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Abstract

We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Us-

ing covariant symmetries, we show that correlation functions can be constructed from inexpensive

approximations without introducing any systematic bias in the final result. We introduce a new

class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in

which the approximation takes account of contributions of all eigenmodes through the inverse of

the Dirac operator computed from the conjugate gradient method with a relaxed stopping condi-

tion. In this paper we compare the performance and computational cost of our new method with

traditional methods using correlation functions and masses of the pion, nucleon, and vector meson

in Nf = 2 + 1 lattice QCD using domain-wall fermions. This comparison indicates that AMA

significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for

the same cost.
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I. INTRODUCTION

In order to increase the confidence we have in the results of a Monte-Carlo simulation, a

huge number of independent ensembles is always required. In lattice QCD many important

observables suffer from notoriously large statistical errors due to fluctuations induced by the

gauge fields used to compute expectation values, e.g., the neutron electric dipole moment

(EDM) [1–4], the hadronic contributions to the muon anomalous magnetic moment (g-

2) [5], the η-η′ mass and mixing angle [6], among others. The precise determination of

these observables, which provide important ingredients for the Standard Model (SM) and

models beyond the SM, is a challenging task for lattice QCD. In this paper we present a

detailed study of a new technique to efficiently evaluate correlation functions in a Monte-

Carlo simulation. An earlier publication by some of us already described the method and

provided a few examples [7].

In lattice QCD, the numerical path integral is evaluated by Monte-Carlo simulation to

compute the expectation value of an observable O[U ] given as the weighted average over con-

figurations of gauge (gluon) fields, link variables U generated under probability distribution

P [U ] on a lattice, in an ensemble,

〈O〉 =
∑

U

O[U ]P [U ] =

Nconf
∑

i=1

1

Nconf
O[Ui] +O(1/

√

Nconf) as Nconf → ∞. (1)

To increase the accuracy of the ensemble average given the statistics of Nconf configurations,

the development of numerical algorithms to efficiently compute observables is an important

task. Traditionally translational symmetry of the correlation function is exploited to increase

statistics,

〈O(x, y)〉 = 〈O(xg, yg)〉, (2)

where the distance between operators on the shifted lattice sites is held constant, ||x −
y|| = ||xg − yg||. Ignoring statistical correlations between operators on shifted sites, the

different NG sets of O(xg, yg) with sink location xg and source location yg can be regarded

as independent measurements. However this naively requires NG times the computational

cost of a single measurement.

The original idea to avoid the cost of NG measurements while still performing NG shifts

is low-mode averaging (LMA) [8–11], in which the inverse of the Dirac operator for each of
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g ∈ G is computed from its low-lying eigenvectors. The benefit of LMA is that, once the low-

modes have been computed, the construction of the LMA estimator is not only low-cost but

also useful for low-mode deflation [12], i.e. as a preconditioner in the conjugate gradient (CG)

method. There have been many lattice studies using LMA, primarily focused on low-mode

dominated observables, for example low-energy constants in the ε-regime [13], or the chiral

behavior of pseudoscalar mesons in the p-regime [14]. They have shown that there is some

benefit from LMA for observables related to the pion. On the other hand, attempts to use

LMA for baryons or heavy mesons [15–17], were not as successful, presumably because these

states are not dominated by a relatively small number of low-modes (we also found recent

attempts to use extended method called as low-mode substitution for baryon spectroscopy

in [18]).

Recently we extended the LMA idea to efficiently handle the vast majority of hadronic

states that are not dominated by low-modes [7]. The idea is to include all modes of the Dirac

operator but with dramatically reduced computational cost compared to the usual conjugate

gradient method. By using covariant symmetries, approximate (and therefore inexpensive)

correlation functions are used to compute expectation values without introducing any sys-

tematic error (bias). All-mode-averaging (AMA) in which a relaxed stopping condition of

the CG is employed as in [19] takes the contributions of all modes into account. The method

is broadly applicable to other fields using Monte-Carlo simulation, e.g. many-body systems,

atomic systems and cold gas systems (see [20–24]). This paper gives a detailed description

of the covariant approximation averaging (CAA) with primary examples, LMA and AMA

[7]. We also present several numerical results with high precision and cost-performance

comparison with standard methods.

This paper is organized as follows: in the next section we describe the CAA procedure and

compare LMA and AMA. In Section III we show numerical results for AMA using domain-

wall fermions and compare to LMA and the standard multi-source method. In Section IV

we present several examples extending the approximation and the results of some numerical

tests. In the last section we summarize and discuss further extensions of AMA. In Appendix

B, possible small bias of AMA due to finite precision floating point arithmetic are discussed,

and we present how to remove them completely in Appendix C.
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II. COVARIANT APPROXIMATION AVERAGING

A. General argument

Under a symmetry transformation g ∈ G, the expectation value of the transformed

functional O[U ] (for example a hadron propagator) is equivalent to that computed on the

transformed configuration Ug

〈Og[U ]〉 = 〈O[Ug]〉, (3)

where Ug(x) = U(xg), while translational symmetry of the observable is expressed as

Og[U ](x, y) = O[U ](xg , yg). If O[U ] is covariant under the symmetry, on each gauge config-

uration

Og[U ] = O[Ug], (4)

then there is the trivial identity

∑

g∈G

Og[U ] =
∑

g∈G

O[Ug], (5)

for a set of transformations g ∈ G whose number of elements is NG. From Eq. (3), (4) and

(5), an average over a set of symmetry transformations is defined as

OG[U ] ≡
1

NG

∑

g∈G

Og[U ] =
1

NG

∑

g∈G

O[Ug], (6)

and one sees that 〈OG[U ]〉 is identical to 〈O[U ]〉, since any transformed configuration Ug

appears with the same probability as U in the Monte-Carlo simulation with an action in-

variant w.r.t. g. Note the statistical error of OG decreases by a factor 1/
√
NG times smaller,

while its computational cost increases by a factor NG times more.

In order to reduce the computational cost implied by Eq. (6), we introduce an approx-

imation for O, which is called as O(appx). Averaging over g ∈ G as in Eq. (6) for O(appx)

yields

O(appx)
G =

1

NG

∑

g∈G

O(appx) g. (7)

Using O(appx) and the original O, an improved estimator for O is defined by

O(imp) = O −O(appx) +O(appx)
G

≡ O(rest) +O(appx)
G , (8)

O(rest) = O −O(appx), (9)
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(In the definition of O(rest), we used the unit element of G, however, any other elements

would serve the purpose just as well.). Since O(appx) in O(imp) is canceled by O(appx)
G after

performing the path integral and using the covariance of O(appx) as in Eq. (4), one easily

sees that the expectation value of the improved estimator agrees with the original,

〈O(imp)〉 = 〈O〉. (10)

As shown in Appendix A, using the standard deviations of O, σ, the approxima-

tion O(appx), σ(appx), and the transformed approximation O(appx) g, σ(appx) g, where σX =
√

〈(∆OX)2〉, and ∆OX = OX − 〈OX〉, and the correlations defined by

rg =
〈∆O∆O(appx) g〉

σσ
(appx)
g

, (11)

rcorrgg′ =
〈∆O(appx) g∆O(appx) g′〉

σ(appx) gσ(appx) g′
, (12)

the standard deviation of the improved estimator is

σ(imp) ≃ σ
[

2∆r +
1

NG
− 2

NG
∆r +Rcorr

]1/2

, (13)

Rcorr =
1

N2
G

∑

g 6=g′

rcorrgg′ , (14)

with ∆r = 1 − r, r ≡ rg=I . Note that, in Eq. (13), we approximate σ ≃ σ(appx), and the

correlation between O and O(appx) g is similar to that for O(appx), i.e. rcorrg 6=I ≃ rg 6=I (which

assumes that there is strong correlation between O and O(appx).). In [7, 25], we also ignored

the third and fourth terms in (13). In the equation above, ∆r and rcorrg indicate the quality

of the approximation and the magnitude of the correlation among the {O(appx) g}g∈G, respec-
tively. To achieve a reduction of the statistical error of magnitude ∼ 1/

√
NG, an O(appx)

with small ∆r and small positive rcorrgg′ is necessary. Furthermore, the cost of computing

O(appx) should be much cheaper than O.

Taking the consideration above into account, we impose the following conditions on

O(appx) and the choice of transformation, g ∈ G, for O(appx) g,

CAA-1: O(appx) is covariant under G as in Eq. (4) 1.

1 As explained in Appendix B, this condition is not necessary to fulfill Eq. (3) if we introduce a randomly

chosen shift of source location in Appendix C.
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CAA-2: O(appx) is strongly correlated with O, i.e. ∆r ≪ 1.

CAA-3: The computational cost of O(appx) is much smaller than O.

CAA-4: The transformation g ∈ G is chosen to give small (compared to 1/NG) positive

correlations among {O(appx) g}g∈G, i.e. Rcorr ≪ 1/NG.

Note that the last condition is not necessary if the cost of constructing O(appx) is negligible

(so that, in [7], we have not included the last condition). The tuning of the most appropriate

O(appx) for the target observable is important to maximize the reduction of the statistical

error. In the following, we show two examples of CAA in lattice QCD.

