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Abstract

In this paper we investigate the role of inelastic collisions in the kinetic evolution
of a highly overpopulated gluon system starting from Glasma-type initial condition.
Using the Gunion-Bertsch formula we derive the inelastic collision kernel under the
collinear and small angle approximations. With both numerics and analytic analysis,
we show that the inelastic process has two effects: globally changing (mostly reduc-
ing) the total particle number, while locally at small momentum regime always filling
up the infrared modes extremely quickly. This latter effect is found to significantly
speed up the emergence of a local thermal distribution in the infrared regime with
vanishing local “chemical potential” and thus catalyze the onset of dynamical Bose-
Einstein Condensation to occur faster (as compared with the purely elastic case) in the
overpopulated Glasma.
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1 Introduction

Thermalization of the quark-gluon plasma is one of the most challenging problems in cur-
rent heavy ion physics. See e.g. Ref. [1, 2, 3] for recent reviews. Starting with two colliding
nuclei in a form of color glass condensate with high gluon occupation f ∼ 1/αs below
saturation scale Qs [4, 5, 6] and following the initial impact, a subsequent strong field evo-
lution stage (likely with instabilities [7]) till about the time 1/Qs is then succeeded by a
far-from-equilibrium gluon-dominant matter, the Glasma [8]. The evolution of this Glasma
stage toward a quark-gluon plasma (QGP) that is close to local equilibratium and exhibits
viscous-hydrodynamic behavior, is indicated by phenomenology to be reached on the order
of a fermi over c time (see e.g. [9]). Precisely how this occurs remains to be fully understood.
Describing the pre-equilibrium evolution with kinetic equations is a very useful approach,
based on which the so-called “bottom-up” thermalization scenario was developed [10, 11, 12].
There is however the complication of instability driven by anisotropy that may change this
picture (see e.g. [13, 14, 15, 16]). There are also other kinetic-based approaches, see e.g.
[17].

More recently an alternative thermalization scenario, based on crucial role of high initial
overpopulation in the Glasma and kinetic evolution dominated by elastic collisions, has
been proposed in [18, 19]. In this scenario, while the initial scale Qs is large compared
with ΛQCD and thus the coupling αs is small, the high occupation f ∼ 1/αs elevates the

elastic scattering rate to be of the order Ô(1) rather than the usual Ô(α2
s), and the Glasma is

essentially an emergent strongly interacting matter with weak coupling albeit large aggregate
of constituents. Two important scales are introduced to characterize the distribution, the
hard cut-off scale Λ beyond which f ≪ 1 and the soft high-occupation scale Λs below
which f ∼ 1/αs. While the initial Glasma has the two scales overlapping Λ ∼ Λs ∼ Qs,
during the course of thermalization the two scales are separated eventually toward Λs ∼
αsΛ upon thermalization. One particularly nontrivial observation in the elastic-dominant
picture is that the high initial overpopulation n/ǫ3/4 ∼ 1/a

1/4
s ≫ 1 and the conservation of

both energy and particle number will necessarily require the formation of a Bose-Einstein
condensate that absorbs the excess gluons. This has been explicitly shown to occur by
numerically solving the elastic kinetic equation derived under small angle approximation [19].
There have been intensive discussions related to this picture from a variety of approaches,
see e.g. [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38]. Strong
evidences for the formation of such a Bose-Einstein condensate have been reported for similar
thermalization problem in the classical-statistical lattice simulation of scalar field theory
[22, 23, 24]. The case for non-Abelian gauge theory is more complicated and still under
investigation [25, 26, 27, 28, 29, 30].

One important question that has not been addressed in the above scenario is the role of
inelastic processes. This issue could indeed be critical for at least two reasons (see discussions
in e.g. [18, 19, 20, 21, 36, 37]). First of all the inelastic processes will spoil the particle number
conservation, and one might naively argue that the excessive gluons in the overpopulated
Glasma could simply be eliminated by very fast inelastic collisions. Secondly, to make

2



it even worse, the inelastic processes are parametrically at the same order as the elastic
processes (as opposed to naive power counting), so there appears no apparent dominance of
the elastic over the inelastic and one may indeed worry that the inelastic could efficiently
reduce total particle number. In such a situation, an explicit evaluation including both elastic
and inelastic collisions becomes mandatory to clarify what will happen after including both
types of collisions. To be precise, once the inelastic processes are included, one does not
expect any condensation in the ultimate thermal equilibrium because with long enough time
the inelastic processes will always remove any excessive particles. The interesting question,
instead, is what changes the inelastic collisions bring to the dynamical evolution of the
system. In particular, it is found [19] that with purely elastic scatterings the overpopulated
system is driven toward a dynamical onset of condensation in a finite time via critical scaling
behavior in the infrared regime. It is extremely interesting to know, upon including the
inelastic processes, how such dynamical evolution may be modified and whether the transient
off-equilibrium condensation would still occur or not.

In this paper, we aim to address this important question by studying the kinetic evolution
of a highly overpopulated system starting from Glasma-type initial condition with both 2 ↔ 2
and 2 ↔ 3 scatterings. In Section 2 we will derive the inelastic collision kernel under the
collinear and small angle approximations using the Gunion-Bertsch formula for the 2 ↔ 3
matrix element. In Section 3 we will use numerical solutions as well as analytic analysis
to understand the role of the inelastic process for both the global particle number change
and the local behavior at small momentum region. Finally we will conclude in Section
4. As a first step toward understanding the inelastic contributions and for simplicity and
unambiguity, we will focus on the static box case with isotropic distribution in this work and
leave the study of expanding case for future work.

It may be noted that the kinetic theory framework is best suited for studying well-
defined quasi-particle excitations at typical scales in a physical system. Pushing the use of
this approach into the deep infrared regime may bear theoretical issues that are not easily
clarified. One however may notice that the kinetic description has been widely adopted for
studying the Bose-Einstein Condensation phenomena across a wide range of physical systems,
e.g. for cosmological scalars [39, 40], for general Bose gases with varied interactions [41,
42, 43, 44], for trapped atomic gases [45], as well as for polaritons in condensed matter
systems [46, 47]. In particular the kinetic equations are shown in the above literature to
be a very useful tool in understanding the BEC onset which is a non-equilibrium process.
Additionally, it shall be emphasized that the mathematical properties of kinetic equations
are of their own interests. The kinetic equations have well defined fixed point solutions
(which may contain a condensate in the overpopulated case), and the detailed evolution of
the distribution function toward such solutions is highly nontrivial and interesting to know.
We therefore believe the present kinetic theory study is a plausible approach for gaining
useful insights about the evolution and possible onset of Bose-Einstein Condensation in the
overpopulated glasma.

3



2 Kinetic Evolution with Elastic and Inelastic Colli-

sions

In this section we will derive the kinetic evolution equation with both elastic and inelastic
collisions. The kinetic equation deals with the gluon distribution function defined as

f(t,x,p) ≡ (2π)3

Ng

dN

d3xd3p
, (1)

where Ng = 2(N2
c −1) denotes the spin and color degeneracy factor. The Boltzmann equation

for f(t,x,p) reads

Dtfp = C2↔2[fp] + C2↔3[fp], (2)

where we denote f(t,x,p) by fp and

Dt ≡
pµ

Ep
∂µ = ∂t + vp · ∇x (3)

with vp ≡ p/Ep and Ep = |p|. For later convenience, we also introduce the following
notations:

gp ≡ 1 + fp , hp ≡ fp gp = fp(1 + fp) . (4)

In what follows we will separately discuss the elastic term C2↔2 and the inelastic term C2↔3.

2.1 The 2 ↔ 2 process

The collision kernel from the 2 ↔ 2 process with full nonlinearity has been studied in [18, 19].
Here we only briefly summarize the main results. We have the 2 ↔ 2 collision kernel given
by

C2↔2[fp] =
1

Ng

1

2

∫

123

1

2Ep
|M12↔3p|2(2π)4δ4(p1 + p2 − p3 − p)

×[(1 + fp)(1 + f3)f1f2 − fpf3(1 + f1)(1 + f2)], (5)

where
∫

i

≡
∫

d3pi

(2π)32Ei
, (6)

and

|M12↔3p|2 = 8g4N2
cNg

(

3− tu

s2
− su

t2
− ts

u2

)

(7)
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is the (squared) 2 ↔ 2 collision matrix element with s = (p+p3)
2, t = (p−p1)

2, u = (p−p2)
2

being the usual Mandelstam variables. The pre-factor 1/2 in Eq. (5) is a symmetry factor
counterweighing the permutation of 1 and 2 while the pre-factor 1/Ng cancels the summation
over the spin and color of gluon “p” in the matrix element (7).

The dominant contribution of 2 ↔ 2 scattering in (7) comes from very small exchange
momentum in t → 0 or u → 0 kinematic regimes, for which the incoming momenta only gets
“deflected” by very small angle. If one uses this small angle approximation, then a rather
neat kernel can be derived [19] :

C2↔2 = ξΛ2
sΛ

1

p2
∂p

{

p2
[

∂fp
∂p

+
αs

Λs

fp(1 + fp)

]}

, (8)

with ξ = (2N2
c /π)

∫

dq/q coming from the leading-log contribution. The hard scale Λ and
soft scale Λs in the above are defined via global integrals:

ΛΛ2
s/α

2
s =

∫ ∞

0

dpp2fp(1 + fp) ≡ Ia , (9)

ΛΛs/αs =

∫ ∞

0

dpp2(2fp/p) ≡ Ib . (10)

For later convenience we also introduce the Debye scale defined as [48, 49]

m2
D = −αs

∫ ∞

0

dpp2∂fp/∂p = ΛΛs. (11)

It is interesting to notice that in a weakly coupled thermal QGP one has the well-defined
separation of scales, Λ ∼ T , mD ∼ gT , Λs ∼ g2T . The matter becomes strongly interacting
when the scales “collapse” together. One way for that to happen is to have the system become
really strongly coupled g → 1 which likely will be accompanied by change of underlying
degrees of freedom [50]. The other possibility, as in the case of Glasma, is when the system
is highly off-equilibrium and overpopulated f ∼ 1/g2 — in this case all the scales also become
of the same order Λ ∼ mD ∼ Λs ∼ Qs and make the system emerge as a strongly interacting
matter.

