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We present predictions at NLO accuracy in QCD for top-quark pair production induced by an
anomalous chromomagnetic dipole moment of the top quark. Our results are obtained for total as
well as fully differential cross sections, including matching to parton shower simulations. This process
is expected to provide the most stringent direct limits on top-quark chromomagnetic dipole moment.
We find that NLO corrections increase the contribution from the dipole moment by about 50% at
the LHC, and significantly reduce the renormalization and factorization scale dependence. Using
the NLO prediction, we update the current limit from the Tevatron and the LHC measurements.
Apart from total cross section, we also study other observables relevant for LHC phenomenology.

I. INTRODUCTION

The top quark is expected to play an important role
in new physics searches, due to its large mass and strong
coupling to the electroweak sector. Strategies to search
for new physics effects in the top sector can be broadly
divided into two categories. In the first category, we
search for new resonant states, such as tt̄ resonance and
top partners. In the second category, new states are as-
sumed to be too heavy to be directly produced, and their
indirect effects are searched for in top-quark couplings.

Currently, no new states have been discovered, and
exclusion limits have been placed, up to around several
TeV scale for many new particles in either complete or
simplified models [1]. On the other hand, in the sec-
ond case the interaction of the top quark is becoming an
ideal probe to new physics. On the experimental side,
the millions of top quarks already produced at the LHC
together with the tens of millions expected in the com-
ing years will move top physics to a precision era. Many
detailed and accurate information on various top-quark
properties have been collected, and more will come. On
the theory side, accurate SM predictions are also avail-
able, in general at next-to-next-to-leading order (NNLO)
in QCD and next-to-leading order (NLO) in electroweak
for inclusive observables and at NLO in QCD for more
exclusive ones. All of these provide the opportunity to ex-
tract or to constrain different anomalous top-quark cou-
plings. In this context, theoretical predictions including
QCD radiative corrections to anomalous top-quark cou-
plings will be necessary for extracting precise and reliable
limits, as leading order (LO) predictions in hadron col-
liders are often not reliable and suffer from large scale
uncertainties. This has motivated a significant activ-
ity dedicated to providing the NLO QCD corrections to
top-quark processes involving anomalous couplings, or
higher-dimension operators [2–15]. However, NLO pre-
dictions involving anomalous top-quark interactions are
still far from complete.

In this work we focus on the chromomagnetic dipole
moment (CMDM) of the top quark in tt̄ production. The
cross section of tt̄ production is one of the most accurately
measured observables in top physics, and the effect of an

anomalous CMDM has been investigated in many studies
[16–29]. To the best of our knowledge, the contribution of
top CMDM is known only at LO. The goal of this work is
to promote it to NLO including fully differential produc-
tions and matching to parton showers, and investigate
its impact on the current limits of top-quark CMDM, as
well as other observables, with either stable or decayed
tt̄ system. We shall mention that, apart from CMDM,
the top quark can also have an anomalous chromoelec-
tric dipole moment (CEDM), which in this work we will
not discuss. The reasons will be explained in the next
section.

At first glance, one might expect deviations induced
by anomalous top CMDM to be small, and therefore ra-
diative corrections of these contributions to be a higher-
order effect. However, in tt̄ production at the LHC, the
K factor from NLO QCD corrections is about 1.5 in the
SM, and is numerically not a higher-order effect. If a
similar K factor applies to the CMDM contribution, it
will be important to know the NLO correction to the
CMDM, so that a more accurate and stringent limit can
be obtained. Moreover, this statement is too naive, since
the issue is both on the accuracy, i.e. the central value,
and on the precision, i.e. the uncertainties of a prediction.
LO predictions for processes at Hadron colliders always
suffer from large uncertainties due to scale variation, and
the NLO predictions are expected to significantly reduce
these uncertainties and thus provide a more reliable es-
timation of the possible range of the anomalous CMDM.
Finally, in many cases NLO corrections can have an im-
pact on kinematic distributions. Knowing the accurate
differential cross section from the CMDM is therefore im-
portant in measurements where the shapes of the distri-
butions are used. We will show such examples, where
LO prediction for the distributions does not provide a
reliable description.

