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We show that new physics can show up in dileptonic events through its radiative contributions to
the dilepton invariant mass, leading to unique “monocline” features in m``, as well as the angular
distribution of the leptons. We focus in particular on the case of dark matter with scalar messengers
coupling it to the quarks and leptons. Consistent thermal models require the dark matter to have
masses of 100’s GeV and have & 1 couplings to the Standard Model (SM), implying that radiative
corrections to the SM Drell-Yan rate can be sizeable. We consider the case of Majorana, Dirac,
and pseudo-Dirac dark matter and show that there are regions of parameter space where the non-
existence of a monocline, which starts at roughly twice the dark matter mass, m`` ∼ 2mχ, places the
strongest constraint on the model. We make predictions for the sensitivities at the high luminosity
14 TeV LHC as well as a future 100 TeV proton-proton collider. We find that our dilepton signal
is most sensitive when the mediator and the dark matter are nearly degenerate and conventional
MET-based searches are least sensitive.

I. INTRODUCTION

Now that the Higgs has been discovered, one of the
highest priorities for the LHC in the next run is to find
(or place strong bounds on) particle dark matter. The
standard approach is to look for dark matter pair pro-
duction as missing transverse momentum (MET) in as-
sociation with some initial state radiation. Processes of
that type could arise from effective operators [1–10] or
UV-complete simplified models involving various types
of mediators [5, 7, 9, 11–23]. One of the principal results
from these works is that there is complementarity be-
tween the bounds from direct detection and the bounds
from the various types of LHC searches for evidence of
dark matter and its mediators.

The simplest models contain only a few parameters:
the dark matter mass, the mediator mass(es), and the
coupling(s) of the dark matter to one (or more) Stan-
dard Model (SM) field(s). Consider the case where the
dark matter is a fermion, the mediator is a scalar (but
with the SU(3) × SU(2) × U(1) quantum numbers of a
Standard Model quark), and there is a renormalizable
interaction between a light quark, the dark fermion, and
the scalar mediator. While there are several constraints,
the dominant ones are [13]:

(i) direct detection for small mass splittings between
the dark fermion and scalar mediator;

(ii) jets + MET constraints from LHC for large mass
splittings caused by scalar mediator production and
decay to dark fermions and jets.

These constraints tend to push the dark fermion and
scalar mediator masses to larger values with moderate
mass splittings. However, the dark matter annihila-
tion cross section, that sets the thermal relic abundance,
scales with positive powers of the coupling multiplying
negative powers of the dark fermion mass (or scalar me-
diator mass – it doesn’t matter since their mass scales

are highly correlated). The downward march of the ex-
perimental bounds must therefore be accompanied by an
upward march of the coupling constant(s), which in some
cases, can now be & 1 [13].

Couplings & 1 provide a potential new avenue for ex-
ploration and discovery at collider experiments. Namely,
they open up the possibility of experimentally measur-
able radiative corrections of dark fermions and mediators
to Standard Model processes. There are several types
of radiative corrections that we could consider. (Earlier
work that has considered radiative corrections of dark
matter include [24–26]) In this paper, we focus on the ra-
diative corrections to dilepton production at hadron col-
liders. For the model, we assume there is a dark fermion
(that can acquire Dirac and Majorana masses) as well
as scalar messengers: scalar quarks that couple to light
quarks and the dark fermion with coupling strength λq̃,
and scalar leptons that couple to leptons and the dark
fermion with coupling strength λ˜̀.

Dilepton production is well known to be a harbinger
for new physics (NP). New gauge bosons (Z ′s), extra di-
mensions, and effective operators are well known exam-
ples that have already been bounded by ATLAS [27, 28]
and CMS [29, 30] using the shape and normalization of
dilepton production as a function of the dilepton invari-
ant mass,

√
ŝ = m``. Our primary interest is the new

dark sector “box” contributions to qq̄ → `+`−, that are
proportional to λ2

q̃λ
2
˜̀/(16π2) in the amplitude, interfering

with the usual Drell-Yan contribution from the Standard
Model. New kinematical features in the dilepton invari-
ant mass spectrum arise at invariant masses of twice the
dark matter mass,

√
ŝ ' 2mχ, from both the real part

of the new physics box amplitude as well as an imagi-
nary part for

√
ŝ > 2mχ. Unlike a Z ′ search, however,

the box contribution does not look anything like a res-
onance. In fact, there can be both constructive and de-
structive interference effects that depend on the model
and the strength of the couplings. At large, but still
perturbative couplings (roughly λq̃, λ˜̀ & 1.4), we find



that the |box amplitude|2 contribution dominates. This
leads to a unique monocline1 feature in the dilepton in-
variant mass. Standard “bump-hunter” approaches are
not appropriate, and could miss an otherwise observable
feature in the spectrum. Like a Z ′ or extra dimension
search, nontrivial contributions to the forward backward
asymmetry AFB are also present. Unlike a Z ′ or extra di-
mension search, there is further nontrivial angular depen-
dence that can potentially be uncovered using strategies
implemented in searches for the new physics contribu-
tions to the dijet angular distribution [32].2

All of these features arise from the box function contri-
bution to the amplitude that, we stress, cannot be cap-
tured by effective four-fermion operators. Instead, it is
crucial to “scan” over finite

√
ŝ = m`` to uncover the

dominant features of the box contribution that appear for√
ŝ & 2mχ. Given that we expect the mediator masses

larger than but of the order of the dark matter mass (to
obtain the correct relic abundance with non-perturbative
couplings), there is no regime where the dark matter or
the mediator can be “integrated out” while leaving a fi-
nite signal. Indeed, one of our most important results
is that the mass scale of the dark fermions appears as a
kinematical feature in the radiatively corrected dilepton
invariant mass distribution. This is a completely distinct
approach to measuring a putative dark matter particle
mass at a collider.

We say “putative” since we still have no collider probe
of the stability of the dark matter. Indeed, we should
emphasize that the signal we propose to look for, namely
kinematical features in the dilepton invariant mass spec-
trum and angular distributions consistent with radiative
corrections from a new “dark” sector, could arise from
other new physics sectors that have nothing to do with
dark matter. In this work we focus on one concrete dark
matter model.

We have organized the paper as follows. First, we
present the model in Sec. II. Next, we discuss the dark
sector box contributions to the dilepton invariant mass
distribution in Sec. III, with angular distributions dis-
cussed in Sec. III D. In Sec. IV we consider constraints
on the model from collider searches, dark matter direct
detection experiments, and the dark matter relic abun-
dance. Then, we compare the sensitivity of the dilep-
ton signal with these other constraints on the parameter
space in Secs. V and VI. Specifically, we find that the
20 fb−1 8 TeV dataset from LHC experiments could con-
strain a modest region of parameter space that, in some
cases, is not yet excluded by other constraints. Once the
LHC goes up to 14 TeV with larger luminosity, a much
more substantial region of the parameter space can be
probed. In addition to our projected sensitivities at 14

1 In geology, a step-like feature in rock strata consisting of rapid
rise and a gentle falloff. A common example is the Waterpocket
fold in Capitol Reef National Park, Utah, USA [31].

2 We thank G. Perez for pointing this out to us.

Field Spin SU(3)c ⊗ SU(2)W ⊗ U(1)Y Z2

χ1, χ2 1/2 (1,1,0) −1

ũ 0 (3,1, 2
3

) −1

d̃ 0 (3,1,−1
3

) −1

˜̀= ẽ, µ̃ 0 (1,1,−1) −1

TABLE I. The field content of our model and the correspond-
ing quantum numbers. To ensure the stability of the dark
matter candidate, the Lagrangian is assumed to be invariant
under a Z2 parity.

TeV, we also briefly consider the impact of a 100 TeV
collider, finding that it has excellent sensitivity.

II. THE MODEL: MIXED (PSEUDO-DIRAC)
FERMIONIC DARK MATTER

The model we propose consists of two SM singlet
fermions χ1,2, as well as colored and uncolored scalars

ũ, d̃ and ˜̀ for mediating the interactions between the
singlet fermions and the SM fermions. The field con-
tent along with their quantum numbers is summarized
in Table I. We impose a Z2 parity under which the dark
matter fermions as well as the mediators are odd, while
all SM fields are even. In this way, the lighter SM singlet
fermion is stable and therefore a dark matter candidate.
We describe the singlet fermions with two two-component
(Weyl) spinors χA and χB . We allow for both Dirac and
Majorana masses, a scenario that we refer to as “mixed”
dark matter (recently discussed by two of us in a super-
symmetric context in [33]). In the case where the Ma-
jorana mass is small compared to the Dirac mass, such
a scenario is also referred to as pseudo-Dirac dark mat-
ter [34, 35]. The Lagrangian is given in two-component
language by

L = iχ†Aσ̄
µ∂µχA + iχ†Bσ̄

µ∂µχB + LDM mass (1)

−
∑
q=u,d

|Dµq̃|2 −M2
q̃ q̃q̃
∗ − (

√
2 λq̃ q̃

∗χ†Bq
†
R + h.c.)

−
∑
`=e,µ

|Dµ
˜̀|2 −M2

˜̀
˜̀̀̃ ∗ − (

√
2 λ˜̀

˜̀∗χ†B`
†
R + h.c.) ,

where q†R and `†R are the right-handed components of
the SM quarks and leptons respectively that are SU(2)W
singlets, ũ, d̃ and ˜̀ are the colored and uncolored scalar
mediators and Mũ, Md̃ and M˜̀ are their masses. In the
Lagrangian we omitted quartic couplings involving the
scalar mediators since they have negligible impact on the
phenomenology we discuss below.

We make four assumptions about the model:

1. We assume χB interacts with the SM fermions
through the mediators, while χA does not. This
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type of interaction is loosely inspired by “mixed”
gaugino supersymmetric models [33] where the
gaugino interacts with the quarks and squarks,
while the fermionic Dirac partner does not. Hav-
ing said this, we do not assume the interactions
or masses are otherwise supersymmetrizable. This
can be parameterized in the context of dimension-
less supersymmetry breaking [36]. Taking the al-
ternate route of allowing couplings for χA would
tend to reshuffle the effective strength of the cou-
plings, and this does not change the qualitative re-
sults. The only exception to this is the possibility
of additional CP-violating phases in the couplings.
However, we do not consider any of the couplings
within the model to violate CP in this work, so this
does not add anything to our discussion.

2. We assume the hidden sector couples only to one
or both of uR and dR. It is crucial that we have
couplings to the light fermions, though the hand-
edness and isospin is not particularly important.
We could also generalize to couplings with all fla-
vors of quarks and leptons, i.e. the mediator cou-
plings λũi

, λd̃i and λ˜̀
i

could be non-zero for all
SM flavors i. This is strongly constrained by flavor
changing neutral current processes. For the pur-
poses of this paper we assume that the mediator
couplings are aligned with the SM Yukawa cou-
plings such that the colored mediators couple only
to the first generation of right-handed quarks.3 We
choose right-handed quarks to allow us to separate
the effects of a up-type mediator from a down-type
mediator. Moreover, due to SU(2)W invariance, an
exact alignment would not be possible for couplings
to the left-handed SM quark doublets.

