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Traditional calculations in perturbative quantum chromodynamics (pQCD) are based on an order-
by-order expansion in the strong coupling αs. Observables that are calculable in this way are
known as “safe”. Recently, a class of unsafe observables was discovered that do not have a valid αs

expansion but are nevertheless calculable in pQCD using all-orders resummation. These observables
are called “Sudakov safe” since singularities at each αs order are regulated by an all-orders Sudakov
form factor. In this letter, we give a concrete definition of Sudakov safety based on conditional
probability distributions, and we study a one-parameter family of momentum sharing observables
that interpolate between the safe and unsafe regimes. The boundary between these regimes is
particularly interesting, as the resulting distribution can be understood as the ultraviolet fixed
point of a generalized fragmentation function, yielding a leading behavior that is independent of αs.

Infrared and collinear (IRC) safety has long been a
guiding principle for determining which observables are
calculable using perturbative quantum chromodynamics
(pQCD) [1, 2]. IRC safe observables are insensitive to
arbitrarily soft gluon emissions and arbitrarily collinear
parton splittings. This property ensures that perturba-
tive singularities cancel between real and virtual emis-
sions, leading to finite cross sections order-by-order in
the strong coupling αs. At the Large Hadron Collider
(LHC), IRC safe jet algorithms like anti-kT [3] play a
key role in almost every analysis, and many jet-related
cross sections have been calculated to next-to-leading
and even next-to-next-to-leading order [4–7]. Of course,
there are observables relevant for collider physics that are
not IRC safe, though one can often use non-perturbative
objects—like parton distribution functions, fragmenta-
tion functions (FFs), and their generalizations [8–11]—to
absorb singularities and restore calculational control.

In this letter, we show how to extend the calculational
power of pQCD into the IRC unsafe regime using purely
perturbative techniques. We study a class of unsafe ob-
servables that are not defined at any fixed order in αs,
yet nevertheless have finite cross sections when all-orders
effects are included. These observables are known in the
literature as “Sudakov safe” [12], since a perturbative
Sudakov form factor [13] naturally (and exponentially)
regulates real and virtual infrared (IR) divergences. To
date, however, the study of Sudakov safe observables has
been limited to specific examples. Here, we achieve a
deeper understanding of these observables by providing
a concrete definition of Sudakov safety based on condi-
tional probabilities. The techniques in this letter apply
to any perturbative quantum field theory, but we focus
on pQCD to highlight an example of direct relevance to
jet physics at the LHC.

Because Sudakov safe observables are not defined at
any fixed perturbative order, they in general have non-
analytic dependence on αs. Examples in the literature
include observables with an apparent expansion in

√
αs

[12] and observables which are independent of αs at suffi-

ciently high energies [14, 15]. As a case study, we consider
a one-parameter family of momentum sharing observ-
ables zg based on “soft drop declustering” [14], which al-
ready appears in many jet substructure studies, e.g. [16–
18]. This family not only interpolates between the above
two Sudakov-safe behaviors but also includes an IRC-safe
regime. We explain how the boundary between the safe
and unsafe regimes can be understood using the more
familiar language of (generalized) FFs; the renormaliza-
tion group (RG) evolution of the FF has an ultraviolet
(UV) fixed point, suggesting an extended definition of
IRC safety.

To begin our general discussion of Sudakov safety, con-
sider an IRC unsafe observable u and a companion IRC
safe observable s. The observable s is chosen such that
its measured value regulates all singularities of u. That
is, even though the probability of measuring u,

p(u) =
1

σ

dσ

du
, (1)

is ill-defined at any fixed perturbative order, the proba-
bility of measuring u given s, p(u|s), is finite at all per-
turbative orders, except possibly at isolated values of s;
e.g., s = 0. Given this companion observable s, we want
to know whether p(u) can be calculated from pQCD.

Because s is IRC safe, p(s) is well-defined at all pertur-
bative orders (although resummation may be required to
regulate isolated singularities, see below). This allows us
to define the joint probability distribution

p(s, u) = p(s) p(u|s), (2)

which is also finite at all perturbative orders, except pos-
sibly at isolated values of s. To calculate p(u), we can
simply marginalize over s:

p(u) =

∫
ds p(s) p(u|s) . (3)

If p(s) regulates all (isolated) singularities of p(u|s), thus
ensuring that the above integral is finite, then we deem
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u to be Sudakov safe. In the case that one IRC safe
observable is insufficient to regulate all singularities in
u, we can measure a vector of IRC safe observables
s = {s1, . . . , sn}. This gives a more general definition
of Sudakov safety:

p(u) =

∫
dns p(s) p(u|s) . (4)

