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We present a first look at the spectroscopy of SU(4) gauge theory coupled to two flavors of Dirac
fermions in the two-index antisymmetric representation, which is a real representation. We compute
meson and diquark masses, the pseudoscalar and vector meson decay constants, and the masses of
six-quark baryons. We make comparisons with large-Nc expectations.

I. INTRODUCTION

Composite Higgs models [1–5] are frequently based on
nonlinear sigma models. The most straightforward ul-
traviolet completion of such a model is a gauge theory
with the corresponding spontaneous breaking of global
symmetries. A symmetry-breaking scheme that is much
discussed is SU(N) → SO(N). Such a breaking scheme
can be accommodated in an SU(Nc) gauge theory where
the fermions are in a real representation of the gauge
group. Then N = 2Nf , where Nf is the number of fla-
vors of Dirac fermions.

As the first stage in a program of investigating gauge
theories of interest beyond the Standard Model, we here
focus on the SU(4) gauge theory with fermions in the two-
index antisymmetric representation (denoted AS2 hence-
forth). This is the sextet of SU(4), a real representation.
We choose Nf = 2 flavors of Dirac fermions, so that the
global chiral symmetry is also SU(4), which we expect to
see spontaneously broken to SO(4).

This theory is a way station on the route to the SU(4)
gauge theory with 5 Majorana fermions. That theory is
the most economical way to realize the symmetry break-
ing of an SU(5)/SO(5) sigma model, which is the ba-
sis of, for instance, the Littlest Higgs model [6]. The
SU(5)/SO(5) sigma model is also central to more recent
composite-Higgs models [7–9]. Indeed, Vecchi [8] argued
that the SU(4) theory with AS2 fermions is the most at-
tractive candidate within this approach; Ferretti [9] elab-
orated on the phenomenology of this composite-Higgs
model.1 We can simulate the Nf = 2 theory with the
standard Hybrid Monte Carlo (HMC) algorithm, while
study of the theory with 5 Majorana fermions will re-
quire the more expensive rational HMC algorithm.

In this paper we present a study of the basic features
of the Nf = 2 theory, namely, its phase diagram and
spectrum; preliminary results were presented in [12]. The
spectrum must exhibit multiplets of the unbroken SO(4)

1 The models of Refs. [8, 9] include fermions in the fundamental
representation in addition to the AS2, in order to give the top
quark a mass via the partial-compositeness mechanism [10]. See
also [11].

flavor symmetry. One feature of these multiplets is that
mesons and diquarks transform into each other under
SO(4). Because of this, baryons with more than two
quarks are of particular interest; for reasons to be stated
below, we study baryons made of six quarks.

We could simply present our results for spectroscopy
without further analysis. However, we feel that, rather
than just doing that, we should try to give them some
context: we are studying a confining, chirally broken sys-
tem. How are the masses and matrix elements we com-
pute for our system different from, or similar to, what is
seen in other confining and chirally broken systems?

The context we choose to use is the 1/Nc expansion.
Theories with fermions in two-index representations have
been studied extensively in a 1/Nc framework [13], as an
alternative to the original 1/Nc expansion that deals with
fermions in the fundamental representation [14, 15]. AS2
fermion loops are not suppressed at large-Nc, leading to
different systematics than the conventional 1/Nc expan-
sion.

Either 1/Nc expansion can in principle be applied to
QCD, since for Nc = 3 the AS2 and fundamental rep-
resentations are isomorphic. Furthermore, interesting
equivalences to supersymmetric Yang–Mills theory in the
Nc → ∞ limit have been argued for theories with AS2
fermions [16–19], related to the orientifold equivalence
among all gauge theories with two-index representations
(adjoint, AS2, or symmetric) in the large-Nc limit [20–
22]. This framework continues to attract interest.2

Our new data on the spectrum and decay constants for
SU(3) and SU(4) theories with AS2 fermions will allow us
to make a qualitative comparison to the scaling predic-
tions of this alternative 1/Nc expansion. This compari-
son is made at a single value of the bare gauge coupling,
in the confined and chirally broken phase of our lattice
action. We have in hand already-published spectroscopy
data for the SU(3), SU(5), and SU(7) gauge theories with
fermions in the fundamental representation. These pre-
vious studies were performed in the quenched approxi-
mation, but a comparison to our new dynamical-fermion

2 See for example [23–29]. A recent review with emphasis on prop-
erties of baryons is given in [30].
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data for the SU(3) theory, roughly matched in simula-
tion volume and lattice spacing to the quenched data
sets, shows little effect of quenching. This is because
the dynamical fermion masses are not light enough to
produce appreciable differences through loop effects. Of
course, for study of the large-Nc limit with AS2 fermions,
quenching is completely unjustified.
Baryons in large Nc are of long-standing interest in the

traditional framework with fundamental-representation
fermions. They can be analyzed as many-quark states
[31] or can be taken to be topological objects in effective
theories of mesons [32–35]. Large-Nc mass formulas for
baryons have been presented in Refs. [23, 36–40]. An old
review [41] summarizes much of this classic work.
Several recent lattice studies of baryon spectroscopy

have touched on large-Nc considerations. The first [42]
was a comparison of lattice Monte Carlo data for Nc = 3
baryons to large-Nc formulas. There are also three re-
lated studies at Nc = 3, 5, and 7, comparing quenched
spectroscopy with Nf = 2 flavors of degenerate valence
quarks [43]; spectroscopy withNf = 3 flavors (two degen-
erate ones and a heavier strange quark) [44]; and Nf = 2
data to baryon chiral perturbation theory [45]. Finally,
Ref. [46] reports calculations of quenched baryon spec-
troscopy in SU(4). The results of these studies all con-
form to large-Nc expectations for the fundamental repre-
sentation; we will make comparisons of our spectrum to
these results where appropriate.
We note in passing that the behavior of AS2 theories at

finite baryon density has also attracted some theoretical
interest [47, 48]. The SU(4) gauge theory is particularly
useful for lattice work: Since the AS2 representation is
real, the theory at finite baryon density presents no sign
problem.
Now we proceed to the body of the paper. Section

II collects some useful group-theoretic results about AS2
fermions in the SU(4) gauge theory, and their special
symmetries. Six-quark baryons emerge as objects of in-
terest. We present the lattice action and a new discretiza-
tion issue in Sec. III. The choice of parameters used for
spectroscopy was made after a scan of the bare param-
eter space (bare gauge coupling and hopping parame-
ter). This scan revealed some of the phase structure of
this system, which we present in Sec. IV. We describe
our methods for obtaining spectra in Sec. V, and dis-
play tables of the resulting meson and baryon spectra.
We then plot these results and offer comparisons among
the SU(4) AS2 theory, the SU(3) theory, and quenched
SU(3), SU(5), and SU(7) theories: for mesons in Sec. VI
and for baryons in Sec. VII. Finally, Sec. VIII makes
some phenomenological observations, summarizes our re-
sults, and suggests future directions.

II. GROUP THEORY AND SYMMETRIES

In this section we discuss the symmetry aspects of AS2
fermions in SU(4), specializing to Nf = 2. In Sec. II A

we review some basic properties of real and pseudoreal
representations, and how they are reflected in symme-
tries of the Wilson–Dirac operator and meson/diquark
propagators.
In Sec. II B we turn to global symmetries. The pat-

tern of chiral symmetry breaking in SU(4) AS2 is differ-
ent from that in SU(3) gauge theories with fundamental-
representation fermions, because the AS2 fermions live
in a real representation of the gauge group. The usual
breaking pattern, SU(Nf ) × SU(Nf ) → SU(Nf ), is re-
placed by SU(2Nf) → SO(2Nf) [49–51]. There are
2N2

f + Nf − 1 Nambu–Goldstone bosons (NGBs), nine
in all for Nf = 2. A consequence of reality is that, in
addition to meson (qq̄) and baryon states, there are also
diquark states. Symmetries associated with the fermions’
reality means that all diquark correlators are identical to
corresponding meson ones. For example, the diquarks are
needed to fill out the NGB multiplets. The nine NGBs
consist of three isotriplets: one multiplet is qq̄, one is qq
and one is q̄q̄.
The global symmetry of the Nf = 2 AS2 theory is thus

SU(2Nf ) = SU(4). After dynamical symmetry break-
ing, the unbroken symmetry is SO(4). We elaborate on
this symmetry breaking pattern, focusing on how the
two invariant SU(2) subgroups of SO(4) are realized. As
an example, we classify the 9 Nambu–Goldstone bosons
under the unbroken symmetry. In Sec. II C we recall
the equivalence between the AS2 representation of color
SU(4) and the vector representation of SO(6). We use
this equivalence to introduce the color-singlet state of 6
AS2 fermions, which is fully antisymmetric in its color
indices. The remainder of the section explains why the
six-quark baryons are the interesting baryonic states, and
describes how we construct baryon operators.