3. We assume the hidden sector couples only to right-
handed electrons and muons, eR and µR, through
their respective mediators ẽ and µ̃ with no flavor-
violating couplings. This could be trivially ex-
tended to include τR, but since di-tau production
is considerably more difficult to measure accurately
compared with di-electron or di-muon production,
we only consider the latter.

4. Finally, we assume there are no CP violating phases
in the mass and coupling parameters.

The mass Lagrangian for the dark matter sector,

3 An alternative approach to control flavor changing neutral cur-
rents would be to introduce 3 generations of mediators. This
would allow to implement a minimal flavor violation structure,
such that the mediator couplings are diagonal in flavor space and
each generation of mediators couples to only one generation of
SM fermions. Yet another possibility which we do not explore
would be to assume that dark matter carries flavor [37–41].

LDM mass, is given in two-component notation by

LDM mass =
(
χA χB

)∆M Md

Md ∆M ′

χA
χB

+ h.c. ,

(2)
where Md is a Dirac mass and ∆M and ∆M ′ are Ma-
jorana masses. Although our fourth assumption above
makes all mass terms real, we first, for completeness,
present general results for the mass eigenstates. From
the mixing of χA and χB , the mass matrix above gets
diagonalized by some unitary matrix U , and we obtain
eigenmasses given by

M̄2
1 =

1

2

[
|∆M |2 + |∆M ′|2 + 2|Md|2

−
√

4|∆MM∗d + ∆M ′∗Md|2 + (|∆M |2 − |∆M ′|2)2)

]
M̄2

2 =
1

2

[
|∆M |2 + |∆M ′|2 + 2|Md|2

+
√

4|∆MM∗d + ∆M ′∗Md|2 + (|∆M |2 − |∆M ′|2)2)

]
Given our assumption that the physical phase in the

mass Lagrangian vanishes, the mass eigenstates areχ1

χ2

 =

 cos θ sin θ

− sin θ cos θ

χA
χB

 , (3)

with mixing angle given by

cos θ =
1√
2

(
1 +

∆M ′ −∆M√
(∆M ′ −∆M)2 + 4M2

d

)1/2

. (4)

Given that only one dark fermion χB couples to the SM,
we can further simplify these expressions. Specifically, we
can take ∆M ′ = 0, which implies the heavier eigenstate
χ2 ' χA is the one that decouples from the SM. This
gives the correct Majorana limit, i.e., the lightest dark
fermion is the one that maximally couples to the SM.
This was explored previously in the context of “mixed
gauginos” in supersymmetry [33]. The mass eigenvalues
simplify to

M̄2
1 = M2

d +
∆M2

2
−∆M

√
M2
d +

∆M2

4

M̄2
2 = M2

d +
∆M2

2
+ ∆M

√
M2
d +

∆M2

4
. (5)

Note that in this limit |M̄2| − |M̄1| = ∆M , and with
our choice of mixing matrix in Eq. (3) without any ad-
ditional phases, M̄1 < 0 and M̄2 > 0. In order to avoid
the frequent use of minus signs in the following, we define
M1 ≡ −M̄1, M2 ≡ M̄2 such that M1,M2 > 0. By hold-
ing the lighter eigenmass M1 constant, we can interpolate
between the Dirac and Majorana limits by using ∆M as
a control parameter. In particular, ∆M = 0 gives us the
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Model Couplings Mediator masses

U λ ≡ λ˜̀ = λũ , Mφ ≡M˜̀ = Mũ

λd̃ = 0

D λ ≡ λ˜̀ = λd̃ , Mφ ≡M˜̀ = Md̃

λũ = 0

UD λ ≡ λ˜̀ = λũ = λd̃ Mφ ≡M˜̀ = Mũ = Md̃

TABLE II. The simplified models considered in the paper.

pure Dirac limit with cos θ = 1/
√

2, and ∆M → ∞ cor-
responds to the pure Majorana limit with cos θ = 0. We
will see shortly that this method of interpolation is most
useful for studying the phenomenology of pseudo-Dirac
dark matter.

A. Simplified Models

In addition to the four assumptions about the struc-
ture of the model, we will further simplify the parameter
space in order to capture the main results of the paper.
We do this using “simplified models”, which take the
model from the previous section, and consider several
distinct simplifying assumptions about the parameters.
This is analogous to what is regularly done by the LHC
collaborations to examine the impact of their experimen-
tal searches on, for example, low energy supersymmetry.

We consider three simplified models which are sum-
marized in Table II. The difference among these models
are:

• Model U has χ coupling exclusively to right-handed
up quarks,

• Model D has χ coupling exclusively to right-handed
down quarks, and

• Model UD has χ coupling to both right-handed
quarks of the first generation.

In all three models, the colored and uncolored scalar
mediators are taken degenerate with mass Mφ, and all
fermion-scalar-dark matter couplings are assumed equal,
denoted by λ. The mass of the lighter dark fermion state
is denoted byMχ in all three simplified models. The mass
of the heavier dark fermion state is given by Mχ + ∆M .

III. DILEPTON SIGNATURES

A. Overview

At the LHC, dilepton production, pp→ `+`−, is dom-
inated by the Drell-Yan process, qq̄ → `+`−, with sub-
dominant contributions from the production of tops, di-
bosons, dijets and W+jet. Since our interest is in new

physics contributions that interfere with Drell-Yan, we
neglect these subdominant processes when computing
Standard Model rates. This is a good approximation for
at least LHC energies. We also do not incorporate QCD
or electroweak NLO corrections, since consistency would
require also incorporating these corrections to the new
physics contribution, and this is beyond the scope of this
paper. Hence, Standard Model dilepton production is
approximated solely by the tree-level s−channel photon–
and Z–mediated contributions shown in the left diagram
of Fig. 1. (At least some of the NLO corrections would
be common to both Drell-Yan and our new physics con-
tribution, dropping out of the ratio.) We also evaluate
the couplings at a fixed scale in perturbation theory. RG
improvement is straightforward to incorporate, but does
not significantly affect our results other than redefining
the new physics couplings λq̃, λ˜̀ relative to the modest
RG evolution of the electroweak couplings.

At the one-loop level of our model, the dark fermions
and mediators give corrections to dilepton production
pp→ `+`− through self-energy corrections, vertex correc-
tions and box diagrams. The box diagram is enhanced
relative to the self energies and the vertex corrections
by a factor λ2/g2, where g is an electro-weak coupling.
As we will see below, in the interesting regions of pa-
rameter space that can be probed at current and future
hadron colliders, the coupling λ is considerably larger
than the electroweak couplings g, g′. Self-energy and ver-
tex correction amplitudes can be safely neglected. The
gauge boson self-energy diagrams would contribute to the
running of the electroweak coupling at scales above the
masses of the dark states. Ref. [42] discusses methods
to probe hidden sectors at high energy scales by measur-
ing deviations of the electroweak running from the SM
at lower energies. Our approach, by taking only the box
diagrams into account, probes the new physics sector di-
rectly at the mass scales of the particles involved. This is
done by means of examining threshold effects, i.e., new
terms in the amplitude that appear when states running
in the loop go on-shell. We briefly review some salient
aspects of these effects here. For a comprehensive review
of dispersion relations in Feynman amplitudes, see [43].

Consider a general one-particle irreducible one-loop di-
agram of a 2 → 2 scattering process. Let the masses
of the propagator states that connect the initial and fi-
nal states be Mn. The amplitude develops an imaginary
part for

√
s >

∑
n |Mn|, where s is the Mandelstam vari-

able. This imaginary part is given by the optical theorem,
which states that

2 ImM(in→ out) =∑
n

∫
dΠnM∗(out→ n)M(in→ n) , (6)

where in and out are the initial and final states respec-
tively, n denotes the intermediate on-shell states and∫
dΠn is the integral over the phase space of n.
When applied to the box diagram shown in the center

of Fig. 1, the imaginary part appears in the amplitude
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FIG. 1. Feynman diagrams of the most important processes that contribute to dilepton production in our model. The tree-level
s-channel photon-mediated and Z-mediated diagrams in the SM (left) interfere with the standard box diagrams (center) and
the crossed box diagrams (right). The indices on the dark fermions are i = 1, 2 and j = 1, 2, thus making four combinations
each of standard and crossed box diagram.

for
√
s > Mχi

+Mχj
and Eq. (6) becomes

2 ImM(qq̄ → `+`−) =∑
χ

∫
dΠχχM∗(`+`− → χχ)M(qq̄ → χχ) . (7)

In addition to the turn-on of ImM,4 the real part of the
amplitude, ReM, undergoes a continuous but sharp rise
as well, a consequence of the dispersion relations that
follow from the unitarity of the S-matrix [43].

Since the couplings of our model are only to right-
handed SM fermions, the new physics amplitude inter-
feres only with that part of the SM amplitude involving
right-handed external fermions. That is, if we denote the
Standard Model amplitude by,

MSM =MLL
SM +MLR

SM +MRL
SM +MRR

SM , (8)

where the first (second) letter of each superscript denotes
the chirality of the initial state quark (final state lepton),
then onlyMRR

SM interferes with the new physics contribu-
tions given our assumptions about how the new fermions
couple in the model. Including the corresponding “left-
handed” mediators would allow interference with all of
the terms above.

B. Dilepton Rates: Dirac Case

We now discuss the role of interferences and threshold
effects in generating the various signatures of our model.
We first consider the simple case of a dark matter candi-
date that is a Dirac fermion.

The only box diagram that contributes in this case is
shown in the center of Fig. 1. We can then write the total
amplitude at the parton level as

Mtotal =MSM +Mbox , (9)

4 Note that even if we allowed the masses ∆M,∆M ′,Md and cou-
plings λq̃ , λ˜̀ in Eq. (2) to be complex, no extra phase would
appear in Mbox, as only absolute values of these quantities en-
ter: Mbox ∝ |λq̃ |2|λ˜̀|2.

where the Standard Model amplitude MSM corresponds
to the sum of the s-channel photon- and Z-mediated tree-
level amplitudes with all polarizations shown in the left
diagram of Fig. 1,

MSM =Mphoton +MZ . (10)

Neglecting the masses of the quarks and leptons, we can
write the double differential parton level qq̄ → `+`− cross
section as

dσtotal ≡
d2σtotal

d cos θdm``

= dσSM + dσint + dσRe
box + dσIm

box . (11)

Here, θ is the angle between the outgoing dilepton axis
and incoming diquark axis in the center-of momentum
frame. The terms in Eq. (11) are given by

dσSM =
1

32πs
|MSM|2 , (12)

dσint =
1

32πs
2Re(MRR

SMM∗box), (13)

dσRe
box =

1

32πs
|ReMbox|2 , (14)

dσIm
box =

1

32πs
|ImMbox|2 , (15)

where MRR
SM is defined in Eq. (8). Our analytic results

for the box contributions to the parton level cross section
are collected in Appendix A.

