy
from a GW observation of a NS binary, with both observa-
tions consistent with GR [49, 50]. These observations are
shown with a black cross, while the error ellipses are approx-
imated as an error box shown with black dashed lines. The
black curve shows the I-Love relation in GR for isotropic NSs
and QSs, while the red, blue and black circles show the I-Love
relations in dynamical Chern-Simons gravity for different val-
ues of anisotropy parameter and a fixed value of the coupling
parameter ξCS. Observe that the constraint on ξCS remains
roughly unaffected by the potential presence of anisotropy.

inside neutron stars, a highly uncertain quantity; how-
ever, within the range of anisotropy considered in this
paper, the universal relations can still be used for GW ob-
servations because the uncertainty in the measurements
of the Love number and the individual spins of compact
stars are much greater (order 50% and 10% respectively)
than the anisotropy variability of the Q-Love relation.
Similarly, for strong-field tests of GR, the variation due
to anisotropy in the I-Love relation is much smaller than
the error bars in the measurements themselves, and thus,
this variability does not affect our ability to perform such
tests.

Let us illustrate the above conclusions with an explicit
example. First, we construct slowly-rotating, anisotropic
NSs and QSs to linear order in χ in a particular modified
gravity theory, dynamical Chern-Simons gravity [70, 71].
Following [49, 50], we assume that we can measure the
moment of inertia to 10% accuracy with future double
binary pulsar observations and the tidal deformability to
60% with future GW observations. Let us further choose
the observations to be for a 1.34M� NS with a Shen EoS,
and assume GR is correct. Then, one can draw a fiducial
point with an error box around it in the I-Love plane, as
shown in Fig. 2, where the black curve represents the I-
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Love relation for isotropic stars in GR. We also show the
relations in dynamical Chern-Simons with three different
choices of λH, but the same value of the coupling constant
of the theory. Observe that different values of λH hardly
affect where the dynamical Chern-Simons I-Love curves
cross the error box. Therefore, the constraint that one
would derive on the coupling constant of the theory are
essentially unaffected by the potential presence of pres-
sure anisotropy in the interior of NSs.

The situation is slightly different for X-ray observa-
tions that require the use of the I-Q relation to break
degeneracies in the pulse profile model. The goal here
is to independently measure the stellar mass and radius
to ∼ 5% accuracy, but the variability of the I-Q relation
can reach this level for maximal anisotropy and exceed
it when varying λH for a fixed EoS, as shown in Table I.
One can then ask what the maximum value of λH is for
which the I-Q relation remains universal below 5% when
varying over EoSs and anisotropy parameters. The an-
swer to this is |λH| . 1, which physically corresponds to
a ≤ 10% anisotropy modification to the moment of iner-
tia and quadrupole moment relative to the isotropic case.
We then see that the I-Q relations can indeed be used in
X-ray observations, even if large anisotropy (|λH| ∼ 1) is
allowed in the NS interior.

The rest of the paper is organized as follows. Sec-
tion II explains the formalism of how to construct slowly-
rotating and tidally deformed anisotropic NSs and QSs.
Section III presents numerical calculations of the univer-
sal relations. Section IV presents analytic calculations
to gain a better physical understanding of the numeri-
cal results. Section V explains how the applications of
the universal relations to future observations can be af-
fected by anisotropy. Section VI concludes and presents
possible avenues for future work. Henceforth, we use the
geometric units, c = 1 = G, throughout.

II. FORMALISM

In this section, we explain how we construct slowly-
rotating, compact stars with anisotropic matter to third
order in a small spin expansion. We extend following
the Hartle-Thorne method [99, 100], which was invented
in the late 1980s to construct slowly-rotating, isotropic
NS solutions to quadratic order in χ. This method was
extended to third order in [101–103] and to fourth order
in [56] for isotropic NSs and QSs. In this section we
will explain how this framework can be extended to non-
isotropic stars.

A. Metric Perturbations

Let us start with by explaining the metric ansatz
and introducing the matter stress-energy tensor with
anisotropic pressure. We extend the Hartle-Thorne ap-
proach [99, 100], in which the authors established a for-

malism to construct slowly-rotating compact stars with
isotropic pressure as an expansion to quadratic order in
the ratio of the spin angular momentum to the star’s
mass squared. We use the metric ansatz given by [56]

ds2 = −eν(r)
[
1 + 2ε2h(r, θ)

]
dt2

+ eλ(r)

[
1 +

2ε2m(r, θ)

r − 2M(r)

]
dr2

+ r2
[
1 + 2ε2k(r, θ)

] (
dθ2 + sin2 θ {dφ

−ε
[
Ω− ω(r, θ) + ε2w(r, θ)

]
dt
}2
)

+O(ε4) , (1)

where ε represents a book-keeping parameter that counts
the order of slow rotation, Ω is the stellar angular veloc-
ity, ν and λ are the background metric functions while
ω, h, k, m and w are metric perturbations to second and
third order in spin. The enclosed mass function M(r) is
related to the background metric function λ(r) via

e−λ(r) ≡ 1− 2M(r)

r
. (2)

We further decompose the metric perturbations in
terms of Legendre polynomials as

ω(r, θ) = ω1(r)P ′1(cos θ) , (3)

h(r, θ) = h0(r) + h2(r)P2(cos θ) , (4)

m(r, θ) = m0(r) +m2(r)P2(cos θ) , (5)

k(r, θ) = k2(r)P2(cos θ) , (6)

w(r, θ) = w1(r)P ′1(cos θ) + w3(r)P ′3(cos θ) , (7)

with P ′`(cos θ) = dP`(cos θ)/d cos θ. We here used gauge
freedom to eliminate the ` = 0 mode in the k function.
Following [99, 100], we introduce a new radial coordinate
R such that the stellar density ρ[r(R, θ), θ] is the same
as the density of the non-rotating configuration ρ(0)(r),
namely

ρ[r(R, θ), θ] = ρ(R) = ρ(0)(R) . (8)

In these coordinates, the stellar density does not contain
spin perturbation by construction. The old and new ra-
dial coordinates are related via a new function ξ(R, θ)
by

r(R, θ) = R+ ε2ξ(R, θ) +O(ε4) . (9)

As for the other metric perturbations, we decompose ξ
through Legendre polynomials:

ξ(R, θ) = ξ0(R) + ξ2(R)P2(cos θ) . (10)

In this paper, we are interested in extracting the NS mass
M , moment of inertia I, quadrupole moment Q and oc-
tupole moment S3 to leading order in spin, where I is
defined by I ≡ J/Ω with J the magnitude of the spin
angular momentum. Therefore, at any O(εn), we only
consider the ` = n mode since that will be the only one
that contributes.
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B. Matter Representation

Let us next explain how we choose to represent the
matter degrees of freedom.For simplicity, we consider a
scalar anisotropy model, where the matter stress energy
tensor with anisotropic pressure is given by [93, 96]

Tµν = ρuµuν + pkµkν + qΠµν . (11)

Here uµ is the fluid four-velocity

uµ = (u0, 0, 0, εΩu0) , (12)

with u0 determined through the normalization condition
uµuµ = −1. In Eq. (11), kµ is a unit radial vector that is
spacelike (kµkµ = 1) and orthogonal to the four-velocity
(kµuµ = 0), while Πµν is a projection operator onto a
two-surface orthogonal to uµ and kµ:

Πµν = gµν + uµuν − kµkν , (13)

where p and q are the radial and tangential pres-
sures respectively. Following [93, 96], we introduce the
anisotropy parameter σ ≡ p− q, with σ = 0 correspond-
ing to isotropic matter, and we Legendre decompose it
as

σ(R,Θ) = σ0(R) + σ
(2)
0 (R) + σ

(2)
2 (R)P2(cos θ) +O(ε4) .