A. Symmetries of real and pseudoreal
representations

We begin by recalling how basis states of the AS2 ir-
reducible representation are built from color basis states
|i〉 in the fundamental representation. The basis states
of the antisymmetric representation are

|ij〉 = 1√
2

(

|i〉 |j〉 − |j〉 |i〉
)

, 1 ≤ i < j ≤ Nc . (2.1)

There are Nc(Nc − 1)/2 basis states—six states for
Nc = 4. Starting from the transformation rule |i〉′ =
∑

k Uik |k〉, the AS2 states transform as

|ij〉′ =
1√
2

(

|i〉′ |j〉′ − |j〉′ |i〉′
)

=
∑

k<l

(

UikUjl − UjkUil

)

|kl〉

≡
∑

k<l

U[ij][kl] |kl〉 . (2.2)
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Equation (2.2) provides the composition rule for U[ij][kl],
the link matrices in the AS2 representation, in terms of
links Uik which are elements of the fundamental repre-
sentation of SU(Nc).
The AS2 representation of SU(4) is real. Correlators

of fermionic bilinears reflect this reality. This is similar
to the situation in Nc = 2 where the fundamental repre-
sentation is pseudoreal. As in the case of the two-color
theory with fundamental fermions, which was nicely de-
scribed in Ref. [52], for any (pseudo)real representation
there is an exact identity between a meson correlator and
a corresponding diquark correlator,

〈

ū(x)Γd(x) d̄(y)Γ†u(y)
〉

=
〈

ū(x)Γ
(

SCd̄(x)T
) (

d(y)TSC
)

Γ†u(y)
〉

, (2.3)

where u(x) and d(x) are the two flavors of Dirac fermions
and Γ is a Dirac matrix. Let us see how this comes about.
The matrix S is defined as follows. A real or pseudo-

real irreducible representation is self-conjugate, meaning
that there is a quadratic form S such that for two vec-
tors a and b the product aTSb is a singlet. Demanding
invariance under a = Ua′, b = Ub′, we find

UTSU = S, (2.4)

which implies that the Hermitian generators Ta satisfy

T T
a S = T ∗

aS = −STa. (2.5)

The entries of S are real, S∗ = S, and it satisfies S−1 =
ST . For a real representation S ≡ R = RT is symmetric,
whereas for a pseudoreal representation S ≡ P = −PT

is antisymmetric. For the AS2 representation of SU(4),
it is realized as

Sψ[ij] =
∑

k<l

ǫijklψ[kl]. (2.6)

(Note that ǫijkl = ǫklij , so S is symmetric as it should be
for a real representation.)
The matrix C occurring in Eq. (2.3) is the usual

charge-conjugation matrix, which satisfies Cγµ = −γTµC,
and C−1 = C† = CT = −C. We recall that charge-
conjugation symmetry acts as3

ψ → C ψ̄T , (2.7a)

ψ̄ → ψTC , (2.7b)

Aµ → −A∗
µ (continuum) , (2.7c)

Uµ → U∗
µ (lattice) . (2.7d)

We are now ready to derive the identity (2.3). Consider
any fermion action that is invariant under the charge-
conjugation symmetry (2.7) when the fermions belong to

3 The Euclidean rules (2.7a) and (2.7b) are consistent with the
Minkowskian relation ψ̄ = ψ†γ0, where we have identified γ0 ≡

γ4.

a complex representation. If we now take the fermions
to be in a real representation (S ≡ R), then the fermion
action will be invariant under the following discrete sym-
metry:

ψ → RC ψ̄T , (2.8a)

ψ̄ → ψTCR , (2.8b)

Aµ → Aµ (continuum) , (2.8c)

Uµ → Uµ (lattice) . (2.8d)

Thanks to the reality condition (2.4), the inclusion of R
in the fermions’ transformation rule makes up for the fact
that the gauge field does not transform. For a pseudoreal
representation (S ≡ P ), the discrete symmetry is

ψ → PC ψ̄T , (2.9a)

ψ̄ → −ψTCP . (2.9b)

We may apply the transformation (2.8) [or (2.9)] to a
single Dirac fermion. This is unlike the usual charge con-
jugation (2.7), which acts on the gauge field as well and
must be applied to all fields simultaneously. For both
real and pseudoreal representations, it follows that the
(lattice) Dirac operator satisfies the identity

SCDTS−1C−1 = −SCDTS−1C = D, (2.10)

and Eq. (2.3) follows.
We comment in passing that for Wilson fermions,

γ5D
†γ5 = D. Together with (the Hermitian conjugate

of) Eq. (2.10) this implies

Sγ5CD
∗Sγ5C = −D , (2.11)

and hence that the fermion determinant is real.

B. The unbroken SO(4) symmetry and baryon
number

In a gauge theory with Nf Dirac fermions in a real
representation, the global symmetry is SU(2Nf ). Af-
ter chiral symmetry breaking, the unbroken symmetry is
SO(2Nf). These statements are most obvious when the
theory is formulated in terms of Majorana fermions. In-
variance under the transformation (2.8) allows each Dirac
field to be broken up into two Majorana fields, with no
mixing in the action as long as there are no mass terms.
The number of independent Majorana (or Weyl) fields
is NMaj = 2Nf , making the global symmetry SU(2Nf ).
The fermion condensate is a Majorana-fermion bilinear
which, for a real representation, is symmetric in its color
indices. As the expectation value of a scalar operator,
it is antisymmetric in its spin indices, and so it must
be symmetric in its (Majorana) flavor indices. It then
follows that the unbroken symmetry is SO(2Nf) [49–51].
Since we elect to work with two AS2 Dirac fermions

(instead of four Majorana fermions), we should under-
stand how the SO(4) unbroken symmetry is realized on
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them. SO(4) is doubly covered by SU(2) × SU(2). We
will now work out how the two SU(2) groups act on our
Dirac fermions. As we will see, one of the SU(2) groups
may be identified with isospin, while the baryon number
symmetry becomes a subgroup of the other SU(2).

We start with the observation that SO(4) is the sym-
metry group of the three-sphere S3, which in turn can
be identified with the SU(2) group manifold via x̂ =

x4 + i
∑3

a=1 xaσa, where σa are the Pauli matrices and
∑4

µ=1 x
2
µ = 1. The product group SU(2)× SU(2) is then

realized as4

x̂→ gx̂h† , g, h ∈ SU(2) . (2.12)

In order to keep track of the SU(2) transformation
properties it is convenient to rearrange the four real coor-
dinates into two complex ones. We choose φ1 = x4+ ix3,
φ2 = −x2 + ix1, so that

x̂ =

(

φ1 −φ∗2
φ2 φ∗1

)

, −x̂† =
(

−φ∗1 −φ∗2
φ2 −φ1

)

. (2.13)

(The minus sign in front of x̂† is introduced for conve-
nience below.)

The transformation properties under left-
multiplication are now obvious. The left column of
the x̂ matrix is an SU(2) doublet (φ1, φ2). Denoting this
doublet as Φα, the right column is Φ′

α = ǫαβΦ
∗
β, which

again transforms in the fundamental representation of
SU(2).