Clearly, both the full form C2↔2 in (5) and the small angle approximation form in (8)
conserve the energy as well as particle number, as they should. In addition the Bose-Einstein
distribution fBE = 1/[e(p−µ)/T −1] with any T and µ (in correspondence to the two conserved
quantities) is the fixed point solution that makes both (5) and (8) vanish. As a cautionary
remark, one may notice that the small angle approximation may become questionable in
low momentum regime and medium screening effects may also require improvements of the
treatment here. Our main purpose though, is to understand the robust features of the dy-
namical onset process which may be not that sensitive to the details of such approximations.
In the elastic scattering case, two very recent studies [51, 52] have both studied the kinetic
evolutions without the small angle approximations and have both confirmed the findings
made in [19] with small angle approximations. It is therefore conceivable that, keeping such
caveats in mind, one can still learn useful lessons about the onset dynamics in the small
angle approximations.
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2.2 The 2 ↔ 3 process

We now turn to the collision kernel from the 2 ↔ 3 process as depicted in Fig.1. We denote
the particle we are watching with momentum p, the softest external momentum with k, the
exchange internal four-momentum with qµ, and then the rest external momenta with p1,2,3.
The 2 ↔ 3 collision kernel can then be split into two pieces in which the particle p is on the
two-particle side or three-particle side respectively (see Fig.1):

C2↔3[fp] = Ca
2↔3 + Cb

2↔3, (12)

Ca
2↔3 =

1

Ng

1

6

∫

123k

1

2Ep
|M1p↔23k|2(2π)4δ4(p+ p1 − p2 − p3 − k)

×[(1 + fp)(1 + f1)f2f3fk − fpf1(1 + f2)(1 + f3)(1 + fk)],

Cb
2↔3 =

1

Ng

1

4

∫

123k

1

2Ep
|M23↔1kp|2(2π)4δ4(p+ p1 + k − p2 − p3)

×[(1 + fp)(1 + f1)(1 + fk)f3f2 − fpf1fk(1 + f3)(1 + f2)], (13)

where the gluon labeled by k will be treated as the soft emitted or absorbed gluon. The
factor 1/6 counteracts the 6 equivalent permutations in 23k in process 1 + p ↔ 2 + 3 + k
(see Fig. 1 left panel) and the factor 1/4 counteracts the 4 equivalent permutations in 1k
and 23 in process 2 + 3 ↔ 1 + k + p (see Fig. 1 right panel). We note that the graphs
in Fig. 1 are used to make the kinematics clear and it does not mean that only these two
diagrams contribute: there are actually 25 different diagrams for Ca

2↔3 and 25 diagrams for
Cb
2↔3. So the full matrix element |M1p↔23k|2 is obtained by calculating 25 Feynman diagrams

and it contains 6 equivalent kinematic setups in accordance with 6 permutations in 23k (see
Appendix A). We can then choose the kinematic setup corresponding to the Fig. 1 left panel,
and multiply 6 to account other 5 kinematic setups. Similarly, we can fix the kinematics for
|M23↔1kp|2 as in the Fig. 1 right panel, and multiply 4 to get Cb

2↔3. Thus we obtain

Ca
2↔3 =

1

Ng

∫

123k

1

2Ep
|Ma

1p↔23k|2(2π)4δ4(p+ p1 − p2 − p3 − k)

×[(1 + fp)(1 + f1)f2f3fk − fpf1(1 + f2)(1 + f3)(1 + fk)],

Cb
2↔3 =

1

Ng

∫

123k

1

2Ep
|M b

23↔1kp|2(2π)4δ4(p+ p1 + k − p2 − p3)

×[(1 + fp)(1 + f1)(1 + fk)f2f3 − fpf1fk(1 + f2)(1 + f3)], (14)

where |Ma,b|2 are the matrix element with the kinematics fixed according to Fig. 1. While
the exact 2 ↔ 3 matrix element is known [57], it is hard to be directly used in a kinetic
approach. Following many previous studies involving this process [53, 54, 55, 56], we will use
the so-called Gunion-Bertsch formula which is the collinear approximation and small angle
approximation form of the exact matrix element and has been shown to give the dominant
contribution in many cases. Leaving the technical details to the Appendix A, we here quote
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Figure 1: (Left) A typical Feynman diagram contributing to Ca
2↔3: p+1 ↔ 2+3+k. (Right)

A typical Feynman diagram contributing to Cb
2↔3: 1 + k + p ↔ 2 + 3.

the Gunion-Bertsch matrix element which is at the leading order in soft q and k expansion:

|Ma
1p↔23k|2 = 64g6N3

cNg
(p · p1)3

q2(q − k)2(p · k)(p1 · k)
,

|M b
23↔1kp|2 = 64g6N3

cNg
(p2 · p3)3

q2(q + k)2(p2 · k)(p3 · k)
. (15)

Like in the 2 ↔ 2 case, the matrix elements are dominated by the regime of very soft q and
k. We can thus further simplify the collision kernel using similar small angle approximation
as in the elastic case. There is though additional subtlety as now there are two soft scales.
In fact, as shown by the detailed analysis in Appendix B, the whole collision kernel can
be separated into two pieces corresponding to contributions from different kinetic domains.
(Note that both graphs in Fig. 1 contribute to each of these domains.) In the domain with
k being the softest scale, i.e. the ultra-soft emission and absorption, the 2 ↔ 3 essentially
reduces to an effective 2 ↔ 2 scattering with a collinear splitting/merging, and the resulting
contribution to the collision kernel becomes

C>
2↔3 ≈ 1

Ng

∫

12l

1

2Ep

|M1p↔2l|2(2π)4δ4(p+ p1 − p2 − l)

× (gpg1f2fl − fpf1g2gl) D(|q = p1 − p2|), (16)

where the momentum labels l and q are as shown in Fig. 1, and we also introduced the term
D(|q = p1 − p2|) arising from the splitting function integration. Its explicit form is given by
Eq. (B.15) in Appendix B. For the above form, one can further simplify the effective 2 ↔ 2
part using small angle approximation as done in the elastic case. All the details are presented
in Appendix B. On the other hand in the domain with q being the softest scale, the 2 ↔ 3
process effectively becomes a nearly collinear 1 ↔ 2 emission/combining process preceded
by a small angle 2 ↔ 2 scattering that brings one incoming particle slightly off-shell. This
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part contributes the following to the collision kernel:

C<
2↔3 =

3g6N3
c

16π5

∫ ∞

0

dp1p
2
1h1

∫ 1

−1

dx

1− x

∫ ∞

0

dq

q3

×
∫ zc

0

dz

z

{

[

gpf(1−z)pfzp − fpg(1−z)pgzp
]

+
1

(1− z)4
[

gpgzp/(1−z)fp/(1−z) − fpfzp/(1−z)gp/(1−z))
]

}

. (17)

Note that in the z-integration we introduce an upper cut zc: physically this is because that
k is the softest external momentum so the k < p condition would require zc < 1/2. In both
kernels above, a number of infrared divergences appear. We will use the Debye scale mD as
the infrared cut, e.g.

∫

dq/q3 ≈ 1/m2
D = 1/(ΛΛs). We will also treat all leading logs as order

one constant. Again more detailed discussions are included in the Appendix B. Lastly, one
can show that the inelastic kernel conserves energy while not particle number, and the fixed
point solution (i.e. the equilibrium distribution) is the Bose-Einstein distribution without

chemical potential, fBE = 1/(ep/T − 1).
It should be mentioned that for the inelastic processes, the inclusion of the so-called

Landau-Pomeranchuk-Migdal (LPM) effect may bear important consequence (see e.g. [11,
30]). We though emphasize that in both cases (with or without LPM effect), the elastic and
inelastic processes are parametrically at the same order and the final fixed point is the same
Bose-Einstein distribution with zero chemical potential. This latter feature indicates that the
inelastic processes will always tend to “fill up” the infrared modes even though the rates may
differ in the cases with or without LPM effect. The inelastic kernel we have derived above,
contains the most essential features of number-changing processes (as compared with the
elastic), namely the non-conservation of particle number and the proper fixed point solution
without chemical potential. It is therefore plausible that our study with the above inelastic
kernel would capture the important qualitative influences of number-changing processes on
the dynamical evolution before the BEC onset which is the main purpose of the present
paper.

2.3 The final kinetic equation

Finally we combine the C2↔2 and C2↔3 kernels, and the final kinetic equation under small
angle approximation and collinear approximation reads

Dtfp = Ceff
2↔2[fp] + Ceff

1↔2[fp], (18)

where

Ceff
2↔2 = C2↔2 + C>

2↔3, Ceff
1↔2 = C<

2↔3. (19)

The expression for Ceff
2→2 is

Ceff
2↔2 = ξα2

s (1 +D) Ia
1

p2
∂p

{

p2
[

∂fp
∂p

+
Ib
Ia
fp

]}

, (20)
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with D ∼ Ô(1) parameterizing the contribution from C>
2↔3 to effective 2 ↔ 2 kernel. It is

related to function D(|q|) defined in Eq. (B.15) by D ∼ D(mD). The expression for Ceff
1↔2 is

Ceff
1↔2 = ξ α2

s R
Ia
Ib

{
∫ zc

0

dz

z

[

gpf(1−z)pfzp − fpg(1−z)pgzp
]

+

∫ zc

0

dz

(1− z)4z

[

gpgzp/(1−z)fp/(1−z) − fpfzp/(1−z)gp/(1−z))
]

}

, (21)

where the constant R ∼ Ô(1) parameterizes the relative ratio of the order one constants
between the elastic and inelastic kernels and the cut zc in z-integration should be small to
be consistent with the kinematics k < p. The expression for R is given by Eq. (B.23) in
Appendix B.