B. Example: Low-mode-averaging (LMA)

In lattice QCD, O is a hadron correlator, given as the product of inverses of the Dirac

operator (S[U ]). In LMA, the approximation defined as O(appx) = O(LMA) is constructed by

O(LMA) = O[S(low)], O(LMA)
G =

1

NG

∑

g∈G

O[S(low) g], (15)

S(low)(x, y) =

Nλ
∑

k=1

λ−1
k ψk(x)ψ

†
k(y), (16)

with low-lying eigenmodes ψk and eigenvalues λk of the Hermitian Dirac matrix H(x, y),
∑

yH(x, y)ψk(y) = λkψk(x). For low-mode dominant observables, like the pion propagator

and related form factors, the eigenmodes with small |λk| saturate the observable, and thus

r in Eq. (11) may be close to unity (CAA-2). O(LMA) is covariant since H [Ug](x, y) =

H [U ](xg, yg); we have Og[S(low)[U ]] = O[S(low)[Ug]] (CAA-1). The construction of O(appx)
G

requires an inner product of the low-mode and source(sink) vectors and a complex times

vector multiply. Since the construction of O(appx)
G is cheap, the statistical error of low-mode

dominant observables is significantly reduced (CAA-3) [10, 11] (because the computational

cost of Og,(LMA) is small, condition (CAA-4) is not so important.)
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C. Example: All-mode-averaging (AMA)

AMA is similarly defined as

O(AMA) = O[S(all)], O(AMA)
G =

1

NG

∑

g∈G

O[S(all) g], (17)

S(all)b =

Nλ
∑

k=1

λ−1
k (ψ†

kb)ψk + fε(H)b, (18)

fε(H)b =

NCG
∑

i=1

(H)ici, (19)

where fεb is a polynomial of H with vector “coefficients” ci. In practice this combination is

obtained from the CG, depending on the source vector b and initial guess x0. The subscript

ε indicates the norm of the residual vector after NCG iterations, or steps, of the CG.

In AMA, the (exact) low-mode contribution to the propagator within the range [λ1, λNλ
]

is taken into account by projecting the source vector b onto the orthogonal subspace,

bproj ≡
(

1−
Nλ
∑

k=1

ψkψ
†
k

)

b, (20)

where the low-mode is normalized as
∑

x ψ
†
k(x)ψk(x) = 1. By adopting the above projected

source vector into the CG process (see Algorithm 1), we obtain the solution xCG,

xCG +

Nλ
∑

k=1

λ−1
k (ψ†

kb)ψk = S(all)b. (21)

Notice that the CG is deflated at the same time. Further, the higher mode contribution

(λNλ
< λ ≤ λmax) is treated approximately, fε(λ) ≈ 1/λ, by using the relaxed stopping

criterion in the CG. Therefore the computational cost of fε(H) is significantly smaller than

the usual CG used in O (CAA-3). Compared to LMA, in which eigenmodes with λ > λNλ

are ignored, AMA introduces fε to take into account the contribution of all higher modes,

and thus the quality of the approximation to O is greatly improved (CAA-2). In Eq. (17)

the covariance (CAA-1) is also fulfilled since fε(H) is covariant under the transformation

g; f g
ε (H(x, y)) = fε(H(xg, yg)).

Here we consider two choices of the stopping condition in the CG,

• the norm of the residual vector is smaller than some prescribed value,

• a fixed number of CG iterations.
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The first condition naturally controls the accuracy of the CG and thus the approximation

O(appx), and in this paper we have employed it as the stopping condition. However, it may

happen that this criterion introduces a violation of covariant symmetry as systematic bias

due to numerical round-off error, for example, because of the order of operations in one’s

code 2. As described in detail in Appendix B, this bias is orders of magnitude smaller than

the statistical error in practice. In the same appendix, we also present an argument to

reduce the bias by fixing the number of CG iterations instead of fixing the CG stopping

condition for the residual vector norm. Note that fε can also be computed directly from a

polynomial with fixed coefficients rather than dynamically computed in the CG.

We emphasize, as in [7] and demonstrated in Appendix B 2, when using AMA it is manda-

tory to compute the size of the violation of covariance on a small number of configurations

to ensure that the bias is negligible. Alternatively, one can completely remove the bias by

using randomly selected source locations as described in Appendix C.

Figure 1 illustrates the spectral decomposition of O(LMA) defined in Eq. (16) and O(AMA)

defined in Eq. (18). In AMA, because we use the exact low-lying eigenvectors, the behavior

in the low-mode region is consistent with LMA. The number of intersections with the exact

solution corresponds to the polynomial degree in the approximation which is equal to the

number of CG iterations. The discrepancy with the exact solution can be controlled by the

number of low-modes used in deflation and the degree of the polynomial (see Eq. (18)).

The correlation amongOg will not be significant if we choose appropriate transformations,

g ∈ G, for instance, by widely separating source points among {Og}g∈G, so that the rcorrgg′ term

in Eq. (13) is negligible (CAA-4). Unlike LMA, AMA entails non-negligible additional cost

to construct S(all) (fourth step of the AMA algorithm in Table I), and hence the judicious

tuning of NG and choice of g ∈ G is important to reduce the computational cost.

III. NUMERICAL RESULTS

In this section we show the numerical comparison between the standard method and

AMA/LMA for the hadron spectrum and the form factors of the nucleon using realistic

lattice QCD parameters.

2 We thank both M. Lüscher and S. Hashimoto who, independently, pointed this out.
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FIG. 1: A sketch of approximations for the spectral decomposition of the quark propagator in

LMA(circle-dashed line) and AMA(cross-solid line). The x-axis denotes the eigenvalue of the

Hermitian Dirac matrix. The circle symbol corresponds to O(LMA) and blue solid line corresponds

to O(AMA). The red solid line shows the exact solution.

A. Set up

We use the Nf = 2 + 1 domain-wall fermion (DWF) configurations generated by the

RBC/UKQCD collaboration on a 243×64 lattice, with gauge coupling β = 2.13 for the

Iwasaki gauge action [26]. The CG algorithm with four dimensional even-odd precondition-

ing (see Appendix E) was used to compute quark propagators at quark mass m = 0.005 and

0.01, corresponding to 0.33 and 0.42 GeV pion masses, respectively, and the 5th dimension

size for DWF is Ls = 16.

To calculate the eigenvectors of the Hermitian even-odd preconditioned DWF opera-

tor, we implement the implicitly restarted Lanczos algorithm with Chebychev polynomial

acceleration [27–30]. In Appendix D we describe the detailed implementation. The de-

gree of the Chebychev polynomial in the Lanczos method is 100, and the parameters

(α, β) = (0.04, 1.68) for m = 0.005 and (α, β) = (0.025, 1.68) for m = 0.01 are chosen

to rapidly converge the “wanted” part of the spectrum, here the lowest few hundred modes
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TABLE I: LMA and AMA algorithms

LMA algorithm AMA algorithm

1: Compute low-modes ψk of H 1: if λNλ
6= 0, Nλ > 0

Compute low-modes ψk of H

2: Set source vector b and G-invariant initial guess x0

3: Compute accurate xCG and O[S] precisely

(use deflation method in Eq.(20) and (21) if ψk exits)

4: Compute S(low)b in (16) 4: Compute S(all)b in (18)

and O(LMA) = O[S(low)] and O(AMA) = O[S(low)] using

deflated CG (if λNλ
6= 0)

5: O(rest) = O[S]−O[S(low)] 5: O(rest) = O[S]−O[S(all)];

6: Set shifted source bg and G-invariant initial guess xg0

7: Average O(LMA)
G = O[S(low)] 7: Average O(AMA)

G = O[S(all)]

over g ∈ G to get O(LMA)
G over g ∈ G to get O(AMA)

G

8: O(imp) = O(rest) +O(appx)
G

(see Eqs.(D9) and (D11)). In the implicitly restarted Lanczos method, we label Nλ the

number of wanted eigenvectors and p = 40 the number of unwanted vectors (see Appendix

D). We compute the exact low-modes of Hermitian 4D even-odd preconditioned DWF Dirac

operator, H4Deo, to better than 10−10 numerical accuracy, ||(H4Deo − λk)ψk||/||ψk|| < 10−10.

In table II we summarize the parameters in the Lanczos method, the number of gauge con-

figurations Nconf in each ensemble, and the number of low-modes Nλ computed on each

configuration.

In AMA/LMA, the set of transformations g ∈ G in Eq. (7) are taken as translational sym-

metry. The estimator O(appx)
G is obtained with NG = 32 different source locations, separated

by 12 sites for spatial directions and 16 sites for the temporal direction, starting from the

origin, i.e. at positions (0,0,0,0), (12,0,0,0), (12,12,0,0), . . . , (12,12,12,48) in lattice units.

This setup is used for measurements on configurations separated by 40 HMC trajectories.

In addition, measurements are made on a second set of configurations, also separated by 40

trajectories, but lying in between configurations of the first set. On the second set, all source
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TABLE II: Parameters of LMA/AMA in each ensembles. (α, β) is the input range of Chebychev

polynomial in the Lanczos method with Nλ wanted and 40 unwanted eigenmodes. We present

the absolute value of the minimum eigenvalue as |λ1| and Nλ-th eigenvalue |λNλ
| up to the first

significant figure in each ensemble. “#Restart” column shows the range of number of restarted

Lanczos iterations.

m Nconf Nλ (α, β) |λ1| |λNλ
| #Restart

0.005 398 400 (0.04,1.68) 0.004 0.04 5–6

0.01 348 180 (0.025,1.68) 0.006 0.02 5–6

locations are shifted by the lattice vector (6,6,6,0) with respect to the original functional

O. In the CG, the norm of the residual vector is defined as ||H4Deox− b||/||b|| with source

vector b and solution vector xCG (see also Table II). For the stopping conditions for the

exact CG and the relaxed CG we have ε = 10−8 and ε = 0.003, respectively 3.

