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Many-body systems with a conserved U(1) current in (2 + 1) dimensions may be probed by
weakly gauging this current and studying correlation functions of magnetic monopole operators in
the resulting dynamical gauge theory. We study such monopole correlations in holographic liquids
with fundamental flavor, where the monopole operator is dual to a magnetically charged particle in
the bulk. In charge-gapped phases the monopole operator is expected to condense. We show that
this condensation is holographically dual to the capping off of the bulk flavor brane and compute
the monopole condensate. We argue that from the lower-dimensional point of view this may be
understood as a simple example of confinement of a gauge field in the bulk. In a compressible
finite-density phase we present a novel calculation of the monopole correlation in space and time:
the correlation is power law in time but is Gaussian in space due to interaction with the background
charge density.

I. INTRODUCTION

Consider a many-body system in (2 + 1) dimensions
with a global U(1) current jµ. Different classes of in-
frared behavior for this current define different phases
of matter. One useful way to probe this dynamics is to
couple jµ to an external gauge field aµ(x),

SQFT → SQFT −
∫
d3x aµj

µ , (1.1)

and study what happens as aµ is wiggled slightly away
from zero, allowing one to extract (for example) the cor-
relation functions of the current. In this way one can
understand very familiar observables such as the conduc-
tivity.

In this paper we will consider a different sort of probe.
Let us imagine weakly gauging the current jµ by promot-
ing aµ to a dynamical gauge field. Now there is a new
observable we can consider [1]: in the new functional inte-
gral over a, let us demand that its field strength f have a
magnetic monopole singularity at a Euclidean spacetime
point xm:

df = qmδ
(3)(x− xm) (1.2)

where f = da. This operation deforms the theory at
the point xm and may be understood as inserting a local
operator M(xm) at that point:

〈M(xm)〉 ≡ Z−1

∫
xm

[DaDφ] exp

(
−SQFT [φ] +

∫
d3xjµaµ

)
(1.3)

where Z is the undeformed partition function and the
subscript xm indicates that the functional integral over
aµ obeys the modified boundary condition (1.2). M(x)
is called a monopole operator and is an example of a more
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general class of disorder operators which are defined not
as polynomials of fundamental fields appearing in the
Lagrangian but rather by the modification of boundary
conditions obeyed by such fields in the path integral, as
in (1.2).

Having definedM we can study its two-point function
〈M(x)M†(0)〉: this monopole correlation function mea-
sures how the system responds to an injection of magnetic
flux, and will be a nontrivial function of the separation x
between the monopole and anti-monopole. Importantly,
the magnetic monopole charge qm satisfies a Dirac quan-
tization condition and cannot be made arbitrarily small.
Thus the configuration above necessarily represents non-
perturbative information that is not contained in simple
correlation functions of the current jµ, as will be increas-
ingly clear as we proceed.

There are various reasons to study this object. Many
interesting phases in conventional condensed matter
physics result in the presence of an emergent dynami-
cal U(1) gauge field that one may identify with a (e.g.
the U(1) spin liquids; for reviews see [2, 3] and references
therein). As originally shown by Polyakov, the presence
of magnetic monopoles can dramatically change the in-
frared physics of a dynamical gauge theory: if the local
operatorM(x) that one identifies with the monopole in-
sertion is relevant, then its presence will drive the sys-
tem to a new IR phase in which the U(1) gauge field is
confined [4, 5]. The presence of gapless charged matter
directly affects this monopole dimension: thus it is of
intrinsic interest to study monopole correlations in dif-
ferent phases of matter. As we review below, the non-
perturbative nature of this object makes it difficult to
compute using conventional field-theoretical techniques
in all but the most symmetric of settings.

Independent of such considerations, we will argue that
the monopole correlation is an interesting probe of phases
of matter in its own right, being sensitive to the IR struc-
ture of the charge sector in a novel manner. As a probe of
gapless charged matter, it appears to be ideally suited to
a holographic description. The boundary monopole op-
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erator associated to a current j is dual to a bulk particle
that is magnetically charged under the bulk gauge field
A that is dual to j [6, 7]. Its correlation function can be
given a simple geometric interpretation in the bulk and
is easily computable. Such bulk monopoles have pre-
viously been argued to be important for a fine-grained
understanding of holographic matter in [7, 8]. In this
paper we will study them in a particular top-down holo-
graphic model where the U(1) current in question will
be the baryon number associated with fundamental fla-
vor degrees of freedom. While some of our considerations
will apply to any holographic model, we will see that the
extra control associated with the top-down construction
will be useful at certain points.