The paper is organized as follows. In section II we
briefly discuss the theoretical background of top CMDM.
In section III we describe the framework of our calcula-
tion and how it is implemented. Our results for total
cross sections and limits are presented in section IV. In
section V we show several examples of exclusive distribu-
tions. Section VI is our conclusion.
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II. THEORETICAL BACKGROUND

The top-quark chromomagnetic and chromoelectric
dipole moments, CMDM and CEDM, can be parame-
terized by adding an effective term to the top-gluon cou-
pling:

Lttg = gst̄γ
µTAtGAµ +

gs
mt

t̄σµν (dV + idAγ5)TAtGAµν

(1)
where gs is the strong coupling, and GAµν is the gluon field
strength tensor. dV and dA in the second term represent
the CMDM and CEDM of the top quark respectively.

The CMDM of the top quark can arise from various
models of new physics. The Yukawa corrections to gtt̄
vertex in two Higgs doublet model (2HDM) was first con-
sidered in Ref. [16], while the supersymmetric QCD and
electroweak corrections have been studied in Ref. [17–19].
Explicit expressions for CMDM in 2HDM and in minimal
supersymmetric standard model were given in Ref. [20].
The top CMDM also arises quite naturally in composite
models and technicolor models [21]. For a more general
discussion of top CMDM in new physics scenarios we
refer to Ref. [22]. Finally, a top CMDM operator may
be loop-induced by operator mixing effects, from other
higher-dimensional operators generated at higher scales.
An example can be found in Ref. [30].

Although processes like single top quark production
[31] and Higgs boson decay [32] may contribute to access
the CMDM at the LHC and Tevatron, the main con-
strain comes from tt̄ production. Direct limits have been
derived by previous studies [23–29, 33, 34]. However, the
contribution of top CMDM has been known only at LO
accuracy. Our aim is to provide the NLO prediction, as
well as to study its impact on the total cross section and
various distributions.

To go beyond LO calculation, a theoretical framework
based on the dimension-six Lagrangian of the SM is re-
quired. This framework contains a complete set of opera-
tors satisfying the symmetries of the SM, i.e. the Lorentz
symmetry and the SU(3)C×SU(2)L×U(1)Y gauge sym-
metries. It provides an unambiguous prescription for op-
erator renormalization, and thus allows for a complete
and consistent treatment of the higher-order corrections
to the operators. The Lagrangian including dimension-
six operators can be written as

LEFT = LSM +
∑
i

CiOi
Λ2

+ h.c. (2)

where Λ is the scale of new physics. In this work we work
up to order O(Λ−2), as going beyond this order would
require complete knowledge of dimension-eight operators.

The top-quark CMDM in this framework is represented
by a dimension-six operator

OtG = ytgs
(
Q̄σµνTAt

)
φ̃GAµν , (3)

where Q is the left-handed top- and bottom-quark dou-
blet, t the right-handed top, φ the Higgs doublet, and yt

FIG. 1. Representative tree-level diagrams of tt̄ production
with an effective vertex form the operator OtG. Black dot
represents effective vertex from OtG.

the Yukawa coupling of the top quark. φ̃ = iσ2φ. This
operator, after the electroweak symmetry breaking, takes
the form of the second term in Eq. (1). The relation be-
tween dV and the real part of the coefficient of OtG is
given by

dV =
ReCtGm

2
t

Λ2
(4)

The operator OtG contributes to tt̄ production at tree
level by modifying the standard gtt̄ vertex, as well as
inducing a new ggtt̄ vertex, as shown in Figure 1. The
effects of this operator in top-quark processes at LO in
QCD have been discussed in Refs. [35, 36].

On the other hand, dA, the CEDM, corresponds to the
imaginary part of CtG. In this work, however, we are go-
ing to focus only on the CMDM. This is because the anal-
ysis of the CEDM at NLO follows a completely different
approach. As we have mentioned above, in an approach
based on the dimension-six Lagrangian, we can only work
up to order O(Λ−2), and thus only the interference be-
tween the CEDM and the SM amplitudes can be in-
cluded. At this order the contribution vanishes in tt̄ pro-
cess because of the CP-odd nature of the CEDM, unless
one incorporates the decay of the top quarks. As we shall
see, our work is based on the MadGraph5 aMC@NLO
framework [37], where the spin correlation and the off-
shellness of the top quark pairs are simulated by using
the MadSpin package [38], which is based on LO evalua-
tion of the complete matrix element including top decays.
Therefore it is not a suitable framework for the NLO cor-
rections to the CP-odd effects of the CEDM, and we will
leave the NLO analysis of the CEDM to future works.
Throughout the paper, we assume CtG to be real.