(14)
We take the radial pressure to be barotropic, p = p(ρ),
and hence, its perturbation vanishes from the definition
of the new radial coordinate R. In a more generic situ-
ation, one could introduce pressure anisotropy as a ten-
sor; in that case, the stress energy tensor would have off-
diagonal anisotropy components. This is indeed the case
when anisotropy is caused by e.g. magnetic fields [79–87].

The barotropic radial pressure will be modeled as fol-
lows. When considering NSs, we adopt the APR [97],
SLy [104], LS220 [105], Shen [106, 107], WFF1 [108]
and ALF2 [109] EoSs. The first five represents NSs
with n,p,e,µ matter, while the ALF2 EoS represents hy-
brid stars with n,p,e,µ and quark matter. We choose
these EoSs because the maximum masses they predict
for isotropic, non-rotating NSs are all above 2M� [110].
We impose the neutrino-less and β-equilibrium condi-
tions with a temperature of 0.1MeV and nuclear incom-
pressibility of 220MeV and 281MeV for the LS and Shen
EoSs respectively. When considering QSs, we adopt the
SQM1, SQM2 and SQM3 [98] EoSs based on the MIT bag
model. When doing analytic calculations in the Newto-
nian limit, it will be convenient to also use a polytropic
EoS, given by

p = Kρ1+1/n , (15)

where K and n are the polytropic constant and the poly-
tropic index respectively. Notice that in the Newtonian
limit, the energy density ρ reduces to the rest-mass den-
sity.

The anisotropic part of the pressure will be modeled
as follows. We will mainly adopt the model proposed
by Horvat et al. [94] (the H model), which is defined
by [93, 94, 96]

σ0 = 2λHp
M

R
, (16)

for a non-rotating configuration. Here, λH is a parameter
that characterizes the amount of anisotropy. Obviously,
when λH = 0, the anisotropy parameter vanishes and one
recovers the isotropic case. This model is constructed
such that the effect of anisotropy vanishes in the hydro-
static equilibrium equation in the non-relativistic limit,
where p � ρ. σ0 vanishes at the stellar center, which is
a required boundary condition such that physical quan-
tities, like the mass and spin angular momentum, do not
contain singularities [95]. Notice that σ0 is continuous at
the surface even if the density is discontinuous there.

The H-model is a phenomenological description of
anisotropy, where the amount of the latter is controlled
by λH. This parameter can be of order unity when
anisotropy is realized by pion condensation [88]. Alter-
natively, if the origin of anisotropy is strain in Skyrme
crystals [90], λH ≈ −2 for a NS with maximum mass.
As the mass decreases, λH approaches zero until it van-
ishes for masses smaller than 1.49M�. In order to treat
both models mentioned above simultaneously, we follow
Refs. [93, 96] and consider λH in the range −2 ≤ λH ≤ 2.
Of course, larger degrees of anisotropy are not excluded,
but since we currently lack a robust prediction of λH, we
believe it is natural to adopt the anisotropy range used
in previous works [93, 96] as a first step.

In order to carry out analytic calculations and to ob-
tain a better understanding of numerical results, we will
also consider an alternative anisotropy model, proposed
by Bowers and Liang [95] (the BL model). In this model,
σ0 is given by

σ0 =
λBL

3
(ρ+ 3p)(ρ+ p)

(
1− 2M

R

)−1

R2 , (17)

for a non-rotating configuration. As in the H model, λBL

is a constant parameter that quantifies the amount of
anisotropy, λBL = 0 leading to stars with isotropic pres-
sure. The BL model was constructed specifically so that
one can solve the modified Tolman-Oppenheimer-Volkoff
(TOV) equation for an incompressible anisotropic star
analytically [95]. Unlike the H model, σ0 becomes dis-
continuous at the surface if the density is also discon-
tinuous. Although the BL model satisfies the boundary
condition at the stellar center, the effect of anisotropy in
the hydrostatic equilibrium equation does not vanish in
the non-relativistic limit. This fact is very unphysical,
if one requires pressure anisotropy to be caused by the
strain of nuclear matter or magnetic fields at the core of
compact stars. Notice also that σ0 can be discontinu-
ous at the surface since it depends on the stellar density.
On the other hand, the BL model can be useful to track
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anisotropy calculations analytically. For these reasons,
we mainly focus on the H model, and use BL model sec-
ondarily for analytic investigations.

C. Field Equations

Next, we derive the field equations for slowly-rotating
anisotropic compact stars. Substituting Eqs. (3) and (11)
into the Einstein equations and the equation of motion

∇µTµν = 0, at O(ε0), one finds [93, 96]

dM

dR
= 4πR2ρ , (18)

dν

dR
= 2

4πR3p+M

R(R− 2M)
, (19)

dp

dR
= − (4πR3p+M)(ρ+ p)

R(R− 2M)
− 2σ0

R
, (20)

while at O(ε), one finds [92, 93]

d2ω1

dR2
= 4

πR2(ρ+ p)eλ − 1

R

dω1

dR

+ 16π(ρ+ p− σ0)eλω1 , (21)

and at O(ε2), the ` = 2 mode satisfies

σ
(2)
2 = (ρ+ p− σ0)h2 −

σ0

R− 2M
m2 +

[
(ρ+ p)(4πpR3 +M)

R(R− 2M)
+
dσ0

dR
+ 2

σ0

R

]
ξ2 +

R2

3
(ρ+ p− σ0)e−νω2

1 , (22)

m2 = −Re−λh2 +
1

6
R4e−(ν+λ)

[
Re−λ

(
dω1

dR

)2

+ 16πRω2
1(ρ+ p− σ0)

]
, (23)

dk2

dR
= −dh2

dR
+
R− 3M − 4πpR3

R2
eλh2 +

R−M + 4πpR3

R3
e2λm2 , (24)

dh2

dR
=

3eλ

R
h2 − (4πpR3 −M +R)Reλ

dk2

dR
+

2eλ

R
k2 +

8πpR2 + 1

R2
e2λm2 +

1

12
R3e−ν

(
dω1

dR

)2

+ 4π(ρ+ p)e2λ 4πpR3 +M

R
ξ2 + 8πeλσ0ξ2 , (25)

dξ2
dR

=
R− 2M

6R[(ρ+ p)(4πpR3 +M) + 2(R− 2M)σ0]

{
−6R2(ρ+ p)

dh2

dR
− 12σ0R

2 dk2

dR

− 3

[
R2(ρ+ p)

d2ν

dR2
− 4σ0

]
ξ2 − 12Rσ

(2)
2 + 2R3(ρ+ p− σ0)e−νω1

[(
R
dν

dR
− 2

)
ω1 − 2R

dω1

dR

]}
. (26)

Eqs. (22)–(25) agree with those for isotropic matter derived in [99, 100] when σ = 0, while Eq. (26) becomes linearly
dependent in the isotropic case. At O(ε3), the ` = 3 mode satisfies

d2w3

dR2
= 4

πρR3 + πpR3 + 2M −R
R2

eλ
dw3

dR
+ 2

8πρR2 + 8πpR2 + 5− 8πR2σ0

R2
eλw3

− 1

5

(
dh2

dR
− 4

dk2

dR
+
eλ

R

dm2

dR
− 1− 8ρπR2

R2
e2λm2

)
dω1

dR
− 32

5
π(ρ+ p)

eλ

R
m2ω1

+
16

5
π
eλ

R2

[
R2 dρ

dR
− (4πpR3 +M)(ρ+ p)eλ

]
ξ2ω1 +

32

15
πR2(ρ+ p)e−ν+λω3

1

− 32

15
π
e2λ

R

(
R3e−ν−λω2

1 + 3e−λξ2 − 3m2

)
ω1σ0 −

16

5
πω1e

λξ2
dσ0

dR
+

16

5
πeλω1σ

(2)
2 . (27)

This equation agrees with that for isotropic matter [103]
when σ = 0.