We now present a brief outline of this note. In Sec-
tion II we review field-theoretical results for monopole
correlations in various settings. In Section III we turn
to holography and introduce the particular brane em-
bedding that we will study, as well as the holographic
realization of the monopole operator as a wrapped D-
brane. In Section IV we turn to a holographic phase with
a charge gap. Here one expects the monopole operator
to condense: we demonstrate this condensation geomet-
rically from the bulk. We also argue that a bulk charge
gap can be understood as confinement of the bulk U(1)
gauge field, as anticipated in [7, 8]. In Section V we com-
pute the monopole correlation function on a compressible
phase with a finite density of the U(1) charge ρ. We find
a Gaussian suppression of the correlation function due
to the interaction of the monopole with the background
electric field. We conclude in Section VI with a brief
discussion and some directions for future research.

Previous discussion of magnetic monopole operators
in AdS includes a realization of monopoles as solitons in
bottom-up studies [9, 10], or wrapped M2-branes [11].
The implementation of the monopole as a wrapped D-
brane that we study here has also been discussed in a
slightly different context in the recent work [12].

II. MONOPOLE CORRELATIONS IN FIELD
THEORY

In this section we discuss in more detail the construc-
tion of the monopole correlation function and review
some expectations for this object from field theory. As
described above, given a theory with a global U(1) cur-
rent jµ, we may couple the current to a dynamical gauge
field aµ and then define the monopole correlation func-
tion to be

〈M(xm)M†(xm)〉 ≡

Z−1

∫
(xm,xm)

[DaDφ] exp

(
−SQFT [φ] +

∫
d3xjµaµ

)
(2.1)

where φ denotes the underlying fields of the QFT and the
subscript xm, xm indicates that all aµ in the functional

integral should satisfy the following monopole boundary
condition, corresponding to placing a monopole at xm
and an anti-monopole at xm,

df = qm

(
δ(3)(x− xm)− δ(3)(x− xm)

)
. (2.2)

This monopole correlation function will be the main ob-
ject of study in the remainder of this note.

One may be uneasy about the definition (2.1) without
a bare kinetic term for aµ. As it turns out, as we flow to
the IR the coupling of aµ to the current will always in-
troduce an effective kinetic term and there is no need to
specify one in the UV. As our motivation is to study an
interesting probe of the original theory (with no dynam-
ical gauge field), one might also worry that the fluctua-
tions of aµ could drive us to a new IR phase that is very
different from the original one. While this is a concern
in principle, we will ignore it in this note, assuming that
the large number of charged degrees of freedom N � 1
that are present in all our models will effectively suppress
fluctuations of aµ

1. Essentially we are simply asking how
the field theory responds to a gauge field source of the
form shown in Figure 1, where the path integral over aµ
allows it to relax to a configuration that minimizes the
action subject to the monopole boundary conditions.

xm xm

FIG. 1. Schematic of field lines around monopole anti-
monopole pair.

There is another way to understand the monopole cor-
relator. Any U(1) gauge theory in (2 + 1) dimensions
(such as the one we have just constructed) has a topo-

logical global U(1) current j̃µ:

j̃µ ≡ i

4π
εµνρfνρ, (2.3)

whose conservation follows from the Bianchi identity.
However, we see directly from the definition of the
monopole operator M in (1.3) that this current is not
quite conserved in its presence:

〈∂µj̃µ(x)M(y) · · · 〉 =
iqm
2π

δ(3)(x− y)〈M(y) · · · 〉 (2.4)

1 As discussed in [13], in conformal theories it is also possible to
define a monopole operator for a strictly global U(1) symmetry,
i.e. without making aµ dynamical, essentially by fixing a suitable
monopole profile for aµ. While these objects are very similar to
those studied in this paper, they differ at subleading order in
1/N (when fluctuations of aµ begin to play a role) and appear
difficult to precisely formulate in non-conformal theories.
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This expression is of precisely the correct form to be a
Ward identity for the topological current j̃µ: thus we
conclude that the monopole operatorM(x) has a charge
qm
2π under the topological current. Questions about the
long-distance behavior of the monopole correlator can be
understood in terms of the realization of the global sym-
metry generated by j̃µ. We now briefly review expecta-
tions for the monopole correlator from field theory.