As we vary the dilepton invariant mass m``, we ex-
pect, for m`` � 2Mχ, dσtotal to mimic the behavior of a
non-resonant process generated by a higher-dimensional
contact operator. The effects of such contact operators in
dilepton production are being searched for by CMS [30]
and ATLAS [27]. As we approach the kinematic thresh-
old, m`` = 2Mχ, the contact operator description breaks
down and a “monocline” feature arises from the contri-
butions to:

(i) dσint, due to threshold effects in ReMbox,

(ii) dσRe
box, which for sizeable couplings λ can dominate

over dσint due to its containing eight powers of the
coupling against four, and

(iii) dσIm
box, which turns on at m`` ≥ 2Mχ.
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FIG. 2. The differential pp → `+`− cross sections as a func-
tion of the dilepton invariant mass in Model U with ∆M = 0
(pure Dirac limit), λ = 1.8 and Mχ = Mφ = 500 GeV. Here,
blue: dσSM, brown: dσRe

box, green: dσIm
box, magenta: dσint,

red: dσtotal, where these quantities are defined in Eqs. (11)
and (12) - (15).

We illustrate this behavior with an example in Fig. 2,
which shows the differential pp → `+`− cross section
integrated over cos θ for Model U at the LHC with
8 TeV center of mass energy. To obtain the proton level
pp → `+`− cross section, throughout this work, we con-
volute the parton level results from Appendix A with
MSTW2008NNLO parton distribution functions [44]. In
the plot we set the mass splitting of the dark fermions to
∆M = 0, corresponding to the pure Dirac limit. The
mediator couplings are set to λ = 1.8 and we chose
the masses of the dark fermions and the mediators as
Mχ = Mφ = 500 GeV. The various curves correspond
to σSM (blue); σRe

box (brown); σIm
box (green); σint (ma-

genta); σtotal (red); where these quantities are defined
in Eqs. (11) and (12) - (15).

Note that the example point shown in Fig. 2 falls in a
region of parameter space where the new physics signal
is dominated by dσbox ∝ |Mbox|2. At lower couplings,
the dominant contribution to the signal becomes the in-
terference term dσint as defined in Eqs. (13). Numeri-
cally, we find that these two regimes are separated by
λ ' 1.4 in the presence of a pure Dirac fermion. This
comes into consideration when we deal with constraints
on our model from dilepton spectrum measurements and
in projecting results for future colliders.

The blue, magenta and brown curves in Fig. 2 (corre-
sponding to dσSM, dσint, and dσRe

box respectively) appear
to intersect at m`` ∼ 950 GeV and m`` ∼ 1150 GeV. This
intersection is a coincidence for the parameters presented
and not a physical effect of our model. It arises from the
difference in which initial states contribute to MSM and
Mbox. Since both up and down quarks contribute to
MSM, both these PDFs are convolved with the partonic
level rates to obtain dσSM. In Model U, only the up quark
contributes to Mbox, hence its PDF alone is convolved

with the partonic rates to obtain dσint and dσRe
box. There-

fore, the apparent intersection seen here would be absent
if we had presented partonic level rates, or used Model
D or Model UD for illustration in Fig. 2. Furthermore,
with Model U if the coupling is increased (decreased) the
point where magenta and brown curves intersect moves
up (down), and will not lie on the SM curve. Similarly,
if Mφ is altered the triple intersection would go away.

C. Dilepton Rates: Mixed (Pseudo-Dirac) Case

Since a mixed dark matter candidate can be written
as two Majorana eigenstates, we first begin with a brief
discussion of the Majorana limit, that will be useful in
understanding the pseudo-Dirac case. In addition to
the standard box diagram, Majorana fermions have a
“crossed box” diagram (with clashing fermion flow ar-
rows) contributing at one-loop order, as shown by the
right diagram in Fig. 1. The total amplitude becomes
the sum

Mtotal =MSM +Mbox +Mxbox , (16)

where Mxbox is the amplitude for the crossed box dia-
gram. Importantly,Mxbox comes with a minus sign rela-
tive toMbox due to the different ordering of the external
spinors. Thus, the direct and crossed box diagrams inter-
fere destructively, and we expect the new physics effects
in the cross section to be much less pronounced in the Ma-
jorana case than in the Dirac case. In particular, we find
that over large parts of the parameter space the “mono-
cline” feature noticed in the Dirac scenario is washed out
by the destructive interference. Even for sizeable cou-
plings λ & 1.4, the largest contribution to the deviation
from the Standard Model cross section comes typically
from the interference term between the tree and box am-
plitudes, which carries only four powers of the coupling λ.

We now turn to the most general case of mixed
(pseudo-Dirac) dark matter. Four contributions arise
from direct box diagrams and four additional contribu-
tions from the crossed box diagrams, corresponding to
the four combinations of χ1 and χ2 in the loop, as shown
in Fig. 1. The total amplitude is now given by

Mtotal =MSM +
∑
i=1,2

∑
j=1,2

(Mij
box +Mij

xbox) , (17)

whereMij
(x)box is the (crossed) box amplitude with χi in

the upper fermion propagator and χj in the lower fermion
propagator. It is illustrative to inspect the analytical
form of the direct and crossed box amplitudes:

Mij
box ∝ [ū(p4)γµPRu(p1)][v̄(p2)γνPRv(p3)]

×
∫

d4q

(2π)4

qµ(q + p1 + p2)ν

Dij
, (18a)

Mij
xbox ∝ [ū(p3)PRu(p1)][v̄(p2)PLv(p4)]
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FIG. 3. The differential pp→ `+`− cross section as a function
of the dilepton invariant mass for a mixed dark matter particle
χ, in Model U. Here, λ = 1.8 and Mχ = Mφ = 500 GeV.
The color code is – blue: σSM, red: ∆M = 0 (pure Dirac),
green dashed: ∆M = 5 GeV, grey: ∆M = 50 GeV, magenta:
∆M = 200 GeV, orange: ∆M →∞ (pure Majorana).

×
∫

d4q

(2π)4

M̄iM̄j

Dij
, (18b)

where p1, p2, p3, and p4 are the momenta of the incom-
ing quark, incoming anti-quark, outgoing positron, and
outgoing electron, respectively, and Dij is the product of
the denominators of the propagators in the loop; finally,
M̄1 = −M1 and M̄2 = M2 (see Eq. (5)). The chirality
projection operators in the Feynman amplitude pick out
the /p terms in the propagators of the standard box, and
the mass terms in those of the crossed box, which is also
indicated by the mass insertions in the right diagram of
Fig. 1.

In the summation in Eq. (17), the combinations with
the same dark fermion in the upper and lower propagator
M11

box+M11
xbox andM22

box+M22
xbox, are suppressed due to

destructive interference as discussed above. This leaves
us with (M12

box +M12
xbox) + (M21

box +M21
xbox).

From Eq. (18b), we see that the crossed box dia-
grams with two different dark fermions in the upper and
lower propagator come with a relative minus sign with
respect to the crossed box diagrams that contain only
one dark fermion species (the numerators are M̄1M̄2 =
−Mχ(Mχ+∆M), and M̄2

1 = M2
χ or M̄2

2 = (Mχ+∆M)2,

respectively). Therefore, M12
box = M21

box interferes con-
structively with M12

xbox = M21
xbox. Consequently, in the

mixed dark matter case we expect that the monocline
feature in the cross section appears at a dilepton invari-
ant mass of m`` 'M1 +M2 = 2Mχ + ∆M .

The pure Dirac and Majorana limits discussed above
can now be more readily understood. When ∆M = 0
(Dirac limit), the monocline feature appears at m`` '
2Mχ, as seen in Fig. 2. When ∆M → ∞ (Majorana
limit), the monocline feature is at m`` → ∞ and is not
observed. As an illustration, we provide in Fig. 3 the
dilepton invariant mass distribution in Model U with
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FIG. 4. The differential pp→ `+`− cross section as a function
of the dilepton invariant mass in Model U. Shown here are the
effects of variation in λ keeping Mχ = 500 GeV fixed, with
Mφ = Mχ and ∆M = 0. Here, red: λ = 1.8, green: λ = 1.4,
blue: SM.

λ = 1.8 and Mχ = Mφ = 500 GeV for intermedi-
ate values of the dark fermion mass splitting ∆M = 5,
50 and 200 GeV, given by green dashed, grey and ma-
genta curves respectively. The monocline is featured at
m`` ' 1005, 1050 and 1200 GeV, respectively. For com-
parison, Fig. 3 also shows the pure Dirac (red) and pure
Majorana limits (orange). We observe that a splitting of
∆M = 5 GeV, a value that corresponds to the pseudo-
Dirac case, results in nearly identical behavior to that of
pure Dirac dark matter. To summarize, introducing two
Weyl fields in the dark matter sector with the two eigen-
states split by a small mass – a scenario called pseudo-
Dirac dark matter – can give a dilepton invariant mass
distribution that has almost exactly the same features as
a pure Dirac dark matter particle in dilepton production.

We end this section by discussing aspects of the depen-
dence of the monocline feature on the mediator coupling
λ and the dark matter mass. The change in the size of
the monocline feature for several values of the coupling
λ is shown in Fig. 4, where we fix Mχ = 500 GeV and
∆M = 0. The red curve corresponds to λ = 1.8 and the
green curve to λ = 1.4, with the blue curve depicting the
Standard Model LO value. As one would expect, the de-
viations from SM become less significant as the coupling
is decreased.