A few comments are in order here:
1) The kernel (20) conserves energy and particle number with fixed point solution fBE =
1/[e(p−µ)/T − 1], while the kernel (21) only conserves energy with fixed point solution fBE =
1/[ep/T − 1], so the total kernel (18) conserves only energy and the equilibrium solution
should be fBE = 1/[ep/T −1] without any chemical potential which is different from the pure
elastic case;
2) In the nearly equilibrium case with f ∼ Ô(1), Ia ∼ T 3 and Ib ∼ T 2, the elastic collision
rate scales as ∼ α2

sT and the inelastic rate scales also as ∼ α2
sT so they are at parametrically

the same order;
3) In the Glasma-like overpopulated case with f ∼ Ô(1/αs), Ia ∼ Q3

s/α
2
s and Ib ∼ Q2

s/αs,
the elastic collision rate scales as ∼ Qs and the inelastic rate scales also as ∼ Qs so again
they are parametrically at the same order.
We therefore see that the effect of the inelastic collision is parametrically as important as
the elastic one both near and far from equilibrium, and including the inelastic collision
qualitatively changes the ultimate equilibrium solution. It is clear that even starting from
highly overpopulated initial condition, eventually there will be no chemical potential nor any
condensate in the final thermal distribution with the presence of inelastic collision. However,
the very important question that has not been understood, is how the inelastic collision
will affect the transient dynamical off-equilibrium condensation driven by the pure elastic
evolution starting from initial high overpopulation. Will the system still reach the onset
of such condensation? Will the inelastic collision speed up, delay, or completely eliminate
such an onset? We will address these questions by numerically solving the above kinetic
equations.

Before turning to the numerical study, let us emphasize that the kinetic equations derived
above are applicable only for describing the system till any moment before the actual onset
of the BEC which is signaled by the emergence of an infrared singularity in the distribution.
As is well known in the literature [39, 40, 41, 42, 43], kinetic theory breaks down at the
onset point. After the formation of BEC, a modified kinetic theory framework is needed
by explicitly introducing a condensate component. The growth of the condensate and the
further evolution of the distribution should be described by a different set of kinetic equations
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that couple the condensate and particles together. In this paper we focus on understanding
the evolution process from overpopulated initial conditions toward the onset of BEC for
which our derived kinetic equations are suitable.

3 Numerical Study of the Kinetic Evolution

In this section, we numerically solve the kinetic equation (18), starting with a Glasma-type
initial condition as follows:

f(p, t = 0) = f0 θ(Qs − p) (22)

with Qs the saturation scale. We use Qs as unit for all momenta/enegy etc and use 1/Qs

as unit for time. As studied in [19], with a given initial occupation f0, the overpopulation

parameter is nǫ−3/4 = f
1/4
0 25/4/3π1/2 and when f0 > f c

0 ≈ 0.154, the system is overpopulated
as compared with the Stefan-Boltzmann limit and the system will reach onset of condensation
when there is only elastic collision. For simplicity we fix the initial occupation f0 = 1 which
is in the overpopulated regime. Note that the constant ξα2

s can be absorbed by a redefinition
of time variable, t → (ξα2

s)t which we will use from now on. We therefore are left with three
parameters, R, D, and zc. The inelastic contribution will increase with increasing R and zc
while the elastic will increase with increasing D. We will study the effect of inelastic collision
by comparison with the purely elastic case (R = 0 versus R 6= 0) and by varying the strength
of the inelastic kernel.

3.1 Thermalization in the purely inelastic case

Let us first study the kinetic equation with only the inelastic kernel (21). Although this is
not a realistic modeling of the Glasma system, it is a very interesting problem on its own
and it also serves as a very useful check of whether the derived inelastic kernel produces the
physically expected dynamics. Furthermore it is a useful benchmark for a contrast with the
evolution driven by both elastic and inelastic processes. We will choose R = 1 without loss
of generality because R can be absorbed by redefining the time variable, t → Rt. The kinetic
equation is then solved numerically with only the inelastic kernel and with overpopulated
initial condition f0 = 1.

In Fig. 2 (left panel), we show the distribution function f(p) at various time moments. It
can be seen that the f(p), starting from the initial Glasma-type shape, smoothly evolves into
a Bose-Einstein distribution after about Qst ≈ 5, with a temperature being the supposed
value required by energy conservation and a vanishing chemical potential. Very different from
the evolution driven by elastic kernel with the same initial condition (see Ref. [19]), in the
present purely inelastic case, the system is simply thermalized and during the thermalization
there appears no onset of singularity (Bose-Einstein condensate) in the distribution. This can
be explicitly checked by looking at the occupation at the smallest grid point f(p = 0.01Qs)
as a function of time (Fig. 2 right panel): its value has a transient behavior of rapid rise and
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Figure 2: (Left) The distribution function f(p) at different time moments during the evo-
lution for purely inelastic collisions; (Right) The occupation at the smallest grid point
f(p = 0.01Qs) as a function of time for purely inelastic collisions.
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Figure 3: The number density n (left) and entropy density s (right), both normalized by the
corresponding equilibrium values, as a function of time for purely inelastic collisions.

fall and then settles to the supposed thermal value. Clearly, even with overpopulated initial
condition, the inelastic process alone does not generate a dynamical onset of Bose-Einstein
condensate, as one may reasonably expect.

We have also studied the evolution of global quantities, with the results shown in Fig. 3
for the number density (left panel) as well as the entropy density (right panel). The initial
high overpopulation in gluon number is efficiently reduced by the inelastic processes, and
the number density drops toward the supposed thermal value determined by equilibrium
temperature. The entropy density on the other hand grows rapidly and approaches the
thermal value as well. Again all these features provide clear indication that with the purely
inelastic kernel the system is simply thermalized as it should be.

From this study, we conclude that the 1 ↔ 2 inelastic processes as described by our
derived kernel (21) thermalize the system efficiently and eliminate excessive gluons from
initial conditions effectively, and by these processes alone no dynamic onset of BEC is to
occur. With such benchmark case understood, it is thus tempting to see what will happen
when the elastic 2 ↔ 2 processes are also included in addition to the inelastic. As we will
show in the next subsections, the evolution of the system gets dramatically changed.
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3.2 From overpopulation toward onset of condensation

Let us now briefly summarize the kinetic evolution from overpopulation toward onset of
condensation in the purely elastic case, as reported in [19, 36, 37]. The elastic kernel can be
re-written in terms of flux as

C2↔2 = − 1

p2
∂p(p

2 S(p)), S(p) ≡ − [Ia∂pfp + Ibfp(1 + fp)] (23)

The strong overpopulation leads to a particle flux cascade toward the infrared regime.
Analysis of the small p regime shows that it will quickly develop a local thermal form
f ∗(p) = 1/[e(p−µ∗)/T ∗ − 1] with T ∗ = Ia/Ib, and the incoming flux will drive the (nega-
tive) µ∗ to eventually vanish and reach the onset of a dynamical condensation. This picture
is numerically verified in great details in [19]. Our discussion of the onset of condensation
will stay in this picture (as the elastic term is still present and its flux drives the small
p behavior) and we will study how the inelastic process modifies such onset dynamics. It
should be emphasize that a vanishing chemical potential µ∗ alone does not necessarily lead
to onset of BEC as is evident from our study of the purely inelastic case in the previous
subsection. It is both the vanishing of µ∗ and an elastic-driven divergent flux toward p = 0
together that would signal the onset of condensation as shown in [19, 51, 52].

Starting with the overpopulated initial condition (22) we have numerically evolved the
kinetic equations (18), (20), and (21) with given set of parameters. Shown in Fig. 4 is the
solution with R = 1. In Fig. 4 left we show the distribution function fp at different time
moments, and one can see that even with the presence of inelastic term, the small p part of the
distribution is quickly filled up and becomes a local thermal form f ∗(p) = 1/[e(p−µ∗)/T ∗ − 1]
despite that the distribution in the wide range of (bigger) momentum region is still far from
equilibrium shape, and the small p part becomes steeper and steeper with time (meaning
decreasing |µ∗|). In Fig. 4 right we show the corresponding flux S(p) from the elastic kernel.
Again the flux behaves very similarly to the purely elastic case: one see a linear behavior at
small p, S ∝ −p and eventually upon onset of condensation the flux diverges (see the blue
curve near p = 0).

To get an intuitive idea of the contribution of the inelastic kernel, we plot the C1↔2 and
p2C1↔2 in Fig. 5. One can see that the kernel is large and positive at small p, small and
positive at large p, while negative at intermediate p. This could be qualitatively understood:
significant number of particles with intermediate momenta will merge toward high momenta
and split toward low momenta that will fill up UV and IR region while decrease the occu-
pation at intermediate momenta. We also notice that upon onset (the blue dashed curve in
the right panel) the inelastic kernel near p = 0 shows a divergent behavior in consistency
with the elastic flux behavior.

One can directly examine the locally determined T ∗ and µ∗ (see [19] for details) at each
time moment during the evolution: these results are shown in Fig. 6. Here we also compare
the results for different strength of the inelastic collision R = 0, 0.1, 1, 10 (noting that the
R = 0 case corresponds to purely elastic collision). In all cases we can see that the local
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Figure 4: (Left) The distribution function f(p) at different time moments during evolution;
(Right) The flux S(p) defined in elastic kernel at different time moments during evolution.
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Figure 5: The inelastic kernel C1↔2(p) (Left) and p2C1↔2(p) (Right) at different time mo-
ments during evolution.