Next, in order to obtain the behavior under right-
multiplication we consider the left-action of h on −x̂†.
We read off the right-multiplication doublets: (−φ∗1, φ2)
from the left column of −x̂†, and (−φ∗2,−φ1) from its
right column. The left- and right- doublets are related
by interchanging φ1 with −φ∗1.
We now turn to our AS2 theory. The role of real coor-

dinates is played by Majorana fermions, whereas that of
complex coordinates is played by Dirac fermions. What
takes the place of complex conjugation is the transfor-
mation (2.8). We may arrange our two Dirac fermions, u
and d, as well as their anti-fermions, in complete analogy
with Eq. (2.13),

Ψ =

(

u −RCd̄T
d RCūT

)

. (2.14)

Motivated by this arrangement we will refer to the left-
multiplication SU(2) as isospin symmetry, and to the
right-multiplication SU(2) as custodial symmetry. It goes
without saying that the two SU(2)’s play a similar role,

4 The product-group elements g = −1, h = 1, and g = 1, h = −1,
coincide when they act on x̂. Hence SU(2) × SU(2) is a double
covering of SO(4).

and the only “preference” for the left-multiplication dou-
blets is in our notation. The isospin and custodial sym-
metries get interchanged by u↔ −RCūT , which is basi-
cally the discrete symmetry (2.8) applied to the u quark
only.5

Let us take a closer look at the custodial-symmetry
generator σ3. With reference to Eq. (2.13), its action
on the second row of x̂, which is the multiplet (φ2, φ

∗
1),

is δφ2 = φ2 and δφ∗1 = −φ∗1, or δφ1 = φ1. Thus φ1
and φ2 transform with the same phase. A translation
to the language of Eq. (2.14) is that the custodial σ3
is just the baryon number. In a two-flavor theory of
complex-representation fermions, the unbroken symme-
tries are isospin and the U(1) of baryon number. In our
case, the U(1) is enlarged to a second SU(2) that we call
the custodial symmetry, whose two other generators thus
raise or lower the baryon number.

Now that we have understood the unbroken symme-
try structure, let us consider a few simple applications.
As a first exercise, one can show that the transforma-
tion (2.8), when applied to the u and d fields simulta-
neously, is in fact an element of SO(4). Indeed, con-
sider Ψ → −iσ2Ψ iσ2, which is a simultaneous rotation
in isospin and custodial SU(2). This is just u → RCūT ,
and the same for d.

We next turn to the NGBs. Start with the familiar
triplet of pions: d̄γ5u, ūγ5d, and ūγ5u − d̄γ5d. Now
let us apply a custodial rotation of the form exp(iθσ1).
Then ūγ5d rotates into a linear combination of itself, of
dTRCγ5d, and of ūγ5RCū

T . The last two are respec-
tively a diquark and an anti-diquark, each belonging to
an isospin-1 multiplet. It follows that there are indeed 9
NGBs, which fall into 3 isospin triplets: one made of di-
quarks, one of anti-diquarks, and one of quark-antiquark
pairs.

C. SU(4) ↔ SO(6) correspondence and the
six-quark baryon

In this subsection we first work out in detail the iden-
tification between the AS2 representation of SU(4) and
the vector representation of SO(6). This allows us to con-
struct a fully antisymmetric color wave function for six
AS2 fermions, which will be common to all our baryon
states.

In Sec. II A we labeled the components of the AS2 rep-
resentation by an index pair. We can alternatively intro-
duce a single index a = 1, . . . , 6, with the correspondence
ψ1 = ψ[12], ψ2 = ψ[13], . . . , ψ6 = ψ[34]. In the ψa basis

5 We are free to add minus signs on the right-hand sides of
Eqs. (2.8a) and (2.8b) simultaneously.
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the matrix R of Sec. II A takes the explicit form

R =















0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0















. (2.15)

The inner product of two AS2 spinors,
∑

i<j

∑

k<l

ǫijklψ[ij]χ[kl] = ψaRabχb = ψTRχ , (2.16)

is SU(4)-invariant by virtue of Eq. (2.4).
We can recover the standard formulation of SO(6) by

applying a U(6) basis transformation to the AS2 states.
As a first step, we permute the basis elements and multi-
ply one of them by a minus sign, bringing R to the block
diagonal form

R =





σ1 0 0
0 σ1 0
0 0 σ1



 . (2.17)

For a further change of basis, we note that

σ1 = τ2, with τ =

(

z z∗

z∗ z

)

, (2.18)

where z = (1 + i)/2. We denote by Q the 6 × 6 matrix
with three blocks of the matrix τ along the main diagonal.
Upon performing the basis change

ψ → ψ′ = Qψ , (2.19)

the inner product becomes6

ψTRχ→ ψTQTRQχ = ψTχ . (2.20)

The inner product has now taken its standard SO(6)
form. Under the same basis change, the AS2 SU(4) gen-
erators transform as

Ta → QTaQ
† . (2.21)

Using the properties of the R and Q matrices and
Eq. (2.5) it follows that

(QTaQ
†)T = Q†T T

a Q = QRT T
a RQ

† = −QTaQ† .
(2.22)

In the new basis, the generators are antisymmetric (and
purely imaginary), as required for the standard basis of
SO(6).
As an application of the above, we can show that the

fully antisymmetric six-quark wave function

B = ǫa1a2···a6
ψa1

ψa2
· · ·ψa6

, (2.23)

6 The inner product is invariant under SU(4) [equivalently SO(6)]
transformations, not under general U(6) transformations.

is gauge invariant (we suppress flavor indices). To prove
this, start from

B′ = ǫa1a2···a6
ψ′
a1
ψ′
a2

· · ·ψ′
a6
, (2.24)

where the ψ′ basis was introduced in Eq. (2.19). This
operator is clearly gauge invariant, because in the ψ′ ba-
sis the SU(4) elements are mapped to orthogonal SO(6)
matrices, and the epsilon tensor in Eq. (2.24) is the in-
variant 6-dimensional tensor. Going back to the original
basis we have

B′ = ǫa1a2···a6
(Qψ)a1

(Qψ)a2
· · · (Qψ)a6

. (2.25)

The matrix Q is unitary, and so it leaves invariant the
epsilon tensor, up to a factor of detQ = −i. It follows
that B′ = iB, and hence B is gauge invariant as well. We
use the fully antisymmetric color wave function (2.23) in
the construction of all baryon operators.

D. Diquarks, tetraquarks, and baryons

In constructing states with baryon number, we note
first that a color singlet state has to be made of an even
number of quarks. Thus we begin with diquarks. As
we have seen, the real color representation of the quarks
leads to the conclusion that diquarks are degenerate with
mesons. Their color wave function involves the inner
product (2.16)

D = ψf
aRabψ

g
b , (2.26)

where f, g stand for the spin and flavor indices. Because
R is symmetric, diquarks have a symmetric color wave
function. Viewed through the prism of the nonrelativis-
tic quark model, which puts the two quarks in an s-wave,
the product of their spin and isospin wave functions must
then be antisymmetric.7 For (pseudo)scalars, the spin
wave function is antisymmetric, and the isospin wave
function should be symmetric. Those that are NGBs
have I = 1, as seen above. States with higher angular
momentum are, of course, also possible. These would
include the diquark analogs of (axial) vector and tensor
mesons.
The only way to construct a color-singlet tetraquark

state is by pairwise contraction of the color indices,

T = (ψf
aRabψ

g
b )(ψ

h
cRcdψ

i
d). (2.27)

One can permute the spin-flavor indices to derive a total
of three pairwise coupling schemes. Linear combinations
of these schemes will have mixed symmetry under color,
but each term will still factor into two color-singlet di-
quarks. Moreover, by applying an RC transformation to

7 Since we are talking about diquarks rather than mesons, both
quarks are in the σ3 = +1 state of the custodial SU(2).
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one quark flavor at a time, one finds that the tetraquarks
are degenerate with ψ̄ψψψ and ψ̄ψ̄ψψ states. It is an
open question as to whether the tetraquark states in this
theory will be meson and diquark scattering states, or
bound states; we will not study them further here.
The first baryonic state that cannot be factored into

smaller color-singlet components is the six-quark baryon
written in Eq. (2.23). It differs essentially from the vari-
ous pairwise contractions in that it is fully antisymmetric
in color. This makes it similar to the baryon of QCD,
and indeed similar to baryons made of fundamental-
representation quarks for any Nc. Bolognesi [24] has ar-
gued that this is the correct baryonic state for studying
the large-Nc limit of gauge theories with AS2 quarks. In
general, he finds that baryons made ofNb = Nc(Nc−1)/2
constituents in the AS2 color representation fit well into
a Skyrmion picture. While our construction of the wave
function (2.23) relies on special properties of the Nc = 4
theory, Bolognesi has given an existence proof for a fully
antisymmetric, gauge invariant color wave function for
any Nc.