When going to NLO in QCD, one needs to take into
account the operator mixing effects between OtG and
other dimension-six operators that could give a contri-
bution to the same process at tree level. For tt̄ pro-
duction, these operators are OG = gsf

ABCGAνµ GBρν GCµρ ,

OφG = g2
s

(
φ†φ

)
GAµνG

Aµν , and several four-fermion op-
erators [35]. It turns out that in tt̄ production, the mixing
from OtG to these operators is not relevant. First of all,
OtG does not mix into OG and four-fermion operators
[30], because OtG is essentially a dimension-five operator
if the Higgs field always takes the vacuum expectation
value, which is always true at the order we are working
at. Second, OtG does mix into OφG [39], but such effects
correspond to a O(y2

t ) correction to the LO process, and
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therefore of higher-order. Finally, the operators OφG and
OG do mix into OtG [40], however it is consistent to as-
sume that they vanish at all scales, given that they are
not renormalized by OtG. Therefore, as a first step, in
this work we assume OtG is the only non-vanishing op-
erator, and neglect other operators. Note, however, that
for a fully consistent phenomenological study, the com-
plete operator set must be included. A first example of
the global approach was presented for the flavor-neutral
interactions of the top quark [41]. The NLO predictions
for other operators will be left to future works.

III. FRAMEWORK AND IMPLEMENTATION

In an NLO calculation one has to choose a renormal-
ization scheme. Our scheme is consistent with Ref. [6].
For the SM part, we adopt MS with five-flavor run-
ning in αs with the top-quark subtracted at zero mo-
mentum transfer [42]. The bottom quark mass is ne-
glected. Masses and wave-functions are renormalized on
shell. The dimension-six operator OtG then gives addi-
tional contributions to top-quark and gluon fields renor-
malization, as shown in Figure 2. We find

δZ
(t)
2 = δZ

(t)
2,SM − CtG

2αsm
2
t

πΛ2
Dε

(
1

εUV
+

1

3

)
(5)

δmt = δmt,SM − CtG
4αsm

3
t

πΛ2
Dε

(
1

εUV
+

1

3

)
(6)

δZ
(g)
2 = δZ

(g)
2,SM − CtG

2αsm
2
t

πΛ2
Dε

1

εUV
, (7)

where

Dε ≡ Γ(1 + ε)

(
4πµ2

m2
t

)ε
, (8)

and µ is the renormalization scale. In addition, the strong
coupling counterterm, Zgs , also gets a dimension-six con-
tribution:

δZgs = δZgs,SM + CtG
αsm

2
t

πΛ2
Dε

1

εUV
, (9)

that is to say the top-loop contribution with the operator
OtG is also decoupled from the running of αs, in the same
way as in the SM. Finally, for operator coefficient we use
MS subtraction. The counterterm of CtG is

δZCtG
=
αs
6π

Γ(1 + ε)(4π)ε (10)

This will lead to the running of CtG.
One remark on Eq. (6) is in order. Naively if MS is ap-

plied to the complete set of dimension-six operators, one
would expect that the dimension-six “Yukawa” operator,
Otφ = y3

t (φ†φ)(Q̄t)φ̃, will be renormalized by OtG and
will be providing the UV pole in the mass counterterm
in Eq. (6). The remaining finite term, however, still needs
to be subtracted by introducing the mass counterterm.

FIG. 2. Contribution of OtG operator to top-quark and gluon
wave functions. Black dot represents effective vertex from
OtG.

Operator Otφ does not have a physical effect in this pro-
cess, as it only shifts the top-quark mass which is an input
parameter. Therefore it is equivalent to redefine Otφ as

y3
t (φ†φ−v2/2)(Q̄t)φ̃, and shift the renormalization of the

dimension-four component of Otφ, i.e. −m2
t/Λ

2yt(Q̄t)φ̃,
to Eq. (6). This is more convenient since Otφ then com-
pletely drops out from the calculation.

Our calculation is performed using the Mad-
Graph5 aMC@NLO framework [37]. The operator
OtG is implemented in the UFO format [43] by using
the FeynRules package [44]. Helicity amplitude rou-
tines are generated by ALOHA [45]. The evaluation of
the loop corrections requires two additional pieces, the
UV counterterms and the rational R2 terms which are
required by the OPP technique [46]. The UV countert-
erms are computed according to Eqs. (5)–(10), while the
R2 terms are generated by the NLOCT package [47]. The
calculation is then automatically performed by Mad-
Graph5 aMC@NLO at NLO accuracy, and matched
to parton shower via the MC@NLO formalism [48].