“chemical potential” µ∗ decreases rather rapidly toward zero. We also show the distribution
f(p) at the smallest grid point in our calculation p = 0.005Qs as a function of time in Fig. 7,
which shows very rapid increase of the occupation in consistence with the vanishing of µ∗.
What is most striking is that with increase values of R this evolution toward the onset of
condensation µ∗ → 0 becomes faster and faster. The R = 1 case is already much faster than
the purely elastic case. This is to say, contrary to expectation that the inelastic process may
“kill” the strong overpopulation quickly, the existence of inelastic collision actually speeds

up significantly the process of populating the infrared regime and building up a local thermal
form with vanishing µ∗, which when combined with the structure of elastic kernel will then
lead to the onset of condensation.

3.3 Small p analysis of the inelastic kernel

To understand better the influence of inelastic collision on the small p region, let us examine
the kernel (21) for p → 0 limit before the onset of condensation. Provided that f0 = f(p =
0) < ∞ and that its derivatives with respect to p at p = 0 is also finite, we can have the
expansion f(p → 0) ≈ f0 + f ′

0 p + .... If we look at a small enough p regime, then all the
involved momenta (p, zp, (1− z)p, p/(1− z), pz/(1− z)) in the kernel (21) can be considered
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Figure 6: The local thermal form parameters T ∗ (Left) and µ∗ (Right) as functions of time
for different values of parameter R.
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Figure 7: The occupation at the smallest grid point f(p = 0.005Qs) as a function of time
for different values of parameter R.

small and we can use the expansion for them. This leads to

Ceff
1↔2(p → 0) → R

Ia
Ib

[

A0f0(1 + f0) + A1f
′
0(1 + 2f0) p+ Ô(p2)

]

, (24)

where we have introduced the constants

A0 = ln
1

1− zc
+

1

6

zc(11z
2
c − 27zc + 18)

(1− zc)3
,

A1 = ln
1

1− zc
− 1

12

zc(25z
3
c − 88z2c + 108zc − 48)

(1− zc)4
. (25)

All these A’s are positive for 0 < zc < 1. Clearly for sufficiently small p the leading term
in the inelastic kernel ∼ f0(1 + f0)A0 is always positive and becomes bigger and bigger with
increasing f0 (which is a kind of “self-amplification”). This will tend to increase the particle
number near p = 0 very rapidly and the effect becomes stronger with increasing values of R,
which explains the behavior seen in Fig. 7.

Physically this behavior may be understood in two ways. First note that the inelastic
kernel has its fixed point to be 1/(ep/T − 1) which at small p is ∼ 1/p so as long as f(p = 0)
is finite yet the inelastic kernel will try to fill it up toward 1/p. Second, this is also related
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Figure 8: (Left) The particle number density as a function of time for different values of
parameter R. (Right) The entropy density as a function of time for R = 1 and R = 0.

to the Boson nature: if all involved particles are from small p, then the merging rate is like
∼ f 2

0 (1 + f0) while the splitting rate is like ∼ f0(1 + f0)
2 so the splitting “wins” due to

Bose enhancement for the final state particles and it increases particle number at small p.
To conclude, the inelastic kernel contribution is always positive at very small p and it will
catalyze and speed up the onset of a Bose condensation (which itself is driven by the elastic
term at µ∗ → 0).

3.4 Change of particle number from inelastic kernel

While the inelastic kernel always increases the occupation at sufficiently small p, it may still
decrease the the total particle number. Indeed as shown in Fig. 8 (left panel), the total
particle number decreases when R > 0, and it decreases more rapidly for larger R.

To understand the change of particle number n =
∫

d3p/(2π)3f(p), one can integrate the
two sides of the kinetic equation (18) and obtain

∂tn(t) = R
Ia

2π2Ib

∫

dpp2
∫ zc

0

dz

1− z

[

fpg(1−z)pgzp − gpf(1−z)pfzp
]

= R
Ia

2π2Ib

∫

dpp2
∫ zc

0

dz

1− z

[

fp + fpf(1−z)p + fpfzp − f(1−z)pfzp
]

. (26)

From the above one can see the for the region z → 0 the leading order in the z-integrand
becomes ∼ fp(1 + fp) and the contribution is positive, i.e. increasing particle number. For
general z, the z-integrand can be rewritten as

∂tn(t) = R
Ia

2π2Ib

∫

dpp2
∫ zc

0

dz

1− z

[

fp(1 + fp)− (f(1−z)p − fp)(fzp − fp)
]

. (27)

We see that for not too small z, the momenta zp, (1− z)p become well separated from p and
the second term in the above integrand becomes important and its contribution is negative
which decreases the particle number.

In Fig. 8 (right panel) we also show the entropy density as a function of time and compare
the case with R = 1 and the purely elastic case with R = 0. One can see that with inelastic
collision included, the entropy density increases much faster. That is, the inelastic process
tends to accelerate the thermalization.
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Figure 9: The local thermal form parameters T ∗ (Left) and µ∗ (Right) as functions of time
for zc = 0.2, 0.5, 0.8 respectively.
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Figure 10: The occupation at the smallest grid point f(p = 0.005Qs) (Left) and the particle
number density (Right) as functions of time for zc = 0.2, 0.5, 0.8 respectively

3.5 Dependence on the parameter zc

Finally we study the dependence on the parameter zc which is the kinematic cut to make
sure the validity of the approximations used for the matrix element. Generally speaking,
with larger zc we include more effects from the inelastic process. To see how the results
depend on zc, we fix other parameters and compare the results for different choices of zc. In
Fig. 9, we show the local thermal form parameters T ∗ (left panel) and µ∗ (right panel) as
functions of time for zc = 0.2, 0.5, 0.8 respectively. In Fig. 10, we show the occupation at
the smallest grid point (left panel) and the total particle number (right panel) as functions
of time for zc = 0.2, 0.5, 0.8 respectively. From the plots we can see that indeed with larger
zc the f0 increases faster and µ∗ vanishes faster as expected for stronger inelastic effect. For
the particle number, the case with zc = 0.2 actually has n increasing with time, which can
be understood from the analysis in the previous subsection. The particle number in both
zc = 0.5 and zc = 0.8 cases drops with time and does so faster for larger zc. In passing let us
mention that we have also studied the dependence on the parameter D: basically increasing
D will enhance the effect from elastic collision and also speed up the thermalization in
general, as well as reach onset of condensation at earlier times compared with D = 0 case.
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Figure 11: A conjectured evolution of the condensate.

4 Conclusion

In summary, we have studied the kinetic evolution of a highly overpopulated system starting
from Glasma-type initial condition with the presence of both elastic and inelastic collisions.
Using the Gunion-Bertsch formula for the 2 ↔ 3 matrix element, we have derived the inelastic
collision kernel under the collinear and small angle approximations. Putting together the
inelastic kernel together with the previously obtained elastic kernel, we have then numerically
solved the kinetic evolution for varied choices of parameters. Our main finding is that
the inelastic process has two effects: globally changing (mostly reducing) the total particle
number, while locally at small p always filling up the infrared regime extremely quickly. The
latter effect is shown both from numerics and by analytic analysis. This effect significantly
speeds up the emergence of local thermal form near p = 0 and the vanishing of local “chemical
potential” µ∗ as previously found in the purely elastic collision case to lead to the onset of
dynamical Bose condensation. Therefore in our present approach of including the inelastic
scattering, we conclude that, contrary to some previously discussed expectations about the
role of number non-conserving processes, the inelastic collision actually helps to build up
the local “critical form” ∼ 1/p much faster and catalyzes the onset of condensation in the
overpopulated Glasma.

Our finding may sound counter-intuitive at first, as the usual conception would suggest
that increasing the strength of the inelastic collisions tends to obstruct more effectively the
formation of any condensate. It should however be emphasized that the evolution toward
onset of BEC that has been studied thus far is not the end of the story. Our analysis addresses
the evolution up to the onset of BEC while does not treat the evolution afterwards. As is
well known in the BEC literature (see e.g. [39, 40]), in order to describe the kinetic evolution
of the system with the presence of condensate, a new set of kinetic equations is needed for
an explicit description of the coupled evolution for a condensate plus a regular distribution.
Efforts are underway to derive these equations, and so far a kinetic study of the stage after
BEC onset for the Glasma system has not been achieved to our best knowledge. However, it
appears very plausible that the subsequent evolutions may develop as follows: immediately
after onset, the strong IR flux will not cease right away but continue for a while and thus
drive the condensate to grow in time; at certain point, the time would be long enough to
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allow the inelastic processes to decrease the total number density adequately and cause the
condensate to decay thus decreasing in time; eventually the inelastic processes will be able to
remove all excess gluons and lead to the thermal equilibrium state with neither condensate
nor any chemical potential. While the detailed understanding of such dynamic processes
can only be achieved through solving the new set of kinetic equations, one can reasonably
expect that with increasing strength of the inelastic processes the whole evolution would be
faster. Thus the following overall picture may likely be the case: with increasing strength, the
inelastic processes on one hand catalyze the onset of condensation initially, while on the other
hand eliminate the fully formed condensate faster, thus limiting the time duration for the
presence of condensate to be shorter. A schematic picture of such conjectured full evolution
is shown in Fig. 11, which is in line with the usual conception. It is worth mentioning
that recent analysis in [58] has shown that the the 2 ↔ 3 inelastic cross section from exact
matrix element becomes significantly smaller than that from the Gunion-Bertsch formula,
and amounts to ∼ 20% of the 2 ↔ 2 cross section. It therefore seems very plausible that
a realistic choice of R value would be rather modest, which may imply a considerable time
window for the condensate to be sizable and play an important role for the evolution. A
complete investigation of the evolution including the condensate will be future project to
be reported elsewhere. Furthermore how medium effects like the screening as well as the
Landau-Pomeranchuk-Migdal effect may influence the glasma evolution deserves a careful
study in the kinetic framework as well [64, 65] and it will also be a future task.