A. Conformal matter

We begin with the most symmetric setting, a conformal
field theory. Here we expect the correlator to be a power
law,

〈M(x)M†(0)〉 ∼ 1

|x|2∆
. (2.5)

The correlation is completely determined by the dimen-
sion ∆. The most efficient way to compute this dimen-
sion is to perform a conformal mapping to S2 × R [1].
A monopole insertion at the origin with magnetic charge
qm corresponds to having qm units of magnetic flux on
the S2. The Casimir energy of the resulting field theory
state is related to the dimension of the monopole oper-
ator via the usual state-operator correpondence. In the
limit of a large number of charged degrees of freedom,
one can neglect gauge field fluctuations and simply com-
pute the energy of the charged degrees of freedom on a
monopole background. This computation has been per-
formed explicitly in a handful of conformal field theories.
For example for a unit charged monopole in a theory of
Nf free fermions one finds [1]

∆f = Nf · 0.265 , (2.6)

and for free and critical bosons one finds [13–15]:

∆free = Nb · 0.097 (2.7)

∆critical = Nb · 0.125 . (2.8)

Further work, including the computation of O(1) cor-
rections and the generalization to supersymmetric and
non-Abelian theories, can be found in [16–18].

B. Gapped charge carriers

We turn now to the case of gapped charges. We can
no longer use the conformal mapping, and in fact it is
now very difficult to obtain an explicit expression for the
monopole correlator 〈M(x)M†(0)〉 as a function of the
separation, even for the free theory obtained in a large
N limit. However we may qualitatively understand the
extreme IR limit: in the infrared, all the charges are
gapped, and we can integrate them out and obtain an
effective action for a. Assuming parity, the most relevant
contribution will be the Maxwell term:

Γ[a] =
1

4M

∫
d3x (da)2 (2.9)

where the effective IR gauge coupling
√
M is set by the

mass of the charged degrees of freedom.
This actually describes a phase where the topological

symmetry generated by j̃ in (2.3) is spontaneously broken.

To understand this, we first add a source term Bµj̃
µ to

the Maxwell action. Now free Maxwell theory in (2 + 1)
dimensions is equivalent to the theory of a free compact
scalar φ; performing the usual duality (e.g. as in Ap-
pendix B of [19]) with the source term added we find the
action

Γ[φ;B] =
M

2

∫
d3x

(
∇φ− B

2π

)2

(2.10)

where the relation between f and φ is fµν =

−iMερµν
(
∂ρφ− Bρ

2π

)
. The action (2.10) describes a the-

ory where the current j̃ that couples to the external
source B is spontaneously broken, with φ the correspond-
ing Goldstone mode. This duality is possible only when
there is no charged matter coupled to aµ and thus should
apply only at scales much longer than M−1. We conclude
that a charge gap implies that the topological symmetry
is broken in the infrared.

What does this imply for the monopole correlator? We
see from (2.4) that that the monopole operator M is

charged under j̃ and so should act as an order parame-
ter for the symmetry breaking. Thus in a phase with a
charge gap we expect the correlator to saturate

lim
x→∞

〈M(x)M†(0)〉 ∼ 〈M〉2 6= 0 (2.11)

where the monopole condensate should be set by the
charge gap 〈M〉 ∼ M∆. In particular, if we deform a
conformal theory by adding a mass term we expect the
monopole correlator to interpolate between (2.5) at short
distances and a constant (2.11) at long distances.

C. Superfluid

We turn now to a superfluid, when the symmetry gen-
erated by the original U(1) current jµ has been sponta-
neously broken by a condensate of bosons with charge
qe. For simplicity first consider a relativistic system with
zero net charge, ρ = 0. Upon gauging by aµ the system
becomes a superconductor with effective action

Γ[θ, a] =

∫
d3x ρs (∇θ − qea)

2
(2.12)

where θ is the Goldstone mode associated with the break-
ing of jµ.