D. Boundary Conditions

We here explain the boundary conditions that one
needs to impose to solve the field equations derived in
the previous subsection. We solve the equations from
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the NS core radius R = rε to the surface R = R∗ using a
fourth order Runge-Kutta algorithm. We set rε = 100cm
and the stellar radius R∗ is determined from the condi-
tion p(R∗) = 0. The first boundary condition is set at
R = rε, while the second condition is set at the surface.
We treat each of these separately below.

1. At the Core Radius

The boundary condition at the core can be obtained
through a local analysis of the solution to the structure
equations near the stellar center. One finds

ρ(rε) = ρc + ρ2r
2
ε +O(x3) , (28)

M(rε) =
4π

3
ρcr

3
ε +O(x5) , (29)

ν(rε) = νc +
4π

3
(3pc + ρc)r

2
ε +O(x4) , (30)

ω1(rε) = ω1c +
8π

5
(ρc + pc)ω1cr

2
ε +O(x3) , (31)

h2(rε) = C1r
2
ε +O(x3) , (32)

k2(rε) = −C1r
2
ε +O(x3) , (33)

m2(rε) = −C1r
3
ε +O(x4) , (34)

w3(rε) = C2r
2
ε +O(x3) , (35)

for both the H and BL models, where we have expanded
about x ≡ rε/R∗ � 1. Here, ρc is the central density,
while νc, ω1c, C1 and C2 are constants that are deter-
mined by matching the interior and the exterior solutions
at the NS surface. ρc and ρ2 are obtained through the
EoS. On the other hand, the asymptotic behavior of p,

ξ2 and σ
(2)
2 at the stellar center are given by

pH(rε) = pc −
2π

3
[(3p2

c + ρc)(pc + ρc) + 4λHpcρc]r
2
ε

+O(x3) , (36)

ξH

2 (rε) = − (pc + ρc)ω
2
1ce
−νc + 3C1[ρc + (1 + 2λH)pc]

4π[(3pc + ρc)(pc + ρc) + 4λHpcρc]
rε

+O(x2) , (37)

σ
(2)
2

H(rε) = −4λBL(pc + ρc)pcρc(ω
2
1ce
−νc + 4C1)

3[(pc + ρc)(3pc + ρc) + 4λHpcρc]
r2
ε

+O(x3) , (38)

for the H model and

pBL(rε) = pc −
1

3
(3p2

c + ρc)(pc + ρc)(2π + λH)r2
ε

+O(x3) , (39)

ξBL

2 (rε) = − ω2
1ce
−νc + 3C1

2(3pc + ρc)(λBL + 2π)
rε +O(x2) , (40)

σ
(2)
2

BL(rε) = − λBL

3(2π + λBL)
(pc + ρc)

(
ω2

1ce
−νc + 3C1

)
r2
ε

+O(x3) , (41)

for the BL model respectively, with pc representing the
central pressure.

2. At the Surface

The boundary conditions at the surface can be ob-
tained by finding the exterior solutions to the structure
equations, which then necessitates a local analysis at spa-
tial infinity. Assuming asymptotic flatness at spatial in-
finity, the exterior solutions are given in [50, 56, 99, 100,
103]. Such solutions, of course, do not depend on whether
one considers the H or BL models, since pressure vanishes
in the exterior. The exterior solutions contain integration
constants that are determined by matching the interior
and exterior solutions at the surface. In fact, it is these
constants that determine the (Geroch-Hansen) multipole
moments of the exterior gravitational field [56]. For ex-
ample, the moment of inertia I, quadrupole moment Q
and octupole moment S3 can be read off from the asymp-
totic behavior of the exterior solutions for ω1, h2 and w3

at spatial infinity as [56]

ωext
1 (R) = Ω

(
1− 2I

R3

)
, (42)

hext
2 (R) = − Q

R3
+O

(
1

R4

)
, (43)

wext
3 (R) =

2S3

3R5
+O

(
1

R6

)
. (44)

With the exterior solutions at hand, we can now dis-
cuss the boundary conditions at the surface. Since we are
neglecting the NS crust in this paper, i.e. we are neglect-
ing the fact that the NS density decays very rapidly at
the stellar surface leading effectively to a discontinuity,
the matching condition for any metric perturbation A at
the surface is given by

Aint(R∗) = Aext(R∗) , Aint′(R∗) = Aext′(R∗) , (45)

where the superscript “int” refers to the interior solutions
and A = ω1, h2 and w3. On the other hand, if the
density is strongly discontinuous at the surface (such as
in the case of incompressible NSs or the case of QSs), one
needs to be careful with the matching and incorporate
the appropriate jump conditions. Following [22, 111], we
integrate the field equations from R = R∗ − ε to R =
R∗ + ε and take the limit of ε → 0. Then, one finds the
jump conditions

Aint′(R∗) + jA ρ∗ = Aext′(R∗) , (46)

with

jω1 = 0 , (47)

jh2 = −
4πR∗(2R

2
∗M∗ω

2
1,∗e
−ν∗ − 3ξ2,∗)

3(R∗ − 2M∗)
, (48)

jw3 =
8π

15
R4
∗ω

2
1,∗ω

′
1,∗e
−ν∗ − 16πR∗ω1,∗ξ2,∗

5(R∗ − 2M∗)
, (49)
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and the subscript ∗ represents the quantity being evalu-
ated at the surface from the interior.

E. Tidally-deformed Compact Stars

The construction of compact stars with small amounts
of tidal deformation proceeds similarly. The field equa-
tions that one needs to solve are the same as those
for slowly-rotating stars, except that now one must set
ω1 = 0. Therefore, one must also set ω1c = 0 in the local
analysis of the metric functions near the core. Regarding
the exterior solutions, one does not impose asymptotic
flatness anymore. This allows us to extract, not only the
quadrupole moment Q, but also the (` = 2) tidal poten-
tial E , whose ratio gives the ` = 2 (electric-type), tidal
deformability λ2 [111–113]:

λ2 ≡ −
Q

E
. (50)

λ2 is related to the ` = 2 (electric-type) tidal Love num-
ber k2 via k2 = (3/2)(λ2/R

5
∗). The latter can be obtained

by matching the interior and exterior solutions at the sur-
face. Equation (23) in [112] provides an expression for k2

as a function of y = R∗h
′
2(R∗)/h2(R∗). For a star with

a discontinuous density at the surface, one needs to re-
place y by y = R∗h

′
2(R∗)/h2(R∗)+4πρ∗R

2
∗ξ2,∗/[h2,∗(R∗−

2M∗)].

III. UNIVERSAL RELATIONS FOR
ANISOTROPIC NEUTRON STARS

AND QUARK STARS

We now present the main numerical results of this
paper and try to address the first question posed in
Sec. I, namely, how pressure anisotropy affects the ap-
proximately universal relations of compact stars. We
look at the relations among the following dimensionless
quantities:

Ī ≡ I

M3
∗
, Q̄ ≡ − Q

M3
∗χ

2
, S3 ≡ −

S3

M4
∗χ

3
, λ̄2 ≡

λ2

M5
∗
,

(51)
where χ ≡ J/M2

∗ with M∗ and J representing the stellar
mass (of the non-rotating configuration) and the magni-
tude of the spin angular momentum respectively.