Lastly, we’d like to mention a recent kinetic theory studies [30, 31] that also includes
both an elastic kernel and an effective inelastic kernel. The analysis of [30, 31] appears to
bear different conclusions than ours, regarding the evolution in the very infrared region.
Particularly, in contrast to our findings, Refs. [30, 31] did not observe the formation of a
condensate. It is important to understand the origin of such difference between our study
and theirs. A major factor may likely contribute to the different results: while we use the
vacuum matrix elements for both elastic and inelastic processes, the authors of [30, 31] use
medium-modified effective matrix elements for both processes. A comparative study will
be crucial and it is highly desired to address, in both approaches, the following questions:
does an overpopulated initial condition with pure elastic kernel lead to BEC onset? does an
overpopulated initial condition with pure inelastic kernel thermalize without condensation?
whether an overpopulated initial condition will lead to BEC onset or not, when both kernels
are included? These will be investigated and reported in a future work.
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Appendix

A gg ↔ ggg matrix element

The invariant gg ↔ ggg or 2 ↔ 3 (squared) matrix element summed over all final states
and also summed over all initial states is computed by considering 25 different Feynman
diagrams [57]. We quote it here:

|M2↔3|2 = g6N3
cNg

N
D [(12345) + (12354) + (12435) + (12453) + (12534)

+(12543) + (13245) + (13254) + (13524) + (14235) + (14325)],

(A.1)

where Nc = 3 is the number of color, Ng = 2(N2
c − 1) is the gluon degeneracy number, and

other notations are defined as

N = (12)4 + (13)4 + (14)4 + (15)4 + (23)4 + (24)4

+(25)4 + (34)4 + (35)4 + (45)4,

D = (12)(13)(14)(15)(23)(24)(25)(34)(35)(45),

(ijklm) = (ij)(jk)(kl)(lm)(mi),

(ij) ≡ ki · kj. (A.2)

Because |M2↔3|2 is completely symmetry in ki, i = 1 − 5, let’s take k1 and k2 as the hard
momenta in the entrance channel, k3 and k4 as the hard momenta in the exit channel, and
k5 as the emitted soft gluon. We denote the exchanging momentum as q = k2−k4. A typical
Feynman diagram illuminating this setup is shown in Fig. 12.

Define the Mandelstam variables as [59, 60]

s = (k1 + k2)
2 = 2(12), t = (k1 − k3)

2 = −2(13), u = (k1 − k4)
2 = −2(14),

s′ = (k3 + k4)
2 = 2(34), t′ = (k2 − k4)

2 = −2(24), u′ = (k2 − k3)
2 = −2(23).
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In addition, the following relations involving k5 hold:

(15) =
s+ t + u

2
, (25) =

s+ t′ + u′

2
, (35) =

s+ t′ + u

2
, (45) =

s+ t+ u′

2
.

In terms of the Mandelstam variables, |M2↔3|2 can be written as

|M2↔3|2 = 32g6N3
cNgN

[ 1

s′(s+ u+ t)(s+ u′ + t′)

( 1

tt′
+

1

uu′

)

+
1

s(s+ u′ + t)(s+ u+ t′)

( 1

tt′
+

1

uu′

)

− 1

t′(s+ u+ t)(s+ u+ t′)

( 1

ss′
+

1

uu′

)

− 1

t(s + u′ + t)(s+ u′ + t′)

( 1

ss′
+

1

uu′

)

− 1

u′(s+ u+ t)(s + u′ + t)

( 1

tt′
+

1

ss′

)

− 1

u(s+ u+ t′)(s+ u′ + t′)

( 1

tt′
+

1

ss′

)]

, (A.3)

where

N =
1

16
[s4 + t4 + u4 + s′4 + t′4 + u′4 + (s+ u+ t)4

+(s+ u′ + t′)4 + (s+ t′ + u)4 + (s+ t+ u′)4].

Because |M2↔3|2 is very singular when, for example, t, t′ → 0, we can expand it around
these singularities order by order in some small momenta. To this end, let’s assume that the
exchanging momentum q = k2 − k4 is small (k5 is also small). In this case t, t′ are small,
while s, s′, u, u′ are large, and −u → −u′ → s′ → s. With other choices of picking the
small exchanging momenta and soft emitted momenta, we can get other while equivalent
expansions. We will come to this point latter. Keeping only leading order and subleading
order terms in q and k5, we have

s′ = (k1 + k2 − k5)
2 = s− 2(k1 + k2) · k5 +O(k2

5),

u = −s + 2k1 · k5 +O(q2),

u′ = −s + 2k2 · k5 +O(q − k5)
2,

t = (q − k5)
2,

t′ = q2.

In addition, we have

k2 · (k4 + q) = 0 ⇒ k2 · q = −k2 · k4 =
1

2
(k2 − k4)

2 =
1

2
q2,

t− t′ = −2q · k5 ⇒ −2q · k2 − 2k1 · (q − k5) = 2k2 · k4 − 2k1 · k3 = t− t′ = −2q · k5
⇒ k1 · (k5 − q) =

q2

2
− q · k5.
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Then N and |M2↔3|2 can be simplified as

N =
s4

4
− s3(k2 · k5 + k1 · k5) +O(k2

5/s, q
2/s, k5 · q/s), (A.4)

|M2↔3|2 = 32g6N3
cNg

N
tt′

[ 1

s′(s+ u+ t)(s+ u′ + t′)
+

1

s(s+ u′ + t)(s+ u+ t′)

− 1

u′(s+ u+ t)(s+ u′ + t)
− 1

u(s+ u+ t′)(s+ u′ + t′)

]

+O

(

t

s

)

= 32g6N3
cNg

N
tt′

s+ (k1 + k2) · k5
s2(k1 · k5)(k2 · k5)

+O

(

k2
5

s
,
q2

s
,
k5 · q
s

)

= 8g6N3
cNg

s2

tt′
s− 3(k1 + k2) · k5
(k1 · k5)(k2 · k5)

+O

(

k2
5

s
,
q2

s
,
k5 · q
s

)

= 32g6N3
cNg

(k1 · k2)2
q2(q − k5)2

2k1 · k2 − 3(k1 + k2) · k5
(k1 · k5)(k2 · k5)

+O

(

k2
5

s
,
q2

s
,
k5 · q
s

)

.

(A.5)

In the center-of-mass frame of k1 and k2, it goes to

|M c.m.
2↔3|2 ≈ |MGB|2

(

1− 3
|k5|√
s

)

(

1 +
q20 − q2

‖

q2
⊥

)

(

1 +
(q0 − k50)

2 − (q‖ − k5‖)
2

(q⊥ − k5⊥)2

)

≈ |MGB|2
(

1− 3
|k5⊥|√

s

)

, (A.6)

where q‖ = (q · v1)v1 and

|MGB|2 = 32g6N3
cNg

s2

q2
⊥(q⊥ − k5⊥)2k2

5⊥

(A.7)

is the Gunion-Bertsch formula [53]. Here we have used the fact that q20 = (v2 · q)2 +
O(q2

⊥q0/|k2|) and (q0 − k50)
2 = [v1 · (q− k5)]

2 +O[(q⊥ − k5⊥)
2(q0 − k50)/|k1|] for soft q and

k5. Thus, the Gunion-Bertsch formula is the leading order result in soft q and k expansion;
and Eq. (A.5) is the result including both the leading (Gunion-Bertsch) and the subleading
order terms. Higher order terms can also be obtained, but we will not use them. Note
that one can naively boosts the Gunion-Bertsch formula from the center-of-mass frame to a
general frame by using the replacements k2

5⊥ → 4(k1 ·k5)(k2 ·k5)/s, q2
⊥ → 4(k1 ·k4)(k2 ·k4)/s,

and (q⊥ − k5⊥)
2 → 4(k1 · k3)(k2 · k3)/s:

|MGB|2 = 16g6N3
cNg

(k1 · k2)5
(k1 · k3)(k2 · k3)(k1 · k4)(k2 · k4)(k1 · k5)(k2 · k5)

. (A.8)

This expression coincides with Eq. (A.5) at leading order but not at next to leading order
in soft q and k5 expansion.
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B The collision kernel C2↔3 at collinear approximation

The collision kernel C2↔3 has a very complicated structure, in this section, we simplify it by
taking the collinear approximation, i.e., vk ≃ v1 or vk ≃ vp.