Consider now inserting a monopole operator. The
magnetic flux created by this monopole cannot propa-
gate freely in the superconductor; the ordinary Meissner
effect will force the flux lines into a single Abrikosov-
Nielsen-Olesen vortex. Thus a monopole-antimonopole
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pair is always connected by a flux tube with finite ten-
sion T as in Figure 2, and so the correlator should decay
(at least) exponentially in space:

〈M(x)M†(0)〉 ∼ exp (−T |x|) . (2.13)

Equivalently, the monopole operator M creates a mas-
sive state – the Abrikosov-Nielsen-Olesen vortex – which
carries charge qm

2π under j̃. This is the only excitation

charged under j̃: as it is massive, the symmetry gener-
ated by j̃ is unbroken.

If the net charge is nonzero we actually expect the
correlation function to decay faster than exponential: we
will return to this issue in the conclusion.

xm xm

FIG. 2. In a superfluid phase field lines are forced into
an Abrikosov-Nielsen-Olesen vortex (solid black lines) rather
than being able to spread out (gray lines). The vortex may be
viewed as the worldline of a massive particle that is charged
under j̃.

D. Fermi liquid

Consider now a Fermi liquid, which is a compressible
phase that contains a finite density of charge ρ without
breaking the U(1) symmetry. It also contains many low-
lying degrees of freedom at the Fermi surface, far more
than the single Goldstone mode studied above. Here
there are no simple techniques to understand how these
excitations affect the monopole correlation function: we
have neither relativistic conformal symmetry nor a simple
understanding of monopoles as creating gapped vortices
as in the superfluid case. There is however a (generically
uncontrolled) method that has been used in the litera-
ture [20–22], the one-loop or RPA approach, which we
take a moment to outline here. We stress that this ap-
proach does not actually result in quantitatively correct
results [23], though one might hope for qualitative agree-
ment. Our main motivation is to contrast this with the
holographic calculation that will follow.

Consider taking the (unperturbed) Fermi liquid state
and integrating out the low-lying modes near the Fermi
surface to obtain an effective quadratic action for the
gauge field ai:

Γ[a] =

∫
dωd2k

(2π)3
ai(ω, k)aj(−ω,−k)Kij(ω, k) (2.14)

Kij is a kernel that is the current-current correlation
function 〈ji(k)jj(−k)〉. As we have integrated out

(many) gapless degrees of freedom the kernel is quite
nonlocal in position space. Given this effective action,
it might seem reasonable to simply vary it with respect
to ai, subject to the monopole boundary conditions (2.2).
After this we can compute the action of the monopole-
antimonopole pair on-shell, and the correlation function
would be

〈M(x)M†(0)〉 ∼ exp (−Γ[x]) . (2.15)

This procedure has been carried out in the references
above for the Fermi liquid with different sorts of interac-
tions (i.e. different bare kinetic terms for the gauge field).
While there is some variation in the literature depending
on the precise model used, one typically finds answers
that fall off exponentially in space (i.e. superficially sim-
ilar to (2.13), but with a different physical origin).

The serious problem with this approach is that it
treats the problem perturbatively in the size of the
monopole field, whereas the monopole is an intrinsically
non-perturbative object [23], as the magnitude of its field
qm satisfies a Dirac quantization condition. We cannot
justify dropping the terms that are higher order in a
in (2.14). For example, applied to the free relativistic
fermion this technique results in a power-law correlation
as in (2.5), but with a ∆ ∼ q2

m as befitting a classical
interaction energy. However this is wrong: the actual de-
pendence of ∆ on the discrete parameter qm, computed
using CFT techniques in [1, 16], is not quadratic.

Importantly, it has however been argued nonperturba-
tively that the monopole dimension is formally “infinite”
with respect to the scaling symmetry that scales single-
particle modes towards the Fermi surface [24]. This
means that the monopole operator is not relevant and
suggests that the correlation function should fall off faster
than a power-law, but we do not know of a controlled
field-theoretical method to compute the actual scaling
function.

The nonperturbative nature of the monopole operator
will be particularly clear in the holographic computations
that follow, and we will revisit this issue in the conclu-
sion.

III. HOLOGRAPHIC FLAVOR AND
MONOPOLE OPERATORS

Having reviewed expectations from field theory, we
now turn to holography. Given a (2 + 1) dimensional
field theory with a gravitational dual, we seek to un-
derstand the bulk object that is dual to the monopole
operator M(x). Soon we will specialize to a particular
field theory, but first we make some general statements
that should apply to any holographic model.