All previous examples of Sudakov safety fall in the cat-
egory of (3) above where only a single IRC safe compan-
sion s was required. In [14], the energy loss distribu-
tion from soft drop grooming was defined precisely as in
(3), where u was the factional energy loss ∆E and s was
the groomed jet radius rg (see below). In [12], ratio ob-
servables r = a/b were originally defined in terms of a
double-differential cross section [19, 20] as

p(r) =

∫
da db p(a, b) δ

(
r − a

b

)
, (5)

where a and b are IRC safe but r is not, because there are
singularities at b = 0 at every finite perturbative order,
leading to a divide-by-zero issue for r. Integrating over
a and using the definition of conditional probability (2),
we can write (5) as

p(r) =

∫
db p(b) p(r|b) , (6)

and r is Sudakov safe because p(b) has an all-orders Su-
dakov form factor that renders p(r) finite.

It should be stressed that the definition of Sudakov
safety in (4) is not vacuous and it does not save all IRC
unsafe observables. As a counterexample, consider par-
ticle multiplicity; because perturbation theory allows an
arbitrary number of soft or collinear emissions, one would
need to measure an infinite number of IRC safe observ-
ables to regulate all singularities to all orders. Also, it
should be stressed that just because an observable is Su-
dakov safe, that does not imply that non-perturbative
aspects of QCD are automatically suppressed. While a
detailed discussion is beyond the scope of this letter, both
[12, 14] include an estimate of non-perturbative effects,
which are analogous to power corrections and underly-
ing event corrections familiar from the IRC safe case. In
some cases, these corrections are known to scale away as
a (fractional) inverse power of the collision energy.

Crucially, one needs some kind of all-orders informa-
tion to obtain finite distributions for p(u). If a fixed-
order expansion of p(s) and p(u|s) were sufficient, then
p(u) would have a series expansion in αs, contradicting
the assumption that u is IRC unsafe. In this letter, we
use logarithmic resummation to capture all-orders infor-
mation about p(s), which regulates isolated singularities
at s = 0 to ensure the integral in (3) is finite. In all cases
we have encountered, a finite p(u|s) with a resummed
p(s) is sufficient to calculate p(u), though this may not
be the case generally.

Unlike IRC safe distributions which have a unique αs
expansion, the formal perturbative accuracy of a Sudakov
safe distribution is potentially ambiguous. First, there
are different choices for s that can regulate the singular-
ities in u. This is analogous to the choice of evolution
variables in a parton shower, as each choice gives a finite
(albeit different) answer at a given perturbative accuracy.
Second, the probability distributions p(s) and p(u|s) can
be calculated to different formal accuracies. Below we
use leading logarithmic resummation for p(s), but only
work to lowest order in αs for p(u|s). Thus, when dis-
cussing the accuracy of p(u), one must specify the choice
of s and the accuracy of p(s) and p(u|s) separately. We
stress, however, that the accuracy of both objects is sys-
tematically improvable.

We now study an instructive example that demon-
strates the complementarity of Sudakov safety and IRC
safety. This example is based on soft drop declustering
[14], which we briefly review. Consider a jet clustered
with the Cambridge-Aachen (C/A) algorithm [21, 22]
with jet radius R0. One can decluster through the jet’s
branching history, grooming away the softer branch until
one finds a branch that satisfies the condition

min (pT1, pT2)

pT1 + pT2
> zcut

(
R12

R0

)β
, (7)

where 1 and 2 denote the branches at that step in
the clustering, pTi are the corresponding transverse mo-
menta, and R12 is their rapidity-azimuth separation. The
kinematics of this branch defines the groomed jet radius
rg and the groomed momentum sharing zg,

rg =
R12

R0
, zg =

min (pT1, pT2)

pT1 + pT2
; (8)

rg is IRC safe and its distribution was studied in [14].
Our observable of interest is zg, and the angular ex-

ponent β determines whether or not zg is IRC safe. For
β < 0, zg is IRC safe, because zg > zcut for any branch
that passes (7); if this condition is never satisfied, the
jet is simply removed from the analysis. For β > 0,
zg is IRC unsafe, since measuring zg does not regulate
collinear singularities. The boundary case β = 0 corre-
sponds to the (modified) mass drop tagger [16–18] which
also has collinear divergences, but we will show that it
actually satisfies an extended version of IRC safety.

In our calculations, we work to lowest non-trivial order
to illustrate the physics, though we provide supplemen-
tal materials for the interested reader that include higher-
order (and non-perturbative) effects. We take the param-
eter zcut to be small, but large enough that log zcut terms
need not be resummed, with a benchmark of zcut ' 0.1.