In Fig. 5, we show the behavior of dilepton spectrum
in the regime where the new physics signal is domi-
nated by the interference term dσint. For illustration,
we have taken λ = 1 and Mχ = 300 GeV. The upper
and lower plots indicate the distribution dσ/dm`` and
the ratio dσtot/dσSM respectively. The red and green
curves in both plots represent Model U and D respec-
tively, with the blue curve in the upper plot denoting
the SM at LO. As expected, due to the smaller cou-
plings the new physics effect on the dilepton rate is much
smaller. Also seen are the interesting effects of destruc-
tive interference with the SM amplitude. In Model U,
we see a reduction of the dilepton rate with respect to
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FIG. 5. Upper plot: The differential pp→ `+`− cross section
as a function of the dilepton invariant mass. Lower plot: the
ratio dσtot/dσSM as a function of m``. We set λ = 1 and
Mχ = 300 GeV, with Mφ = Mχ and ∆M = 0. Here red:
Model U, green: Model D, blue: SM.
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FIG. 6. The differential pp→ `+`− cross section as a function
of the dilepton invariant mass in Model U. Shown here are the
effects of variation in Mχ and Mφ holding λ = 1.8 fixed and
∆M = 0. Here, red: Mχ = Mφ = 500 GeV, green: Mχ =
Mφ = 300 GeV, brown: Mχ = 300 GeV, Mφ = 500 GeV,
blue: SM.

the SM (dσtot/dσSM < 1) for invariant masses consider-
ably above the kinematic threshold m`` & 1300 GeV. In
Model D on the other hand, destructive interference is
present below and near the threshold, while for large in-
variant masses m`` & 850 GeV, the interference becomes
again constructive. Note that in both models the new
physics amplitudes have the same sign, while the sign
of the SM amplitude differs due to the differing electric
charge of the initial state quarks.

The variation of the signature as a function of the
masses is seen in Fig. 6, where the coupling is fixed at
λ = 1.8 and ∆M = 0. The green and red curves take
Mχ = Mφ for two values, 300 and 500 GeV respectively.

Notice that even though the location of the monocline
is different for different Mχ’s, the size of the deviation
from the Standard Model is approximately independent
of Mχ. This is because when the new physics contri-
bution is dominated by |Mbox|2 and |Mxbox|2, as is the
case for λ & 1.4, for a fixed ratio of mediator to dark mat-
ter mass, Mφ/Mχ, the ratio dσtotal/dσLO is determined
mainly by the coupling. We also show the effect of split-
ting Mφ from Mχ in the brown curve. Notice that the
sharp monocline rise is less pronounced near m`` = 2Mχ

(compared with the green curve), and the size of the ef-

fect for
√
ŝ > 2Mφ slowly asymptotes to the green and

red curves.

D. Angular Distribution

The loop corrections in the model also leave their
imprint in the angular distribution of the rates
d2σ/dm``dcθ, where cθ ≡ cos θ with the angle θ already
introduced in Eq. (11). In general, the angular distribu-
tion d2σ/dm``dcθ can be written as

d2σ

dm``dcθ
=

∞∑
n=0

anc
n
θ , an ∈ R , (19)

where the an coefficients are functions of mll. For an s-
channel vector-mediated process (such as the SM Drell-
Yan process at tree level), a0 = a2 and an≥3 = 0. This
leads to a parameterization of the angular distribution
commonly used by experimentalists [45]

d2σs−chan.

dm``dcθ
∝ 3

8
(1 + c2θ) +AFB(m``) cθ , (20)

where AFB(m``) is the forward-backward asymmetry.
For a general distribution as given in Eq. (19), more
observables must be measured to determine the coeffi-
cients an.

The forward-backward asymmetry can be formally ob-
tained as:

AFB(m``) ≡
∫ 1

0
dcθ(d

2σ/dm``dcθ)−
∫ 0

−1
dcθ(d

2σ/dm``dcθ)∫ 1

−1
dcθ(d2σ/dm``dcθ)

=
(dσ/dm``)F − (dσ/dm``)B

(dσ/dm``)tot
. (21)

The AFB(m``) computed at partonic level in
Model U is illustrated in the plot on the left-hand side
of Fig. 7. The red curve corresponds to λ = 1.8 and
the green curve to λ = 1.4, with Mχ = Mφ = 500 GeV
with ∆M = 0 for both curves. The blue line denotes the
Standard Model prediction at LO. We notice a signifi-
cant increase of AFB at the threshold, which is the result
of three different effects at m`` ' 2Mχ:

(a) an increase in [(dσ/dm``)
box
F − (dσ/dm``)

box
B ]/

(dσ/dm``)tot due to a huge increase in σFwd
box ,
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FIG. 7. LEFT: The forward-backward asymmetry as defined in Eq. (21) as a function of the dilepton invariant mass; RIGHT:
Fχ(m``) as defined in Eq. (22) as a function of the dilepton invariant mass. In both plots, Model U is used and masses are set
to Mχ = Mφ = 500 GeV and ∆M = 0. Here, blue: Standard Model at LO (λ = 0), green: λ = 1.4, red: λ = 1.8. All curves
are commuted at the the partonic level.

(b) a slight increase in [(dσ/dm``)
int
F − (dσ/dm``)

int
B ]/

(dσ/dm``)tot, and

(c) a decrease in [(dσ/dm``)
LO
F − (dσ/dm``)

LO
B ]/

(dσ/dm``)tot, due to the increase in (dσ/dm``)tot.

A search for new physics in dilepton production using
AFB has been carried out by the ATLAS collaboration
in [27] using 20 fb−1 of 8 TeV data. Due to the inherent
uncertainties in the direction of the initial (anti)quark
and the transverse momenta of the partons in a proton-
proton collider, events are reconstructed by first boosting
along a longitudinal direction and identifying the dilep-
ton center-of-momentum frame. The quark, due to its
predominantly valence nature, is then assumed to have
originated in the direction of the boost. The details of
constructing the angle of scattering θ∗ in this so-called
Collins-Soper (CS) frame [46] are provided in [27]. The
inevitable misidentification of quarks (antiquarks) that
comes with this procedure leads to “mistagging” a frac-
tion of forward (backward) events as backward (forward),
thus diluting the asymmetry. Higher order QCD correc-
tions to the differential Standard Model cross section fur-
ther symmetrize the forward-backward events. As a re-
sult, the m``-dependent Standard Model values for AFB

shown in [27] are smaller than the ones in Fig. 7 by a
factor of 1.5 – 3. A full fledged angular analysis that
uses the CS frame and takes into account higher order
corrections is beyond the scope of this work.

A complementary way to probe the angular distribu-
tion are observables that quantify the preference of dilep-
ton events in a predefined central region of the detec-
tor over events in the outer region. Measuring such ob-
servables does not require knowledge of the direction of
the initial parton, making them potentially advantageous
at a proton-proton collider. An example of this is the
ATLAS measurement of the observable Fχ(mjj) in di-
jet distributions at

√
s = 7 TeV [32]. It is defined as

Fχ ≡ Ncentral/Ntotal, where Ntotal is the total number
of events, and Ncentral is the number of dijet events in a

central region defined by χ ≡ exp(2|y|) < χmax, where y
is the rapidity of each jet in the dijet CM frame. In the
ATLAS analysis, the observable Fχ is used to distinguish
between isotropic new physics processes and QCD back-
grounds, that prefer the forward direction. As a simple
illustration of their applicability to our model, we com-
pute the quantity,

Fχ(m``) ≡
∫ a
−a(dσ/dcθ)dcθ∫ 1

−1
(dσ/dcθ)dcθ

, (22)

where the central region is defined by −a ≤ cθ ≤ a.
Choosing a = 1/2 (which corresponds to χ = 3), we plot
Fχ(m``) at the partonic level in Model U with Mχ =
Mφ = 500 GeV and ∆M = 0 on the right-hand side of
Fig. 7. The red curve corresponds to λ = 1.8, the green
curve to λ = 1.4, and the blue curve depicts the Standard
Model at LO.

The SM curve appears flat which can be understood as
follows. One sees from Eq. (20) that for a given m``, the
angular distribution can be written as dσ/dcθ(m``, cθ) =
f(m``)[

3
8 (1 + c2θ) +AFB(m``)cθ]. From the left-hand plot

in Fig. 7, we see that in the SM AFB is largely insensitive
to m`` for the range considered because all SM states
can be taken as massless for this range and there is no
mass scale in the problem. Thus dσ/dcθ(m``, cθ) can
be approximately written as f(m``)[

3
8 (1 + c2θ) + AFBcθ].

Therefore, to a good approximation, f(m``) drops out of
Fχ(m``). In general no such approximate factorization
can be made for the new physics effects in our model.
We find that the new physics box amplitude tends to
slightly favor the outer regions over the central region.
The values for Fχ(m``) in our model are therefore always
smaller than the Standard Model’s unless interference ef-
fects lead to a deficit in rates with respect to the SM. The
preference for the outer regions gets more pronounced for
m`` & 2Mχ, where also the imaginary part in the ampli-
tude turns on. This behavior is reflected in the red curve
by a kink at ∼ 1000 GeV on the right-hand-side plot in
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Fig. 7, to the right of which the distribution falls steeper.

E. Dilepton Spectrum Constraints

We can compare the predicted dilepton spectra of
our model to measurements by the LHC collaborations
[28, 29] by conducting a shape analysis. The domi-
nant Standard Model background in these searches is
the Drell-Yan process, which at tree-level is s−channel
photon– and Z–mediated as shown in Fig. 1. Subdomi-
nant backgrounds come from the production of tops, di-
bosons, dijets and W+jet. Both ATLAS and CMS find
their observed dilepton spectra are consistent with the
Standard Model.

ATLAS has dilepton events with invariant masses as
high as ∼ 1600 GeV (1800 GeV) for mee (mµµ), whereas
CMS has events up to ∼ 1750 GeV (1850 GeV). The
ATLAS and CMS measurements can be translated into
constraints of our model. In our analysis we only consider
m`` bins that are far from the Z-resonance given the dark
fermion masses we consider. In order to generate signal
spectra, we first analytically compute the pp → `+`−

cross section ratios dσtotal/dσSM bin by bin using the
MSTW2008NNLO parton distribution functions, where
dσtotal and dσSM are as defined in Eq. (11). We choose
the squared factorization scale and Q2 to be m2

ll. We
then scale the experimentally provided Drell-Yan NNLO
backgrounds by these ratios. We do not consider the
subdominant backgrounds.

Bounds on the model parameter space can be set by
comparing the dilepton spectra of our model with the
Standard Model predictions, by computing ∆χ2 = χ2

NP−
χ2

SM, where

χ2
NP =

Nbins∑
i=1

(N i
obs −N i

NP)2

N i
NP + σ2

SM

, (23)

χ2
SM =

Nbins∑
i=1

(N i
obs −N i

SM)2

N i
SM + σ2

SM

, (24)

with N i
NP the number of events expected by our model,

N i
SM the number of events predicted by the SM, N i

obs the
number of events observed and σSM is the background
systematic uncertainty. By setting ∆χ2 = 5.99, we ob-
tain a 95% C.L. exclusion limit in the λ−Mχ plane with
respect to the Standard Model. In the following, we com-
pare the model with the ATLAS results [28]. ATLAS and
CMS have comparable sensitivities and their results are
in good agreement with each other. Therefore, using the
CMS results [29] would lead to very similar exclusion lim-
its. We do not attempt a statistical combination of the
ATLAS and CMS results.