Before presenting the relations among the dimension-
less observables above, let us first look at the depen-
dence of each observable on the stellar mass, which we
present in Fig. 3 for λH = 2, 0,−2 with an APR EoS. Ob-
serve that the deviations induced by pressure anisotropy
are generically large relative to the isotropic case. Ob-
serve also that these deviations grow with increasing NS
mass, which is because anisotropy vanishes in the non-
relativists (or low-compactness) limit for the H model.
Finally, observe that all panels show similar behavior,
namely, each observable decreases as one increases λH for

a fixed NS mass. The maximum NS mass also decreases
as one increases λH, as shown in [93, 94, 96].

This figure, however, does not allow us to easily quan-
tify the physical effect of anisotropy on compact stars,
so let us investigate this more carefully. Figure 4 shows
the fractional relative difference between anisotropic and
isotropic NSs when calculating Ī, λ̄2, Q̄ and S̄3, as a func-
tion of λH, for fixed M∗ = 1.4M� and M∗ = 1.75M� and
an APR EoS. Observe that the fractional difference scales
almost linearly with λH. Observe also that the magnitude
of the effect of anisotropy for a given λH depends strongly
on which quantity one studies. For example, the frac-
tional relative difference in the compactness C and the
tidal deformability λ̄2 at λH = 2 and M∗ = 1.4M� is
6.6% and 37% respectively.

We are now ready to look at how a non-vanishing λH

affects the universal relations. This is shown in the top
panels of Figs. 1 and 5 for an APR and SQM3 EoS. The
bottom panels show the fractional relative difference from
the isotropic relation. Observe that the relations are af-
fected at most below the ∼ 10% level when one includes
maximal anisotropy. These relations are thus much more
EoS-insensitive than Fig. 3. The variation induced by
anisotropy that scales with mass effectively cancels when
one plots one dimensionless observable against another.

Let us investigate the variation in each relation in more
detail. First, observe that the variation decreases as one
increases λ̄2 or Q̄, which corresponds to decreasing the
stellar mass or compactness. This, again, is because
anisotropy vanishes in the non-relativistic limit for the
H model. Second, observe that all relations have an
anisotropy variation that is roughly a factor of 2–4 larger
at their maximum relative to that found for isotropic
stars [49, 50, 56]. Such an added variability may affect
some of the applications of the relations in future obser-
vations, as we discuss in detail in Sec. V.

How does anisotropy affect the EoS-variation of the
universal relations for fixed anisotropy? The top pan-
els of Fig. 6 present the relations for a fixed λH = 2
and different EoSs, while the bottom panels show the
fractional difference of each relation relative to the APR
one. Interestingly, the EoS variation for fixed anisotropy
is comparable to the anisotropy variation for fixed EoS,
as shown in Figs. 1 and 5. Namely, anisotropy makes
the EoS variation slightly larger in some of the relations,
but the variation is kept to ∼ 10% at most for the most
anisotropic models. In order to see how the EoS variation
scales with λH, Fig. 7 presents the absolute maximum
fractional difference between the approximate universal
relations for each EoS relative to the APR case as a func-
tion of λH. Notice that the values at λH = 2 correspond
to those listed on the second row of Table I. Observe that
the difference scales almost linearly for positive λH and
that the fractional difference becomes largest at λH = 2.

Is the effect of anisotropy in the H model special in
some way, or it comparable to other models? To address
this question, Fig. 8 presents the S3-Q relation in the
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for an APR EoS. For reference, we also include the change
in stellar compactness, C, due to the effect of anisotropy in
the stellar radius for a fixed mass. Observe that the effect of
anisotropy is almost linear in λH.

BL model for an APR and SQM3 EoS with various λBL,
while the top right panel shows the relation for various
EoSs with fixed λBL = 2. Observe that the anisotropy
and EoS variations are ∼ 5% and ∼ 10% respectively.
Indeed, this is very similar to what we found in the H

model3.

IV. PHYSICAL INTERPRETATION OF
UNIVERSAL RELATIONS FOR ANISOTROPIC

STARS

In this section, we provide a physical and a math-
ematical interpretation of the approximate universality
when considering anisotropic stars. We first carry out
semi-analytic investigations on the BL model by extend-
ing the three-hair relations for isotropic Newtonian poly-
tropes [65] to anisotropic ones in terms of solutions to the
modified Lane-Emden (LE) function. We also follow [66]
and consider perturbations of the approximate universal
relation about an n = 0 polytropic EoS and obtain com-
pletely analytic three-hair relations for anisotropic New-
tonian polytropes. These calculations are done within
the elliptical isodensity approximation, which assumes
that the stellar eccentricity is constant throughout the
surface. Here, the stellar eccentricity is a measure of the
difference between the radii at the equator and at the
pole. We then confirm the accuracy of such an approxi-
mation numerically.

3 The effect of anisotropy and EoS variation on the I-Love, Q-Love
and I-Q relations of NSs is similar in the BL and H models, but
this is not the case for QSs. For the latter, such relations show
large deviations from the isotropic case, especially in the non-
relativistic limit, because of the pathologies of the BL model in
this limit.
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A. Three-hair Relations for Anisotropic,
Newtonian Polytopes

Let us start by deriving the three-hair relations for
anisotropic polytropes in the Newtonian limit. In such
a limit, we showed that for isotropic stars with poly-
tropic EoSs and within the elliptical isodensity approxi-
mation, the stellar multipole moments can be expressed
only in terms of the first three: the mass, the spin angu-
lar momentum and the quadrupole moment [65]. In the
isotropic case, such three-hair relations are given by

M̄2`+2 + iS̄2`+1 = B̄n,`M̄
`
2

(
M̄2 + iS̄1

)
, (52)

or equivalently,

M` + i
( q
a

)
S` = B̄n,b `−1

2 c
M0 (iq)

`
, (53)

where bxc stands for the largest integer not exceeding x,
a ≡ S1/M0 and q ≡ −i(M2/M0)1/2. The coefficient B̄n,`
is given by

B̄n,` =
3`+1

2`+ 3

|ϑ′LE(ξ̄1)|` ξ̄2`
1 Rn,2`+2

R`+1
n,2

, (54)

where ϑLE(ξ̄) is the LE solution in terms of the LE coor-
dinate ξ̄ and ξ̄1 corresponds to the position of the stellar
surface. The integral Rn,` is given by

Rn,` =

∫ ξ̄1

0

ϑLE(ξ̄)nξ̄`+2 dξ̄ . (55)

The S3–Q relation, in particular, is given by S̄3 =
B̄n,1M̄2 from Eq. (52). All of the EoS dependence is
encoded in B̄n,`, but we showed in [65] that such depen-
dence is very weak.

1. Modified Lane-Emden Equation and Solution

With that introduction at hand, let us now concentrate
on anisotropic stars with polytropic EoS. From Eqs. (18)
and (20) in the Newtonian limit with the BL model, one
finds

1

ξ̄2

d

dξ̄

[
ξ̄2

(
dϑLE

dξ̄
+
λBL

6π
ξ̄ϑnLE

)]
= −ϑnLE , (56)

where we used the transformation

ρ = ρcϑ
n
LE , r =

√
n+ 1

4π
Kρ
−1+1/n
c ξ̄ . (57)

Equation (56) can also be derived by using the LE equa-
tion for a generic anisotropic polytrope, as in [114].
(See also [115] for a recent related work on solving the
LE equation for Newtonian polytropes with different
anisotropy models.) Obviously, Eq. (56) reduces to the
standard LE equation when λBL = 0. As in the isotropic
case, Eq. (56) admits analytic solutions for the n = 0 and
n = 1 polytropes:

ϑ
(n=0)
LE (ξ̄) = 1− ξ̄2

6
− λBLξ̄

2

12π
, (58)

ϑ
(n=1)
LE (ξ̄) = 1F1

(
3

2
+

3π

λBL

;
3

2
;−λBLξ̄

2

12π

)
, (59)

where 1F1(a; b; z) is the Kummer confluent hypergeomet-
ric function.