Several checks of the implementation have been done,
including the gauge invariance of all virtual contribu-
tions, and the pole cancellation when combining virtual
and real contributions. In addition, we checked that all
relevant UV and R2 terms are correctly implemented,
by computing individual diagrams with MadLoop [49]
and comparing with analytical results obtained by using
FormCalc and LoopTools [50].

IV. TOTAL CROSS SECTION

In this section we give the NLO total cross section
from OtG, and place limits on its size, using available
measurements from the Tevatron and the LHC.

As mentioned above, we work up to O(Λ−2), which
means we insert in each diagram at most one effective
vertex from OtG. The total cross section then becomes a
quadratic function of CtG/Λ

2,

σ = σSM +
CtG
Λ2

β1 +

(
CtG
Λ2

)2

β2 . (11)

The β1 term represents the contribution from OtG at or-
der O(Λ−2). The quadratic β2 term, on the other hand,
does not have a physical meaning without a complete cal-
culation at O(Λ−4), and needs to be dropped. However
the size of this term can be used to gauge the range in
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β1 LO [pb TeV2] NLO [pb TeV2] K factor

Tevatron 1.61+0.66
−0.43

(+41%)

(−27%) 1.810+0.073
−0.197

(+4.05%)

(−10.88%) 1.12

LHC8 50.7+17.3
−12.4

(+34%)

(−25%) 72.62+9.26
−10.53

(+12.7%)

(−14.5%) 1.43

LHC13 161.6+48.0
−36.2

(+29.7%)

(−22.4%) 239.5+29.0
−31.8

(+12.1%)

(−13.3%) 1.48

LHC14 191.3+55.6
−42.2

(+29.0%)

(−22.0%) 283.0+33.6
−36.9

(+11.9%)

(−13.1%) 1.48

β2 LO [pb TeV4] NLO [pb TeV4]

Tevatron 0.156 0.158

LHC8 8.94 11.8

LHC13 30.0 43.2

LHC14 35.7 51.6

TABLE I. Values of β1 and β2 at LO and NLO precisions
for the Tevatron, and for the LHC at 8, 13, and 14 TeV.
The respective K factors for the central values of β1 are also
shown.

which the approach itself is valid, or in other words, the
expansion in 1/Λ converges.

To extract β1,2, we perform the calculation with CtG
taking different values: 0,±1,±2, and fit the resulting
cross sections to Eq. (11). Each run is performed with 9
combinations of (µR,µF ), where µR is the renormaliza-
tion scale and µF the factorization scale, each can take
values µ/2, µ and 2µ, with the central value µ = mt.
This allows us to extract the scale variation of β1. In our
calculation mt = 173.3 GeV, and we use the NNPDF 2.3
set of the parton distribution functions [51]. The values
of β1,2, both at LO and NLO, are given in Table I for
Tevatron, LHC 8 TeV, LHC 13 TeV and LHC 14 TeV
runs. A significant improvement in the scale dependence
can be noticed. A large K factor is found at the LHC.
The sizes of β2 implies that the effective approach is valid
given that CtG/Λ

2 . 1 TeV−2. Our LO results agree
with Ref. [52] once we take into account scale variation
and note the opposite sign convention of dV .

With these results we can set bounds on the size of
OtG using total cross section measurements. We replace
the σSM in Eq. (11) by the most precise SM predictions
at NNLO+NNLL accuracy in QCD, which are σTeV

SM =
7.148± 0.218 pb and σLHC

SM = 244.9± 9.7 pb respectively
for Tevatron and for LHC at 8 TeV [53]. We sum the scale
and PDF uncertainties in quadrature and symmetrize the
error around a central value. The combined measurement
at the Tevatron (LHC) is σTeV

exp = 7.51±0.40 pb (σLHC
exp =

240.6± 8.5 pb) [54, 55], where we have corrected for the
top-mass difference using the prescription given in these
references. The value of CtG can be extracted using

CtG
Λ2

=
σexp − σSM

β1
, (12)

together with its corresponding uncertainty, given by

δCtG
Λ2

=

∣∣∣∣σexp − σSM

β1

∣∣∣∣
[

ε2exp + ε2SM

(σexp − σSM)2
+

(
εβ1

β1

)2
] 1

2

(13)

LO [TeV−2] NLO [TeV−2]

Tevatron [-0.33, 0.75] [-0.32, 0.73]

LHC8 [-0.56, 0.41] [-0.42, 0.30]

LHC14 [-0.56, 0.61] [-0.39, 0.43]

TABLE II. Limits on CtG/Λ
2. The corresponding lim-

its combining Tevatrion and LHC8, in terms of dV , is
[−0.0099, 0.0123] at LO and [−0.0096, 0.0090] at NLO (note
the opposite sign convention of dV in [52]). For LHC14 we
assume a 5% experimental error.

where the experimental error εexp and the theoretical
NNLO error εSM are summed in quadrature, and εβ1 is
the (symmetrized) error of β1 due to scale variations. We
assume no correlation between the SM NNLO prediction
and β1. One could also add in Eq. (13) a term represent-
ing the error from the missing O(Λ−4) terms, which can
be estimated using β2(CtG/Λ

2)2, but the changes in the
limits are negligible.