We use gauge-invariant Gaussian smeared sources with the same parameters as in Ref.[31]

to compare the performance of LMA and AMA. In [31], the authors measured three- and

two-point functions for four source locations in the temporal direction to extract the nucleon

isovector form factors and axial charge, and thus 4 ×Nconf samples were accumulated. For

m = 0.005, quark sources set on two time-slices separated by 32 sites were used (double

source method) to efficiently double the statistics. [31] also employed non-relativistic nucleon

sources (2 quark spins rather than 4) to reduce the computational cost further, while in our

case we use relativistic sources. Therefore, in the analysis below, we account for these two

factors to ensure a fair comparison of statistical errors.

B. Computational cost estimate

In order to compare the computational cost between the standard method and

LMA/AMA, we use the number of applications of H2
4Deo (#Mult in Table III) to estimate

total costs in each case. In the standard method, the cost without deflation is #MultCG(org)

3 Note that when using an even-odd basis, one needs to choose the four dimensional shift vector of the

source point to avoid breaking CAA-3. Shifts that end on an even(odd) point for even(odd) sites are

sufficient).
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TABLE III: The table of the number of multiplications of kernel H2
4Deo. “#MultLanczos” is its

number in 5 restarting Lanczos process. We also show the range of #Mult with and without

deflation method for exact calculation (#Multdefl.CG(org), #MultCG(org)) and approximation in

AMA (#Multdefl.CG(AMA)) using low-mode of H2
4Deo.

m #MultLanczos #MultCG(org) #Multdefl.CG(org) #Multdefl.CG(AMA)

0.005 64K 3K 350–360 70–90

0.01 42K 2K 600–630 90–130

times the number of color and spin sources used per configuration,

Cost(org) = #MultCG(org) × 12×Nconf . (22)

On the other hand, when deflating the Dirac operator, the cost is

Costw/defl.(org) =
(

#MultLanczos +#Multdefl.CG(org) × 12
)

×Nconf , (23)

where we add the cost of the Lanczos process to obtain the low-modes. We note that, based

on wall-clock timing, the time for multiplication of the Dirac operator dominates the Lanczos

step, and Gram-Schmidt reorthogonalization is negligible due to the O(100) degree of the

Dirac matrix polynomial. Therefore, we use the number of multiplications of the polynomial

of the Dirac operator as a good representative of the computational cost.

In LMA, ignoring the small cost of constructing the approximation O(LMA) and O(LMA)
G

from the low-modes, the total cost is the same as Costw/defl.(org),

Cost(LMA) = Costw/defl.(org). (24)

In AMA, there are three parts to the total cost, the eigenvector computation, the exact CG

solve, and NG relaxed CG solves, so the total cost reads

Cost(AMA) =
(

#MultLanczos +
(

#Multdefl.CG(org) +#Multdefl.CG(AMA) ×NG

)

× 12
)

×Nconf .

(25)

In the following section, to compare costs of LMA/AMA to the standard method, we de-

fine the cost ratio multiplied with the squares of statistical error ratio to obtain a normalized
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cost, i.e., one that reflects the cost to achieve the same error,

r
w/o defl
Cost =

Cost(LMA/AMA)

Cost(org)
r2Error, (26)

r
w/defl
Cost =

Cost(LMA/AMA)

Costw/defl.(org)
r2Error, (27)

rError =
Error(LMA/AMA)

Error(org)
. (28)

C. Hadron spectrum

First we show results for hadron propagators obtained by using the standard method and

LMA/AMA with parameters given in the previous section. Figure 2 shows that the error

reduction achieved with AMA is close to the ideal rate, 1/
√
NG ≃ 0.18 for nucleon, pion,

and vector propagators, for source-sink separations t = 4, 8, and 12 (nucleon and vector),

and t = 4, 20, and 25 (pion), while LMA does not work well at short distance (t = 4) except

for the pion. Since low-modes dominate the pion propagator, LMA and AMA show similar

error reduction. For AMA we see that O(imp) is close in value to O(appx)
G , while in LMA

the difference is much larger, especially for short distances (except for pion propagator). It

turns out that AMA provides a good approximation to the original and clearly shows that

AMA can reduce statistical errors for both long and short distances by approximating the

quark propagator with fε(H) obtained with the relaxed CG for the high part of the Dirac

spectrum.

In Figure 3, we plot rcorrgg′ against the distance between source locations on a given time

slice and Rcorr for zero momentum nucleon, pion and vector meson propagators. These

quantities are important for choosing NG and the transformations g ∈ G to efficiently

implement CAA as explained in Sec. II. One sees that at the smallest separation from

the origin (in which the source location is (12, 0, 0, 0), (0, 12, 0, 0) and (0, 0, 12, 0)) there is

significant correlation compared to the case of large separation. This behavior becomes

apparent when the hadron propagates far away from source location (large t). Comparing

the different masses, especially for the pion propagator, rcorrgg′ is larger for lighter mass. For

the nucleon and vector meson propagators Rcorr, which is the sum of rcorrgg′ divided by N2
G, is

relatively small compared to 1/NG ≃ 0.031 in Eq. (13), and therefore in our setting of g ∈ G

the reduction of statistical error is close to the ideal ratio, 1/
√
NG ≃ 0.18. We notice that

for the pion propagator Rcorr is relatively large since rcorrgg′ increases when the pion propagates
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FIG. 2: The propagator of nucleon (top), pion (middle) and vector meson (bottom) at time sep-

aration t = 4, 8, 12 for nucleon and vector meson, and t = 4, 20, 25 for pion. We show the values

of these propagators used in original, LMA and AMA. The filled symbols are result of improved

estimator O(imp) and open symbols are result of averaged approximation O(appx)
G . The bar in

AMA/LMA shows the ratio of relative error with original one. This value corresponds to right-

perpendicular axis. The horizontal bar shows the ideal ratio of relative error 1/
√
32 ≃ 0.18 in case

of no correlation between spatial source locations.

a large distance. More details will be discussed below.

In Figure 4 and 5, we plot the effective mass of several hadron channels together with

2∆r and Rcorr defined in Eq. (11) and Eq. (14). As previously discussed, an approximation

having strong correlation with O has small 2∆r. In the case of AMA the effective mass for

both the nucleon and vector meson is improved over LMA, especially for t less than 15 where

2∆r is less than 0.1%. On the other hand, Rcorr of AMA within the fitting region is similar

to Rcorr of LMA, and it is less than 20% of 1/NG for the nucleon (and its parity partner N∗,

which is given by the negative Parity projection for the nucleon two point function. More

detailed discussion and recent lattice study refers to for example [32, 33] and references

therein) and the vector meson. Thus the two contributions in Eq. (13), 2∆r and Rcorr, are

negligible compared to 1/
√
NG, and therefore the error reduction of these hadron masses
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FIG. 3: The correlation rcorrgg′ and Rcorr as a function of physical spatial distance for source locations

between O(appx) g and O(appx) g′ . We take average over rcorrgg′ in same spatial distance with identical

temporal source location. The top panel is for propagator of nucleon, middle pion and, bottom is

of vector at time-slice t = 4, 8, 12 for nucleon and vector meson t = 4, 20, 25 for pion. The blue

(green) symbols are in m = 0.005(0.01).

is close to 1/
√
NG in AMA (see Table IV). However, for the pion propagator, we observe

that 2∆r in AMA at below t = 5 is much smaller than LMA, otherwise at t > 5 both cases

become similarly tiny as seen in Figure 5. On the other hand, Rcorr of the pion propagator

is similar between LMA and AMA, with magnitude around 40%–90% of 1/NG. As the

consequence the error reduction of AMA for pion propagator and pion mass is similar in

magnitude with LMA in a region where the pion ground state dominates. We note that the

relatively large correlation between different source locations for the pion propagator may

result in a slightly smaller error reduction of the pion mass (see the “mπ” row in Table IV).

In Tables IV and V we compare the fit results of hadron masses and scaled costs of

LMA/AMA to achieve the same statistical error of the standard method. Here we use the

chi-squared fitting with single exponential function including the correlation in the temporal

direction. χ2/dof is between 0.6 and 3 using the fitting range as shown in Tables IV and V.

The quantity rCost defined in Eq. (27) and (26) indicates the computational cost compared to
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FIG. 4: The effective mass plot of nucleon propagator (top) and its parity partner (bottom) with

smeared source and point sink using original (left panel), LMA (middle panel) and AMA (right

panel) atm = 0.005. The cross symbols show the magnitude of 2∆r, and star symbols denote Rcorr,

as defined in Eq. (11). The right-perpendicular axis corresponds to this value. The dashed-line

shows the value of 1/NG.

the standard method, with and without deflation, respectively. Comparing costs for masses

of the nucleon, N∗, and vector mesons with LMA and AMA, one sees that error reduction

in AMA is much larger than from LMA at both m = 0.005 and m = 0.01. AMA has a

cost reduction for those observables of about 5 to 20 times larger compared to the standard
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FIG. 5: Similar plot to Figure 4 of effective mass of pion (top) and vector meson (bottom).

method and LMA. It can be easily understood by looking at rError of those hadron masses in

AMA which is close to the ideal ratio (1/
√
NG ≃ 0.18), and the construction cost of O(appx)

is much cheaper than original one. In particular, for the N∗, the gain from AMA compared

to LMA is even more dramatic. Actually, in LMA, the ∆r term dominates the total error

in Eq. (14), and it turns out that error reduction by LMA is limited to
√
2∆r even if NG is

increased to NG = V , as is usually done. Improvement for heavy mesons and baryons would

also be interesting work.