Let us investigate the three-hair relations for
anisotropic, incompressible (n = 0) polytropes in more
detail. In this case, one finds

R0,` =
ξ̄`+3

`+ 3
, ξ̄

(n=0)
1 =

2
√

3π√
2π + λBL

, (60)
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and

ϑ
(n=0)
LE

′(ξ̄1) = −
√

2π + λBL√
3π

. (61)

Substituting Eqs. (60) and (61) into Eq. (54), one finds

B̄0,` =
3 5`+1

4`2 + 16`+ 15
. (62)

Observe that B̄0,` is independent of λBL, and hence, the
three-hair relations for incompressible anisotropic poly-
tropes are the same as those for isotropic ones.

The top panel of Fig. 9 presents B̄n,1 in the S3–Q re-
lation as a function of n for fixed λBL (left) and as a
function of λBL for fixed n (right). These figures are gen-
erated by solving the modified LE equation in Eq. (56)
numerically with the boundary conditions ϑLE(0) = 1
and ϑ′LE(0) = 0. Observe that B̄n,1 is almost indepen-
dent of λBL at n ∼ 0, consistent with our finding of B̄0,`

described above. Observe also that the EoS variation is
smaller (larger) as one decreases (increases) λBL. Such a
behavior is consistent with Fig. 7, where the latter also
includes relativistic effects.

The bottom panel of Fig. 9 shows the fraction differ-
ence from B̄〈n〉,1, where 〈n〉 is the averaged polytropic
index considered, which we take as 〈n〉 = 0.5. Observe
that the EoS dependence is ∼ 7% even when λBL = 2,
whereas the EoS variation is ∼ 6% for isotropic poly-
tropes. Therefore, this calculation explains why the EoS
variation in the S3-Q relation for anisotropic stars is com-
parable to that for isotropic ones. Such Newtonian S3–Q
relations for the n = 0 and n = 1 polytropes with λBL = 2
are shown in Fig. 8 as dashed and dotted-dashed lines re-
spectively. Observe how numerical results approach these
Newtonian lines as one decreases the stellar compactness.
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2. Perturbation about Incompressible Stars

Let us now try to construct analytically three-hair re-
lations for anisotropic stars for other polytropic EoSs. To
do so, we now follow [66] and solve Eq. (56) analytically
by considering a perturbation around a polytrope with a
fiducial polytropic index ñ. We start by decomposing n
and ϑLE as

n = ñ+ εn , ϑLE = ϑ̃LE + εnδϑLE +O
(
ε2n
)
, (63)

where εn is a perturbation to the background polytropic
index ñ, while δϑLE is a perturbation to the background
solution to the LE equation ϑ̃LE. We now set the back-
ground ñ = 0 and consider perturbations to the incom-
pressible, anisotropic Newtonian star. The linear order
perturbation to the LE equation with ñ = 0 is given by

1

ξ̄2

d

dξ̄

(
ξ̄2 dδϑLE

dξ̄

)
+ln ϑ̃LE +

λBL

6π

(
3 ln ϑ̃LE +

ξ̄ϑ̃′LE

ϑ̃LE

)
= 0 .

(64)
The solution to the perturbed LE equation above under
the boundary condition δϑLE(0) = 0 = δϑ′LE(0) is given
by

δϑLE(ξ̄) =
1

36π(2π + λBL)3/2ξ̄

{
576
√

3π5/2

tanh−1

(√
2π + λBL

2
√

3π
ξ̄

)
−
√

2π + λBLξ̄
[
288π2

−(2π + λBL)(10π + 3λBL)ξ̄2 − 3 [12π(6π + λBL)

−(2π + λBL)2ξ̄2
]

ln

(
1− 2π + λBL

12π
ξ̄2

)]}
,

(65)

while stellar surface is given by

ξ̄1 = ξ̄
(n=0)
1

(
1 +

2π(12 ln 2− 7) + 3λBL

6(2π + λBL)
εn

)
+O

(
ε2n
)
,

(66)

where ξ̄
(n=0)
1 is given by Eq. (60).

With these perturbed solutions at hand, one can now
calculate the perturbed B̄n,` as [116]

B̄n,` = B̄0,`

{
1 +

[
46

15
+

2`

5
− 2 ln 2−H

(
5

2
+ `

)]
εn

}
+O

(
ε2n
)
, (67)

where H(x) is the `th Harmonic number and B̄0,` is given
by Eq. (62). Notice that B̄n,` does not depend on λBL,
and hence, the relation is the same as that for isotropic
stars. This analytic result explains mathematically why
B̄n,` is insensitive to λBL close to n ∼ 0. In the top panel
of Fig. 9, we also show the Newtonian S3–Q relation with
B̄n,1 given in Eq. (67) as a black dashed line. Of course,
this perturbed B̄n,` cannot accurately describe the λBL =
0 line that is obtained numerically in the isotropic case,
because the former is only an analytic expansion of the
latter to linear order in the perturbation. Interestingly,
such a relation is most suited to describe the numerical
relation up to n = 1 with λBL = −1.

B. Eccentricity Profile of Anisotropic Stars

Let us now try to understand physically why
anisotropy increases the degree of variability of the ap-
proximate universal relations. Reference [63] proposed a
phenomenological explanation for the appearance of uni-
versality: the emergence of an approximate symmetry
in the form of self-similarity of isodensity contours. As
one considers stars with increasing compactness, the ec-
centricity of the stellar surface decreases inside the star
(within the region inside the star, r ∈ (0.5, 0.95)R∗, that
matters the most for the computation of the multipole
moments), leading to self-similar contours of constant
density, just like the layers of an onion. If this phe-
nomenological model is correct, one would then also ex-
pect that the introduction of pressure anisotropy forces
an increased variability in the eccentricity profile inside
the star.

In order to confirm the above expectation, let us study
the eccentricity profile of anisotropic stars constructed
numerically. Following [100], we calculate the stellar ec-
centricity e via

e =

√
(radius at equator)

2

(radius at pole)
2 − 1 =

√
−3

(
k2 +

ξ2
R

)
,

(68)

where recall that k2 is a metric function [see Eq. (3)],
while ξ2 is a function in the coordinate transformation
[see Eq. (10)]. Of course, the parenthesis inside the
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square root is always negative provided the star is oblate,
i.e. the radius at the equator is larger than the radius
at the pole, so the eccentricity is always a real number.
Thus, we expect e = 0 for a sphere, e > 0 and real for an
oblate spheroid. In particular, e > 1 for a particularly
oblate object.

The top panels of Fig. 10 shows the eccentricity profile
of compact stars with an APR (left) and SQM3 (right)
EoS for both the H and BL models with various λH,BL

at Q̄ = 5. Vertical lines show the region that matters
the most to the universality. Comparing the anisotropic
curves to the isotropic ones, one sees that the eccentric-
ity variation is much larger for anisotropic stars. Inter-
estingly, the eccentricity increases (decreases) as one in-
creases R/R∗ when λH,BL is positive (negative).