E. Interpolating fields

A lattice simulation needs interpolating fields with an
appropriate set of quantum numbers. As noted above,
since it is fully antisymmetric under exchange, the AS2
color wave function (2.23) is similar to the color wave
function of baryons made of fundamental representation
fermions. The multiplet patterns are therefore similar
as well. The construction of baryon correlators was dis-
cussed in detail in a previous work by one of us [43]. Here
we give a brief synopsis.
A convenient set of interpolating fields for baryons are

operators which create nonrelativistic quark model trial
states. They are diagonal in a γ0 basis. In the case
at hand, a generic two-flavor baryon interpolating field
made out of k up quarks and 6 − k down quarks can be
written as

OB = ǫa1···a6
Cs1···s6 us1a1

· · ·uskak
dsk+1

ak+1
· · · ds6a6

, (2.28)

where summation over all color and spin indices is im-
plied. (We are free to put all the u’s to the left of all the
d’s.) The C’s are an appropriate set of Clebsch–Gordan
coefficients. The spin wave function of each quark type,
u or d, must be totally symmetric.
Next we may take linear combinations of the OB ’s to

construct operators with definite isospin quantum num-
bers. For states built of two flavors of quarks all in the
same spatial wave function, multiplets are locked in equal
values for angular momentum J and isospin I. Thus we
have states with I = J = 3, 2, 1, and 0.
The two-baryon correlator must include all nonzero

contractions of creation operators at the source and an-
nihilation operators at the sink. For each flavor, this
gives a determinant of quark propagators. These must

be summed over all the ways that colors can be appor-
tioned between the quarks. For the analog of the ∆++,
the state with I = I3 = J = J3 = Nb/2 = 3, this is a sin-
gle term. The number of terms increases rapidly as the
angular momentum decreases, raising the computational
cost of the calculation. (This was an issue for the Nc = 7
baryons of Ref. [43].) Fortunately, Nb = 6 is not too large
and the calculation always remains manageable.
With baryon number as its third generator, our

baryons are highest-weight states of the custodial sym-
metry. In this paper, we are content with studying these
states, and we do not consider the six-quark states with
smaller baryon number that would be needed to fill in
multiplets of the custodial symmetry.

III. LATTICE ACTION

We define the lattice theory with the usual Wilson pla-
quette gauge action and with Wilson–clover fermions.
The fermion action uses gauge connections defined as
normalized hypercubic (nHYP) smeared links [53–55].
The gauge coupling is set by the parameter β = 2Nc/g

2
0.

We take the two Dirac flavors to be degenerate, with
common bare quark mass introduced via the hopping pa-
rameter κ = (2mq

0a + 8)−1. As is appropriate for nHYP
smearing [56], we fix the clover coefficient at its tree level
value, cSW = 1.
nHYP smearing introduces a new type of discretization

error, peculiar to the real representation of the matter
field. Our prescription for smearing the fermion’s gauge
connection begins with applying the nHYP formulas [55]
to the fundamental gauge link, and then the resulting
fat link Vik is promoted to the AS2 representation via
Eq. (2.2). The problem is that Vik is in fact an element
of U(Nc), not SU(Nc), viz.,

Vik = eiθUik, (3.1)

where both the SU(4) part Uik and the U(1) phase θ are
determined by our smearing recipe. Having its origin in
the smearing formulas, this U(1) phase is a discretization
effect, and hence it must vanish like some power of the
lattice spacing in the continuum limit. When we apply
Eq. (2.2) to construct the AS2 fat link V[ij][kl] from the

original fat link Vik, we end up with V[ij][kl] = e2iθU[ij][kl].
Because of this unphysical phase, the AS2 fat link V[ij][kl]
fails to satisfy the reality condition (2.4). This in turn
leads to violation of relations like Eq. (2.3).
We can gauge the severity of this discretization error by

looking at violations of Eq. (2.3). Comparing meson and
diquark propagators calculated on single configurations,
we have found differences in the third significant digit.
Similar effects are seen in the eigenvalue spectrum of the
Wilson–clover operator. To the extent that this error
creeps into the generation of configurations, there is no
cause for concern.
Nonetheless, the breaking of the symmetry (2.4) in the

observables is annoying. A way to fix this problem is to
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replace the AS2 fat link V[ij][kl] obtained from Eq. (2.2)
with

V ′
[ij][kl] =

1

2
(V + SV ∗S)[ij][kl] (3.2)

before calculating observables. (This can be regarded as
a partial quenching, since the correction here is applied
only to the valence fermions; one may use V ′ for the
sea fermions as well, but since we had already generated
ensembles without this correction we chose not to do so.)
The new AS2 link V ′

[ij][kl] satisfies Eq. (2.4) by con-

struction, at the price of being slightly non-unitary. We
compared spectroscopy with and without this correction
for a 123 × 24 data set at one of our parameter values
(β = 9.6, κ = 0.1285). The differences turned out to
lie well under one standard deviation. We conclude that
the discretization error and the partial quenching (3.2)
are benign.
Wilson fermions break chiral symmetry explicitly. In

the familiar case of a complex representation, the symme-
try breaking pattern of the two-flavor continuum theory
is SU(2)L×SU(2)R → SU(2)V . With Wilson fermions,
the breaking of SU(2)L×SU(2)R becomes explicit, and
only SU(2)V (and, of course, baryon number) is a good
symmetry. While the NGBs become massless when we
tune κ to its critical value κc, full chiral symmetry is
only restored in the continuum limit. For κ > κc one en-
ters the Aoki phase [57, 58], where one of the NGB fields
condenses, and SU(2)V is broken spontaneously.
In our model, the spontaneous symmetry breaking

SU(4) → SO(4) of a real representation turns into ex-
plicit breaking with Wilson fermions. Only SO(4) is a
good symmetry on the lattice, and the full SU(4) fla-
vor symmetry is only recovered in the continuum limit.
For κ < κc the NGBs discussed in Sec. II—mesons and
diquarks—acquire a mass. For κ > κc again one expects
to find an Aoki phase. The case of 5 AS2 Majorana
fermions (relevant for the SU(5)/SO(5) non-linear sigma
model mentioned in the introduction) was recently stud-
ied using chiral Lagrangian techniques in Ref. [59].

IV. PHASE DIAGRAM

As preparation for spectroscopy, we have to find cou-
plings in the confining and chirally broken phase. The
phase diagram of Wilson fermion actions in the (β, κ)
plane can be complicated, depending on the fermion con-
tent and the specific action used [57–61]. Figure 1 shows
the phase diagram we have observed for the SU(4) AS2
action considered in this paper. The curves shown indi-
cate:

1. κc(β), the critical value of the hopping parameter
where the quark mass mq vanishes.

2. κt(β), the curve of the thermal phase transition. Its
location shifts with the lattice size, and two lattice
sizes are indicated.

FIG. 1: Phase diagram of the SU(4) AS2 theory in the (β,
κ) plane. The solid lines are drawn to guide the eye and are
not a fit to the data. From right to left: κc, κt(Nt = 8),
κt(Nt = 6), and κb. The dotted line indicates weakening of
the bulk transition to a crossover.

3. κb(β), the curve of a bulk phase transition that does
not move with lattice size.

We discuss each in turn.