As one would expect, in general the shape of the dilep-
ton spectrum is sensitive to λ. For instance, depending
on the Model (U, D or UD) used for setting constraints, it
is possible to obtain also a slight deficit in model events

with respect to the background, due to interference ef-
fects for dilepton invariant masses below the kinematic
threshold (see also [47] for a recent study of destructive
interference effects at colliders.). This typically occurs at
λ . 1. We will find, however, that our ∆χ2 analysis at√
s = 8 TeV is only sensitive to λ & 1.4, where the signal

is dominated by dσbox ∝ |Mbox|2. Thus, the nature of
the model spectrum is as discussed in Subsection III C. It
then follows that the largest contributions to ∆χ2 comes
from the contribution near m`` ' M1 + M2, where the
monocline feature leads to the largest signal over back-
ground.

We will discuss the results of the χ2 analysis in Sec. V
along with additional constraints on our parameter space
from dedicated dark matter searches at the LHC, from
direct detection experiments and from the dark matter
relic abundance.

IV. RELATED CONSTRAINTS

The primary focus of our paper is on the new sig-
nals of radiative corrections of dark matter on the dilep-
ton kinematical and angular distributions. There are, of
course, several correlated implications, from LHC predic-
tions, the thermal relic density, to the predictions for the
scattering rates in direct detection experiments. In this
section we consider the constraints that these correlated
implications place on the parameter space of the simpli-
fied models that we consider. We consider the bounds set
by jets + MET searches at the LHC [48, 49], the bounds
from nucleon-dark matter scattering in direct detection
experiments [50–52], and the dark matter thermal relic
abundance (now best determined by Planck [53]). Addi-
tional constraints can arise from the anomalous magnetic
moment of the muon [54] as well as from LEP results on
four-lepton contact interactions [55]. In this section we
step through each of these, detailing the various mecha-
nisms behind each probe and how they place constraints
on the model. A summary of all constraints and a com-
parison to the dilepton signal will be presented in Sec. V.

A. LHC constraints

While searches for dark matter signals in the form
of missing transverse energy (MET)+initial state radi-
ation, the so-called mono-X signatures, are ongoing, the
strongest constraints on our model come from recasted
supersymmetry searches for jets+MET signatures from
ATLAS and CMS [48, 49]. Indeed, pair production of
the colored mediators, followed by the decay of the medi-
ators into dark matter and a light quark contribute to the
jets+MET signal. Some important diagrams are shown
in Fig. 8. For recasting, we use the CMS T2qq simplified
model in [48], where the gluino is assumed decoupled and
squark pair production is followed by prompt decay to a
pair of LSPs with a branching ratio of 100%. Contours
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FIG. 8. Example Feynman diagrams with the highest contribution to the pair production of the colored mediator, resulting in
jets+MET signals.

of the exclusion cross-sections in the plane of LSP mass
and squark mass are provided, which we compare with
our signal cross-sections generated at leading order us-
ing MadGraph5 [56] with CTEQ6L1 parton distribution
functions [57]. We will present the results of the numeri-
cal analysis in Sec. V, where we also compare the bounds
with those obtained from the dilepton spectra.

Note that the supersymmetry search assumes the
squarks are pair-produced predominantly via an s-
channel gluon whereas the dominant production channel
in our model is t-channel exchange of χ1 and χ2. While
in principle this leads to different detector acceptances
for the two processes, in practice we find that these two
acceptances are similar within a few percent, validating
our use of the CMS bounds for constraining our model.

B. Relic Abundance

If χ is a thermal relic of freeze-out, the diagrams in
Fig. 9 contribute to its annihilation into SM fermions
in the early universe. We can then calculate the relic
abundance as a function of the masses and couplings
in our model by solving the Boltzmann equation under
the freeze-out condition. For the case of a pseudo-Dirac
dark matter candidate (i.e. for small mass splitting be-
tween the two dark fermion states χ1 and χ2), coanni-
hilations between the two eigenstates (χ1χ2 → ff̄ and
χ2χ2 → ff̄) play an important role in setting the abun-
dance. We incorporate these effects through an effective
cross-section [58]

σeff(x) =
σ11 + 2σ12(1 + δ)3/2e−xδ + σ22(1 + δ)3e−2xδ

(1 + (1 + δ)3/2e−xδ)2
,

(25)
where x ≡ T/Mχ is the ratio of temperature and dark
matter mass and δ ≡ ∆M/Mχ is the fractional mass
splitting between the dark matter states. For a split-

ting less than or comparable to the freeze-out tempera-
ture (∆M/Mχ . 1/xF ), efficient s−wave annihilation of
the σ12 term in Eq. (25) leads to small relic abundances
that do not overproduce dark matter for large ranges
of parameters in our model. For (∆M/Mχ � 1/xF ),
exponential suppression of the coannihilation terms in
Eq. (25) implies σeff ≈ σ11, whose s−wave component
is chirality-suppressed by a factor of (mf/Mχ)2. The
dominant component in that case is p-wave suppressed,
leading to larger relic abundances. While there is po-
tentially a sub-dominant contribution from coannihila-
tion between the scalar mediators and dark matter for
Mφ/Mχ . 1.1. We neglect these effects in setting our
bounds, since, as discussed below, we will find that con-
straints from direct detection are typically stronger than
constraints from the dilepton spectrum in these regions
of parameter space.

The relic abundance is given by

Ωχh
2 ≈ 1.07× 109 GeV−1

MPl

xF√
g∗

1

Ia + 3Ib/xF
, (26)

where the freezeout temperature xF can be determined
through

exF =
5

4

√
45

8

M1MPl(Ia + 6Ib/xF )

π3√g∗
√
xF

. (27)

The terms Ia and Ib quantify the integration over thermal
history of the annihilating species before freeze-out, and
are given by

Ia = xF

∫ ∞
xF

dx

x2
aeff , Ib = 2x2

F

∫ ∞
xF

dx

x3
beff , (28)

where 〈σeffvrel〉 = aeff + beffv
2
rel. Expressions for aeff and

beff in our model are given in Appendix B.
The constraints on the model parameter space from

the relic abundance will be shown in Sec. V.
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FIG. 10. Feynman diagrams contributing to direct detection signatures.

C. Direct Detection

Dark matter is also constrained by underground exper-
iments studying the recoil spectra of local galactic dark
matter scattering off nuclei of heavy elements. Fig. 10
shows the dominant diagrams in our model contributing
to the scattering cross-section.

The current best bounds for spin-independent scatter-
ing are set by results of the 85.3 day-run of the Large
Underground Xenon (LUX) experiment [51] and those
for spin-dependent scattering by the XENON100 exper-
iment [52]. The energy transfer in these scattering ex-
periments is O(10 keV), hence for a sufficiently large
splitting in the eigenmasses of pseudo-Dirac dark mat-
ter, only the lighter eigenstate takes part in the scat-
tering. Such a scenario emulates a Majorana dark mat-
ter candidate scattering off the nucleus. In the Majo-
rana case, the leading contribution to spin-independent
scattering comes from a quark twist-2 operator, which is
suppressed by 1/M8

φ. Therefore one only obtains modest
bounds from spin-independent scattering. Constraints
from spin-dependent scattering are typically comparable.

On the other hand, in the pure Dirac limit (∆M =
0) and in the pseudo-Dirac case with a sufficiently
small splitting in the dark fermion masses, the spin-
independent scattering cross-section is dominated by the
vector-vector interaction operator (which is absent for a
Majorana fermion). These cases are subject to very strin-
gent limits by spin-independent direct detection. Con-
straints from spin-dependent scattering of Dirac dark
matter (where one finds a cross-section that is four times
smaller than in the Majorana case) are however not rel-
evant.

Following [13], the direct detection cross sections spin-
independent scattering σSI and spin-dependent scattering
σSD predicted by our model can be calculated using the
formulae given in Appendix C.

D. LEP Constraints

LEP analyses of four lepton contact interactions that
contribute to e+e− → `+`− can also be used to place
constraints on the parameter space of our model. Box
diagrams with dark fermions and lepton mediators will
generate four fermion interactions of the type (ēγµPRe)

2.
However, in agreement with [25] we find that the LEP
results collected in [55] give only mild constraints on
our scenario. In particular, couplings λ . 2 are only
constrained for very light dark matter masses of Mχ .
250 GeV.

E. Anomalous Magnetic Moment of the Muon

One additional constraint in the case the dark fermions
of our model interact with muons comes in principle from
the anomalous magnetic moment of the muon, (g − 2)µ.
Indeed, loops with dark fermions and scalar mediators
can contribute to (g − 2)µ. The sign of the contribu-
tion to (g − 2)µ is fixed, and turns out to increase the
longstanding discrepancy of the observed value with re-
spect to the theory prediction [54, 59]. Requiring that the
model prediction for (g − 2)µ does not deviate by more
than 5σ from the measured value, we find constraints
only in extreme corners of parameter space with λµ & 2
and Mχ ∼Mφ . 200 GeV.

V. SUMMARY OF ALL CONSTRAINTS

We can now combine all the constraints discussed in
the sections above. Figs. 11, 12 and 13 depict the regions
of parameter space in the plane of mediator coupling λ
and dark matter mass Mχ that are allowed by all exper-
imental bounds for Models U, D and UD respectively.
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freeze-out), RIGHT: �M/M� = 0.5 (Majorana-like at freezeout). The first, second and third rows correspond, respectively,
to M�/M� = 1.1, 1.5 and 2. The blue curve indicates the 95% C.L. exclusion limit from the dilepton signal; the region
above the dotted magenta curve is excluded by the CMS jets+MET search; the solid and dashed green curves represent the
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The green shaded regions, that are to the left of the intersections between the green and red curves, correspond to regions of
parameter space that are excluded by direct detection experiments, even taking into account the reduced local relic density as
predicted in these regions of parameter space.

In all three figures, the plots on the left-hand side corre-
spond to a mass splitting between the dark matter states
of �M/M� = 0.1 (to represent a � that is Dirac-like at
freeze-out). The plots on the right-hand side correspond
to �M/M� = 0.5 (Majorana-like at freeze-out). The
rows correspond to ratios of mediator mass to dark mat-
ter mass of M�/M� = 1.1, 1.5 and 2 respectively. The
blue curves show the 95% C.L. exclusion limit for a com-
parison between our model and the dilepton spectrum
measured by the ATLAS collaboration at 8 TeV [28]. The
dotted magenta curves depict the jets+MET bounds, re-
cast from the CMS search for supersymmetry [48]. In
the shaded red region the model overcloses the universe

at freeze-out, with ⌦�h2 & 0.12. Along the red curves
the local dark matter density predicted by our model sat-
urates the experimental value, i.e., ⌦modelh

2 = 0.12.