We show the 95% CL allowed region for CtG in Ta-
ble II. The improvement of NLO calculation for Tevatron
is mild due to the small K factor. In the LHC cases the
allowed range is significantly reduced at NLO. We also
give the expected limit at the LHC 14 TeV run, assuming
an experimental error of ±5%.

V. DISTRIBUTIONS

Our calculation is implemented via the Mad-
Graph5 aMC@NLO framework, therefore simulation
of any observable is automatic. In this section we present
a few representative distributions of variables of par-
ticular relevance for LHC phenomenology. To simulate
parton shower we have used the Herwig 6 code [56].
Other shower programs are also available, including Her-
wig++ [57] and Pythia 8 [58].

A. Stable top quarks

We first look at kinematic observables constructed
from stable top-quark pairs. In Figure 3 and Figure 4
we show the invariant mass of the top anti-top system
and the transverse momentum of the top-quark for the
LHC at 8 TeV, in each case with the differential K factor
displayed in the lower panel. The contribution from OtG
is extracted by generating event samples with CtG = ±2
separately and taking the difference, in order to get rid
of the quadratic terms in CtG. These observables can
serve as discriminators in case any deviation form the
SM is observed, and will be useful in determining the
type of new physics [36]. One can see that the NLO
computation reduces the scale variation. The differential
K factor is not a constant and drops at higher scales,
however in both distributions we observe that the K fac-
tor of the OtG contribution is similar to that of the SM
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FIG. 3. Top quark pair invariant mass distribution at LHC 8
TeV.
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FIG. 4. Top quark transverse momentum distribution at LHC
8 TeV.

contribution, so using the SM K factor to rescale the LO
event samples from OtG can be a good approximation
of the complete NLO result. Note that we have chosen
CtG/Λ

2 = 1 TeV−2 for convenience, even though this
value is already excluded by the current limits. One can
always rescale the curve to get corresponding result for
any other value of CtG, as we have already removed the
quadratic dependence on CtG.

In Figure 5 we show the top quark pair invariant mass
distribution for LHC at 14 TeV, at high mass region
above 1 TeV. In this calculation we have set µ = 1 TeV.
It has been suggested that the OtG operator can be more
easily accessed at large tt̄ invariant masses, for instance
in the top-quark angular distributions [27], in the total
cross sections [52] and in boosted top analysis [59]. This

no cuts mtt̄ > 1 TeV mtt̄ > 2 TeV

K (SM) 1.49 1.16 0.77

K (OtG) 1.49 1.14 0.69

OtG(LO)/SM(LO) 0.32 0.28 0.29

OtG(NLO)/SM(NLO) 0.32 0.28 0.26

OtG(LO)/SM(NLO) 0.21 0.24 0.37

TABLE III. K factor and signal excess σ(OtG)/σ(SM), with
no cuts, and with cuts mtt̄ > 1 TeV and 2 TeV. µ = mt.
Both LO and NLO give similar results for the signal excess,
but using LO prediction for OtG and NLO for SM leads to an
artificial rise at large mtt̄.

is because higher momentum transfer is favoured by the
dipole structure of OtG. However, using NLO (or NNLO)
prediction for the SM together with only LO prediction
for OtG may lead to overestimate this effect, because the
K factor decreases at larger energy scales. From Fig-
ure 5 we can see that the signal excess, σ(OtG)/σ(SM),
is flat at a large energy range. In fact, at order O(Λ−2),
σ(OtG) is suppressed by a constant factor of m2

t/Λ
2 com-

pared with σ(SM), instead of s/Λ2 or
√
smt/Λ

2 as one
might have expected naively by power counting. This is
because the Higgs field in OtG always takes the vacuum
expectation value, and theOtG operator flips the chirality
of the top quark in its interference with the SM ampli-
tude. Including higher order terms in 1/Λ2 can give rise
to additional contributions that will indeed rise faster at
large s, but if such an effect is large, it would imply the
breakdown of the effective operator framework since the
expansion in 1/Λ does not converge at large energy. In
Table III we show K factors for SM and OtG as well as
σ(OtG)/σ(SM), with no cuts and with cuts mtt̄ > 1 TeV
and 2 TeV.Both LO and NLO give similar results for the
signal excess, but using LO prediction for OtG with NLO
for SM leads to an artificial rise at large mtt̄, due to the
decreasing K factor of the SM.