A. κc determination

We define the quark mass through the axial Ward iden-
tity (AWI), which relates the divergence of the axial cur-
rent Aa

µ = ψ̄γµγ5(τ
a/2)ψ to the pseudoscalar density

P a = ψ̄γ5(τ
a/2)ψ. At zero three-momentum we have

∂t
∑

x

〈Aa
0(x, t)Oa〉 = 2mq

∑

x

〈P a(x, t)Oa〉 . (4.1)

where Oa is a source, here taken to be a smeared “Gaus-
sian shell” source. The critical κc(β) line is determined
through the vanishing of the quark mass mq. As noted
in Fig. 1, we use several lattice sizes N3

s × Nt. When
Nt > Ns, t labels the usual temporal direction, but when
Nt < Ns, we choose one of the spatial directions to be t in
Eq. (4.1) from correlators taken along one of the spacial
directions of the lattice (so that the sum over x in Eq. 4.1
includes two directions with periodic fermion boundary
conditions and one antiperiodic direction).
One example of the κ dependence of the quark mass

mq is shown in the left panel of Fig. 2. The zero-crossing
at κc is apparent, as is a discontinuity in the mq(κ). The
latter is a signal of a bulk transition, which we discuss
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FIG. 2: Left: Quark mass mq as a function of κ in different volumes at β = 9.6. Right: Average plaquette as a function of κ
in different volumes at β = 9.6.
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below in Sec. IVC. We note that there is little volume-
dependence in κc(β). We plot κc(β) from all the volumes
in Fig. 1 as a black line.

B. κt determination

The finite temperature transition lines κt(β) are deter-
mined from the behavior of the Polyakov loop L. With
AS2 fermions, the Z4 center symmetry of the pure gauge
theory symmetry is broken only to Z2 and therefore there
is a true confinement phase transition in our theory.
〈L〉 = 0 in the low-temperature phase, while in the high-
temperature phase 〈L〉 orders along the real axis. Typical
scatter plots of the Polyakov loop in the two phases are
shown in the left panel of Fig. 3. The average Polyakov
loop as a function of κ at four different β values for a
163 × 8 volume are shown in the right panel of Fig. 3.

The κt(β) lines for two different volumes, 163 × 8 and
123 × 6, are shown in Fig. 1 as red lines. The transition
moves to weaker coupling as Nt increases, as expected
from asymptotic freedom.

C. κb determination

In addition to the temperature-dependent deconfine-
ment lines κt(β), our system exhibits another transition
line κb(β). Its presence is signaled by discontinuities in
several observables, notably the average plaquette and
the quark mass mq. We find that the position of the dis-
continuity is independent of volume. This is a bulk tran-
sition associated with the particular lattice action we use;
most likely it has nothing to do with continuum physics.
The mechanism that triggers the bulk transition is not
clear to us. Similar behavior has been observed in other
lattice actions, when the number of fermionic degrees of
freedom is large [57, 58, 60, 61]. A similar bulk transi-
tion has been observed in studies of the SU(4) pure-gauge
theory at β ∼ 10.2 [63].

We have already seen, in the left panel of Fig. 2, a
discontinuity in the quark mass mq at κ ≈ 0.127 as we
scan at β = 9.6. The right panel of Fig. 2 shows the
average plaquette values for β = 9.6 in three different
volumes. All the plaquette data show a sudden jump at
the same value of κ.

The transition weakens in the large-β/small-κ region
and appears to show only a smooth crossover at β ≈ 10.0.
The κb(β) line, determined on two different volumes,
163×8 and 123×6, is sketched in Fig. 1 in blue. Further
work is needed to understand the origin of this peculiar
bulk transition. For the current study, however, we only
need to make sure that our simulation is on the weak-
coupling (large-β) side of this transition so that it has a
direct connection to continuum physics.

κ configurations r1/a
0.128 146 2.50(1)
0.1285 140 2.78(2)
0.129 200 2.97(2)
0.1292 161 3.22(3)

TABLE I: Parameters of the SU(4) AS2 simulations. All are
at coupling β = 9.6, in volume 163 × 32.

V. SPECTROSCOPY

A. SU(4) AS2

Referring to the phase diagram, Fig. 1, we chose to sim-
ulate the SU(4) AS2 theory at β = 9.6 for a range of hop-
ping parameter values 0.127 < κ < 0.130, between the
bulk transition and κc. Our simulation volumes were all
163 × 32, and the resulting spectra show that our chosen
κ values kept us in the confining phase, κ < κt. Gauge-
field updates used the HMC algorithm with a multi-level
Omelyan integrator, including one level of mass precon-
ditioning for the fermions; integration parameters were
adjusted to maintain acceptance rates on the order of
70-80%. Gauge configurations were saved to disk every
10 updates. The simulations are summarized in Table I.

The coupling β = 9.6 gives a lattice spacing that is nei-
ther too large nor too small. For comparison with other
theories, we fix the lattice spacing using the shorter ver-
sion [64] of the Sommer [65] parameter r1, defined in
terms of the force F (r) between static quarks: r2F (r) =
−1.0 at r = r1. The real-world value is r1 = 0.31 fm [66],
and thus Table I shows that our lattice spacings would
correspond to a length scale of approximately 0.1 fm in
QCD. For later comparison, we plot both Sommer pa-
rameters for our simulations in Fig. 4.

In addition to the simulations listed in Table I, we used
the κ = 0.129 lattices as a set of configurations on which
we computed partially quenched (PQ) spectroscopy with
four values of the valence quark mass, κV = 0.1295,
0.130, 0.1305, 0.131. These data sets used the full com-
plement of κ = 0.129 configurations. Of course, their
lattice spacing is the same as that of the κ = 0.129 set.

The correlation functions whose analysis produced our
spectroscopy used propagators constructed in Coulomb
gauge, whose sources were Gaussians. We used ~p = 0
point sinks. We collected sets for several different values
of the width R0 of the source. These correlation functions
are not variational since the source and sink are differ-
ent. We begin each fit with a distance-dependent effective
mass meff(t), defined to be meff(t) = logC(t)/C(t + 1)
consistent with open boundary conditions for the corre-
lator C(t). Because our sources and sinks are not identi-
cal, meff(t) can approach its asymptotic value from above
or below. We mixed data with different values of R0 to
produce correlators with relatively flat meff(t), which we
then used in a full analysis involving fits to a wide range
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FIG. 3: Left: Scatter plots of the Polyakov loop in the two different phases on 163 × 8 lattices at β = 9.6. Right: Average
Polyakov loop on 163 × 8 lattices for different β and κ values. The jump of the average Polyakov loop values for each β value
signals a finite-temperature transition.

FIG. 4: Sommer parameters r0 and r1 from the dynamical SU(3) and SU(4) data sets [panels (a) and (b), respectively].

of t’s. For more detail see Ref. [43].

Our resulting data are shown in Tables II, III, and IV.
Table II shows the AWI mass and meson masses and
decay constants. The pseudoscalar and vector meson de-
cay constants, whose definitions are given in Eqs. (6.1)
and (6.2) below, are given with lattice normalization for
the fermion fields. The conversion to continuum numbers
will be described below.

We also measured the masses of the J = 0 and J = 1
diquarks using nonrelativistic quark model interpolat-
ing fields, diquark analogs of the operators we used for
baryons. Their masses are, as expected, degenerate with
those of their mesonic partners.

Tables III and IV give the baryon masses and mass
differences. These are computed together: a jackknife
average of correlated, single-exponential fits to all four
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κ amq amPS amV afPS afV
0.1280 0.124 0.680(1) 0.888(3) 0.978(10) 1.559(18)
0.1285 0.089 0.554(2) 0.749(6) 0.730(12) 1.563(29)
0.1290 0.067 0.462(1) 0.666(3) 0.693(5) 1.516(4)
0.1292 0.057 0.417(2) 0.602(2) 0.637(7) 1.501(7)

0.1295a 0.053 0.409(1) 0.630(2) 0.654(3) 1.570(8)
0.1300a 0.039 0.350(2) 0.596(3) 0.627(3) 1.627(11)
0.1305a 0.025 0.281(2) 0.561(4) 0.596(4) 1.699(13)
0.1310a 0.011 0.190(4) 0.529(8) 0.562(5) 1.783(18)

aPartially quenched: same gauge configurations as κ = 0.129.

TABLE II: AWI mass and meson spectra and decay constants
from dynamical SU(4) AS2 simulations. fPS and fV have
lattice normalization.