We now use the strategy in (3) to calculate the mo-
mentum sharing zg for all values of β, using the groomed
radius rg to regulate collinear singularities:

p(zg) =
1

σ

dσ

dzg
=

∫
drg p(rg) p(zg|rg) . (9)
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FIG. 1. Distributions of zg for various β values, obtained from
(9) at fixed αs = 0.1 and zcut = 0.1.

We use all-orders resummation to determine p(rg) and
regulate the isolated rg = 0 singularity. This has been
carried out to next-to-leading-logarithmic accuracy in
[14]. Here, it is sufficient to consider the fixed-coupling
limit:

p(rg) =
d

drg
exp

[
−2αsCi

π

∫ 1

rg

dθ

θ

∫ 1

0

dz Pi(z) Θcut

]
,

(10)
where Ci is the color factor of the jet, Pi(z) is the appro-
priate splitting function (summed over final states), and
the phase space cut is

Θcut = Θ(1/2− z)Θ
(
z − zcutθβ

)
+ Θ (z − 1/2) Θ

(
(1− z)− zcutθβ

)
. (11)

The exponential part of (10) is the rg Sudakov form fac-
tor, where Θcut defines the no-emission criteria. To calcu-
late p(zg|rg), note that zg is defined by a single emission
in the jet. For small R0, the lowest-order matrix element
is well-approximated by a 1→ 2 splitting function:

p(zg|rg) =
P i(zg)∫ 1/2

zcutr
β
g

dz P i(z)
Θ(zg − zcutrβg ) , (12)

where 0 < zg < 1/2 and we have introduced the notation

P i(z) = Pi(z) + Pi(1− z). (13)

In the double-logarithmic limit, we simply have P i(z) =
1/z, allowing an explicit evaluation of (9):

p(zg) =
√

αsCi
β exp

[
αsCi
πβ log2 1

2zcut

]
P i(zg) (14)

×
(

erf
[√

αsCi
πβ log 1

a1

]
− erf

[√
αsCi
πβ log 1

a2

])
,

where

β ≥ 0 : a1 = 0, a2 = min [2zcut, 2zg] , (15)

β < 0 : a1 = 2zg, a2 = 2zcut. (16)

Safety Divergences Expansion

β < 0 IRC None αn
s

β = 0 IRC via FF Collinear Only αn−1
s

β > 0 Sudakov Collinear & Soft-Coll. α
n/2
s

TABLE I. As β is adjusted, p(zg) interpolates between IRC-
safe and two Sudakov-safe behaviors, related to the diver-
gences in zg. Here, n ≥ 1 ranges over positive integers.

Because (14) is finite, we see that zg is at least Sudakov
safe for all β. Distributions of zg calculated with (9) at
fixed αs are shown in Fig. 1.

By expanding p(zg) in small αs, we can better under-
stand the difference between IRC-safe and Sudakov-safe
behavior. For β < 0, zg is IRC safe, so zg should have a
well-defined expansion in αs. To the accuracy calculated,
(9) is fully valid to O(αs) in the collinear limit, and the
expansion of (9) yields the expected IRC safe result:

β < 0 : p(zg) =
2αsCi
π|β|

P i(zg) log
zg
zcut

Θ(zg − zcut)

+O(α2
s) . (17)

For β > 0, zg is only Sudakov safe and its distribution
should not have a valid Taylor series in αs. Indeed, for
β > 0, the distribution has the expansion

β > 0 : p(zg) =

√
αs Ci
β

P i(zg) +O (αs) , (18)

and the presence of
√
αs implies non-analytic dependence

on αs. To O(
√
αs), the only phase space constraint is

0 < zg < 1/2, and the kink visible in Fig. 1 at zg = zcut
first appears at O(αs). Finally, for the boundary case
β = 0, p(zg|rg) is independent of rg (in the fixed-coupling
approximation), and (14) is independent of αs:

β = 0 : p(zg) =
P i(zg)∫ 1/2

zcut
dz P i(z)

Θ(zg − zcut) . (19)

We will later show that the β = 0 case does have a
valid perturbative expansion in αs, despite being αs-
independent at lowest order. The behavior of zg for dif-
ferent β values is summarized in Table I.