Another interesting observable is the forward-
backward asymmetry, AFB , which has been observed at
the Tevatron both by D0 [60] and CDF [61]. AFB is de-
fined as the asymmetry with respect to ∆y = yt − yt̄. In
the SM the first non-zero contribution arises at NLO in
QCD. In a dimension-six Lagrangian, only four-fermion
operators can give a contribution at the tree level, and so
AFB is another important observable that distinguishes
between different new physics scenarios. In this respect,
it is useful to know the first non-vanishing contribution
from the CMDM operator, which appears at NLO, to at
least have some estimation of the corresponding theoret-
ical uncertainty related to this quantity. In our frame-
work this calculation is straightforward. We expand the
numerator and the denominator of AFB to NNLO for the
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FIG. 5. Top quark pair invariant mass distribution above 1
TeV, at the LHC 14 TeV energy. The renormalization and
factorization scales are taken to be 1 TeV. The lower panel
shows that the K factor for OtG decreases at high mass re-
gion, and the signal over background ratio, σ(OtG)/σ(SM),
is almost a constant.

SM part and NLO for the OtG part, and we find

AFB =
NEW + α3

sN3 + α4
sN4 + α3

s
CtG

Λ2 NtG +O(α5
s, α

4
sΛ
−2)

α2
sD2 + α3

sD3 + α4
sD4 + α3

s
CtG

Λ2 DtG +O(α5
s, α

4
sΛ
−2)

=AFB(SM) +
CtG
Λ2

αsNtG
D2

+O(α3
s, α

2
sΛ
−2)

=0.095± 0.007 + CtG 0.021+0.003
−0.002

(
TeV

Λ

)2

(14)

where the SM prediction at NNLO in QCD is taken from
Ref. [62], and the uncertainties of the second term come
from scale variation. We thus expect a small modification
to AFB from a non-vanishing CMDM. Given the current
limit on CtG, however, this contribution is much smaller
than the experiment uncertainties.

Once differential cross sections are known, one can con-
sider constraining the CMDM by using the normalized
distributions of the tt̄ observables. Unfortunately from
Figure 3 and Figure 4 one can see that the shapes of
the distributions from OtG are not significantly different
than those from the SM. As a result the limits obtained
only by using the shape of the distribution will be loose.
As an example we consider the tt̄ invariant mass dis-
tribution at 7 TeV measured by the CMS collaboration
[63]. We take only the first four bins, i.e. from 345 to
650 GeV, to ensure the validity of the expansion in 1/Λ2

for Λ around TeV scale. We perform a simple χ2 fit for
the differential cross section normalized within these four
bins. We add the experimental and theoretical errors in
quadrature. The SM prediction is computed with Mad-
Graph5 aMC@NLO and then normalized to the most
accurate NNLO+NNLL prediction [53], with uncertain-
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FIG. 6. Transverse momentum distribution of the hardest
muon at LHC 13 TeV.

ties coming from the renormalization and factorization
scale variation. The 95% CL allowed region is [-5.0,12.8],
using LO predictions for the OtG contribution, and [-
0.6,10.9] when using NLO prediction. Despite a signifi-
cant improvement at NLO, the limit itself is much looser
than those obtained from total cross sections, therefore
we expect only a small improvement when the distribu-
tion information is combined together with the total cross
section in such analyses.

B. Decayed top quarks

The above results indicate that the kinematic observ-
ables constructed from stable tt̄ system are not very sen-
sitive to the size of the top-quark CMDM. We therefore
move on to include top-quark decays, where we expect
that the decay products preserve the spin information of
the top quarks, and thus can be more sensitive to the
dipole structure in the operator. As an example we fo-
cus on the dimuon channel, where both top quarks decay
semileptonically into a b-quark and a muon. We use the
MadSpin package [38] to decay the top quarks, so that
the spin correlation at LO accuracy is preserved in the
simulation.