κ aMB(3) aMB(2) aMB(1) aMB(0)
0.1280 3.134(43) 3.055(32) 2.972(30) 2.923(32)
0.1285 2.608(35) 2.513(27) 2.442(25) 2.389(23)
0.1290 2.297(21) 2.212(17) 2.147(16) 2.113(16)
0.1292 2.046(24) 1.990(22) 1.948(22) 1.920(18)

0.1295a 2.179(26) 2.075(20) 2.002(20) 1.972(18)
0.1300a 2.094(37) 1.964(35) 1.902(29) 1.848(28)
0.1305a 1.984(77) 1.854(52) 1.826(95) 1.732(57)

aPartially quenched: same gauge configurations as κ = 0.129.

TABLE III: Baryon masses from dynamical SU(4) AS2 sim-
ulations. The number labels the angular momentum of the
state: MB(3) = MB(J = 3).

masses is performed and the differences are collected.
This insures that the average mass difference is indeed
the difference of the average masses. Since the data sets
for the different angular-momentum states are identical,
the uncertainty in the mass difference is usually smaller
than the naive combination of uncertainties on the indi-
vidual masses. These fits are over the range 5 ≤ t ≤ 10.
We have checked that fits over nearby t ranges are con-
sistent within uncertainties with these results. We omit
results for κV = 0.131 because the uncertainties in the
baryon masses, especially the J = 0 baryon, are very
large.

κ a∆M23 a∆M13 a∆M03

0.1280 0.079(29) 0.162(34) 0.210(34)
0.1285 0.095(26) 0.166(33) 0.219(34)
0.1290 0.086(16) 0.151(17) 0.185(19)
0.1292 0.056(16) 0.098(22) 0.126(12)

0.1295a 0.104(21) 0.177(22) 0.207(23)
0.1300a 0.131(36) 0.192(37) 0.247(37)
0.1305a 0.131(66) 0.159(117) 0.253(80)

aPartially quenched: same gauge configurations as κ = 0.129.

TABLE IV: Baryon mass splittings from dynamical SU(4)
AS2 simulations. We define ∆MJ1J2

≡ MB(J2)−MB(J1).

κ configurations r1/a
0.125 100 2.95(2)
0.126 100 3.08(3)
0.1265 100 3.11(3)
0.127 100 3.23(3)
0.1272 100 3.30(3)

TABLE V: Parameters of the SU(3) simulations. All are at
coupling β = 5.4, in volume 163 × 32.

κ amq amPS amV afPS afV
0.1250 0.105 0.559(2) 0.696(3) 0.456(6) 0.905(4)
0.1260 0.070 0.457(1) 0.619(3) 0.424(4) 0.993(8)
0.1265 0.059 0.402(3) 0.576(5) 0.385(3) 1.001(9)
0.1270 0.042 0.340(3) 0.531(5) 0.370(5) 1.050(9)
0.1272 0.028 0.307(3) 0.479(6) 0.318(7) 1.037(13)

TABLE VI: AWI mass and meson spectra and decay constants
from dynamical SU(3) simulations. fPS and fV have lattice
normalization.

B. SU(3) fundamental

We also generated a data set for SU(3) gauge fields
coupled to Nf = 2 fermions in the fundamental repre-
sentation. We did this for two (related) reasons. First,
the SU(4) data sets include dynamical fermions, and so
we felt that our comparison to Nc = 3 ought to be
dynamical-to-dynamical. Second, all previous large-Nc

comparisons were of quenched data sets. While quench-
ing is not the state of the art, at the quark masses at
which we work one might expect quenching artifacts to
be small. A direct comparison seemed to be in order,
and we found (as expected) that quenching effects in-
deed were small. This will be seen in the figures. Again,
we used the clover action with nHYP links and cSW = 1.
The lattice volume was again 163 × 32 sites. We chose
a gauge coupling β = 5.4. We saved configurations ev-
ery five HMC trajectories. Parameter values are shown
in Table V. Table VI shows mesonic observables from
the dynamical SU(3) simulations, while Table VII shows
baryon masses and mass differences. These numbers are
taken from a jackknife average of the data sets with a fit
range 5 ≤ t ≤ 10.

VI. COMPARISONS: MESONS

We have presented our results for meson and baryon
spectra and also for meson decay constants in the SU(4)
AS2 and SU(3) theories in Sec. V. In this section and
the next we will plot and rescale them for comparison
with each other and with the quenched SU(Nc) theories,
Nc = 3, 5, and 7. This is an important consistency check
on our results, and discrepancies with predicted scaling
may point to interesting directions for future study of
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FIG. 5: Meson spectroscopy. On the left, the squared pseudoscalar mass scaled by r21, on the right, r1 times the vector meson
mass. The abscissa is r1 times the AWI quark mass. The data sets are: black squares for quenched SU(3) fundamentals, black
diamonds for quenched SU(5) fundamentals, black octagons for quenched SU(7) fundamentals, red crosses for SU(4) AS2; the
fancy diamonds are the PQ data. Finally, the blue squares are SU(3) with two dynamical, fundamental flavors.

FIG. 6: Two ways to match bare parameters: panel (a) (mPS/mV )2 vs κ, and panel (b) r1mAWI vs κ. The data sets are:
black squares for quenched SU(3) fundamentals, black diamonds for quenched SU(5) fundamentals, black octagons for quenched
SU(7) fundamentals, red crosses for SU(4) AS2. Finally, the blue squares are SU(3) with two dynamical, fundamental flavors.
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κ aMB(3/2) aMB(1/2) a∆M
0.1250 1.143(13) 1.042(7) 0.100(11)
0.1260 1.011(10) 0.926(7) 0.085(9)
0.1265 0.959(18) 0.838(11) 0.120(16)
0.1270 0.887(23) 0.748(8) 0.139(22)
0.1272 0.833(25) 0.698(8) 0.135(24)

TABLE VII: Baryon masses and splittings from dynamical
SU(3) simulations. The number labels the angular momen-
tum of the state: MB(1/2) = MB(J = 1/2). The difference
is ∆M ≡ MB(3/2) −MB(1/2).

AS2 theories with large Nc.

A. Spectroscopy

We plot the data for the pseudoscalar and vector meson
masses in Fig. 5. To set the scale, we use the Sommer
parameter r1, and for the quark mass we use the lattice-
regulated AWI quark mass, scaled by r1 in the plots.
We display several data sets together. The new ones

are the SU(4) AS2 sets, shown in red (crosses for the
full dynamical sets and fancy diamonds for the partially
quenched ones), and the dynamical SU(3) sets (blue
squares). The black squares, diamonds, and octagons
are previously published data from quenched simulations
with Nc = 3, 5, and 7 with fundamental fermions [43].
To carry out meaningful comparisons between data ob-

tained at different Nc’s, we must match the bare parame-
ters between the simulations in some common way. This
is an inherently ambiguous procedure, but let us make
the attempt. We know that hadron masses depend mono-
tonically on the quark mass. We can compare results at
the same values of the quark mass by selecting data at
constant (mPS/mV )

2—this is a quantity which is roughly
linear in the quark mass—or we can use the AWI quark
mass itself, rendered dimensionless by multiplication by
r1. These comparisons are shown in Fig. 6. For both
quantities, the theories can be matched over almost the
entire range of κ.
We now select matching points for which we have many

data sets. Thus we choose to use (mPS/mV )
2 = 0.54–

0.56, 0.40, and 0.29–0.32 as the three ratios. We plot
r1mV as a function of 1/Nc, since we expect the leading
corrections to scale with 1/Nc. The result is shown in
Fig. 7.
To leading order in the expansion, meson masses in

both the fundamental and AS2 theories are expected to
be independent of Nc [28]. Empirically, it appears that
the systems connected by the original ’t Hooft large-Nc

scaling argument—fundamental fermions—show smaller
1/Nc variation than the AS2 systems over the range of
Nc shown. In particular, we note that the AS2 data with
Nc = 4 and the fundamental data with Nc = 7 show
roughly the same shift compared to Nc = 3. This is seen
to be the case for all quark mass values (see Fig. 5).

FIG. 7: Variation of r1mV vs 1/Nc for roughly matched data
using (mPS/mV )2. The diamonds are for (mPS/mV )2 =
0.54 − 0.56, octagons for (mPS/mV )2 = 0.40, and squares
for (mPS/mV )2 = 0.29 − 0.32. The blue symbols are the
dynamical SU(3) data and the red symbols, the SU(4) AS2
data. Black symbols show quenched fundamental results.