Considering the multiple-source method with deflation, statistics are increased by averag-

17



ing over hadron propagators with Nsrc different source locations. In such a case, the original

cost is given by the CG cost times Nsrc plus the cost of generating eigenvectors,

Costw/defl.(multi-source) =
(

#Multdefl.CG(org) × 12×Nsrc +#MultLanczos
)

×Nconf . (29)

Assuming that there is no correlation between different source locations, we can set Nsrc =

NG, so the reduction of computational cost is

rCost(multi-source) =
Cost(AMA)

Costw/defl.(multi-source)
≃ 0.49 (m = 0.005),

≃ 0.33 (m = 0.01). (30)

The computational cost advantage of AMA is cut in half compared to the case with no defla-

tion. However this relative cost will decrease again if additional propagators are computed,

for instance, for three-point functions (see next section), or if the lattice size is increased

and more source translations are used.

In the case of the pion, comparing rError in LMA between m = 0.005 and m = 0.01, we

find ∆r at m = 0.01 is much larger than at m = 0.005. This is due to less dominance of the

low-modes and the use of fewer low-modes in our setup at m = 0.01: the approximation is

worse as seen in Figs. 5 and 6. Using AMA, thanks to the relaxed CG, the approximation

is improved. We also notice that rError for the pion mass is about 1.5 times larger than

for the pion propagator (see Fig. 2 and Tab. IV). This is due to the relatively large value

of Rcorr for pion propagator above t = 16. This observation is confirmed if we extend

the distance between O(appx) g and O(appx) g′. For example, using source shifts only in the

temporal direction (source separation in the temporal direction is longer than in the spatial

direction), NG = 4, rError of the pion mass is similar to the ideal, 1/
√
NG = 0.5, as shown in

Tab. VI. It turns out that for pion the correlation Rcorr is relatively significant in the error

reduction rate.

D. Nucleon form factors

In this section we apply AMA to nucleon three-point functions which have a more com-

plicated structure in terms of quark propagators. We carry out the measurement of three-

point functions ((nucleon)-(operator)-(nucleon)) where the operators are vector (Vµ) or axial-

vector (Aµ) currents, and we evaluate the axial-charge and isovector form factors defined

18
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FIG. 6: The effective mass plot of pion at m = 0.01, and 2∆r and Rcorr of pion propagator as in

Figure 5.

from the matrix elements,

〈N1(p1, s)|V a
µ |N0(p0, s)〉 = ūN1

(p1, s)
[

γµF
a
1 (q

2) +
σµνqν
2mN

F a
2 (q

2)
]

uN0
(p0, s), (31)

〈N1(p1, s)|Aa
µ|N0(p0, s)〉 = ūN1

(p1, s)
[

γµγ5F
a
A(q

2) + iqµγ5F
a
2 (q

2)
]

uN0
(p0, s), (32)

with momenta ~p0 and ~p1 of on-shell nucleon states N0 and N1, respectively, with spin s. The

superscript “a” is an SU(2) flavor index referring to either isovector or isoscalar components.

Below we study matrix elements of the isovector currents (a = +). F a
1 and F a

2 are obtained

from the Sachs form factors,

GE(q
2) = F a

1 (q
2)− q2

4m2
N

F a
2 (q

2), GM(q2) = F a
1 (q

2) + F a
2 (q

2). (33)

The isovector form factor F+
A (q2) at zero momentum transfer is known as the axial-charge

of the nucleon, gA = F+
A (0), which is an important quantity governing neutron β decay.

To obtain the form factors, we construct ratios of three-point correlation functions, CN
Jµ,

and nucleon two-point functions, CN
G,L, as

RJµ(t1, t, t0|p1, p0) = K
CN

Jµ(~q, t)

CN
G (t1 − t0, 0)

[

CN
L (t1 − t, ~q)CN

G (t− t0, 0)C
N
L (t1 − t0, 0)

CN
L (t1 − t, 0)CN

G (t− t0, ~q)CN
L (t1 − t0, ~q)

]1/2

(34)

with K =
√

2(EN +mN)/EN , where C
N
L is with point-sink and gauge-invariant Gaussian

smeared source, CN
G is with gauge-invariant Gaussian smeared source and sink. t0, t1 denote
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TABLE IV: The comparison of hadron mass (nucleon with momenta, pion, vector meson and Parity

partner of nucleon) in GeV unit obtained by global fit of correlator (point sink and gauge-invariant

Gaussian smeared source) in AMA/LMA method with NG = 32. For reference we show the result

with the correlator in a single source location. “Cost” column shows the ratio of computational

cost of AMA/LMA and original one after scaling to the same accuracy. We also compare the cost

with and without the deflation method in the original calculation using the number of low-mode

presented in Table II.

m = 0.005

Org LMA rError r
w/o defl
Cost r

w/defl
Cost AMA rError r

w/odefl
Cost r

w/defl
Cost

Fit: [7, 12]

mN 1.1322(156) 1.1520(78) 0.50 0.48 0.25 1.1519(27) 0.17 0.08 0.04

EN (n2p = 1) 1.2072(172) 1.2349(82) 0.48 0.43 0.23 1.2393(30) 0.18 0.09 0.04

EN (n2p = 2) 1.3095(232) 1.3171(96) 0.42 0.33 0.17 1.3229(39) 0.17 0.08 0.04

EN (n2p = 3) 1.3723(436) 1.3941(135) 0.31 0.18 0.10 1.4010(55) 0.13 0.05 0.02

EN (n2p = 4) 1.5205(627) 1.4638(192) 0.31 0.18 0.09 1.4726(88) 0.14 0.05 0.03

Fit: [5, 8]

mN∗ 1.757(81) 1.671(61) 0.75 1.07 0.56 1.675(11) 0.15 0.06 0.03

Fit: [16, 27]

mπ 0.3291(12) 0.3290(4) 0.37 0.27 0.14 0.3291(4) 0.36 0.36 0.19

Fit: [8, 15]

mV 0.8621(176) 0.8746(58) 0.33 0.21 0.11 0.8738(34) 0.20 0.11 0.06

the temporal location of the initial and final states of nucleon which are fixed, and t is the

temporal location of the operator which moves between t0 and t1. The momentum transfer

is defined as q = p0 − p1 , and in our setup we use p0 = (EN , ~p) and p1 = (mN , 0) with

~p = (px, py, pz) = 2π~np/L, ~n
2
p = 0, · · · , 4. In order to extract the form factors of the ground

state nucleon from RJµ we use the spin-projection matrix P4 = (1+γ4)/2 and P5z = P4γ5γ3,
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TABLE V: Same as shown in Table IV at m = 0.01.

m = 0.01

Org LMA rError r
w/o defl
Cost r

w/defl
Cost AMA rError r

w/odefl
Cost r

w/defl
Cost

Fit: [7, 12]

mN 1.2279(127) 1.2234(63) 0.50 0.51 0.25 1.2422(24) 0.19 0.14 0.07

EN (n2p = 1) 1.2877(156) 1.2992(76) 0.49 0.49 0.24 1.3222(27) 0.17 0.12 0.06

EN (n2p = 2) 1.3438(207) 1.3682(97) 0.47 0.46 0.22 1.3981(32) 0.16 0.09 0.05

EN (n2p = 3) 1.3695(289) 1.4256(145) 0.50 0.52 0.25 1.4677(45) 0.16 0.09 0.05

EN (n2p = 4) 1.4661(437) 1.4944(206) 0.47 0.46 0.22 1.5379(63) 0.15 0.08 0.04

Fit: [5, 8]

mN∗ 1.800(49) 1.659(69) 1.40 4.02 1.95 1.787(11) 0.23 0.20 0.10

Fit: [15, 26]

mπ 0.4169(10) 0.4195(11) 1.08 2.41 1.17 0.4187(4) 0.47 0.83 0.40

Fit: [8, 15]

mV 0.9185(124) 0.9228(67) 0.55 0.62 0.30 0.9198(29) 0.24 0.22 0.11

TABLE VI: Pion and vector meson mass as shown in Table IV at m = 0.005 and NG = 4.

m = 0.005

LMA rError r
w/o defl
Cost r

w/defl
Cost AMA rError r

w/odefl
Cost r

w/defl
Cost

Fit: [15, 26]

mπ 0.3286(6) 0.52 0.52 0.27 0.3287(6) 0.51 0.53 0.28

Fit: [8, 15]

mV 0.8840(94) 0.54 0.55 0.29 0.8801(83) 0.47 0.45 0.23

as in [31]. For the vector case,

lim
t1−t,t−t0≫1

tr
[

P5z(RV1
+RV2

)
]

(t1, t, t0|p1, p0) =
−ipx + ipy

mN
GM(q2), (35)

lim
t1−t,t−t0≫1

tr
[

P4RV4

]

(t1, t, t0|p1, p0) =
EN +mN

mN
GE(q

2), (36)
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and for the axial-vector,

lim
t1−t,t−t0≫1

tr
[

P5z(RA1
+RA2

)
]

(t1, t, t0|p1, p0) = −(px + py)pz
mN

FP (q
2), (37)

lim
t1−t,t−t0≫1

tr
[

P5zRA3

]

(t1, t, t0|p1, p0) =
1

mN

[

mNFA(q
2)− p2zFP (q

2)
]

, (38)

after taking t1 ≫ t≫ t0 to project on the nucleon ground state. In the above derivation we

use the normalization for Dirac spinors,
∑

s ūN(p, s)uN(p, s) = 2mN . The parameters of the

gauge-invariant Gaussian smeared source-sink are the same as in [31], and t0 = 0, t1 = 12.