In our simulation we use the anti-kT algorithm for
the jets with radius R = 0.5. The following cuts are
imposed to mimic the environment of a real detector:
pT (j) > 30 GeV, |η(j)| < 2.5, pT (`) > 20 GeV and
η(`)| < 2.5, where j refers to jets and ` to muons. At least
two jets, from which at least one containing a b-hadron,
and exactly one pair of isolated muons are required. The
isolation criteria is achieved by imposing a maximum
value of 0.15 on the ratio of the scalar sum of pT of

all hadronic tracks within ∆R =
√

∆η2 + ∆φ2 < 0.3
around the muon candidate, to the transverse momen-
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FIG. 7. Transverse momentum distribution of the hardest
b-jet at LHC 13 TeV.
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FIG. 8. Transverse momentum distribution of the second
hardest b-jet at LHC 13 TeV.

tum of the muon. We show in Figure 6 the transverse
momentum distribution of the muon. In Figure 7–8 we
show the hardest (largest pT ) and the second hardest
(when present in the event) b-jets, respectively. In Fig-
ure 9 the azimuthal angle difference between the two se-
lected muons is shown.

This last distribution is particularly important for the
measurement of the OtG operator, because it is sensi-
tive to the spin correlation between the top quarks. The
anomalous top-quark CMDM affects the spin correlation
of the tt̄ system [27, 64], and its effects have been searched
for by the CMS collaboration [29]. The contribution from
the OtG operator to this distribution, expanded linearly
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FIG. 9. Difference in azimuthal angle between the two se-
lected muons at LHC 13 TeV. Note that the K factor changes
in a way that enhances the deviation of the OtG contribution
from the SM.

in CtG, takes the following form(
1

σ

dσ

d|∆φ|

)
=

(
1

σ

dσ

d|∆φ|

)
SM

+
CtG
Λ2

(
1

σ

dσ

d|∆φ|

)
NP

(15)

which is valid provided CtGβ1/Λ
2 � σSM . In the spirit

of perturbation theory, the second term on the r.h.s. of
Eq. (15) can be expanded to O(αS):(

1

σ

dσ

d|∆φ|

)NLO

NP

=

(
1

σ

dσ

d|∆φ|

)LO

NP

+

(
1

σ

dσ

d|∆φ|

)(1)

NP

(16)

where(
1

σ

dσ

d|∆φ|

)LO

NP

=
1

σLO
SM

(
dσLO

OtG

d|∆φ|

)
− βLO

1

σLO 2
SM

(
dσLO

SM

d|∆φ|

)
(17)

and

(
1

σ

dσ

d|∆φ|

)(1)

NP

=
1

σLO
SM

(
dσ

(1)
OtG

d|∆φ|

)
− 1

σLO 2
SM

[
β

(1)
1

(
dσLO

SM

d|∆φ|

)
+ βLO

1

(
dσ

(1)
SM

d|∆φ|

)
+ σ

(1)
SM

(
dσLO

OtG

d|∆φ|

)]
+

2σ
(1)
SMβ

LO
1

σLO 3
SM

(
dσLO

SM

d|∆φ|

)
(18)
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where dσOtG
represents the distribution from operator

OtG for CtG/Λ
2 = 1 TeV−2. The superscript (1) indi-

cates the αS correction to the corresponding LO quan-
tity.

The predicted distribution is shown in Figure 10 for
CtG/Λ

2 = 1 TeV−2. The OtG contribution has a pecu-
liar structure which tends to flatten the distribution. In
Figure 11 we show the OtG distributions solely, as de-
fined in Eqs. (16)–(18). The first observation is that the
purple and the red curves are very close to each other,
indicating that the LO and NLO results are very simi-
lar. The reason is that we are plotting the normalized
distribution, and since the K factors are almost the same
for the SM and for the OtG, they cancel each other when
taking the ratio. In fact, one can see that Eq. (17) van-
ishes if the K factor is a constant. Alternatively, if we
use NLO prediction for the SM but only LO prediction
for OtG, following the logic that the radiative correction
on the new physics effect is of higher order, then we will
have(

1

σ

dσ

d|∆φ|

)nlo

NP

=
1

σNLO
SM

(
dσLO

OtG

d|∆φ|

)
− βLO

1

σNLO 2
SM

(
dσLO

SM

d|∆φ|

)
(19)

This result, after expanding in αs, contains only part of
the O(αsΛ

−2) corrections in Eq. (18) (and so we refer
to as “nlo”). They come from the O(αs) corrections to
the normalization, but not directly to the OtG contribu-
tion. The missing O(αsΛ