B. Decay constants

We define the pseudoscalar decay constant fPS

through the matrix element

〈0|ūγ0γ5d|PS〉 = mPSfPS (6.1)

(so fPS ≃ 132 MeV), while the vector meson decay con-
stant fV of state V is defined as

〈0|ūγid|V 〉 = m2
V fV ǫi, (6.2)

where ~ǫ is a polarization vector. With clover fermions in
the usual (κ) normalization, a continuum matrix element
(carrying dimension D) is defined to be

〈

ψ̄Γψ
〉

cont
=

(

1− 3

4

κ

κc

)

ZΓ

〈

ψ̄Γψ
〉

latt
aD, (6.3)

and in perturbation theory for fermions in representation
R the one-loop renormalization factor is

ZΓ = 1 +
g2C2(R)

16π2
zΓ + · · · . (6.4)

zΓ for nHYP clover fermions is recorded in Ref. [67] as
−1.28 for the vector current and −1.30 for the axial cur-
rent. In the usual tadpole-improved analysis, one might
take the coupling from the lowest-order expression for the
plaquette, using the fundamental representation Casimir,

−Tr
UP

Nc

= g2
C2(F )

4
. (6.5)
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For the quenched data sets, the plaquette values (1.787,
2.858 and 3.976) give g2C2(F )= 2–2.26. In principle, we
should run the scale of the coupling from its value for
the plaquette, q∗a = 3.41, to the values computed in
Ref. [67], q∗a ≃ 1.7, but the combination of coupling and
zΓ is so small for nHYP fermions that, in all cases, ZΓ is
within one percent of unity.
A first determination of κc was described in Sec. IV.

Figure 4 shows that the lattice spacing is rather strongly
dependent on κ at fixed β, so one would not expect a
naive extrapolation of, say, amq or (amPS)

2 as a linear
function of κ would perform particularly well. In fact,
it does not; we can imagine doing fits to all four data
points, or to the lightest three. Since the fits have a
nonzero number of degrees of freedom, we can evaluate
their quality. It is poor.
Instead, we focus on the dimensionless quantities r1mq

and r21m
2
PS . A comparison of critical hopping parameters

from the fits is shown in Fig. 8 for four possibilities, all
with a linear fit:

1. From r1mq with all four mass values (χ2 = 24.5
with 2 degrees of freedom (dof));

2. From r1mq with the lowest three mass values (χ2 =
2.4 with 1 dof);

3. From r21m
2
PS with all four mass values (χ2 = 8.6

with 2 dof);

4. From r21m
2
PS with with the lowest three mass values

(χ2 = 7 with 1 dof).

The estimates of κc are all quite close. More impor-
tantly, the uncertainty in the rescaling between lattice
and continuum-normalized matrix elements due to dif-
ferent choices of κc is under half a per cent at any of the
quark masses in our data sets. The plots below assume
κc = 0.13122 and Z = 1.
The partially quenched data sets, at fixed β and sea

quark κ, should all have the same lattice spacing. We
should be able to find a “valence κc” just by fitting amq

or (amPS)
2 to a straight line. This we do, finding κc =

0.13137.
The dynamical SU(3) data sets have κc = 0.12838(9)

from a linear fit of r1mq in κ. The fit is stable with a χ2

below 1.1 per degree of freedom for the lowest five masses
(or fewer).
We collect our results for fPS and fV in Figs. 9 and 10.

We have rescaled all fundamental-representation data by
√

3/Nc, and we rescaled the AS2 data by (3/Nc), to re-
move the leading expected large-Nc scaling [25], leav-
ing the residual. The dynamical SU(3) data sets agree
with the previously-presented quenched sets (at the rel-
atively heavy quark masses where they overlap), and
the trend of remarkable Nc scaling for the fundamental-
representation data contrasts with the AS2 data sets,
where the shift from Nc = 3 to 4 is about twenty per
cent.

FIG. 8: Different determinations of κc in the SU(4) AS2 the-
ory: (1) from r1mq with all four mass values; (2) from r1mq

with the lowest three mass values; (3) from r21m
2
PS with all

four mass values; (4) from r21m
2
PS with with the lowest three

mass values.

The slope of the rescaled r1fPS with respect to r1mq is
roughly 50% larger for the SU(4) AS2 results, compared
to all other results shown. Next-to-leading order chiral
perturbation theory predicts a larger contribution by a
factor of 2 from the low-energy constant L4 for the SU(4)
AS2 data [68]; however, L4 itself is usually taken to be
small or even zero in QCD, since it is suppressed at large
Nc (with fundamental fermions) by the OZI rule [69].8

The OZI rule, which follows from suppression of quark
loops, does not hold for the AS2 expansion [28] and so
we might expect a larger slope for fPS vs mq in any AS2
theory compared to the conventional expansion at large
Nc. Results at larger values of Nc with AS2 fermions
would shed light on this discrepancy.

VII. COMPARISONS: BARYONS

Our baryon data are shown in Fig. 11. Unlike mesons,
baryon masses depend strongly onNc and representation.
Fundamental representation data with Nc = 3, 5, and 7
make that point. In the figure, quenched data are shown
in black while the blue points are the SU(3) dynamical-
fermion data. Again, we scale the lattice masses by r1
and plot the data versus the AWI quark mass. The

8 Recent global analyses of the low-energy constants in QCD [70]
indicate that L4 is not necessarily small, despite the expected
large-Nc suppression.
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FIG. 9: Pseudoscalar decay constant. The abscissa is r1 times
the AWI quark mass. The data sets are: black squares for
quenched SU(3) fundamentals, black diamonds for quenched
SU(5) fundamentals, black octagons for quenched SU(7) fun-
damentals, red crosses for SU(4) AS2; the fancy diamonds are
the PQ data. Finally, the blue squares are SU(3) with two
dynamical, fundamental flavors.

SU(4) AS2 masses are shown in red, with octagons for
dynamical data sets and fancy diamonds for the par-
tially quenched ones. We have used the same symbols
for all states, regardless of their angular momentum, but
have connected the states with the same J by lines. The
masses of all the states (all Nc, all representations) are or-
dered in angular momentum so that higher J lies higher.
Of course, the masses in each set come from the same
underlying configurations, so they are highly correlated
and move together as the quark mass is varied.
We can compare the fine structure in the AS2 data to

the familiar rotor formula [29, 33, 37],

MB(J) = m0Nb +B
J(J + 1)

Nb

. (7.1)

Nb is the number of quarks in the baryon, and m0 can
be interpreted as a constituent quark mass. Thus we set
Nb = Nc for fundamental-representation fermions and
Nb = 6 for SU(4) AS2. Equation (7.1) describes the data
well. This is shown for one quark mass, κ = 0.1285, in
Fig. 12. The masses of the four different J states are fit
to two parameters, m0 and B. The results of the fit are
shown as squares in the figure. Repeating these fits for
all masses, we can plot the quark mass dependence of m0

and B. This is shown in Fig. 13.
Some residual Nc dependence is observed in Fig. 13,

especially in m0, shown in the left-hand panel. This sit-

FIG. 10: Vector meson decay constant The abscissa is r1 times
the AWI quark mass. The data sets are labeled as in 9.

uation for the quenched fundamental data was discussed
in Ref. [44]. It was observed that the variation in the
data was (noisily) consistent with a 1/Nc contribution to
m0; that is, m0(Nc) = m00 +m01/Nc + . . . where m00

and m01 were of comparable, “typical QCD” size. With
only two AS2 points to compare, we cannot reliably fit
for the corresponding Nc dependence. However, we ob-
serve that modeling m0(Nb) = m00+m01/Nb+ . . . gives
roughly consistent results with our Nc = 4 AS2 data.
The situation for B is less clear cut: B comes from

small mass differences. Certainly, the Nc = 5 and 7 fun-
damental B data and the Nc = 4 AS2 B data lie on a
common line slightly separated from the Nc = 3 data.
This is in qualitative agreement with large-Nc expecta-
tions, B(Nb) = B0 +B1/Nb + · · · .
Overall, both m0 and B are of “typical hadronic size”

since 1/r1 ∼ 635 MeV and r1m0 and r1B are order unity.
However, they have rather different dependence on the
quark mass. In the Skyrme picture, B is the inverse of
the moment of inertia, scaled by Nb, so that B should be
proportional to 1/m0. In a quark model with hyperfine
interactions mediated by gluons, B is basically a product
of color magnetic moments for the quarks, and for heavy
quarks, the magnetic moment scales inversely with the
quark mass. This suggests B ∝ 1/m2