In this calculation we employ the local currents V a
µ = q̄γµτ

aq and Aa
µ = q̄γµγ5τ

aq where τa is

flavor SU(2) generator normalized as tr τaτ b = δab, and hence we multiply matrix elements

of the currents by the renormalization constant ZV = 0.7178, determined non-perturbatively

[26].

We compare the axial charge and isovector form factor at each momentum between the

standard method and LMA or AMA. Figure 7 shows gA for two different masses. A ground

state plateau is clearly observed for 4 ≤ t ≤ 8 for both masses. Comparing the contribution

of ∆r and Rcorr in LMA and AMA, one sees that ∆r in AMA is much smaller, and the

quality of the approximation is significantly enhanced. In cost estimates of the three-point

functions, we compute “polarized” and “unpolarized” matrix elements for both up-type and

down-type contractions which is an additional cost factor of four quark propagators. As

shown in Tabs. VII and VIII, AMA achieves error reductions in GA, F
+
1 and F+

2 close to

1/
√
NG with 5–20 times smaller computational cost than the standard method or LMA.

Comparing the results for AMA at the two masses m = 0.005 and m = 0.01, the error

reduction compared to the standard method is significant for both, despite having fewer

eigenvectors for the latter. The cost ratios, comparing to the multi-source method with

Nsrc = NG, are

rCost(multi-source) ≃ 0.32 (m = 0.005),

≃ 0.24 (m = 0.01), (39)

in which we have gains greater than factors of 3 and 4 for AMA. We also note that not only

have the statistical errors decreased dramatically, but the plateaus are much more readily

observed for AMA.
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FIG. 7: Time-slice dependence of axial-charge GA in m = 0.005 (top) and m = 0.01 (bottom) with

standard method (left), LMA (middle) and AMA (right). The cross symbols and star symbols

denote 2∆r and Rcorr for three-point function which is in nominator in Eq. (34). The colored band

is the constant fitting result in this range.

IV. FUTURE EXTENSION

This paper has shown numerical tests of AMA using the relaxed CG as the approximation,

but there are many other examples of O(appx). One idea is to employ improved DWF

actions, e.g. Möbius-type [34] or Borici-type [35, 36], which are extensions of DWF allowing

smaller Ls without enhancing chiral symmetry breaking, in addition to the relaxed CG
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TABLE VII: Table of axial charge GA with standard method, LMA and AMA in m = 0.005 and

m = 0.01.

GA Org LMA rError r
w/o defl
Cost r

w/defl
Cost AMA rError r

w/o defl
Cost r

w/defl
Cost

Fit: [4, 8]

m = 0.005 1.235(124) 1.263(60) 0.48 0.11 0.23 1.188(22) 0.18 0.04 0.09

m = 0.01 1.259(80) 1.197(58) 0.73 0.35 0.53 1.170(17) 0.21 0.11 0.17

TABLE VIII: Table of F+
1 and F+

2 with standard method, LMA and AMA in m = 0.01.

Org LMA rError r
w/o defl
Cost r

w/defl
Cost AMA rError r

w/o defl
Cost r

w/defl
Cost

Fit: [4, 8]

F+
1 (n2p = 1) 0.849(53) 0.860(52) 0.99 0.64 0.97 0.799(10) 0.20 0.10 0.15

F+
1 (n2p = 2) 0.695(50) 0.730(47) 0.95 0.60 0.91 0.678(10) 0.20 0.10 0.15

F+
1 (n2p = 3) 0.493(57) 0.618(47) 0.82 0.45 0.68 0.583(11) 0.21 0.10 0.16

F+
1 (n2p = 4) 0.406(50) 0.524(49) 0.97 0.62 0.94 0.555(17) 0.35 0.30 0.45

F+
2 (n2p = 1) 2.61(26) 2.35(17) 0.66 0.28 0.43 2.37(5) 0.19 0.09 0.13

F+
2 (n2p = 2) 1.88(22) 1.91(14) 0.66 0.29 0.44 1.85(4) 0.19 0.09 0.13

F+
2 (n2p = 3) 1.52(16) 1.62(13) 0.82 0.44 0.67 1.52(4) 0.25 0.15 0.23

F+
2 (n2p = 4) 1.12(15) 1.17(13) 0.86 0.49 0.74 1.32(5) 0.35 0.29 0.44

solver. Such improvements have other benefits like the reduction of memory or disk-storage

size of eigenvector data stored on disk.

We test the above strategy on another DWF ensemble generated by the RBC/UKQCD

collaboration [37], with larger lattice size (323 × 64) and Ls = 32, and smaller pion mass,

mπ ≈ 170 MeV. For the approximation we take a Möbius-type DWF Dirac operator with

Ls = 16. We use 1000 low-modes, computed with a 200 degree Chebychev polynomial, and

then only 2 restarts of the Lanczos procedure are needed. In this case, the computational

cost ratio reads

Cost(AMA) =
(

#MultLanczos × 0.6 +
(

#Multdefl.CG(org)

+ #Multdefl.CG(AMA) × 0.6NG

)

× 12
)

×Nconf . (40)
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TABLE IX: Result of hadron mass in DSDR lattice in m = 0.001.

Org AMA rError r
w/odefl
Cost

Fit: [6, 9]

mN 0.9625(538) 0.9822(57) 0.11 0.04

EN (n2p = 1) 0.9759(524) 1.0201(59) 0.11 0.04

EN (n2p = 2) 1.0090(515) 1.0568(65) 0.13 0.06

EN (n2p = 3) 1.0466(509) 1.0900(74) 0.15 0.08

EN (n2p = 4) 1.0035(544) 1.1268(84) 0.16 0.08

Fit: [4, 7]

mN 1.445(258) 1.430(24) 0.09 0.03

Fit: [8, 21]

mπ 0.1694(21) 0.1712(3) 0.18 0.11

Fit: [6, 10]

mV 0.8502(821) 0.7414(77) 0.09 0.03

where the factor 0.6 arises from the fact that there is an additional 20% cost for the mul-

tiplication with the Möbius-type Dirac operator compared to a DWF operator with same

Ls length together with the having of the cost due to using Ls/2 for the Möbius-type Dirac

operator, i.e. 1.2/2 = 0.6. The axial charge is shown in Fig. 8. One sees that there is a

clear plateau between 3 and 6, where we set the source and sink operator at time-slice 0

and 9 respectively, and around the plateau the correlation ∆r has a similar order as for the

m = 0.01, 243 × 64 case discussed in the last section. In table IX and X we summarize

hadron masses and the axial charge for both the standard method and AMA. From those

tables, the ratio of errors is close to the ideal one, 1/
√
112 ≃ 0.094, and thus O(appx) is still

a good approximation to the original even though we use Möbius-type DWF. AMA reduces

the computational cost by 10 to 30 times in this case.

Still other approximations are possible. For instance, the inexactly deflated CG, using

the EigCG algorithm [38] with low-precision, is adopted as O(appx). This uses low-precision

eigenmodes as well as deflation, and will be beneficial for long-distance observables corre-

sponding to pion and Kaon physics. Especially for large lattice sizes, since there are many
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TABLE X: Result of GA in DSDR lattice in m = 0.001.

Org AMA rError r
w/o defl
Cost

Fit: [3, 6]

GA 1.401(275) 1.135(42) 0.15 0.05
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FIG. 8: The nucleon effective mass plot and the axial charge, as shown in Figure 7, at m = 0.001

with Iwasaki+DSDR action in 323 × 64 lattice.

available source locations, it is possible to reduce the size of gauge ensembles while still main-

taining statistical precision. Furthermore we also note that in [19] the hopping parameter

expansion for the inverse of the Dirac matrix is used as the approximation O(appx). These

are a few of the new directions to pursue high precision calculations without additional com-

putational cost in a Monte-Carlo simulation (however, a careful analysis of autocorrelation

times is necessary).

V. DISCUSSION AND SUMMARY

As shown in the previous section, all-mode averaging (AMA) is a powerful tool for the

precise measurement of observables obtained from correlation functions in Monte-Carlo sim-

ulations. Defining the improved estimator O(imp) using the approximation O(appx), which has

the same covariance properties as the original O but a much smaller construction cost, O(imp)
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has smaller statistical errors without additional computational cost. In this paper we employ

the relaxed CG with deflation to produce the approximation. Since the computational cost

of the approximation using the relaxed CG is much less than the original one, the observables

needing many quark propagators with CG solve of the Dirac matrix benefit accordingly from

the AMA method. Figures 9, 10 and 11 show the ratio of computational costs for AMA.

One sees that, compared to the propagator, the cost of the CG solves for the nucleon form

factor dominates the total cost. This is because 4 extra CG solves are necessary to construct

the three-point functions. Figure 12 shows the summary of reduction rate of computational

cost for LMA and AMA as in Table IV, V, VII IX and X. The computational cost of GA in

AMA is more reduced rather than the two-point function, and also AMA has an advantage

of more than 7 times speed-up for computation of two- and three-point function compared

to traditional method. We also notice that, for 323 × 64 lattice size and DSDR gauge ac-

tion (“32cID”), there is more than 10 times reduction of r
w/odefl.
Cost by employing the Möbius

operator in the approximation. There are also realistic DWF simulations at the physical

quark mass point with 5.5 fm volume with two lattice spacings, which employed AMA [39].