The solid and dashed green curves are, respec-
tively, bounds from the 90% C.L. exclusion limits set
by LUX [51] for spin-independent cross-sections and
XENON100 [52] for spin-dependent cross-sections assum-
ing the canonical local dark matter density of ⇢� '
0.3 GeV/cm3. For a purely thermal origin of the dark
fermions, this bound only applies at the crossing of the
green curves with the red curve. Above the red curve, the
green lines correspond to the constraint on the parame-
ter space assuming there is some other origin of the dark
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freeze-out). The plots on the right-hand side correspond
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FIG. 12. Constraints in the plane of dark matter mass M� vs. coupling � in Model D. Plots and color coding as in Fig. 11.

fermion abundance that makes up the correct cosmo-
logical density (and thus local density) that we observe
today. The shaded green region, by contrast, is ruled
out even if the abundance of the dark fermions is the
predicted (subdominant) thermal abundance associated
with those parameters. In this case, even if there were
another (inert) component of dark matter to make up the
di↵erence in relic density, the small thermal abundance
of the dark fermions (/ 1/�4) is compensated by an en-
hanced direct detection scattering cross section (/ �4).

In the following we remark on the various features of
the constraints in Figs. 11, 12 and 13.

We first note that the dilepton spectrum constraints
are generically tighter for Models U and UD than for
Model D. This follows from the PDFs of the initial state
up quarks in comparison to initial state down quarks,
leading to higher production rates when the former are

present in the new physics process. Note that the con-
straints from the dilepton spectrum lie in the region
where the new physics signal is dominated by |Mbox|2,
hence the largest contributions to the significance arise
from the region around m`` ' M1 + M2. For the set of
parameters spanned by the blue curve, this does not give
rise to a significant di↵erence between the �M/M� = 0.1
and �M/M� = 0.5 cases in all three models, as can be
observed comparing the left- and right-hand sides of the
figures.

We also note that the dilepton spectrum constraints
are stronger when the mass splitting of the mediator and
dark matter is small. This is because the monocline is
sharper for a degenerate spectrum as demonstrated in
Fig. 6. A mass splitting between � and � causes a tran-
sition from an SM-like spectrum in the IR to the parallel
SM+DM-like spectrum in the UV over a larger mass in-
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logical density (and thus local density) that we observe
today. The shaded green region, by contrast, is ruled
out even if the abundance of the dark fermions is the
predicted (subdominant) thermal abundance associated
with those parameters. In this case, even if there were
another (inert) component of dark matter to make up the
di↵erence in relic density, the small thermal abundance
of the dark fermions (/ 1/�4) is compensated by an en-
hanced direct detection scattering cross section (/ �4).

In the following we remark on the various features of
the constraints in Figs. 11, 12 and 13.

We first note that the dilepton spectrum constraints
are generically tighter for Models U and UD than for
Model D. This follows from the PDFs of the initial state
up quarks in comparison to initial state down quarks,
leading to higher production rates when the former are

present in the new physics process. Note that the con-
straints from the dilepton spectrum lie in the region
where the new physics signal is dominated by |Mbox|2,
hence the largest contributions to the significance arise
from the region around m`` ' M1 + M2. For the set of
parameters spanned by the blue curve, this does not give
rise to a significant di↵erence between the �M/M� = 0.1
and �M/M� = 0.5 cases in all three models, as can be
observed comparing the left- and right-hand sides of the
figures.

We also note that the dilepton spectrum constraints
are stronger when the mass splitting of the mediator and
dark matter is small. This is because the monocline is
sharper for a degenerate spectrum as demonstrated in
Fig. 6. A mass splitting between � and � causes a tran-
sition from an SM-like spectrum in the IR to the parallel
SM+DM-like spectrum in the UV over a larger mass in-
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FIG. 12. Constraints in the plane of dark matter mass Mχ vs. coupling λ in Model D. Plots and color coding as in Fig. 11.

the shaded red region the model overcloses the universe
at freeze-out, with Ωχh

2 & 0.12. Along the red curves
the local dark matter density predicted by our model sat-
urates the experimental value, i.e., Ωmodelh

2 = 0.12.

The solid and dashed green curves are, respec-
tively, bounds from the 90% C.L. exclusion limits set
by LUX [51] for spin-independent cross-sections and
XENON100 [52] for spin-dependent cross-sections assum-
ing the canonical local dark matter density of ρχ '
0.3 GeV/cm3. For a purely thermal origin of the dark
fermions, this bound only applies at the crossing of the
green curves with the red curve. Above the red curve, the
green lines correspond to the constraint on the parame-

ter space assuming there is some other origin of the dark
fermion abundance that makes up the correct cosmo-
logical density (and thus local density) that we observe
today. The shaded green region, by contrast, is ruled
out even if the abundance of the dark fermions is the
predicted (subdominant) thermal abundance associated
with those parameters. In this case, even if there were
another (inert) component of dark matter to make up the
difference in relic density, the small thermal abundance
of the dark fermions (∝ 1/λ4) is compensated by an en-
hanced direct detection scattering cross section (∝ λ4).

In the following we remark on the various features of
the constraints in Figs. 11, 12 and 13.
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FIG. 13. Constraints in the plane of dark matter mass M� vs. coupling � in Model UD. Plots and color coding as in Fig. 11.

terval. In contrast, searches for mediator pair production
in jets+MET events become weaker for smaller M�/M�

due to the reduced amount of missing transverse energy.
This demonstrates the complementarity of our dilepton
spectrum observables to existing DM searches.

In all three models, one finds the jets+MET con-
straints slightly stronger for �M/M� = 0.5 than
�M/M� = 0.1. The reasons for this behavior are out-
lined in detail in [33], but we summarize it here as follows.
Same-handed squark production, such as in the first
Feynman diagram in Fig. 8, is absent in the pure Dirac
limit, but turns on gradually as we approach the Majo-
rana limit, contributing to the production rates. Hence
the jets+MET bounds tighten as we increase �M/M�.
Once again due to PDF e↵ects this search sets tighter
constraints on Model UD than Model U, which in turn
are tighter than in Model D. The cuts used in the search

get more e�cient when the scalar mediator and the LSP
are more split in mass. This dependence on the accep-
tance gives rise to the strengthening of the bounds ob-
served as M�/M� increases. For Model D, the acceptance
for a near-degenerate spectrum is poor enough to set no
bounds at all in our chosen range of � for M�/M�. In all
the plots, we have assumed that the production of both
�1 and �2 contributes to the MET, while realistically �2

would undergo a decay to �1 and SM states.

The direct detection limits contain several interesting
features. First, the bounds are identical for either split-
ting, �M/M� = 0.1, 0.5, since for a splitting of more
than O(100 keV), there is insu�cient kinetic energy in
the nonrelativistic collisions to excite to the heavier state
�2. Hence, �1 behaves entirely Majorana-like for di-
rect detection searches. Next, the spin-independent (SI)
scattering bounds (solid green curves) are very similar
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We first note that the dilepton spectrum constraints
are generically tighter for Models U and UD than for
Model D. This follows from the PDFs of the initial state
up quarks in comparison to initial state down quarks,
leading to higher production rates when the former are
present in the new physics process. Note that the con-
straints from the dilepton spectrum lie in the region
where the new physics signal is dominated by |Mbox|2,
hence the largest contributions to the significance arise
from the region around m`` ' M1 + M2. For the set of
parameters spanned by the blue curve, this does not give
rise to a significant difference between the ∆M/Mχ = 0.1
and ∆M/Mχ = 0.5 cases in all three models, as can be

observed comparing the left- and right-hand sides of the
figures.

We also note that the dilepton spectrum constraints
are stronger when the mass splitting of the mediator and
dark matter is small. This is because the monocline is
sharper for a degenerate spectrum as demonstrated in
Fig. 6. A mass splitting between φ and χ causes a tran-
sition from an SM-like spectrum in the IR to the parallel
SM+DM-like spectrum in the UV over a larger mass in-
terval. In contrast, searches for mediator pair production
in jets+MET events become weaker for smaller Mφ/Mχ

due to the reduced amount of missing transverse energy.
This demonstrates the complementarity of our dilepton
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spectrum observables to existing DM searches.

In all three models, one finds the jets+MET con-
straints slightly stronger for ∆M/Mχ = 0.5 than
∆M/Mχ = 0.1. The reasons for this behavior are out-
lined in detail in [33], but we summarize it here as follows.
Same-handed squark production, such as in the first
Feynman diagram in Fig. 8, is absent in the pure Dirac
limit, but turns on gradually as we approach the Majo-
rana limit, contributing to the production rates. Hence
the jets+MET bounds tighten as we increase ∆M/Mχ.
Once again due to PDF effects this search sets tighter
constraints on Model UD than Model U, which in turn
are tighter than in Model D. The cuts used in the search
get more efficient when the scalar mediator and the LSP
are more split in mass. This dependence on the accep-
tance gives rise to the strengthening of the bounds ob-
served as Mφ/Mχ increases. For Model D, the acceptance
for a near-degenerate spectrum is poor enough to set no
bounds at all in our chosen range of λ for Mφ/Mχ. In all
the plots, we have assumed that the production of both
χ1 and χ2 contributes to the MET, while realistically χ2

would undergo a decay to χ1 and SM states.

The direct detection limits contain several interesting
features. First, the bounds are identical for either split-
ting, ∆M/Mχ = 0.1, 0.5, since for a splitting of more
than O(100 keV), there is insufficient kinetic energy in
the nonrelativistic collisions to excite to the heavier state
χ2. Hence, χ1 behaves entirely Majorana-like for di-
rect detection searches. Next, the spin-independent (SI)
scattering bounds (solid green curves) are very similar
for Model U and D, but stronger for Model UD since
more partons are involved in the scattering in the lat-
ter. The spin-dependent (SD) bounds (dashed green
curves) differ across all three Models due to the dif-
ference in nucleon matrix elements, which are large for
down quarks in a neutron and small for up quarks in a
neutron (see Appendix C). Moreover, the SI constraints
weaken much more rapidly than the SD bounds as we
increase in Mφ/Mχ (and disappear for Mφ/Mχ = 2 in
the range of our parameter space). This is due to the
dominance of the twist-2 operator in SI scattering that
scales as 1/M8

φ, as opposed to the 1/M4
φ-dependence of

SD scattering. This interplay between the dimensionality
of the operator and the relative strengths of the nucleon
matrix elements determines whether the SI or the SD di-
rect detection results sets the stronger bounds, that in
turn depends on the choice of the Model and Mφ/Mχ.
In Model U, the SI bounds are stronger than the SD
bounds up to Mχ ∼ 1100 GeV for Mφ/Mχ = 1.1 and up
to Mχ ∼ 500 GeV for Mφ/Mχ = 1.2; for Mφ/Mχ ≥ 1.3,
the SD bounds are stronger. In Model D, the SI bound
is stronger up to Mχ ∼ 600 GeV for Mφ/Mχ = 1.1, and
the SD bound is uniformly stronger for Mφ/Mχ ≥ 1.2.
In Model UD, the SI bounds are uniformly stronger for
Mφ/Mχ ≤ 1.3, stronger than SD bounds up to Mχ ∼ 400
GeV for Mφ/Mχ = 1.5 and weaker (here absent) for
Mφ/Mχ = 2.