0. A log-log plot of
B versus 1/m0 certainly looks like a power law, with an
exponent near unity. This is shown for Nc = 3 and 4 in
Fig. 14 and for the quenched fundamental data in Fig. 15.
The overall dependence of the baryon massMB on the

quark massmq is also interesting to study, since it may be
used with the Feynman-Hellmann theorem to determine
the baryonic matrix element of the scalar density, if one
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FIG. 11: Baryons. The black data are from the top quenched
SU(7), SU(5) and SU(3) data. The blue octagons are SU(3)
with dynamical fermions. The red points are the six-quark
baryons in SU(4) AS2, octagons for dynamical and fancy di-
amonds for partially quenched.

FIG. 12: Fit to rotor formula (7.1) at κ = 0.1285. Octagons
(with error bars) are the data points; squares the best fit
values.

defines

f (B)
q ≡ mq

MB

∂MB

∂mq

=
mq

MB

〈B|ψ̄ψ|B〉. (7.2)

Multiplying by the ratio mq/MB cancels the renormal-
ization of the quark mass and gives a dimensionless ra-
tio. For the lowest-lying baryon, this quantity would
determine the cross section for direct detection through
Higgs exchange in the context of a composite dark mat-
ter model [46], in conjunction with the same quantity
defined for matrix elements of the proton and neutron
[71].
To determine the scalar matrix element, we carry out

a linear fit to the quantity r1MB as a function of r1mq;
the resulting slope is then multiplied by mq/MB at each
data point. To suppress possible finite-volume systematic
errors, only points with mPSNs

>∼ 4 are used in the fit;
this excludes a small fraction of our data.
Results of this analysis are plotted in Fig. 16. Since in

the limit mq → ∞ we expect MB ∼ Nbmq, the quantity

f
(B)
q should approach 1 in the heavy-quark limit and 0 in
the chiral limit. The functional dependence observed for
all of our AS2 and fundamental data is broadly consistent
at intermediate values of mPS/mV , and consistency is
also seen with other lattice results for SU(2) and SU(4)
theories with relatively heavy quark masses [46, 72].

VIII. CONSEQUENCES AND CONCLUSIONS

We have presented a first lattice calculation of the spec-
trum for an SU(4) gauge theory with two Dirac fermions
in the two-index antisymmetric (AS2) representation.
Because this is a real representation, its symmetries are
somewhat different from the familiar QCD case; in par-
ticular the chiral symmetry group is enlarged, breaking
SU(4) → SO(4). We have clarified some features of this
symmetry, particularly as relevant for lattice simulations.
Furthermore, we have mapped out the phase diagram for
our lattice action, and identified and removed a novel
discretization error in nHYP smearing which appears
for real-representation fermions. Our work provides a
foundation for future studies of SU(4) theories with AS2
fermions, and for other lattice studies of theories with
real-representation fermions.
Comparisons of SU(4) AS2 spectroscopy and matrix el-

ements with fundamental fermion data reveal regularities
anticipated by large-Nc arguments. Although we cannot
derive any quantitative results on the nature of the AS2
large-Nc expansion with only two points (Nc = 3 and
Nc = 4), our results for meson and baryon masses seem
consistent with the predictions of the large-Nc frame-
work.
Scaling of decay constants seems to be less exact for

AS2 fermions than for fundamental ones, with the SU(4)
AS2 results clearly distinct from the various SU(Nc) fun-
damental theories. We note, however, that for Nc 6= 4,
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FIG. 13: The parameter m0 (panel (a)) and B (panel (b)) from two-flavor degenerate mass data as function of (mPS/mV )2 from
a fit to Eq. (7.1). Data from the quenched SU(3), SU(5), and SU(7) multiplets are shown respectively as squares, diamonds,
and octagons. Red crosses and fancy diamonds show the SU(4) data, unquenched and partially quenched, and the blue squares
are the dynamical SU(3) data sets.

AS2 fermions live in complex representations. The pat-
tern of chiral symmetry breaking is then identical to that
of ordinary QCD. Since Nc = 4 is a special case, it might
be an outlier for the behavior of chirally-sensitive observ-
ables such as fPS .

As far as we know, no dynamical simulations of gauge
plus fermionic systems on volumes large enough for spec-
troscopy with Nc > 4 have ever been performed. At
heavier quark masses, however, quenching effects are not
large. For future study, perhaps it would be appropriate
to imagine a first round of quenched simulations with
AS2 fermions. Studies of mesonic properties could be
done with modest resources. With Nb = Nc(Nc − 1)/2
quarks in a baryon, they are bosons for Nc = 5 (with 10
constituents), and they alternate between fermion and
boson at larger Nc. Unfortunately, the number of terms
in the wave function grows rapidly with Nc. Even for
Nc = 5, the combinatorics of the lower-J correlators seem
quite daunting.

Returning to the Nc = 4 theory, the six-quark AS2
baryons are almost certainly unstable against decay in
the chiral limit, since they can fall apart into three di-
quarks. As an example, consider any of our baryons with
I = J > 0. Di-quark NGBs have I = 1, and so the
decay into 3 such NGBs is allowed by isospin conserva-
tion. However, the NGBs have J = 0, meaning that the
baryon’s angular momentum will have to be converted
into an orbital motion. This leads to a kinematic sup-
pression of the decay. The same applies to the I = J = 0
baryon: The isospin state of the three NGBs is anti-

symmetric, so they will have to be in a spatially anti-
symmetric state that perforce contains orbital angular
momentum. Of course, knowing that the decay actually
occurs as a strong-interaction process might be sufficient
for phenomenology. For example, in the chiral limit of a
model like this, the lightest baryon would probably not
be a good dark matter candidate because it would decay
into massless NGBs.

As mentioned in the introduction, of particular inter-
est for phenomenology is the NMaj = 5 theory, whose
low-energy effective theory is the SU(5)/SO(5) non-linear
sigma model. We have begun a detailed study of this
model that we hope to report on in the future.
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FIG. 14: B vs 1/m0 from the rotor formula (7.1); black di-
amonds from quenched SU(3), blue squares from full SU(3).
The SU(4) data are shown as red octagons for the dynamical
sets and fancy diamonds for the partially quenched set.

Acknowledgments

T. D. would like to thank Richard Lebed for correspon-
dence and conversations. B. S. thanks the University
of Colorado for hospitality, as well as the Yukawa Insti-
tute for Theoretical Physics at Kyoto University. This
work was supported in part by the U. S. Department
of Energy, and by the Israel Science Foundation under
Grant no. 449/13. Brookhaven National Laboratory is
supported by the U. S. Department of Energy under con-
tract DE-SC0012704. Computations were performed us-
ing USQCD resources at Fermilab and on the University
of Colorado theory group’s cluster. Our computer code
is based on version 7 of the publicly available code of the
MILC collaboration [73].

FIG. 15: For comparison, B vs 1/m0 from the rotor formula
(7.1) from the quenched fundamental data sets of Ref. [43]:
Nc = 3, 5, and 7 data sets are squares, diamonds and oc-
tagons.

FIG. 16: The quantity f
(B)
q defined in Eq. (7.2), plotted vs

the ratio (mPS/mV )2. Data shown include quenched funda-
mental SU(3), SU(5) and SU(7) (black squares, diamonds,
octagons), dynamical SU(3) (blue squares), and dynamical
SU(4) AS2 (red crosses). We also plot in purple results from
[46] for quenched fundamental SU(4), for bare gauge coupling
β = 11.5 (fancy diamonds) and β = 12.0 (fancy crosses).
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