The bottom panels of Fig. 10 show the fractional dif-
ference of the stellar radius at each R/R∗ from the sur-
face value. Observe that the eccentricity variation of
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anisotropic stars can be as large as ∼ 35%, compared
to ∼ 10% variation for isotropic stars. Such an enhance-
ment in the variation is consistent with the EoS varia-
tion in the universal relations for anisotropic stars being
larger than those for isotropic ones. On the other hand, a
∼ 35% variation in the eccentricity profile means that the
EoS variation derived for the three-hair relations within
the elliptical isodensity approximation in the previous
subsection may have an error of the same order. There-
fore, the EoS variation in the S3-Q relation for the BL
model should be 7%×1.35 ∼ 9.45% in the non-relativistic
limit, which agrees quite accurately with the numerical
calculation shown in the bottom right panel of Fig. (8).
These findings give further evidence in favor of the claim
in [63] that the origin of the approximate universality is
the approximate symmetry of the eccentricity profile of
isodensity contours.

V. APPLICATIONS OF UNIVERSAL
RELATIONS

In this section, we address the second question posed
in Sec. I, namely, how the effect of anisotropy on the
universal relations affects their application to future ob-
servations. We look at applications to GW astrophysics,
X-ray nuclear astrophysics and experimental relativity in
turn.

1. Gravitational Wave Astrophysics

In [49, 50], we showed that the Q-Love relation can be
useful for measuring the NS spins in GW observations.
The reason for that is the following. The gravitational
waves emitted by a NS/NS binary in its inspiral phase
of evolution can be well modeled in the post-Newtonian
(PN) framework, where one expands in the ratio of the
velocity of the binary constituents to the speed of light.
The spin angular momenta of the NSs enter the gravita-
tional wave phase first at 1.5PN order through particu-
lar projections to the orbital angular momentum vector4.
Given a binary with spins perpendicular to the orbital
plane, the spins enter the phase at 1.5PN through their
symmetric combination, and at 2PN order through their
antisymmetric combination. One may thus expect to be
able to measure the individual spins of such a system
given a gravitational wave detection if one can extract
the 1.5PN and 2PN terms in the phase.

The quadrupole moment of each NS, however, is
strongly degenerate with the spin angular momenta. In-
deed, the quadrupole moment enters the gravitational
wave phase first at 2PN order [117, 118]. This strong de-
generacy makes it impossible to measure the individual
spins independently from just the 1.5 and 2PN terms in
the phase. One could try to use the 2.5PN term in the
phase, but the higher the PN order of a given term, the
smaller its effect in the inspiral phase, and thus, terms of
such high PN order are difficult to extract.

4 Given a PN expansion of a given quantity, a term in the PN
series is said to be of NPN.
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Enter the Q-Love relation. Through this relation one
can rewrite the quadrupole moment in terms of the tidal
deformability parameter. The latter first enters the grav-
itational wave phase at 5PN order, which at first sight
seems too small an effect to be measurable. However,
the tidal deformability enters the phase multiplied by a
large coefficient, due to the large compactness of NSs,
which may render it measurable [119–131]. Thus, if one
can extract the tidal deformability from the 5PN term
in the phase, and then use this to infer the value of the
quadrupole moment in the 2PN term, one can then use
the 1.5 and 2PN terms in the phase to extract the in-
dividual spins. More precisely, the re-expression of the
quadrupole moment in terms of the tidal deformability
eliminates one degenerate direction from the template or
model submanifold, thus allowing us to identify and ex-
plore directions that were previously inaccessible.

Let us now discuss the applicability of the Q-Love re-
lation to GW observations when anisotropy is present.
Figures 5 and 6 show that the anisotropy and EoS vari-
ations in the Q-Love relation for anisotropic stars are
∼ 10%. Therefore, we conclude that even if anisotropy
were present, one could still apply the relation to GW
observations as long as the measurement accuracy of the
spins is no better than∼ 10%. Such a measurement accu-
racy is what one expects from GW observations [49, 50].

2. X-ray Nuclear Astrophysics

Let us now study the effect of anisotropy on the ap-
plication of the I-Q relation to X-ray observations. The
goal of NICER [12] and LOFT [132–134] is to measure
the NS mass and radius within 5% accuracy through the
observations of X-ray pulse profiles from hot spots on the
surface of millisecond pulsars. Since a millisecond pulsar
is rotating moderately fast, the profile depends not only
on the NS mass and radius, but also on other quantities
such as the NS moment of inertia and quadrupole mo-
ment [10]. Reference [68] showed that one can use the
I-Q relation and other universal relations found in [135]
to break the degeneracy among some of the parameters
on the X-ray pulse profile observations so that one can
measure the NS mass and radius to a high accuracy.

We now estimate the amount of anisotropy required
such that the I-Q relation can be still used in future X-ray
observations even for anisotropic compact stars. Since
the measurement accuracy goal of the mass and radius
with NICER and LOFT is 5%, one needs the anisotropy
and EoS variation in the I-Q relation to be smaller than
5% so that the systematic errors do not dominate the
statistical errors. From Fig. 7, one sees that for fixed λH,
the EoS-variation on the I-Q relation is ≤ 5%. Therefore,
one might think that one can create a fit for each λH and
apply that to future observations. However, in practice,
this cannot be done because we do not know what λH is
for each star.
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FIG. 11. (Color online) Fractional difference of the I-Q rela-
tion for anisotropic stars (λH = 2 in the top and λH = 1 in the
bottom) with various EoSs relative to the fitting function con-
structed in [49, 50] for isotropic stars. A fractional difference
below the horizontal dashed line at 5% is required for NICER
and LOFT to achieve the goal of measuring the NS mass and
radius to 5% accuracy. The vertical dotted-dashed line shows
the value of Q̄ that corresponds to a M∗ = 1.4M� NS using
an APR EoS with each λH. Observe that the fractional error
is smaller than 5% if |λH| . 1.

Let us now study the EoS variation of the I-Q relation
for anisotropic stars relative to the fit of the I-Q relation
for isotropic stars. The top panel of Fig. 11 presents the
fractional difference of the I-Q relation for anisotropic
compact stars (λH = 2) with various EoSs relative to
the fitting formula constructed for the I-Q relation of
isotropic stars in [49, 50]. For reference, we show the
5% error line and the M∗ = 1.4M� line as a horizontal
dashed and a vertical dotted-dashed curve respectively.
Observe that the fractional error exceeds 5%, and hence,
one is dominated by systematic error if one were to use
the fitted relation in [49, 50] for anisotropic stars with
λH = 2. The bottom panel of Fig. 11 shows the same in-
formation as the top panel, but for anisotropic stars with
λH = 1. Observe that in this case, the fractional error
is below 5% for all EoS. Therefore, we conclude that one
can use the relation for isotropic stars in future X-ray ob-
servations if |λH| . 1. Such a value of λH corresponds to
an anisotropic effect that modifies the moment of inertia
and the quadrupole moment by ≤ 10% relative to their
values for isotropic stars (see Fig. 4).