It turns out that AMA also works well for an approximation which is made from a different

action than the original one. As shown in Fig. 11, the computational cost of a precise CG

solve with DWF is still large, in fact 29% for the propagator and 46% for the form factor,

since we did not use deflation method in the original one. Further cost reduction by applying

the modified deflation method in CG with Möbius DWF eigenmodes is currently under way

[40].

We comment on the relation of the approximation with the low-mode distribution of the

Dirac operator. As in Eqs. (18) and (19), the deflation with low-modes increases the quality

of the approximation since these are treated exactly in the inverse of the Dirac operator.

However in this case there appears the additional computational cost of the eigenvectors.

So that in AMA we need to find the appropriate value of Nλ by considering a balance

between additional eigenmode cost and benefit for deflation. In the DWF case, the benefit

of deflation in strange quark mass regime is much less than in light quark mass regime. As

shown in Figure 13, one sees that the lowest eigenvalue of the strange quark Dirac operator

has similar magnitude as in the Nλ = 180 point in both m = 0.005 and m = 0.01. It turns

out that the approximation for the strange quark without deflation has a similar gain as in

the light quark mass with Nλ =180. We know that AMA with Nλ = 180 in m = 0.01 has
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FIG. 9: The rate of computational cost of AMA for hadron propagator (left) and three-point

function of form factor (right) at m = 0.005. This is in the case of 400 eigenmodes computation

and use of 32 source locations for relaxed CG (ε = 0.003) in AMA.
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FIG. 10: Same figure as Figure 9 at m = 0.01. This is in the case of 180 eigenmodes computation

and use of 32 source locations for relaxed CG (ε = 0.003) in AMA.

a certain cost reduction for two- and three-point functions, and thus, at the strange quark

mass, AMA without low-mode deflation also has an advantage.

AMA is an example of a new class of covariant approximation averaging (CAA) which

reduces the statistical error on correlation functions in Monte-Carlo simulations in an effi-
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FIG. 11: Same figure as Figure 9 for 323 × 64 × 32 DSDR lattice. This is in the case of 1000

eigenmodes computation and use of 112 source locations for relaxed CG with Möbius DWF kernel

in AMA.
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FIG. 13: Distribution of positive low-lying eigenvalue at light quark mass m = 0.005, 0.01 and

strange quark mass m = ms = 0.04. Dashed line shows the lowest eigenvalue for strange quark

mass.

cient way. Although AMA is similar to low-mode averaging (LMA), we have shown that

it works not only for low-mode dominated observables (associated with the pion) but also

for a broad range of observables involving baryons and other mesons by taking account of

contributions from all modes of the Dirac operator. In AMA we have used the conjugate

gradient inverter with a relaxed stopping criterion as the approximation, and numerically

tested this method in lattice QCD with Nf = 2+1 dynamical domain-wall fermions (DWF)

on lattice sizes of 243 × 64 and Ls = 16 and inverse spacing a−1 = 1.73 GeV. Our tests

correspond to pions with masses in the range 300 to 500 MeV. Using AMA, we have shown

reductions of computational cost of more than 5 times compared to the standard method

for nucleon and vector meson masses, the axial charge and isovector form factors of the

nucleon. These results suggest interesting applications to observables having long-standing

hurdles of large statistical noise to precise measurements, e.g. the neutron electric dipole

moment, muon anomalous magnetic moment, and proton decay matrix elements [41]. The

application of AMA to all of these is now under way.
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Appendix A: Standard deviation of the improved estimator

The standard deviation of the improved estimator in (8) is given as

σ(imp) =
√

〈(∆O(imp))2〉. (A1)

Here we express the correlation between O, O(appx) and O(appx) g as

rg =
〈∆O∆O(appx) g〉

σσ
(appx)
g

, (A2)

rcorrg =
〈∆O(appx)∆O(appx) g〉

σ(appx)σ
(appx)
g

, (A3)

rcorrgg′ =
〈∆O(appx) g∆O(appx) g′〉

σ
(appx)
g σ

(appx)
g′

, (A4)

where, if g is the unit transformation I, we have rI = r and rcorrIg′ = rcorrg′ . Substituting (A2),

(A3) and (A4) into (7) and (8), we have

σ(imp) =
[

σ2 − 2rσ(appx)σ + σ(appx) 2 +
2

NG

∑

g

σ(appx)
g (rgσ − rcorrg σ(appx))

+
1

N2
G

(

∑

g

σappx 2
g +

∑

g 6=g′

σ(appx)
g σ

(appx)
g′ rcorrgg′

)]1/2

. (A5)

Assuming that the standard deviation of O is equivalent with O(appx),

σ(appx) ≃ σ(appx)
g ≃ σ, (A6)
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we have

σ(imp) ≃ σ
[

2(1− r) +
2

NG

∑

g

(rg − rcorrg ) +
1

N2
G

(

NG +
∑

g 6=g′

rcorrgg′

)]1/2

. (A7)

Furthermore if the correlation between O(appx) and O(appx) g is negligibly small,

rcorrg ≃ 0, rcorrgg′ ≃ 0, rg ≃ 0, (A8)

(the last one assumes the correlation between O(appx) g and O is small), we have

σ(imp) ≃ σ

√

2(1− r) +
2r − 1

NG

. (A9)

Appendix B: Note on possible bias due to round-off error

In this section, we address the possible appearance of bias due to the round-off error

for finite machine precision. Although AMA estimator does not have any bias if the exact

arithmetic is carried out, it is important to notice whether or not a significant breaking of

covariant symmetry by round-off error appears. We strongly advise that, in practice, one

should explicitly check that the size of the bias is negligible on a few configuration as is done

below (Fig. 16), or follow the method in Appendix C to remove the bias completely.

There are two possible sources. One is, only when a fixed norm of the residual vector

in the CG is used as the stopping condition in the approximation part of the improved

estimator, the difference of CG iteration rarely occurring in a verge of stopping condition

because of inexact arithmetic of residual vector-norm computation. Second is round-off error

accumulating in iterative solver algorithm at arithmetic step of multiplication of vector-

vector and vector-matrix. In our numerical study, however, we show there does not appear

it even in sub-% precision.

Here the bias is defined as the violation of the equivalence Eq. (3),

〈Og[U ]〉 = 〈O[Ug]〉+ δO, (B1)

where δO 6= 0 indicates the amount of systematic error. This is a consequence of the breaking

of covariance in Eq. (4),

Og[U ] 6= O[Ug]. (B2)

This breaking may not be negligible when a very crude approximation is employed, or

accumulation of machine-epsilon is somehow enhanced under weak circumstances for round-

off effect.

32



1. Threshold error in fixed stopping condition for residual vector

In the following, we show the first example of bias effect and numerical check. This is only

the most obvious place where small differences due to the finite precision matters. When we

use the CG for the construction of fε in the second term of Eq. (18), the accuracy of f is

measured by using the residual vector r defined as the difference between the source vector

and matrix H times the approximation vector f , r = b−Hf . Its norm corresponds to the

accuracy of f , fε, and it is given as the sum over lattice sites,

||r||2 =
∑

x

r†(x)r(x) = r†(x1)r(x1) + r†(x2)r(x2) + · · ·+ r†(xV )r(xV ). (B3)

We notice that the above norm is slightly different from the one resulting if the right hand

side of Eq. (B2) is computed instead, due to the order of arithmetic,

||rg||2 =
∑

x=xg

r†(x)r(x)

= r†(x1 + δ)r(x1 + δ) + r†(x2 + δ)r(x2 + δ) + · · ·+ r†(xV + δ)r(xV + δ)

6= ||r||2, (B4)

where g denotes the transformation for xg = x + δ with constant shift-vector δ. When the

stopping condition ε used in AMA falls between ||rg|| and ||r||, the number of CG iterations

is different,

NCG(||r||) 6= NCG(||rg||), (B5)

which leads to the breaking of Eq. (B2). This discrepancy affects Eq. (19),

fε(H [U ](x, y)) =

NCG(||r||)
∑

k=1

ck[U ](H [U ])k(x, y), (B6)

where NCG(||r||), the number of CG iterations when the fixed stopping condition of norm

of residual vector is used. ck[U ] is a coefficient implicitly determined by the CG procedure.

Because of Eq. (B5), the discrepancy of the CG part under the transformation g arises as

fε(H [U ](xg, yg)) =

NCG(||r||)
∑

k=1

ck[U ]H
k[U ](xg , yg)

=

NCG(||rg||)
∑

k=1

ck[U
g]Hk[Ug](x, y) + ∆f = fε(H [Ug](x, y)) + ∆f , (B7)
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Algorithm 1: CG algorithm for solving AxCG = b with positive Hermite matrix A
1: if k := 0 then

2: x0 := 0

3: r0 := b−Ax0, p0 := r0

4: end if

5: while ||rk|| > ǫ do

6: αk := (rk ,rk)
(pk,Apk)

7: xk+1 := xk + αkpk, rk+1 := rk − αkApk

8: βk :=
(rk+1,rk+1)

(rk,rk)

9: pk+1 := rk+1 + βkpk

10: k := k + 1

11: end while

(here we assume that ck[U ]H
k[U ](xg, yg) = ck[U

g]Hk[Ug](x, y) within machine precision).

∆f does not vanish when accidentally different number of iteration by round-off error appears

as in Eq. (B5). Therefore there is no guarantee of cancellation between 〈OAMA〉 and 〈OAMA
G 〉.