The β = 0 distribution of zg is fascinating (and sim-
pler than previous αs-independent examples [14, 15]).
Because zg only has collinear divergences, we can un-
derstand p(zg) in a different and illuminating way using
FFs. As is well known, FFs absorb collinear divergences
in final-state parton evolution, and we can introduce a
generalized FF, F (zg), to play the same role for zg. In
the standard case, FFs are non-perturbative objects with
perturbative RG evolution. In the zg case, F (zg) is still
a non-perturbative object, but it has a perturbative UV
fixed point, becoming independent of IR boundary con-
ditions at sufficiently high energies.
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At Born level, the jet has a single parton, so zg is
undefined. We can, however, define F (zg) to be the one-
prong zg distribution, such that F (zg) acts like a non-
trivial measurement function that is independent of the
kinematics. Working to O(αs) in the collinear limit,

p(zg) = F (zg) +
αsCi
π

∫ 1

0

dθ

θ

×

(
P i(zg)Θ(zg − zcut)− F (zg)

∫ 1/2

zcut

dz P i(z)

)
+O(α2

s) . (20)

There are two terms at O(αs). The first term accounts
for the resolved case where the jet is composed of two
prongs from a 1 → 2 splitting. The second term corre-
sponds to additional one-prong configurations (with the
same F (zg) measurement function as the Born case), aris-
ing either because the other prong has been removed by
soft drop grooming or from one-prong virtual corrections.

For a general F (zg), (20) is manifestly collinearly di-
vergent because of the θ integral, and F (zg) must be
renormalized. But there is a unique choice of F (zg) for
which collinear divergences are absent (at this order),
without requiring renormalization:

FUV(zg) =
P i(zg)∫ 1/2

zcut
dz P i(z)

Θ(zg − zcut) . (21)

Plugging this into (20), the O(αs) term vanishes, and we
recover precisely the distribution in (19).

In this way, zg at β = 0 exhibits an extended version of
IRC safety, where a non-trivial (and finite) measurement
function is introduced in a region of phase space where
the measurement would be otherwise undefined. Similar
measurement functions appeared (without discussion) in
the early days of jet physics [23, 24], where symmetries
determined their form. Here, we used the cancellation
of collinear divergences order-by-order in αs to find an
appropriate F (zg). We can also extend (20) beyond the
collinear limit by considering full real and virtual matrix
elements, leading to finite O(αs) corrections to p(zg).

As alluded to above, FUV(zg) also has the interpre-
tation of being a UV fixed point from RG evolution.
The collinear divergence of (20) can be absorbed into a
renormalized FF, F (ren)(zg;µ), at the price of introduc-
ing explicit dependence on the MS renormalization scale
µ. Requiring (20) to be independent of µ through O(αs)
results in the following RG equation for F (ren)(zg;µ):

µ
∂

∂µ
F (ren)(zg;µ) =

αsCi
π

(22)

×

(
P i(zg)Θ(zg − zcut)− F (ren)(zg;µ)

∫ 1/2

zcut

dz P i(z)

)
.

As µ goes to +∞, the IR boundary condition is sup-
pressed and F (ren)(zg;µ) asymptotes to FUV(zg).
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FIG. 2. Distributions of zg for β = 0 and zcut = 0.1 at the
13 TeV LHC, as simulated by Herwig++ 2.6.3. The pT of
the jets ranges from 50 GeV to 2 TeV, and the asymptotic
distribution for quark jets, F q

UV in (21), is solid black.

This UV asymptotic behavior can be tested using par-
ton shower Monte Carlo generators. In Fig. 2 we show
the zg distribution for β = 0 for Herwig++ 2.6.3 [25]
at the 13 TeV LHC, using FastJet 3.1 [26] and the
RecursiveTools contrib [27]. As shown in the supple-
ment, other generators give similar results. As the jet pT
increases, p(zg) asymptotes to the form in (21) (which
happens to be nearly identical for quark and gluon jets).
This is due both to the RG flow in (22), which suppresses
non-perturbative corrections, and the decrease of αs with
energy, which suppresses O(αs) corrections to p(zg).

In this letter, we gave a concrete definition of Sudakov
safety, which extends the reach of pQCD beyond the tra-
ditional domain of IRC safe observables. Even at low-
est perturbative order, the zg example highlights the dif-
ferent analytic structures possible in the Sudakov safe
regime, and the FF approach to the IRC safe/unsafe
boundary yields new insights into the structure of per-
turbative singularities. In addition to being an interest-
ing conceptual result in perturbative field theory, (4) of-
fers a concrete prescription for how to leverage the grow-
ing catalog of high-accuracy pQCD calculations (both
fixed-order and resummed) to make predictions in the
IRC unsafe regime. This can be done without have to
rely (solely) on non-perturbative modeling, enhancing
the prospects for precision jet physics in the LHC era.
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