The relic density constraints are slightly weaker for

Model UD than Models U and D since a pair of χ’s can
annihilate to two different flavors of quark final states.
As Mφ/Mχ is increased, the relic density bounds grad-
ually increase in all three Models. This is due to the
weak dependence of 〈σeffvrel〉 on Mφ/Mχ, as can be seen
from Appendix B. The annihilation of Majorana dark
matter happens without an s-wave component due to
chirality-suppression (see [13]) and hence is less efficient
than Dirac dark matter annihilation. For a mixed dark
matter candidate like ours, ∆M/Mχ = 0.1 approximates
the Dirac case and ∆M/Mχ = 0.5 approximates the Ma-
jorana case during freeze-out. This is why the thermal
relic bounds on the right-hand-side of Figs. 11, 12 and 13
are stronger than those of the left-hand-side.

Finally, we remark on the striking complementarity
of the various dark matter probes applied to our model.
While it is obvious that the relic constraints bound Mod-
els U, D and UD in the low-λ regime, several competing
factors determine which of the other experiments – dilep-
ton searches, jets+MET searches, direct detection – set
the strongest bound at higher couplings λ. In fact, de-
pending on the Model and choice of parameters, each of
these three can give the best bounds in some parame-
ter regime. Since the dependence of each probe on the
parameters has been explained in this section, in the fol-
lowing we only briefly describe our findings, as applicable
to the high-λ, low-Mχ region.

In Model U, for both ∆M/Mχ = 0.1 and 0.5, the tight-
est exclusions come from direct detection for Mφ/Mχ ≤
1.3, direct detection for Mχ . 450 GeV and dilepton
measurements for Mχ & 450 GeV at Mφ/Mχ = 1.5, and
predominantly jets+MET searches at Mφ/Mχ = 2. In
Model D, the tightest exclusions are from direct detec-
tion for all Mφ/Mχ. In Model UD, direct direction pre-
dominantly sets the tightest limits for Mφ/Mχ ≤ 1.3; for
Mφ/Mχ = 1.5, the best bounds are placed by jets+MET
searches at Mχ . 500 GeV for ∆M/Mχ = 0.1 and at
Mχ . 600 GeV for ∆M/Mχ = 0.5, and by dilepton mea-
surements at Mχ & 500 GeV for ∆M/Mχ = 0.1; for
Mφ/Mχ = 2, the best bounds are placed by jets+MET
searches at Mχ . 500 GeV and dilepton measurements
at Mχ & 500 GeV.

VI. FUTURE PROJECTIONS

We provide in Fig. 14 our projections for the sensitiv-
ity of the LHC at

√
s = 14 TeV (left) and for a future

proton-proton collider at
√
s = 100 TeV (right) in the

dilepton invariant mass spectrum. Here we have cho-
sen Mφ/Mχ = 1.2 and ∆M/Mχ = 0.1 for Model U and
Model D, for illustration. We expect other choices of pa-
rameters to not qualitatively alter the results presented,
as may be deduced from the ∆χ2 bounds shown across
various sets of parameters in Figs. 11, 12 and 13. The
shaded red region corresponds to an overabundance of
dark matter (Ωχh

2 & 0.12) for ∆M/Mχ = 0.1. The
dashed (solid) curves correspond to an integrated lumi-
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FIG. 14. Projections for 95% C.L. sensitivity for the LHC running at
√
s = 14 TeV (left) and a future p− p collider at

√
s =

100 TeV (right). The red (black) curves denote Model U (D). The dashed (solid) curves correspond to an integrated luminosity
of 100fb−1(3000fb−1).

nosity of 100 fb−1(3000 fb−1); the red (black) curves
correspond to Model U (D).

To obtain these plots, leading order cross-sections were
computed using MadGraph5 with CTEQ6L1 parton dis-
tribution functions and a global K-factor of 1.25 was ap-
plied to obtain projected background events. Such a pro-
cedure may not capture all the considerations that may
go into computing the background for a 100 TeV col-
lider. For a full analysis, for instance, one would need to
compute the effects of the double logarithmic contribu-
tions of Sudakov electroweak corrections [60], take into
account the (modified) running of the standard model
gauge couplings [42], etc. (For additional considerations
of dark matter physics at 100 TeV, see for example [61–
64].) Our objective here is to present sensitivity pro-
jections that are indicative of what one might expect
with extrapolations of what has been done already at the
LHC at

√
s = 8 TeV. In particular, a uniform, uncorre-

lated systematic error of 6% was assumed across all bins.
“Signal” events were generated by running 100 pseudo-
experiments, applying Poisson fluctuations around the
background events. A ∆χ2-fit, as defined in Eq. (24),
was then performed with each pseudo-experiment’s re-
sults and the arithmetic mean of the ∆χ2’s was obtained.
95% C.L. exclusion limits were then set on the λ −Mχ

plane.

As one can see, the dilepton spectrum features are sig-
nificantly more prominent at the LHC at 14 TeV, and
even more so at a 100 TeV future collider. This is to be
expected since the number of dilepton events increases
considerably both by the higher center-of-mass energy
and the higher integrated luminosities, thus improving
the sensitivity of a shape-fit. For the same reason, the
systematic uncertainties, which were smaller than sta-
tistical uncertainties in the

√
s = 8 TeV measurements

and hence negligible in setting constraints, play a more
important role in determining the sensitivities of future
colliders.

One also notices the difference in slope between the
solid red curves and the others in the left-hand plot, and
between solid and dashed curves in the right-hand plot.
This is because the contributions to ∆χ2 come from a
wider range near m`` ' 2Mχ.

We do not attempt to make projections for jets+MET
constraints on the model.5 This is because the exclusion
cross-sections obtained by recasting the supersymmetry
searches are extremely sensitive to the choice of cuts in
the phase space when the LSP and colored scalar are
nearly degenerate in mass. We anticipate some comple-
mentarity between the jets+MET sensitivity and dilep-
ton sensitivity: as Mφ/Mχ is increased, the dilepton
monocline signal is suppressed, while the jets+MET sig-
nal becomes more easily visible. Where the crossover
occurs is undoubtedly highly sensitive to the respective
detection search strategies.

VII. DISCUSSION AND OUTLOOK

We have presented a simple but realistic model of
pseudo-Dirac fermionic dark matter that results in a
qualitatively new signal in the form of kinematical and
angular features in dilepton production at the LHC. The

5 We are very grateful to Gavin Salam and Andreas Weiler for
discussions about the applicability (and difficulties) of using
their (awesome) Collider Reach tool [65] for projections in this
squeezed scenario.
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most spectacular feature is the “monocline”, a step-like
feature with a sharp rise in the differential cross sec-
tion for dilepton production occurring for a dilepton in-
variant mass near the sum of the dark fermion masses,
m`` ∼ M1 + M2, with a subsequent gradual falloff. If
discovered, this signal provides an immediate target of
opportunity given that the putative dark matter parti-
cle’s mass is bounded (namely, mDM . m``/2 for a mon-
ocline feature at m``). Of course observing the feature
consistent with a radiative correction from a box of new
particles with masses ∼ m``/2 does not immediately im-
ply these particles are dark matter. Nevertheless, know-
ing the scale is immensely useful when applied to direct
and indirect detection experiments, as well as traditional
signals at colliders of both the dark matter (e.g., mono-X
+ MET signals) as well as the scalar mediators (e.g., jets
+ MET for the scalar mediator). We also note that our
monocline signal is most powerful when the spectrum of
dark matter and its mediator is nearly degenerate. This
strategy is thus complementary to MET-based searches.

Pseudo-Dirac dark matter, that we have shown leads
to interesting signals in dilepton production, is also well-
motivated and predictive. Pseudo-Dirac fermions could
arise naturally when an accidental U(1) symmetry that
gives a Dirac mass to the fermions is broken at loop
level [66]. Since a Dirac fermion can be thought of as
two degenerate Majorana eigenstates, the effect of the
small Majorana mass is to introduce a splitting in the
eigenmasses. If the splitting is of the order of a few GeV,
we obtain several desirable features. Among these is that
since the momentum transfer scale of direct detection ex-
periments is 10-100s of keV, such experiments are only
sensitive to the lighter eigenstate; thus, the pseudo-Dirac
fermion with a few-GeV-splitting can be treated as a Ma-
jorana fermion for direct detection. In addition, efficient
s-wave coannihilation between the two eigenstates would
result in a relic abundance that does not overclose the
universe even for small couplings. The heavier eigenstate
produced in a collider can decay to the lighter one with
a displaced vertex that is measurable at the LHC. By
studying the dilepton spectrum in this decay, the mass
splitting can be directly measured. The decay length can
also predict the mass of the lighter state if the model’s
relic abundance is matched with the observed value and
if the mediators are heavy [35].

The model as presented is renormalizable, and thus
in principle UV complete. However, we have consid-
ered relatively large (though perturbative) λ couplings
between the dark fermion, the scalar mediator, and a
Standard Model quark or lepton. These couplings, when
RG evolved to higher scales, may develop Landau poles.
This is not in itself a concern for us since we have focused
on the physics of the new particles near to their thresh-
old production at the LHC. Larger λ couplings could
arise from several sources. The most logical possibility is
that there is a larger set of scalar mediators, for instance
scalar quark mediators that couple to the left-handed
quarks, that, when summed into the box contributions,

masquerade as a larger effective λ coupling with fewer
mediators. Another possibility is that the pseudo-Dirac
fermionic partner χA couples to the scalar mediators and
quarks, also effectively increasing the strength of the λ
couplings.

The model has unmistakable similarities to simplified
supersymmetric models with a bino or neutral wino as
the dark matter, with the squarks and sleptons are the
scalar mediators. Indeed, the supersymmetric limit is
interesting, since several of our otherwise arbitrary as-
sumptions (coupling of just χB to the scalar mediator
and quarks) could arise naturally in a supersymmetric
context. The main impediment is that an observable fea-
ture in dilepton production requires λ & g by a factor of
perhaps 1.5 – 3 times what would have otherwise been
required by (at least unbroken) supersymmetry. This
is intriguingly reminiscent of the Higgs quartic coupling,
which is related to the electroweak couplings at tree-level,
but in fact must be significantly larger to accommodate
the observed value of 125 GeV. An interesting question
for future exploration is to understand what could be
possible from supersymmetry breaking corrections to in-
crease the size of the quark-squark-neutral gaugino cou-
pling.