This breaking may be significant if a very low precision for the stopping condition is chosen,

where fε rapidly changes for the initial CG iterations. For example, as seen from Figure 14,

when the CG iteration number is changed from NCG = 20 to 21, the accuracy of solution

vector changes by the order ||r(x)|| ≃ 10−3. On the other hand, in the region of NCG = 1200,

even if NCG is changed from 1200 to 1201, the accuracy of solution vector is still less than

||r(x)|| ≃ 10−9, and it turns out that the effect of different NCG of relaxed CG in O(appx)

is more significant than NCG of exact CG in O (and also such bias is totally suppressed

within machine precision for O). Obviously this kind of bias does not appear when fε is

constructed by a fixed CG iteration number instead of fixed norm of residual vector as the

stopping condition.

In Figure 15 we numerically compare the result of the vacuum polarization function

(VPF) with two procedures of AMA used in 3 × 10−3 and 10−4 stopping condition for the

norm of residual vector and 180 CG iterations. The VPF is extracted from the conserved

vector and local vector current correlator following [42–44]. One sees that the resulting

values of the VPF from two different stopping conditions are consistent within statistical

error whose accuracy is at the sub-percent level. This result supports that the systematic
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FIG. 14: The relation between the squared norm of residual vector and CG iteration number.

error of arithmetic bias addressed in this section is not visible in the practical calculations.

Note that the mechanism that enhances the size of the bias due to the threshold effect of the

residual vector norm mentioned above is avoided when using fixed CG iteration number.

2. Accumulated round-off error

The round-off error due to inexact arithmetic in an iterative solver could potentially

destroy the covariance that is crucial for AMA and introduce bias. Below we show in a

realistic case that the round-off error is innocuous. CAA conceptually relies on preserving the

covariant symmetry in each iteration, e.g. from step 6 to step 9 in Algorithm 1. After many

vector-vector and matrix-vector multiplies to determine the residual and search vectors, the

accumulation of round-off error due to the different order of arithmetic may spoil the exact

covariant symmetry. The extent to which the symmetry is violated, of course, depends too

on the details of the algorithm 4.

To check the preservation of covariance in the AMA approximation, we compare nucleon

two-point correlation functions with those computed after translating the position of both

4 For example, the BiCG-type algorithm which is much less stable than CG may be more susceptible to

accumulated effects of round-off. We thank T. Doi for pointing this out to us after making a test with

Wilson-clover fermions.
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FIG. 15: The vacuum polarization function of vector type using same gauge configurations at

m = 0.005. The number of configurations are 51. “Org” denotes the results without AMA, “1e-4”,

“3e-3” and “180 iter” denote the AMA results using 10−4, 3 × 10−3 stopping criteria of norm of

residual vector and 180 CG iteration respectively. The different symbols are results in different

−q2 point of vacuum polarization function.

the nucleon source and the gauge links. If the floating point arithmetic were exact, the

nucleon correlation functions would have be identical which means the bias in AMA is zero.

The bias caused by the finite precision arithmetic is quantified as

δc = O(appx) g[U ḡ]−O(appx)[U ], (B8)

where g denotes the transformation, and ḡ denotes the inverse transformation of g. In

our test the source position and link variables are shifted using 16 different translations,

(12, 0, 0, 0), (0, 12, 0, 0), . . . , (12, 12, 12, 32) on one configuration. The only difference with

the original unshifted calculation is the order of arithmetic in the Lanczos and CG algorithm

according to the shift of the gauge configuration and fermion source point. In Figure 16,

one sees that the effect of round-off error on the covariant symmetry, when using the low-

mode deflation with 400 low-lying eigenmodes as used in the present work, is O(10−9) (and

much smaller in the part of the correlation function that is statistically well-resolved) and

does not depend on smeared or local source type. Thus the approximation with sloppy CG

using 0.003 residual stopping condition is not significantly affected by accumulative round-
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and Gaussian-source and Gaussian-sink (star) as a function of time-slice. This is averaged one using

16 source locations on one reference configuration with low-mode deflation using 400 low-modes at

m = 0.005 in 243 × 64 lattice.

off errors, and hence systematic bias. In fact, even if such round-off error did introduce a

bias due to the relative order of arithmetic, it can be removed by the technique explained

in the next section which does not rely on covariance.

Appendix C: Error reduction technique without covariant symmetry

In this section we introduce the another estimator in which the random transformation

gr ∈ Gr is adopted for O(appx) instead of covariance. Employing gr, which is assumed as the

element of group Gr, into Eq. (8), the improved estimator is defined as

O(imp) gr = Ogr −O(appx) gr +O(appx) gr
G , (C1)

O(appx) gr
G =

1

NG

∑

g∈G

O(appx) g◦gr . (C2)

The second equation has the multi-transformation g ◦ gr with g and gr for O(appx). Here we

also assume G as the subset of Gr

We prove that this estimator does not have any bias provided the numerical procedure
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of O(appx) is deterministic and reproducible, these are the calculation is bit-by-bit same for

the same input parameters (gauge configuration, source location, stopping criteria etc). We

note that our program is always checked to reproduce bit-by-bit same results for same input.

Since the biasless estimator should satisfy the equivalence of expectation value as

〈

O
〉

=
〈

Ogr
〉

=
〈

O(imp) gr
〉

, (C3)

(here we consider O is covariant under gr) thus, from Eq. (C1) and using the transformation

of the link variable with gr, we show

〈

O(appx) gr
〉

=
〈

O(appx) gr
G

〉

, (C4)

even if O(appx) does not follow from a covariant symmetry. In the above, the expectation

value is defined as the group integral of link variables and the summation over gr ∈ Gr.

The left-hand-side of Eq. (C4) is described as,

〈

O(appx) gr
〉

=
1

Z

∑

gr∈Gr

P (gr)

∫

dU e−S[U ]O(appx) gr [U ], (C5)

where S[U ] denotes the QCD action, and P (gr) denotes the distribution function of gr ∈ Gr

normalized to unity. Z is the partition function. On the other hand the right-hand-side of

Eq. (C4) can be written as

〈

O(appx) gr
G

〉

=
1

Z

∑

gr∈Gr

P (gr)
1

NG

∑

g∈G

∫

dU e−S[U ]O(appx) g◦gr [U ]. (C6)

Here we consider that the multiplication of gr ∈ Gr with g ∈ G is also an element of Gr,

i.e. g ◦ gr ∈ Gr, and the distribution function of g ◦ gr is the same function of gr ∈ Gr, i.e.

P (g ◦ gr) = P (gr), when G ⊆ Gr. In this case, Eq. (C6) can be expressed as a single sum

over gr ∈ Gr, and so its equation is equivalent to Eq. (C5). We notice that in this derivation

it is unnecessary to use the covariance of O(appx). Practically gr is chosen randomly in each

configuration, for instance a random shift of source location for O and O(appx). Hence, to

avoid any bias due to the arithmetic error explained in Section B, O(imp) gr instead of O(imp)

is appropriate when the CG stopping condition is chosen as the fixed norm of residual

vector. Note that, in Eq. (C1), gr is only performed for each functional; the link variables

are not transformed. When the link variable is transformed instead of O(appx), the bias-less

of O(imp) gr is only guaranteed for O(appx) by the covariance under G and Gr.
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Appendix D: Implicitly restarted Lanczos algorithm with polynomial acceleration

Suppose that A ∈ CN×N is the Hermitian, positive definite, matrix. Introducing the

tridiagonal matrix T ∈ Cm×m whose diagonal and off-diagonal components are αi=1,··· ,m and

βi=1,··· ,m−1, respectively, the relation

AV = V T + rme
†
m, (D1)

provides T and the orthogonal matrix V ∈ CN×m recursively as shown in Table 3. In the

above equation em denotes the unit vector with non-zero value in the m-th component. If

V †rm ≃ 0, the k(≤ m)-th eigenvector ψk and eigenvalue (λk) of matrix A are given by the

multiplication of the unitary matrix obtained by the diagonalization for tridiagonal matrix,

T = U †ΛU , as UV = {ψk}, Λ = diag(λk).

The restarted Lanczos algorithm is based on the concept to recycle the the final vector

vm in the Lanczos iteration as the new initial vector vnew in order to avoid the storage

constraints. Suppose that m is divided into k wanted eigenvectors {v1, · · · , vk} which is

the desired region of the eigenvalue distribution, and p unwanted vectors {vk+1, · · · , vk+p}
which are recomputed in every step of the Lanczos iteration after restarting. After running

m ≡ k + p Lanczos steps, we restart the Lanczos process with initial vector and β value,

vnewk+1 = vm, β ′
k = βm, (D2)

and thus the orthogonal matrix V is constructed by

V = {v1, · · · , vk} ∪ {vnewk+1, · · · , vnewm } ⊂ {v1, · · · , vm+p}. (D3)

Effectively after the restarted Lanczos step we obtain vectors vi spanning the Krylov space

Km+p(A, v1). The last equation in (D3) may be broken due to round-off errors, leading to loss

of orthogonality in the restarted process, since it does not take account of reorthogonalization

with previous unwanted vectors {vk+1, · · · , vm}. Such an effect, however, depends on the

choice of p, and in the actual lattice QCD simulation, less than 5 time restarted Lanczos

process has no matter of orthogonality loss.