The conserved current jµ(x) is dual to a gauge field
AM (r, x) in the (3+1) dimensional bulk. Now a local
operator on the boundary is generally dual to a propa-
gating field in the bulk. If this field has a large mass –
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which will turn out to be the case for the monopole oper-
ator – then the physics is well described by the individual
quanta of the field, i.e. by particles. It is well understood
that if such a bulk particle is electrically charged under
AM then it is dual to an operator that carries charge
under jµ. It should then seem very natural that a parti-
cle that is magnetically charged under AM – i.e. a bulk
magnetic monopole – is dual to the monopole operator
M(x), which carries “magnetic charge” with respect to
jµ in the manner defined above. Some details related to
this identification can be found in [7], including the holo-
graphic computation of the three-point function between
j and the monopole operators.

We present a quick way to understand this. Con-
sider the definition (1.3) of the monopole operator. In
AdS/CFT, the external gauge field source aµ is iden-
tified with the boundary value of the bulk gauge field
Aµ(r → ∞, x) = aµ(x). In the large-N limit, the path
integral over aµ reduces to the tree-level demand that
the bulk action be stationary with respect to variations
of the boundary value of Aµ, subject to the boundary
condition (1.3).

Now imagine a small S2 at the boundary surrounding
the monopole insertion point xm, as shown in Figure 3
We have ∫

S2

dA(r →∞) =

∫
S2

da = qm (3.1)

As a is a dynamical gauge field, this boundary condition
indicates the presence of a defect sourcing the gauge field
at xm on the boundary. This source can only be supplied
by the bulk magnetic monopole, whose worldline must
now intersect the boundary at xm. This is precisely the
statement that the bulk monopole is the dual of the local
operator defined by (1.3). Note that if we we now pull
the S2 off the boundary and move it into the bulk, the
nonzero flux will persist whenever the S2 surrounds a
one-dimensional curve C – the worldline of the monopole.

xm

FIG. 3. Intersection of bulk monopole worldline with bound-
ary is insertion of field theory monopole operator at xm. Note
any S2 surrounding the bulk worldline will register a nonzero
magnetic flux.

These considerations apply to any reasonably consis-
tent example of holography, in particular to bottom-up
models. However, we will see that some of the physics
that we are interested in will require extra information

(i.e. the completion provided by string theory) for a con-
trolled description.

A. D3D5 intersection

To that end we now specialize to a particular field the-
ory, the well-studied D3D5 intersection. Here we will take
Nc D3 branes and a single D5 brane intersecting along
(2 + 1) dimensions. The field theory consists of N = 4
Super Yang-Mills with gauge group SU(Nc) in (3+1) di-
mensions from the D3 branes. The D5 brane contributes
matter charged in the fundamental under this SU(Nc)
but living on a (2 + 1) dimensional defect [25–27]2. We
will focus only on the dynamics that is localized on this
defect. At zero coupling the field-theory action for the
degrees of freedom on the defect is

Sdefect =

∫
d3x

(
|Dµq|2 − iΨγµDµΨ

)
(3.2)

Here the q’s are complex scalars that transforms in the
fundamental under a global symmetry SU(2)H , while
the Dirac fermions Ψ transform in the fundamental of
a different global symmetry SU(2)V . Both the scalars
and fermions are in the fundamental of the gauge group
SU(Nc). The U(1) current that we will study is the
baryon number current U(1)B , which acts as a phase ro-
tation on both Ψ and q. This system has been very well-
studied as an example of top-down holography in (2 + 1)
dimensions and we briefly review it here.

At strong coupling the D3 branes coalesce into the
usual AdS5×S5, with the standard relations for the AdS
radius R and the string coupling in terms of gauge theory
quantities:

gs =
g2
YM

4π

R

ls
= (g2

YMNc)
1
4 . (3.3)

The single D5 brane can be treated as a probe brane: ne-
glecting the backreaction of the probe is dual to neglect-
ing the effect of the O(Nc) fundamental matter degrees
of freedom on the O(N2

c ) gluons.
To determine the possible phases we minimize the DBI

action of the D5 brane

S5 = −T5

∫
d6σ
√
−det (γ5 + 2πα′F ), (3.4)

where γ5 is the induced metric on the D5 brane worldvol-
ume, and F = dA is the field strength of the bulk gauge
field A that is dual to the U(1)B current j. The tension
of a Dp brane is

Tp =
1

(2π)pgsl
p+1
s

. (3.5)