We rewrite the collision kernels Ca
2↔3 and Cb

2↔3 as (We denote 1 + fi by gi)

Ca
2↔3 =

1

Ng

∫

123kl

2El

2Ep

∫

d4q

(2π)4

∫

dl0
2π

(2π)4δ4(p+ q − l)(2π)4δ4(p1 − q − p2)

×(2π)4δ4(l − k − p3)|Ma
1p↔23k|2(gpg1f2f3fk − fpf1g2g3gk),

Cb
2↔3 =

1

Ng

∫

123kl

2El

2Ep

∫

d4q

(2π)4

∫

dl0
2π

(2π)4δ4(p+ q − l)(2π)4δ4(p1 − q − p2)

×(2π)4δ4(l + k − p3)|M b
23↔1pk|2(gpg1gkf2f3 − fpf1fkg2g3), (B.1)

where we introduced two auxiliary integrations over l and q. The kinematics is shown in
Fig. 1, and the expressions for |Ma

1p↔23k|2 and |M b
23↔1pk|2 are given by

|Ma
1p↔23k|2 = 64g6N3

cNg
(p · p1)3

q2(q − k)2(p · k)(p1 · k)
,

|M b
23↔1kp|2 = 64g6N3

cNg
(p2 · p3)3

q2(q + k)2(p2 · k)(p3 · k)
. (B.2)

First, it is easy to show that, under the small angle approximation,

q0 ≃ q · v1 −
q′2

⊥

2E1

≃ Ek + (q− k) · vp +
(q⊥ − k⊥)

2

2Ep
, (B.3)

l0 ≃ El + Ek − k · vl +
k′′2

⊥

2El

≃ Ep + q0, (B.4)

vl ≃ vp +
q⊥

Ep
− q2

⊥

2E2
p

vp +
(q · vp)

2

2E2
p

vp −
q · vp

E2
p

q⊥, (B.5)

where q⊥ = q− q · vpvp, k⊥ = k− k · vpvp, q
′
⊥ = q− q · v1v1, and k′′

⊥ = k− k · vlvl.
Second, if |k| < |q|, then, under collinear approximation, vk is nearly parallel to either

vp or v1. For vk ≃ v1, q · k = |k|(q0−q ·vk) ≃ |k|[q0−q ·v1 +q · (v1−vk)] ∼ −|k|q′2
⊥/E1+

|k||q|θ1k ≪ q2; For vk ≃ vp, q · k = |k|(|k| −k ·vl) ∼ |k|2θ2kp+ |k|q2
⊥/(2Ep) + |k||q|θkp ≪ q2.

Thus in the small angle approximation plus the collinear approximation, if |k| < |q|, we can
approximate |Ma

1p↔23k|2 as

|Ma
1p↔23k|2 = 64g6N3

cNg
(p · p1)3

(q2)2(p · k)(p1 · k)
. (B.6)
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For |M b
23↔1pk|2, up to q2 order, we can neglect q · k in the denominator and k as well as q · p

and q · p1 in the numerator,

|M b
23↔1kp|2 = 64g6N3

cNg
[(p1 + q) · (p+ k − q)]3

q2(q + k)2[(p+ k − q) · k][(p1 + q) · k]

≈ 64g6N3
cNg

[(p1 + q) · (p− q)]3

(q2)2[(p− q) · k][(p1 + q) · k]

≈ 64g6N3
cNg

(p1 · p)3
(q2)2(p · k)(p1 · k)

= |Ma
1p↔23k|2. (B.7)

Third, if |k| > |q|, under the collinear approximation, for vk ≃ v1, q · k ∼ −|k|q′2
⊥/E1 +

|k||q|θ1k ≪ q2 because θ1k ≪ |q′|⊥/E1; For vk ≃ vp, q·k ∼ |k|2θ2kp+|k|q2
⊥/(2Ep)+|k||q|θkp ≪

q2 because θkp ≪ |p⊥|/Ep. Thus the collinear approximation simplifies the matrix element
also when |k| > |q|:

|Ma
1p↔23k|2 = 64g6N3

cNg
(p · p1)3

(q2)2(p · k)(p1 · k)

|M b
23↔1kp|2 = 64g6N3

cNg
[(p+ k) · p1]3

(q2)2(p · k)(p1 · k)
. (B.8)

Fourth, the whole kinematic (phase) space can be separated into two parts, one for
|k| < |q| and another for |q| < |k|. We would expect that at kinematic region with |k| < |q|,
the 2 ↔ 3 process may be regarded as a 2 ↔ 2 “hard” process with one additional “soft”
gluon emitted or absorbed by one of the “hard” gluons; with |q| < |k| the 2 ↔ 3 process can
be regarded as an effective 1 ↔ 2 process with a spectator gluon joined to make the effective
1 ↔ 2 matrix element nonzero (the matrix element of the 1 ↔ 2 process is zero for massless
gluons). Thus we separate the collision kernel as

C2↔3 = Ca
2↔3 + Cb

2↔3 = C>
2↔3 + C<

2↔3, (B.9)

with

C>
2↔3 =

1

Ng

∫

d4q

(2π)4

∫

123l

∫ q>k

k

2El

2Ep

∫

dl0
2π

(2π)8δ4(p+ q − l)δ4(p1 − q − p2)

×|Ma
1p↔23k|2[(2π)4δ4(l − k − p3)(gpg1f2f3fk − fpf1g2g3gk)

+(2π)4δ4(l + k − p3)(gpg1gkf2f3 − fpf1fkg2g3)],

C<
2↔3 =

1

Ng

∫

d4q

(2π)4

∫

123l

∫ q<k

k

2El

2Ep

∫

dl0
2π

(2π)8δ4(p+ q − l)δ4(p1 − q − p2)

×[(2π)4δ4(l − k − p3)|Ma
1p↔23k|2(gpg1f2f3fk − fpf1g2g3gk)

+(2π)4δ4(l + k − p3)|M b
23↔1kp|2(gpg1gkf2f3 − fpf1fkg2g3)].

23



B.1 Simplifying C>
2↔3

Expand the integrand of C>
2↔3 in terms of k and keep the leading order terms:

C>
2↔3 ≈ 1

Ng

∫

d4q

(2π)4

∫

12l

∫ q>k

k

1

2Ep

∫

dl0
2π

(2π)8δ4(p+ q − l)δ4(p1 − q − p2)

×|Ma
1p↔23k|2[(2π)δ(l0 − |k| − |l− k|)(gpg1f2flfk − fpf1g2glgk)

+(2π)δ(l0 + |k| − |l+ k|)(gpg1gkf2fl − fpf1fkg2gl)]

≈ 1

Ng

∫

d4q

(2π)4

∫

12l

∫ q>k

k

1

2Ep

∫

dl0
2π

(2π)8δ4(p+ q − l)δ4(p1 − q − p2)

×|Ma
1p↔23k|2[(2π)δ(l0 − |l|)(gpg1f2flfk − fpf1g2glgk)

+(2π)δ(l0 − |l|)(gpg1gkf2fl − fpf1fkg2gl)]

=
1

Ng

∫

d4q

(2π)4

∫

12l

∫ q>k

k

1

2Ep
(2π)4δ4(p+ q − l)(2π)4δ4(p1 − q − p2)

×|M1p↔2l|2
2g2Nc(p · p1)
(p · k)(p1 · k)

(1 + 2fk)(gpg1f2fl − fpf1g2gl), (B.10)

where in the last equality lµ = (|l|, l) is on-shell, and the 2 ↔ 2 matrix element is

|M1p↔2l|2 = 32g4N2
cNg

(p · p1)2
(q2)2

. (B.11)

We have written the 2 ↔ 3 matrix element in a form of a 2 ↔ 2 matrix element times a
1 ↔ 2 splitting function. Indeed, if for example k is nearly collinear to p,

2g2Nc(p · p1)
(p · k)(p1 · k)

≈ 2g2Nc|p|
(p · k)|k|

=
2g2

(p+ k)2
Pgg(z) (B.12)

with Pgg(z) = 2CA/z being the standard unregularized g → gg splitting function at z → 0
limit where z = Ek/Ep [61, 62, 63].

In the collinear approximation, if vk ≃ v1, then p · p1/k · p ≈ |p1|/|k|; or if vk ≃ vp, then
p · p1/k · p1 ≈ |p|/|k|. Thus we have

C>
2↔3 ≈ 1

Ng

∫

12l

1

2Ep
|M1p↔2l|2

∫

k<p1−p2

2g2Nc

|k|2
[

1 + 2fk
1− vk · v1

+
1 + 2fk

1− vk · vp

]

×(2π)4δ4(p+ p1 − p2 − l)(gpg1f2fl − fpf1g2gl). (B.13)

This is essentially a p + p1 ↔ p2 + l collision kernel with an inner 1 ↔ 2 splitting function.
Let

D(q) =

∫

k<q

2g2Nc

|k|2
[

1 + 2fk
1− vk · v1

+
1 + 2fk

1− vk · vp

]

. (B.14)
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For isotropic distribution,

D(q) = 2

∫

k<q

d3k

(2π)32Ek

2g2Nc(1 + 2fk)

|k|2(1− cos θ)

= 2
g2Nc

(2π)2

∫ |q|

0

d|k|1 + 2fk
|k|

∫ π

0

dθ
sin θ

1− cos θ

= 2
g2Nc

(2π)2

∫ |q|

0

d|k|1 + 2fk
|k|

∫ 1

−1

dx

1− x
. (B.15)

Thus,

C>
2↔3 ≈ 1

Ng

∫

12l

1

2Ep
|M1p↔2l|2D(p1 − p2)(2π)

4δ4(p+ p1 − p2 − l)

×(gpg1f2fl − fpf1g2gl). (B.16)

There are two types of infrared divergence inD(q). (1) The logarithmic divergence
∫ 1

−1
dx/(1−

x) ∼
∫

dθ/θ ∼ ln(1/θm) with θm the minimal angle between k and p. θm arises com-

pletely due to interaction, so θm ∼ g. Thus,
∫ 1

−1
dx/(1 − x) ∼ ln(1/g) in both Glasma

and nearly thermal equilibrium state. (2) Near thermal equilibrium, fk ∼ T/ωk, thus
∫ q

0
(dk/k)(1 + 2fk) ∼ 2T

∫ q

0
(dkk/(k2 + m2

∞)3/2 ∼ T (1/m∞ − 1/mD) where we use m∞ to
denote the mass of the emitted or absorbed ultrasoft gluon k and mD to denote the mass
of the exchanged gluon q. Near equilibrium, both m∞ and mD are of order gT but can
have different prefactors, we find D(q) ∼ g ln(1/g). In the initial Glasma, mD ∼ m∞ ∼ Qs

and fk ∼ 1/αs, thus
∫ q

0
(dk/k)(1 + 2fk) ∼ (2/αs) ln(q/m∞) ∼ 1/αs. Thus D(q) ∼ ln(1/g).