Usually we implement the filtering technique using QR factorization and shifting the

resulting tridiagonal matrix. In this algorithm we employ the approximate unwanted eigen-

values as shift parameters µi = λ̃i=k+1,··· ,m and obtain the orthogonal matrix Q =
∏p

i=1Qi

from the QR factorization process (see Algorithm 2).
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Algorithm 2: QR factrization process
1: Let set T1 = T and i = 1

2: while i = p do

3: Ti − µi = QiRi

4: RiQi + µi = Ti+1

5: i = i+ 1

6: end while

V+ = V Q and Tp are also satisfied with the Lanczos recursion relation

(AV+)ij = (V+Tp)ij + (rm)iQmj , V+ = V Q, (D4)

and thus the new initial vector vnewk+1 alternative to Eq. (D2) consists of

rnewk+1 = v+k+1 +Qmkrm, βnew
k+1 = ||rnewk+1||, vnewk+1 = rnewk+1/β

new
k+1, (D5)

with rotated vector v+i =
∑m

l=1Qlivl [i = 1, · · · , k + 1]. In the above we use the relation of

Ti+1 = Q†
iTiQi and Qm,i = 0 [i = 1, · · · , k − 1]. Therefore we can restart the Lanczos step

from k + 1 to k + p following Table 3, and we generate the new orthogonal matrix:

V new = {v+1 , · · · , v+k } ∪ {vnewk+1, · · · , vnewm } (D6)

which is also spans the Krylov space Km+p(A, v1). Note that via QR factorization the new

wanted vector v+1,··· ,k is automatically multiplied by the filtering polynomial function

fp(A) =

m
∏

i=k+1

(A− λ̃i), (D7)

and thus

v+i ∝ fp(A)vi (D8)

which is known from the relation of V+e1 = V Qe1 ∝ fp(A)v1. The filtering polynomial func-

tion may suppress the unwanted vectors. Fulfilling the unwanted eigenvalue constraints on

|f(λi=k+1,··· ,m)| < |f(λk)|, the polynomial function of Eq. (D8) works as a filter of unwanted

eigenmodes from spectrum of A [28, 29].

The restarted Lanczos algorithm combined with polynomial acceleration [27] emphasizes

the low-lying wanted eigenvectors in the Krylov space and suppresses the unwanted vector
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via the filtering function. Let us consider the computation of the low-modes of Hermitian

matrix H whose maximum absolute eigenvalue is already known as λmax. The Chebychev

polynomial function Tchev can be used to easily control the eigenvalue distribution of H by

enhancing the wanted small eigenvalue region (λ < α) and suppressing the unwanted region.

By applying Tchev with the following argument function

q(H) =
2H2 − α2 − β2

β2 − α2
, (D9)

we have that

|T n
chev(q(λ))| ≫ 1, λ2 6∈ [α2, β2],

T n
chev(q(λ)) ∈ [−1, 1], λ2 ∈ [α2, β2],

(D10)

where we set α slightly larger than the maximum wanted eigenvalue, and β2 ≥ λ2max (see

Figure 17). T n
chev(q(H)), constructed by a recursion relation, T n

chev(x) = 2xT n−1
chev (x)−T n−2

chev (x),

has the same eigenvectors as H and the highest eigenvalue of T n
chev(q(H)) corresponds to

the lowest eigenvalue of H . The degree n of T n
chev, which is also the number of its zeroes in

[−1, 1], depends on the magnitude of the highest eigenvalue and the hierarchy of magnitudes

for the wanted eigenvalues. Recalling the restarted Lanczos process, if we set α close to the

lowest point in the eigenvalue region λi=k+1,··· ,m, the filtering function in Eq. (D8) strongly

suppresses the unwanted eigenvalue region.

We easily extend the polynomial acceleration techniques to focus on an arbitrary range

of wanted eigenvalues by introducing the shift parameter µ into Eq. (D9),

q(H, µ) =
2(H − µ)2 − α2 − (β + |µ|)2

(β + |µ|)2 − α2
, (D11)

in which this argument function enhances the spectrum in the range λ = (µ− α, µ+ α).

Appendix E: 4D even-odd preconditioning in domain-wall fermions

In this section we explicitly present the definition of domain-wall fermion (DWF) 4D

even-odd preconditioning (see [45] and [34] and references therein) which is used not only

in the preconditioning of the CG solver, but also in the computation of eigenvectors and

eigenvalues in the Lanczos algorithm. Instead of DWF 5D even-odd preconditioning as has

been used in [26], the DWF operator can be expressed as the even-odd hopping matrix in
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FIG. 17: The sketch of Chebychev polynomial T n
chev(q) as a function of eigenvalue. Different

symbols illustrate the T n
chev(q) with several α.

Algorithm 3: Lanczos algorithm
1: Set v1 to the unit vector, β0 = 0 and k = 0;

2: while k = m do

3: αk = (vk, Avk);

4: rk = (A− αk)vk − βk−1vk−1;

5: βk = ||rk||;

6: vk+1 = rk/βk;

7: Gram-Schmit reorthogonalization for v1, · · · , vk+1 if we needed;

8: k = k + 1;

9: end while

4D space-time in which the Wilson-fermion kernel of DWF is in the off-diagonal blocks and

5D hopping term is in diagonal blocks of the following matrix,

DDW ((x, s), (y, t)) = (5−M5)
[

δx,yW5(s, t)−KW4(x, y)δs,t

]

= (2K)−1





IeeW5 −KW4 eo

−KW4 oe IooW5



 (E1)
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in which we use

K =
1

2(5−M5)
, (E2)

W4(x, y) =
∑

µ

[

(1 + γµ)U
†(x− µ̂)δx−µ̂,y + (1− γµ)U(x)δx+µ̂,y

]

, (E3)

W5(s, t) = 1− 2K
(

PRδs,t+1 + PLδs+1,t −mPRδs,1δt,Ls
−mPLδs,Ls

δt,1

)

, (E4)

with SU(3) link variable Uµ(x) and Dirac γ-matrix. Here we suppress color and spin indices

in the DWF operator. Even- or odd-ness of a site of Euclidean space-time is given as

mod (
∑4

µ=1 xµ, 2) = 0 or 1. M5 is the so-called domain wall height.

The inverse of the DWF operator in even-odd representation is expressed through the

Schur decomposition as,

D−1
DW = (2K)−1





Iee 0

KW−1
5 W4 eo IooW

−1
5









D−1
ee 0

0 Ioo









Iee KW4 eoW
−1
5

0 Ioo



 , (E5)

Dee = IeeW5 −K2W4 eoW
−1
5 W4 oe, (E6)

in which the inverse of W5 can be represented explicitly,

W−1
5 (s, t) = A(s, t)PR +B(s, t)PL, (E7)

A(s, t) = δst −
1

1 +mκLs





















mκLs mκLs−1 mκLs−2 · · · mκ

−κ mκLs mκLs−1 · · · mκ2

−κ2 −κ mκLs · · · mκ3

...
...

...
...

−κLs−1 −κLs−2 −κLs−3 · · · mκLs





















st

, (E8)

B(s, t) = A(t, s), (E9)

with κ = (5−M5)
−1.

In a practical implementation of W−1
5 , it is convenient to use the LU decomposition.

Using the left and right representation of W5,

W5(s, t) = PR

[

I − κ(∆ +∆m)
]

st
+ PL

[

I − κ(∆T +∆T
m)

]

st
(E10)
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with

∆ =



























0 0

1 0

1 0
. . .

. . .

1 0

0 1 0



























, ∆m =





















0 −m

. . .

0 0





















. (E11)

We also know that the matrix without PR is represented as

[

I − κ(∆ +∆m)
]

=
(

1− κ∆m(I − κ∆)−1
)

(I − κ∆), (E12)

and

(I − κ∆)−1 =





















1

κ 1
...

. . .

κLs−2 κLs−3 · · · κ 1

κLs−1 κLs−2 · · · κ2 κ 1





















. (E13)

Thus we have

[

I − κ(∆ +∆m)
]

=





















1 +mκLs mκLs−1 mκLs−2 · · · mκ

0 1 0 · · · 0
...

. . .

1 0

0 · · · 0 1









































1 0

−κ 1 0
. . .

. . .
. . .

−κ 1 0

−κ 1





















. (E14)

Finally we obtain

A(s, t) =




















1

κ 1
...

. . .

κLs−2 κLs−3 · · · κ 1

κLs−1 κLs−2 · · · κ2 κ 1









































1
1+mκLs

−mκLs−1

1+mκLs

−mκLs−2

1+mκLs
· · · −mκ

1+mκLs

0 1 0 · · · 0
...

. . .

1 0

0 · · · 0 1





















. (E15)
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Now the number of floating-point operations in the multiplication of A(s, t) with a vector is

reduced to (L2
s − 1)/2 from L2

s, i.e. a gain of (L2
s + 1)/2.

γ5-Hermiticity of the DWF operator is given by

D†
DW (s, t) =

∑

s1,t1

Γ5(s, s1)DDW (s1, t1)Γ5(t1, t), (E16)

with Γ5(s, t) = γ5δs,Ls−t+1, hence the Hermiticity of the even-odd preconditioned Domain-

wall operator

Hee = Γ5Dee, (E17)

follows from Dee, D
†
ee = Γ5DeeΓ5, since Γ5 is a diagonal matrix at each 4D even-odd site.

The difference from DWF 5D even-odd preconditioning is that Hee can be represented as

a single multiplication of Γ5 without a flip of even-odd site. Eq. (E17) can be used in the

Lanczos algorithm with H = Hee in Eq. (D9) and (D11).
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