We have not considered flavor-violation in the model,
but this too could be interesting, especially if the dilepton
signal was also accompanied by some fraction of e±µ∓

events (that would also exhibit a feature in their m``

spectrum). We did not consider flavor-violation in this
paper for two reasons: one is that it obviously would
not interfere with SM Drell-Yan production, which was
our primary motivation. Second, we would necessarily be
forced into considering additional lepton-flavor-violating
constraints, which are likely to be highly constraining.
For a discussion of quark flavor constraints on models
similar to ours see [40].

The scalar quark mediator will necessarily have box
contributions to the dijet signal as well. Unfortunately,
our estimates of the size of this radiative correction are
that it is much too small to lead to an observable mon-
ocline signal in the dijet spectrum. This is because the
box contribution arises in the partonic process qq̄ → qq̄
whereas the dominant dijet production involves qq → qq
as well as gluon mediated processes, which are much more
significant given the associated PDF enhancements. To
get a signal that could compete with QCD strength would
require λ couplings much larger than required for dilep-
ton production, and this suggests that a perturbative
analysis is no longer possible.

In summary, we encourage ATLAS and CMS to explore
the sensitivity of features in the dilepton kinematic and
angular spectrum for extracting dark matter signals!
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Appendix A: Parton Level Cross-Sections

In this appendix, we provide expressions for the new
physics box contributions to the parton level qq̄ → `+`−

cross-sections that are then convoluted with parton dis-
tribution functions to obtain the proton-level differential
cross-sections dσ/dm``.

We define the following short hand notation for 4-point
loop functions

Di ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, t, µ

2
1,M

2
φ, µ

2
2,M

2
φ] ,

D̃i ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, t, µ

2
3,M

2
φ, µ

2
4,M

2
φ] ,

D̄i ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, u, µ

2
1,M

2
φ, µ

2
2,M

2
φ] ,

˜̄Di ≡ Di[m
2
q,m

2
q,m

2
l ,m

2
l , s, u, µ

2
3,M

2
φ, µ

2
4,M

2
φ] , (A1)

with the conventions for 4-point functions as in [67].
To incorporate the mixing of the dark fermions, we

define the function

ϑ[x] ≡ 1− x

M1 +M2
, (A2)

so that ϑ[M1] = cos2 θ and ϑ[M2] = sin2 θ. Here, θ is
the mixing angle introduced in Eq. (3). In the following,
c = 2/3 for up quarks in the initial state and c = −1/3
for down quarks in the initial state.

The interference of the tree-level s-channel photon-
mediated diagram with

(i) any direct box diagram is given by

dσ̃γ−box[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2|λq̃|2|λ˜̀|2

256π3

×2Re

{
(s+ t)2

s2
(2D00 + (D2 +D12 +D22 +D23)s)

}
;

(ii) any crossed box diagram is given by

dσ̃γ−xbox[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2|λq̃|2|λ˜̀|2

256π3

× 2Re

{
(s+ t)2

s2
(µ1µ2D̄0)

}
.

The interference of the tree-level s-channel Z-mediated
diagram with

(i) any direct box diagram is given by

dσ̃Z−box[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2t2W |λq̃|2|λ˜̀|2

256π3

×2Re

{
(s+ t)2

s(s−M2
Z)

(2D00 + (D2 +D12 +D22 +D23)s)

}
;

(ii) any crossed box diagram is given by

dσ̃Z−xbox[µ1, µ2] = −ϑ[µ1]ϑ[µ2]
ce2t2W |λq̃|2|λ˜̀|2

256π3

× 2Re

{
(s+ t)2

s(s−M2
Z)

(µ1µ2D̄0)

}
,

where tW = tan θW and θW is the weak mixing angle.
Thus, the interference between the all the tree dia-

grams and any direct box diagram is

dσ̃tree−box[µ1, µ2] =

dσ̃γ−box[µ1, µ2] + dσ̃Z−box[µ1, µ2] , (A3)

and the interference between all the tree diagrams and
any crossed box diagram is

dσ̃tree−xbox[µ1, µ2] =

dσ̃γ−xbox[µ1, µ2] + dσ̃Z−xbox[µ1, µ2] . (A4)

The interference between any two direct box diagrams is
given by

dσ̃box2 [µ1, µ2, µ3, µ4] =

ϑ[µ1]ϑ[µ2]ϑ[µ3]ϑ[µ4]
|λq̃|4|λ˜̀|4
2048π5s

(s+ t)2

×2Re
{

(2D00 + (D2 +D12 +D22 +D23)s)

× (2D̃∗00 + (D̃∗2 + D̃∗12 + D̃∗22 + D̃∗23)s)
}
. (A5)

The interference between any two crossed box diagrams
is given by

dσ̃xbox2 [µ1, µ2, µ3, µ4] =

ϑ[µ1]ϑ[µ2]ϑ[µ3]ϑ[µ4]
|λq̃|4|λ˜̀|4
2048π5s

(s+ t)2

× 2Re
{

(µ1µ2µ3µ4D̄0
˜̄D∗0)
}
. (A6)

The interference between any direct box diagram and any
crossed box diagram is given by

dσ̃box−xbox[µ1, µ2, µ3, µ4] =

ϑ[µ1]ϑ[µ2]ϑ[µ3]ϑ[µ4]
|λq̃|4|λ˜̀|4
2048π5s

(s+ t)2

×2Re
{

((2D00 + (D2 +D12 +D22 +D23)s)

× µ3µ4
˜̄D∗0)
}
. (A7)

We can now write down the total cross-sections using
the expressions above. From Eq. (A3), the interference
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between all the tree diagrams and all the direct box dia-
grams is obtained as

dσtree−box =
∑

a,b=1,2

dσ̃tree−box[Ma,Mb] .

From Eq. (A4), the interference between all the tree di-
agrams and all the crossed box diagrams is obtained as

dσtree−xbox =
∑

a,b=1,2

dσ̃tree−xbox[Ma,Mb] .

From Eq. (A5), the total interference between a pair of
direct boxes (including box2 pieces) is given by

dσbox2 =
1

2

∑
a,b,c,d=1,2

dσ̃box2 [Ma,Mb,Mc,Md] .

From Eq. (A6), the total interference between a pair of
crossed boxes (including crossed box2 pieces) is given by

dσxbox2 =
1

2

∑
a,b,c,d=1,2

dσ̃xbox2 [Ma,Mb,Mc,Md] .

Finally, from Eq. (A7), the total interference between
direct and crossed boxes is given by

dσbox−xbox =
∑

a,b,c,d=1,2

dσ̃box−box[Ma,Mb,Mc,Md] .

Appendix B: Calculation of aeff and beff

In this appendix we describe the calculation of aeff

and beff, which characterize the s−wave and p−wave
contributions to the effective annihilation cross-section
〈σeffvrel〉 of pseudo-Dirac dark matter.

Consider the annihilation process χ1χ2 → ff̄ , which
proceeds through the t and u channels. Here χ1 and
χ2 are two Majorana fermions with masses µ1 and µ2

respectively, and f is an SM fermion taken to be massless
for simplicity. Taylor-expanding in v to write 〈σv〉 =
a[µ1, µ2] + b[µ1, µ2]v2 +O(v4), we get

a[µ1, µ2] =
λ4d2(|p| − p)

16π|p|(|p|+M2
φ)2

,

b[µ1, µ2] =
λ4sgn(p)

96π(|µ1|+ |µ2|)(|p|+M2
φ)4

×
{

4|p|[4p2q + p(4M4
φ − q2) + 3M2

φd
2q]

+p2[4(p− q)2 + 3q2] +M4
φ[3q2 + 8qp− 12p2]

−2pM2
φd

2[5q − 2p]
}
, (B1)

where d = µ1 − µ2, p = µ1µ2 and q = µ2
1 + µ2

2. The
expressions above hold for annihilation into leptons. For
annihilation into quarks, the expressions must be multi-
plied by a color factor of 3. We recover the Majorana
limit by setting µ1 = µ2 = Mχ

aMaj = 0 ,

bMaj =
λ4M2

χ(M4
φ +M4

χ)

12π(M2
φ +M2

χ)4
. (B2)

The Dirac limit can be obtained in the limit −µ1 =
µ2 = Mχ. We obtain

aDirac =
λ4M2

χ

8π(M2
φ +M2

χ)2
,

bDirac = −
λ4M2

χ(−M4
φ + 3M2

φM
2
χ +M4

χ)

24π(M2
φ +M2

χ)4
, (B3)

in agreement with [13] up to a factor of 4 coming from

an extra
√

2 in the definition of our coupling in the La-
grangian.

Let us now compute aeff and beff by including the effect
of coannihilations between the two eigenstates of pseudo-
Dirac dark matter. We do this by making an appropriate
replacement of the coupling in a[µ1, µ2] and b[µ1, µ2] to
account for the mixing, multiplying each term by the
appropriate Boltzmann factor and finding the weighted
average. Therefore, from Eq. (25), we have

aeff(x) = λ4[c4θa[M1,M1] + 2c2θs
2
θa[M1,M2]w(x)

+s4
θa[M2,M2]w2(x)]/[(1 + w(x))2] ,

beff(x) = λ4[c4θb[M1,M1] + 2c2θs
2
θb[M1,M2]w(x)

+s4
θb[M2,M2]w2(x)]/[(1 + w(x))2] , (B4)

where w(x) = (1 + δ)3/2e−xδ, δ = (M2 −M1)/M1.

Appendix C: Direct Detection Formulae

We follow the approach of [68] (see also [69]) to com-
pute the spin-independent scattering cross-section of χ1

with nucleons, obtained as

σSI =
4

π
µN |fN |2 (C1)

where µN is the χ−N reduced mass (N=p,n) and fN is
given by

fN
mN

=
∑
q=u,d

(
fqfTq

+
3

4
(q(2) + q̄(2))gq

)
,

with fq = λ2Mχ/[16(M2
q̃ −M2

χ)2], gq = 4fq. Only the
quarks that couple to our dark sector are included in the
summations given here. The nucleon matrix elements of
the quark operators are taken from [13] (see also [70]).
The large values of q(2) + q̄(2) make the quark twist-2
contribution the dominant one.

The spin-dependent cross-section for scattering be-
tween nucleons and χ is given by [14]

σMaj
SD =

3

64π

λ4µ2
N (
∑
q ∆N

q )2

(M2
q̃ −M2

χ)2
, (C2)
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where the summation is again over the quarks that cou-
ple to the hidden sector and ∆N

q is defined by 2sµ∆N
q ≡

〈N |q̄γµγ5q|N〉 with sµ the nucleon spin operator. We

take bounds from the neutron-dark matter scattering
since they are stronger, thus the appropriate matrix ele-
ments we use are ∆n

u = −0.427,∆n
d = 0.842. [71].
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