2 See (e.g.) Chapter 8 of [28] for an introductory review of funda-
mental flavor in AdS-CFT via probe branes.
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We take the metric of a unit S5 to be

ds2
S5 = dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

)
+ cos2 ψ

(
dθ̃2 + sin2 θ̃dφ̃2

)
, (3.6)

and we write the metric of AdS5 as

ds2
AdS5

=
R2

z2

(
−dt2 + dx2 + dy2 + dx2

⊥ + dz2
)
, (3.7)

There is a solution where the D5 brane is extended in the
θ and φ directions and so wraps the first S2 ⊂ S5, sitting
at the point ψ = π

2 . SU(2)H acts as SO(3) rotations

on (θ, φ), and SU(2)V acts as SO(3) rotations on (θ̃, φ̃).
The D5 brane also sits at x⊥ = 0; the remaining four
dimensions (t, x, y, z) form an AdS4 slice inside the bulk
AdS5:

ds2
AdS4

=
R2

z2

(
−dt2 + dx2 + dy2 + dz2

)
. (3.8)

This AdS4 indicates that the dual (2 + 1) dimensional
defect theory is conformally invariant.

There are other possibilities for the IR dynamics: in-
deed we may realize many of the possibilities discussed
in Section II above, but for the remainder of this section
we will study the conformal phase.

B. Monopole operator

We now need to identify the bulk object that is dual to
the monopole operator M(x). Following the discussion
above, this should be a particle (i.e. a 1-dimensional
object in spacetime) in AdS4 and is magnetically charged
under the worldvolume gauge field A.

The correct object is a wrapped D3 brane that ends
on the D5 brane. The boundary of the D3 brane is a
(2+1) dimensional manifold: as the D3 ends on the D5,
this boundary must lie on the D5 worldvolume. Take this
boundary to wrap the compact S2: as the S2 shrinks to
zero size inside the S5, the D3 brane can now fill in a half
S3, as shown in Figure 4. In the coordinates of (3.6) the
D3 brane is extended in the ψ direction from ψ = 0 to
ψ = π

2 where it ends on the D5 brane. The remaining one
dimension of the D3 brane becomes a worldline C on the
AdS4. This D3 brane configuration and its identification
as a magnetic monopole has recently been studied in [12].

Branes ending on branes appear as magnetic sources to
worldvolume fields when the difference in dimension is 2
[29]. In Appendix A we work out the couplings between
this worldline and the worldvolume fields on the D5 and
show that indeed there is a coupling of the form

SD3,Ã = 2π

∫
C

Ã (3.9)

where Ã is the magnetic dual of the worldvolume gauge

 

⇡

2

0

FIG. 4. D3 brane ends on D5 brane worldvolume (at ψ = π
2

),

filling in half-S3 and extending from ψ = 0 to ψ = π
2

.

field A. It satisfies

(dÃ)MN

= N
√
−det4 (γ + 2πα′F )[(γ + 2πα′F )−1]PQεPQMN

(3.10)

with the normalization N = −4π2R2α′T5.
This may look somewhat unfamiliar, but is actually the

generalization of the usual idea of electric-magnetic dual-
ity to the nonlinear kinetic term of the DBI action (3.4).
Importantly, the right hand side of the above expression
is the object that obeys Gauss’s law, and the constraint

that d(dÃ) = 0 is equivalent to the dynamical equation of
motion for A, as we expect for electric-magnetic duality.
To first order in F this is the familiar Maxwell expression

dÃ ∼ ?4F . Note that Ã is dual to the boundary topo-
logical current j̃ [6]. The charge quantum in (3.9) cor-
responds to a magnetic charge that saturates the Dirac
quantization condition, where the unit electric charge is
taken to be the endpoint of a fundamental string.

To compute the two-point function of the monopole
operator we should demand that this D3 brane intersect
the AdS4 boundary at two points separated by a distance
∆x. The on-shell action of the brane will determine the
correlation function:

〈M(∆x)M†(0)〉 ∼ exp (−SD3[∆x]) . (3.11)

This action has two parts: a geometric portion given by
the DBI action of the D3 brane and a coupling to the
worldvolume gauge field given by (3.9). We now compute
the effective mass of the wrapped D3 brane from the
AdS4 point of view. The DBI action for the D3 brane is