−2) terms actually make a large
difference, as illustrated by the blue curve in Figure 11.
One can see that Eq. (19) gives a much lower estima-
tion for the effect of OtG. This is not only because of
the overall size of the K factor, but also due to the fact
that the K factor is a decreasing function of ∆φ(ll), and
so the way it changes adds coherently to the difference
in shapes between OtG and SM distributions, as can be
seen in Figure 9. As a result, using NLO prediction for
the SM together with only LO prediction for OtG signif-
icantly underestimates the power of ∆φ(ll) in discrimi-
nating the OtG contribution from the SM. Also note that,
the fact that Eq. (19) and the LO prediction in Eq. (17)
differ implies that the LO prediction for OtG has a large
uncertainty due to the missing O(αsΛ

−2) terms, which
turn out to have a large effect in this special case. Thus
our work improves the precision level of this prediction
by completing the missing O(αsΛ

−2) terms.
We also show for completeness two more angular dis-

tributions which have been studied by Ref. [27]. Follow-

ing Ref. [27] we define ~̀− ( ~̀+) as the momenta of the
(anti-)muon in the rest frame of anti-top (top) quarks

and ~k (~̄k) the momenta of the top (anti-top) in the zero-
mometum frame. In Figure 12 we show the distribu-

tion of cos θ1 cos θ2, where θ1 (θ2) is the angle ]( ~̀−, ~̄k)

(]( ~̀+,~k)). In Figure 13 we show the normalised distri-

bution of cos θ∗, where θ∗ is the angle ]( ~̀−, ~̀+). Con-
trary to the |∆φ(``)| case, where the QCD corrections en-
hances the anomalous coupling contribution to the shape,
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FIG. 10. Normalized distributions of the difference in az-
imuthal angle between muons.
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FIG. 11. New physics contribution to the normalized dimuon
distribution at the LHC (13 TeV), (σ−1dσ/d|∆φ|)NP defined
in Eqs. (15)–(19).

in these cases, we observe a uniform QCD correction with
no effect in the normalised distributions.
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FIG. 13. cos θ∗ distribution at LHC 13 TeV.

VI. CONCLUSIONS

In this work we have presented the NLO calculation
for top-quark pair production, including an anomalous
top-quark CMDM, as described by the dimension-six op-
erator OtG. Our calculation is implemented in the Mad-
Graph5 aMC@NLO framework, which allows the re-
sult to be matched to parton shower automatically. We
have studied the impact of QCD corrections to the contri-
bution of the CMDM in top quark pair production, both
on total cross section as well as on various distributions.

The QCD correction increases the overall contribution
from the OtG operator. For the total cross section for
example, the increase is, at central scale, 12%, 43% and
48% for Tevatron, LHC8 and LHC14 respectively. More-
over, the NLO calculation significantly reduces the scale
uncertainty of the contribution from OtG. Limits on the
coefficient of CtG are therefore improved. Our predicted
allowed range at 95% CL using Tevatron and LHC8 data
is −0.32 < CtG < 0.30 (assuming Λ = 1 TeV), which in
terms of dV parameter gives −0.0096 < dV < 0.0090.

Our implementation can be used for various exclusive
studies. We have shown representative distributions for
both stable and decayed top quarks as examples. We
observed a significant reduction of scale variation in all
distributions. The differential K factor is not a constant,
but for all observables we have studied, it is similar to
the SM K factor. Therefore we expect that using the SM
K factor to rescale the LO contribution of OtG can be a
good approximation for an NLO prediction in most cases.
On the other hand, using NLO SM prediction together
with LO prediction of OtG can be misleading in analysis
where the ratio between OtG contribution and SM con-
tribution can play a role. Observables sensitive to spin
correlation can also be studied in the same framework,
provided that the MadSpin package is used to preserve
the spin information of the top quarks. This is particu-
larly useful for spin correlation measurements where lim-
its can be set by using various angular distributions of
the decay products. We showed that the NLO correc-
tion does not significantly change the LO prediction, but
instead it increases the precision level, in particular for
the ∆φ(ll) distribution, where using NLO SM prediction
together with LO prediction of OtG can lead to underes-
timate the effect from top-quark CMDM.

Our theoretical approach is based on the effective field
theory for top-quark couplings, and is a first step of the
automation of the top-quark flavor-diagonal operators
in the MadGraph5 aMC@NLO framework. The next
step is to extend our study to other top-quark operators,
including the CP-odd ones such as the CEDM, as well as
other electroweak couplings of the top quark. These stud-
ies will pave the way to a global analysis for top quark
couplings using the effective field theory framework.
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