3. Experimental Relativity

Let us conclude with a short discussion of the effect
of anisotropy on the application of the I-Love relations
when performing strong-field tests of gravity. Although
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FIG. 12. (Color online) (Top left) DCS corrections to Ī as a function of λ̄2 for various anisotropy parameters with an APR and
SQM3 EoS. We also show the analytic relation for an isotropic, n = 0 polytrope in the Newtonian limit [22]. (Top right) Same
as the top left panel but with λH = 2 and for various EoSs. (Bottom left) Fractional difference of each relation for anisotropic
stars from that of isotropic ones. (Bottom right) Fractional difference of each relation from that with an APR EoS. Observe
that the dCS correction to the I-Love relation is both anisotropy and EoS insensitive to ∼ 20% accuracy.

compact stars offer an excellent testbed to probe strong-
field gravity, such tests are limited by the degeneracies
between uncertainties in nuclear physics and the effect of
modified gravity theories. One can break such degenera-
cies by independently measuring two observables whose
interrelation is approximately universal. Such a relation,
in principle, will depend only on the underlying gravita-
tional theory, while remaining approximately insensitive
to the EoS.

Among various universal relations, the I-Love relation
might be the best for experimental relativity. This is be-
cause, in the future, one may be able to measure the mo-
ment of inertia from double binary pulsars and the tidal
deformability from GW observations. The NSs observed
may be different, and in particular, may have different
masses, but even so, one can still do such tests, as dis-
cussed in [50]. Figures 1 and 6 show that the anisotropy
and EoS variations on the I-Love relation for anisotropic
stars are ∼ 3%. Since this variation is much smaller than
the expected measurement accuracy of the moment of in-
ertia and tidal deformability, one concludes that one can
safely perform a consistency test of GR even if the star
were anisotropic.

Just because one can perform a consistency test does
not necessarily mean that the constraint one would derive
remains unaffected by pressure anisotropy. Indeed, pres-
sure anisotropy may have a strong effect on the approxi-
mately universal relations in modified gravity. In order to
study this in more detail, let us consider the I-Love rela-
tion in dCS gravity [70, 71] as an example. Such a theory,
motivated by string theory and loop quantum gravity, is
a modification to GR that introduces a parity-violating
scalar field that couples non-minimally to a quadratic

curvature scalar (see App. A 1 for a more detailed de-
scription of the theory.) DCS gravity has a characteristic

length scale ξ
1/4
CS that controls the magnitude of any devi-

ation from a GR prediction. The current most stringent

bound on this quantity is ξ
1/4
CS < O(108)km, which comes

from Solar System and table-top experiments [22, 136].
In order to investigate the effect of anisotropy on

the I-Love relation in dCS gravity, we first construct
slowly-rotating anisotropic stars in this theory, following
Sec. A 2. The tidal deformability is the same as that in
GR due to parity considerations [137], but the moment
of inertia is dCS modified. We define the fractional dCS
correction to the moment of inertia by

δĪ =
M4
∗

ξCS

ĪCS

ĪGR
, (69)

where ĪGR and ĪCS correspond to the GR and dCS con-
tributions to Ī respectively. Since ĪCS is linearly propor-
tional to ξCS, δĪ is independent of ξCS.

The top left panel of Fig. 12 shows the dCS correction
to the I-Love relation for compact stars with an APR
and SQM3 EoS and various fixed values of λH. The bot-
tom left panel of Fig. 12 shows the fractional difference
of each I-Love relation relative to the isotropic result.
The right panel shows the I-Love relation for various
EoSs (top) and its fractional difference with respect to
the APR EoS (bottom), all for anisotropic stars with a
fixed λH = 2. Observe that the anisotropy and EoS vari-
ations in the dCS I-Love relation is ∼ 20%, which is an
order of magnitude larger than that in GR. In the top left
panel, we also show the dCS correction to the I-Love rela-
tion in the Newtonian limit for incompressible, isotropic
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star, which we derive from the solution obtained in [22]:
δĪ = 32/75λ̄−1

2 . Observe that numerical calculations for
anisotropic stars approach this isotropic Newtonian re-
lation as one increases λ̄2. We expect this is because
anisotropy vanishes in the H model in the Newtonian
limit.

Clearly, anisotropy affects the I-Love relation a lot
in dCS gravity; in fact, it does so much more than in
GR. But how does such an increased variation due to
anisotropy in dCS affect the use of the I-Love relation
in strong-field tests of GR. Following [49, 50], we assume
that one can measure the moment of inertia to 10% ac-
curacy from a future double binary pulsar observations
and the tidal deformability to 60% accuracy with future
GW observations. Assuming GR is the correct theory,
one can draw a fiducial point on the GR I-Love rela-
tion with an error box around it in the I-Love plane, as
shown in Fig. 2. We also show here the dCS I-Love re-
lation with ξCS/M

4
∗ = 1.85 × 104, which is the value we

chose in [49, 50] so that the relation is marginally con-
sistent with this hypothetical measurement for isotropic
NSs, i.e. this is the largest value of ξCS for which the
I-Love dCS curve still crosses the error box.

Several points need to be made about the results shown
in Fig. 2. First, observe that the constraint on ξCS when
assuming isotropic stars is the same as that obtained
when assuming anisotropic stars with λH = −2. However,
when λH = 2 this is not the case anymore. This is be-
cause the dCS I-Love curve when λH = 2 shifts upwards,
which then allows for the more stringent constraint of
ξCS/M

4
∗ ≤ 1.80 × 104. Notice that such a bound differs

from the isotropic one by only ∼ 3%, which does not af-
fect at all the fact that such a bound is still six orders of
magnitude stronger than the current bound. Moreover,
since we do not know whether NSs are anisotropic, and
if they are, whether anisotropy plays such a strong role
as in the case when λH = 2, the conservative choice is to
assume the weaker bound ξCS/M

4
∗ ≤ 1.85× 104, derived

from the isotropic analysis.

VI. CONCLUSIONS AND DISCUSSIONS

We have investigated the effect of pressure anisotropy
on certain EoS-insensitive, approximately universal rela-
tions among observables associated with NSs and QSs.
We extended the Hartle-Thorne approach [99, 100] for
isotropic stars to anisotropic stars valid to third order in
a small spin period expansion. We found that anisotropy
increases the variability of the approximately universal
relations, for example by a factor of 2–4 relative to the
isotropic case when considering the maximum amount of
anisotropy allowed by our model. Astrophysically realis-
tic amounts of anisotropy would lead to an insignificant
effect on the universal relations.

Next, we extended the analysis of [65] and de-
rived three-hair relations among multipole moments for
anisotropic stars in the non-relativistic limit using poly-

tropic EoS and the elliptical isodensity approximation.
We found that the relations are insensitive to anisotropy
for polytropes with an index close to n = 0. This finding
confirms analytically the small dependence on anisotropy
in the S3-Q relation. We also looked at the stellar ec-
centricity profile of anisotropic stars and found that the
eccentricity variation reaches close to 40%. Such a varia-
tion can explain the ∼ 10% variation in the S3-Q relation,
giving further support to the model of [63] that suggests
the origin of the universality as an emergent approximate
symmetry related to self-similarity in isodensity contours.

We then studied how the anisotropy effect affects the
applications of universal relations to future observations.
This, of course, ultimately depends on the amount of
anisotropy inside NSs, a quantity that is currently un-
known. Our conclusions apply for the choice of the
anisotropy range we considered, which is the same as
that chosen in previous work [93, 96], and it is based on
anisotropy due to crystallization of the stellar core [90]
and pion condensation [88]. Regarding GW astrophysics,
we concluded that one does not need to worry about
anisotropy if one measures the NS spins to ∼ 10% ac-
curacy. Regarding X-ray nuclear astrophysics, we found
that one can use the I-Q relations for isotropic stars if
|λH| < 1. Regarding experimental relativity, we found
that the consistency tests of GR with the I-Love relation
are essentially unaffected by anisotropy. As an exam-
ple, we constructed slowly-rotating anisotropic compact
star solutions to linear order in spin in dCS gravity and
derived the dCS correction to the I-Love relation. We
found that future observations could still place a con-
straint that is roughly six orders of magnitude stronger
than the current bound even if pressure anisotropy were
present in NSs.