As the Glasma evolves, fk ∼ ΛS/(αsk), if mD ∼ m∞ ∼ √
ΛΛS, thus

∫ q

0
(dk/k)(1 + 2fk) ∼

(1/αs)(ΛS/m∞) ∼ (1/αs)
√

ΛS/Λ. Thus, we find D(q) ∼
√

ΛS/Λ ln(1/g).
In either Glasma or nearly thermal equilibrium cases, we can conclude that the ratio

of ultrasoft gluon emission and absorbtion 2 ↔ 3 processes over the purely elastic 2 ↔ 2
processes is either ln(1/g) order or g ln(1/g) order.

B.2 Simplifying C<
2↔3

Expand the distribution functions in C<
2↔3 in terms of q and keep the leading order terms:

C<
2↔3 ≈ 1

Ng

∫

d4q

(2π)4

∫

123

∫ q<k

k

1

2Ep

(2π)4δ4(p1 − q − p2)h1

×[(2π)4δ4(p+ q − k − p3)|Ma
1p↔23k|2(gpf3fk − fpg3gk)

+(2π)4δ4(p+ q + k − p3)|M b
23↔1kp|2(gpgkf3 − fpfkg3)]

≈ 1

Ng

∫

d4q

(2π)4

∫

13

∫ q<k

k

1

2Ep2E1
(2π)δ(q0 − q · v1)h1

×[(2π)4δ4(p+ q − k − p3)|Ma
1p↔23k|2(gpf3fk − fpg3gk)

+(2π)4δ4(p+ q + k − p3)|M b
23↔1kp|2(gpgkf3 − fpfkg3)],
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where h1 ≡ f1g1. This is basically a 1 ↔ 2 collision kernel with the 2 ↔ 2 processes playing
a role of opening a finite phase space for 1 ↔ 2 process. Because q is small, p, k and p3
are nearly collinear (there is vanishing phase space at the collinear region k ‖ p1). In the
collinear approximation, we have

p0 + q0 − k0 − p30 ≈ q0 − |k| − (q− k) · vp ≈ q0 − q · vp,

p0 + q0 + k0 − p30 ≈ q0 + |k| − (q+ k) · vp ≈ q0 − q · vp.

The matrix element are then

|Ma
1p↔23k|2 = 64g6N3

cNg
(p · p1)2

(q2)2|k|2(1− vp · vk)
, (B.17)

|M b
23↔1kp|2 = 64g6N3

cNg
|p|+ |k|

|k|
(p · p1)2

(q2)2|k|2(1− vp · vk)
. (B.18)

Thus,

C<
2↔3 ≈ 1

Ng

∫

d4q

(2π)4

∫

1

∫ q<k

k

1

(2Ep)22E1

(2π)δ(q0 − q · v1)(2π)δ(q0 − q · vp)h1

×
[

|Ma
1p↔23k|2(gpfp−kfk − fpgp−kgk) + |M b

23↔1kp|2(gpgkfp+k − fpfkgp+k)
]

.

(B.19)

In the following we denote q = |q|, p = |p|, p1 = |p1|, k = |k|. Let q0 = xq and let
vp = (1, 0, 0), v1 = (cos θ1, sin θ1, 0), and vq = (sin θq cosφq, sin θq sinφq, cos θq). We have

δ(x− vq · v1)δ(x− vq · vp) = δ[x− sin θq cos(θ1 − φq)]δ(x− sin θq cosφq)

=
1

sin θq

δ(x− sin θq cos φq)

| sinφq − sin(φq − θ1)|

[

δ

(

φq −
θ1
2

)

+ δ

(

φq −
θ1
2
− π

)]

=
1

sin θq

1

2 sin(θ1/2)

[

δ

(

φq −
θ1
2

)

δ

(

x− sin θq cos
θ1
2

)

+δ

(

φq −
θ1
2
− π

)

δ

(

x+ sin θq cos
θ1
2

)]

.

Thus,
∫

dq0
2π

dΩq(2π)δ(q0 − q · v1)(2π)δ(q0 − q · vp)|Ma
1p→23k|2

= 128πg6N3
cNg

(pp1)
2

q5k2

∫

dx

∫ π

0

dθq sin θq

∫ 2π

0

dφqδ(x− vq · v1)δ(x− vq · vp)

× (1− vp · v1)
2

(1− x2)2(1− vp · vk)

= 128πg6N3
cNg

(pp1)
2

q5k2

(1− vp · v1)
2

1− vp · vk

∫ π

0

dθq
1

sin θ1
2
(1− sin2 θq cos2

θ1
2
)2

= 128π2g6N3
cNg

(pp1)
2

q5k2

3− vp · v1

1− vp · vk
. (B.20)
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Furthermore, for isotropic distributions, we have:

C<
2↔3 =

128π2g6N3
cNg

Ng

∫ ∞

0

dqq2

(2π)3

∫

1

∫ q<k

k

1

(2Ep)22E1

(pp1)
2

q5k2

3− vp · v1

1− vp · vk

h1

×
[

(gpfp−kfk − fpgp−kgk) +
(p+ k)3

p3
(gpgkfp+k − fpfkgp+k)

]

=
3g6N3

c

16π5

∫ ∞

0

dp1p
2
1h1

∫ 1

−1

dx

1− x

∫ ∞

0

dq

q3

∫ ∞

q

dk

k

×
[

(gpfp−kfk − fpgp−kgk) +
(p+ k)3

p3
(gpgkfp+k − fpfkgp+k)

]

, (B.21)

where the upper limit of the integration over k for the first two terms should be cut at p.
When k is small the integrand over k goes like (1+2fp)f

′
p. It is finite, so we can put the lower

limit of
∫

dk as 0. In the first two terms, let k = zp with z being the momentum fraction
of the emitted gluon; in the last two terms let k = z(p + k) with z being the momentum
fraction of the absorbed gluon. Then we have

C<
2↔3 = ξα2

sR
Ia
Ib

∫ zc

0

dz

z

{

[

gpf(1−z)pfzp − fpg(1−z)pgzp
]

+
1

(1− z)4
[

gpgzp/(1−z)fp/(1−z) − fpfzp/(1−z)gp/(1−z))
]

}

, (B.22)

where we introduce the momentum fraction cut zc < 1 to characterizing the fact that k is a
small fraction of the total momentum in this effective 1 ↔ 2 process and the prefactor R is
given by

R ≡ 12N3
c

π2

1

ξ

∫ 1

−1

dx

1− x
m2

D

∫ ∞

0

dq

q3
∼ Ô(1). (B.23)

There are two kinds of infrared divergences in C<
2↔3: (1) The logarithmic divergence:

∫ 1

−1
dx/(1−

x) ∼ ln(1/g). (2) The quadratic divergence
∫

dq/q3 ∼ 1/m2
D. Noticing that C2↔2 is of or-

der α2
s ln(1/g) near equilibrium and (Qs/αs) ln(1/g) in initial Glasma state, we find that

C<
2↔3/C2↔2 is of order Ô(1) in both equilibrium and initial Glasma states. It is worth men-

tioning that recent analysis in [58] has shown that the the 2 ↔ 3 inelastic cross section
from exact matrix element becomes significantly smaller than that from the Gunion-Bertsch
formula, and amounts to ∼ 20% of the 2 ↔ 2 cross section. It therefore seems very plausible
that a realistic choice of R value shall be rather modest.

Now we show that the collision kernel C<
2↔3 conserves energy, i.e,

∫∞

0
dpp3C<

2↔3[fp] = 0:
∫ ∞

0

dpp3C<
2↔3[fp] ∝

∫ ∞

0

dpp3
∫ zc

0

dz

z

{

[

gpf(1−z)pfzp − fpg(1−z)pgzp
]

+
1

(1− z)4
[

gpgzp/(1−z)fp/(1−z) − fpfzp/(1−z)gp/(1−z))
]

}

.
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In the last two terms, by changing the variable p → (1 − z)p, one finds that the first two
terms cancel the last two terms so that

∫∞

0
dpp3C<

2↔3[fp] = 0.
Some remarks are in order regarding the effective reduction of C>

2↔3 to an essentially
elastic contribution. It shall be noted that the whole kernel C2↔3 certainly is and should be
number changing overall. However leading contributions from certain specific kinetic domain
may not necessarily be so. What we have shown is that under the small-angle and collinear
approximation the 2 ↔ 3 collision kernel C2↔3 can be split into two parts in correspondence to
two different kinematic domains, C2↔3 = C<

2↔3+C>
2↔3, where C<

2↔3 is an effective 1 ↔ 2 kernel
and C>

2↔3 becomes effectively elastic. In such a way, we encode the dominant inelastic effects
into C<

2↔3 and the role of C>
2↔3 is to renormalize the total rate of the 2 ↔ 2 process. So why

the piece of contribution C>
2↔3 that originally emerges from the inelastic kernel C2↔3 becomes

effectively elastic? This is because in the kinematic region for ultrasoft gluon emission and
absorption, |k| ≪ |q|, the matrix element for Fig. 1 (left), |Ma

1p↔23k|2, is equal to that of

Fig. 1 (right), |M b
23↔1kp|2, see Eq. (B.7). Intuitively this may be understood as follows: on

top of a 2 to 2 scattering, one may attach an extremely soft particle either on one incoming
particle (thus making a 3 → 2 contribution) or on one outgoing particle (thus making a
2 → 3 contribution), but the two processes have the same rate and thus cancel out to the
leading order of |k|. If one includes even higher orders of the expansion in terms of |k| there
would be sub-leading number-changing contributions from C>

2↔3 as well. To the leading order
of small-angle and collinear approximation that we consider here, there is clearly advantage
in doing such a careful separation of contributions from different regions of the phase space.