Possible avenues for future research include extending
the analysis presented here to higher order in spin [56]
or even to a rapid rotation, using e.g. the RNS [138] or
LORENE [139, 140] open source numerical codes. One
could then study how anisotropy affects the relations be-
tween higher multipole moments. Another avenue for fu-
ture research is to consider anisotropy models other than
the H and BL models, and see if the effect of anisotropy
is still small. One can also look at the effect of pressure
anisotropy on other universal relation, such as the multi-
pole Love relations [39], and see how it affects the appli-
cations of such relations to future observations. Finally,
we here considered dCS gravity as an example of a modi-
fied gravity theory when considering tests of GR, but one
could also study the universal relations for anisotropic
stars in other modified theories of gravity.
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Appendix A: Slowly-rotating Anisotropic Stars in
dCS Gravity

In this appendix, we present the basics of dCS gravity
and how to construct slowly-rotating, anisotropic com-
pact stars in this theory. Since the focus of this paper,
when referring to dCS gravity, is on the I-Love relation,
and since the tidal deformability in dCS is the same as
that in GR [50, 137], we only consider slowly-rotating NS
solutions valid to linear order in spin.

1. ABC of dCS Gravity

The action for dCS gravity is given by [71]

S ≡
∫
d4x
√
−g
[
κgR+

α

4
ϑRνµρσ

∗Rµνρσ

− β

2
∇µϑ∇µϑ+ Lmat

]
. (A1)

Here, κg ≡ (16π)−1, g represents the determinant of the
metric gµν and Rµνρσ represents the Riemann tensor.
∗Rµνρσ is its dual [71], ϑ is a scalar field (not to be
confused with the LE function ϑLE) while α and β are
coupling constants and Lmat is the matter Lagrangian
density. We neglect the potential of the scalar field for
simplicity [136, 137, 142]. We take ϑ and β to be di-
mensionless, which means α must have dimensions of
(length)2 [142]. We define the dimensionless coupling
parameter ζCS as

ζCS ≡
ξCSM

2
∗

R6
∗

, ξCS ≡
α2

κgβ
. (A2)

We treat dCS gravity as an effective theory and keep
terms up to linear order in ζCS in all equations. Other-
wise, the theory is ill-posed [143] without the inclusion
of higher-order curvature terms.

The field equations in dynamical CS gravity are given
by [71]

Gµν +
α

κg
Cµν =

1

2κg
(Tµν + Tϑµν) , (A3)

where Gµν is the Einstein tensor. The C-tensor and the
stress-energy tensor for the scalar field are defined by

Cµν ≡ (∇σϑ)εσδα(µ∇αRν)
δ + (∇σ∇δϑ)∗Rδ(µν)σ , (A4)

Tϑµν ≡ β(∇µϑ)(∇νϑ)− β

2
gµν∇δϑ∇δϑ . (A5)

On the other hand, the evolution equation for the scalar
field is given by

�ϑ = − α

4β
Rνµρσ

∗Rµνρσ . (A6)

2. Field Equations for Slowly-Rotating
Anisotropic Stars

We now explain how one can extend the GR analysis
explained in the main text to dCS gravity and construct
slowly-rotating, anisotropic relativistic stars to linear or-
der in a small spin period expansion. Let us first look at
the scalar field equation. To do so, we first introduce a

book keeping parameter α′ to count factors of ζ
1/2
CS . We

are only interested in studying the scalar field to O(α′),
since higher-order corrections in α′ only enter at O(α′3)
in the metric, which is higher than O(ζCS) = O(α′2).
Since the leading-order contribution to ϑ is O(α′) and
the right-hand-side of Eq. (A6) has a factor of α, one
only needs to consider the GR contribution to the met-
ric. We decompose the scalar field ϑ as [21, 22, 144]

ϑ =
∑
`=0

ϑ`(R)P`(cos θ) , (A7)

and substitute this, together with the metric ansatz in
GR in Hartle-Thorne coordinates, into Eq. (A6). Then,
one finds that the only equation with a non-vanishing
source term is the ` = 1 mode, given by

d2ϑ1

dR2
+

1 + eλ
[
1− 4πR2(ρ− p)

]
R

dϑ1

dR
− 2

eλ

R2
ϑ1

= 16π
α

β
(δ − σ0)e(λ−ν)/2 dω1

dR
, (A8)

with

δ ≡ ρ− 3M

4πR3
. (A9)

Let us now look at the evolution equation for the met-
ric perturbation to linear order in spin. We note that
spherically symmetric spacetimes (non-rotating stars)
are unaffected in dCS due to parity considerations. We
thus start by decomposing ω1(R) as

ω1(R) = ωGR

1 (R)− α′ωCS

1 (R) , (A10)

where ωGR
1 and ωCS

1 represent the GR and dCS contribu-
tions to ω1 respectively. We introduced a minus sign in
front of α′ωCS

1 so that the CS correction to ω1 matches
the conventions in [144]. Next, we substitute the metric
ansatz and Eqs. (A7) and (A10) into the field equations
in Eq. (A3). At O(ε α′), one finds

d2ωCS
1

dR2
+ 4

1− πR2(ρ+ p)eλ

R

dωCS
1

dR
− 16π(ρ+ p− σ0)eλωCS

1

= −128π2αe(ν+λ)/2

R3

[
δ (R− σ0)

dϑ1

dR

+

(
R
dρ

dR
− δ − 2σ0 − σ′0R

)
ϑ1

]
. (A11)

In order to obtain the interior solution for ϑ1 and ωCS
1 ,

one needs a boundary condition at the stellar center and
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at the surface. The asymptotic behavior of the scalar
field at the former is given by

ϑ1(R) = ϑ′crε +
2π

15
(5ρc − 3pc)ϑ

′
cr

3
ε +O(x4) , (A12)

in both the H and BL models, with ϑ′c representing a
constant that corresponds to dϑ/dR at the center and
we recall that x = rε/R∗ � 1. On the other hand, the
asymptotic behavior of ωCS

1 at the stellar center for the
H and BL models is different and given by

ωCS,H
1 (rε) = ωCS

1c +
8π

15

[
3(ρc + pc)ω

CS

1c − 16παeνc/2(3ρ2

− 20πλHpcρc)ϑ
′
c] r

2
ε +O(x3) , (A13)

ωCS,BL

1 (rε) = ωCS

1c +
8π

15

{
3ωCS

1c (ρc + pc)− 8παeνc/2[6ρ2

− 5λBL(pc + ρc)(3pc + ρc)]ϑ
′
c} r2

ε +O(x3) ,

(A14)

respectively, where ωCS
1c = ωCS

1 (0) is a constant that needs
to be determined through matching.

The boundary condition at the surface is obtained as
follows. The exterior solution for ϑ1 and ωCS

1 are given
in [22, 144]. In particular, the asymptotic behavior of
ωCS

1 at spatial infinity is given by

ωCS

1 (R) = 2ĪCSΩ
M3
∗

R3
+O

(
M4
∗

R4

)
. (A15)

Here, ĪCS corresponds to the dCS correction to Ī. Again,
ĪCS is determined through the matching at the surface.
Such a boundary condition is given by Eq. (45) with A =
ϑ1 and ωCS

1 . For a star with a discontinuous density at
the surface, the matching condition for ωCS

1
′ is given by

Eq. (46) with

jωCS
1

=
128π2αe(ν∗+λ∗)/2ϑ1,∗

R2
∗

. (A16)
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