C The kinetic equation for anisotropic system

C.1 Simplify C>
2↔3 for anisotropic system

Although in this paper we mainly focus on the isotropic system, we will in this Appendix
present the kinetic equation for anisotropic system. In the anisotropic case, Eqs. (B.13)-
(B.14) are still valid. (When there is no confusion, we will use k to denote |k| and also the
four momentum k. Somewhere, we will use fk to denote f(k).)

C>
2↔3 ≈ 1

Ng

∫

12l

1

2Ep

∫

d4q

(2π)4
|M1p↔2l|2D(q)(2π)4δ4(p1 − q − p2)

×(2π)4δ4(p+ q − l)(gpg1f2fl − fpf1g2gl). (C.1)

D(q) =

∫

k<q

2g2Nc

|k|2
[

1 + 2fk
1− vk · v1

+
1 + 2fk

1− vk · vp

]

≈
∫

k<q

d3k

(2π)32Ek

2g2Nc

|k|2
[

1 + 2f(kv1)

1− vk · v1
+

1 + 2f(kvp)

1− vk · vp

]

=
2g2Nc

(2π)2

∫ q

0

dk
1 + f(kv1) + f(kvp)

k

∫ 1

−1

dx

1− x
. (C.2)
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First, we show that C>
2↔3 conserves particle number. To see this, we write

D(q) = D1(q) +D2(q),

D1(q) =
2g2Nc

(2π)2

∫ q

0

dk
2 + f(kv1) + f(kvp) + f(kv2) + f(kvl)

2k

∫ 1

−1

dx

1− x
,

(C.3)

D2(q) =
2g2Nc

(2π)2

∫ q

0

dk
f(kv1) + f(kvp)− f(kv2)− f(kvl)

2k

∫ 1

−1

dx

1− x
.

(C.4)

Expand v2 around v1 and vl around vp:

v2 ≈ v1 −
q− q · v1v1

p1
− [q2 − 3(q · v1)

2]v1 + v1 · qq
2p21

, (C.5)

vl ≈ vp +
q− q · vpvp

p
− [q2 − 3(q · vp)

2]vp + vp · qq
2p2

. (C.6)

Thus

f(kv1)− f(kv2) = k(v1 − v2) · v1
∂

∂k
f(kv1)

+
k2

2
[(v1 − v2) · v1]

2 ∂2

∂k2
f(kv1) + · · ·

=
q2 − 2(q · v1)

2

2p21
k
∂

∂k
f(kv1) +O

(

q

p1

)3

, (C.7)

f(kvp)− f(kvl) =
q2 − 2(q · vp)

2

2p2
k
∂

∂k
f(kvp) +O

(

q

p

)3

, (C.8)

Because q/p1, q/p are small, we have

D(q) ≈ D1(q). (C.9)

Then we have
∫

d3p

(2π)3
C>
2↔3[fp]

≈ 1

Ng

∫

12pl

∫

d4q

(2π)4
|M1p↔2l|2D1(q)(2π)

4δ4(p1 − q − p2)

×(2π)4δ4(p+ q − l)(gpg1f2fl − fpf1g2gl)

=
H

Ng

∫

12pl

∫

d4q

(2π)4
|M1p↔2l|2

∫ q

0

dk
2 + f(kv1) + f(kvp) + f(kv2) + f(kvl)

2k

×(2π)4(2π)4δ4(p1 − q − p2)δ
4(p+ q − l)(gpg1f2fl − fpf1g2gl), (C.10)
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with

H =
2g2Nc

(2π)2

∫ 1

−1

dx

1− x
. (C.11)

Because the integrand is anti-symmetric in (1, p) and (2, l), so the integral vanishes.
Thus, C>

2→3 can be written in a form −∇p · S where the flux Si is

Si =
N2

c

4π
g4H

∫

dq

q

∫

d3p1

(2π)3

∫ q

0

dk
1 + f(kv1) + f(kvp)

k

[

hp∇j
1f1 − h1∇j

pfp
]

V ij,

(C.12)

with the tensor

V ij = δij(1− vp · v1) +
(

vipv
j
1 + vjpv

i
1

)

. (C.13)

There are now two terms in Si. The second term can be simplified as

∼ −N2
c

4π
g4H∇i

pfp

∫

dq

q

∫

d3p1

(2π)3

∫ q

0

dk
1 + f(kv1) + f(kvp)

k
h1, (C.14)

where we have used the property f(p) = f(−p) to cancel all terms linear in v1. For the first
term, because f(p) = f(−p), ∇j

1f1 ∝ pj1, the only nonzero contributions in V ij∇j
1 should be

V ij∇j
1 ∼ −vjpv

j
1∇i

1 + (vipv
j
1 + vjpv

i
1)∇j

1

∼ −vipv
i
1∇i

1 + vipv
j
1∇j

1 + vipv
i
1∇i

1

∼ vipv
j
1∇j

1 = vipv1 · ∇1 = vip
∂

∂p1
. (C.15)

Then the first term is

∼ N2
c

4π
g4Hhpv

i
p

∫

dq

q

∫

d3p1

(2π)3

∫ q

0

dk

k

∂f1
∂p1

[1 + f(kv1) + f(kvp)]

= −N2
c

4π
2g4Hhpv

i
p

∫

dq

q

∫ q

0

dk

k

∫

d3p1

(2π)3
f1
1 + f(kv1) + f(kvp)

p1
, (C.16)
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where to arrive at the second line we have made integration by part over p1. The flux is then

Si =
N2

c

4π
g4H

{

− 2hpv
i
p

∫

dq

q

∫ q

0

dk

k

∫

d3p1

(2π)3
f1
1 + f(kv1) + f(kvp)

p1

−∇i
pfp

∫

dq

q

∫

d3p1

(2π)3

∫ q

0

dk
1 + f(kv1) + f(kvp)

k
h1

}

≈ N2
c

4π
g4H

{

− 2hpv
i
p

∫

dq

q

∫ mD

0

dk

k

∫

d3p1

(2π)3
f1
1 + f(kv1) + f(kvp)

p1

−∇i
pfp

∫

dq

q

∫

d3p1

(2π)3

∫ mD

0

dk
1 + f(kv1) + f(kvp)

k
h1

}

=
N2

c

4π
g4LH

{

− 2hpv
i
p

∫

d3p1

(2π)3
f1
K(v1,vp)

p1
−∇i

pfp

∫

d3p1

(2π)3
K(v1,vp)h1

}

,

(C.17)

where we define

L ≡
∫

dq

q
, (C.18)

K(v1,vp) ≡
∫ mD

0

dk
1 + f(kv1) + f(kvp)

k
. (C.19)

Thus C>
2↔3 becomes

C>
2↔3 = −∇p · S

=
N2

c

4π
g4LH∇p ·

{

2hpvp

∫

d3p1

(2π)3
f1
K(v1,vp)

p1

+(∇pfp)

∫

d3p1

(2π)3
K(v1,vp)h1

}

. (C.20)

It obviously conserves particle number and it is not difficult to show that it conserves energy
as well. Furthermore, the Bose-Einstein distribution with an arbitrary chemical potential
vanishes C>

2↔3.
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C.2 Simplify C<
2↔3 for anisotropic system

In this case, Eqs. (B.19)-(B.20) are still valid, we have

C<
2↔3 =

2g6N3
c

π

∫ ∞

0

dq

∫

1

∫ q<k

k

p1
q3k2

3− vp · v1

1− vp · vk
h1

×
{

[g(p)f(p− kvp)f(kvp)− f(p)g(p− kvp)g(kvp)]

+
(p+ k)3

p3
[g(p)g(kvp)f(p+ kvp)− f(p)f(kvp)g(p+ kvp)]

}

=
g6N3

c

2π

∫ ∞

0

dq

∫

d3p1

(2π)3
h1

∫ ∞

q

dk
dΩk

(2π)3
1

q3k

3− vp · v1

1− vp · vk

×
{

[g(p)f(p− kvp)f(kvp)− f(p)g(p− kvp)g(kvp)]

+
(p+ k)3

p3
[g(p)g(kvp)f(p+ kvp)− f(p)f(kvp)g(p+ kvp)]

}

=
3g6N3

c

2π

∫ ∞

0

dq

∫

d3p1

(2π)3
h1

∫ ∞

q

dk
dΩk

(2π)3
1

q3k

1

1− vp · vk

×
{

[g(p)f(p− kvp)f(kvp)− f(p)g(p− kvp)g(kvp)]

+
(p+ k)3

p3
[g(p)g(kvp)f(p+ kvp)− f(p)f(kvp)g(p+ kvp)]

}

=
3g6N3

c

(2π)3

∫

d3p1

(2π)3
h1

∫ 1

−1

dx

1− x

∫ ∞

0

dq

q3

∫ ∞

q

dk

k

×
{

[g(p)f(p− kvp)f(kvp)− f(p)g(p− kvp)g(kvp)]

+
(p+ k)3

p3
[g(p)g(kvp)f(p+ kvp)− f(p)f(kvp)g(p+ kvp)]

}

,

(C.21)

where the upper limit of the integration over k for the first two terms should be cut at p. The
lower limit of the integration over k can be set to be zero because there is no IR singularity.
In the first two terms, let k = zp with z being the momentum fraction of the emitted gluon;
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in the last two terms let p = (1− z)(p + k). Then we have

C<
2↔3 =

3g6N3
c

(2π)3

∫

d3p1

(2π)3
h1

∫ 1

−1

dx

1− x

∫ ∞

0

dq

q3

×
∫ 1

0

dz

z(1 − z)

{

1

2

[

gpf(1−z)pfzp − fpg(1−z)pgzp
]

+
1

(1− z)3
[

gpgzp/(1−z)fp/(1−z) − fpfzp/(1−z)gp/(1−z))
]

}

. (C.22)

It can be shown that the collision kernel C<
2↔3 conserves energy, i.e,

∫

d3ppC<
2↔3[fp] = 0.
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