SD3 = −T3

∫
D3

d4σ
√−γ3 = −m

∫
C

ds (3.12)

where to obtain the effective 4d mass we integrate the
tension (3.5) over the half S3 to find

m =
R3

gsl4s

4π

(2π)3

∫ π
2

0

dψ sin2 ψ =
Nc
2R

. (3.13)
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Using the usual (large-mass) AdS/CFT relation ∆ = mR
we conclude that in this theory the dimension of the unit-
charge monopole operator M(x) at strong coupling is

∆ =
Nc
2

. (3.14)

As expected, the dimension essentially counts the number
of charged degrees of freedom3. We can compare this to
the dimension at weak coupling: using the results for
free bosons and fermions in (2.6) and (2.7) we find the
qualitatively similar ∆free ≈ Nc · 0.724. By conformal
invariance, if we compute the two-point function using
(3.11) we will find that the correlator is a power law as
in (2.5) with ∆ given by (3.14).

The monopole operator is characterized by other quan-
tum numbers than simply its dimension. In particular, it
transforms in a spin Nc

2 representation under the global
R-symmetry SU(2)V . This can be understood field-
theoretically from the presence of fermion zero modes
bound to the monopole, and holographically from the
quantization of the movement of the D3 brane in the
(θ̃, φ̃) directions. The construction of this representation
is interesting but unrelated to our main narrative, and so
we relegate it to Appendix B.

Finally, we note that at the attachment points the D3
brane pulls on its parent D5 brane, sourcing the field
ψ. Taking this to its logical conclusion, there is an al-
ternative BIon-like [30] description of the attached D3
brane in terms of D5 brane fields alone: rather than at-
tach an explicit D3 brane, we can instead construct a
D5 brane profile where the internal S2 (i.e. whose size
is parametrized by ψ) shrinks but the S2 surrounding
the curve C in AdS4 remains at a finite size, allowing us
to put magnetic flux on it without requiring an explicit
source. This is somewhat like a Minkowski embedding for
the D5 brane, and this configuration has recently been
studied in detail in [12]. It mimics the geometry of the
attached D3 brane. We have checked that in the limit
of a small amount of flux, the net energy of the result-
ing configuration is precisely the same as that computed
above from the D3 brane alone, as is often the case for
such BIons.

At our level of description there appears to be little
difference between considering the excitation in question
to be a BIon or an attached D3 brane. For more precise
questions it may be useful that there is extra information
in the BIon description, as the boundary values of the

3 The simple expression for the dimension (3.14) is similar to that
found in the supersymmetric model [17]. In our gauging of U(1)B
we have not attempted to preserve supersymmetry: the new dy-
namical photon has no superpartner. However at leading order
in large Nc we can ignore the photon fluctuations and view the
monopole as a state on a fixed background. There is likely then a
supersymmetric cousin to our monopole (presumably with other
background fields turned on) whose dimension could be derived
from a field-theoretical analysis. It would be interesting to study
this further.

D5 brane fields in this construction correspond to other
sources (in addition to the magnetic field) that have been
turned on to source the monopole. For example, the de-
formation of ψ(r) corresponds to a radially dependent
mass for the defect fermions, and thus in the BIon con-
struction above we should ensure that ψ(r →∞) = π

2 .

IV. GAPPED CHARGES

We now discuss a phase where we deform the CFT
away from criticality. The operator dual to the slipping
mode ψ(z) – which, as shown in (3.6), controls the size of
the S2 that the D5 brane wraps – has dimension ∆ψ = 2
and so is a mass term in the CFT. If we turn on this
source in the UV then ψ(z) develops a radial profile in
the bulk. The effective action for ψ can be worked out
from (3.4) to be

SD5 = −4πT5R
6

∫
dz

 sin2 ψ(z)

z4

√
1 + z2

(
∂ψ(z)

∂z

)2
 ,

(4.1)
whose equations of motion admit the following exact so-
lution

ψ(z) = cos−1

(
z

zm

)
, (4.2)

with zm a constant of integration [27]. Note that we
have ψ(zm) = 0: thus at this value of the radial coor-
dinate, the S2 has closed up entirely and the brane has
smoothly capped off in a Minkowski embedding, indicat-
ing the presence of a mass gap for all flavored degrees
of freedom, and in particular for any excitation that is
charged under the global U(1)B symmetry. Further, ex-
panding ψ(z) near the boundary we have

ψ(z → 0) ∼ π

2
− z

zm
+O(z3) . (4.3)

The term linear in z is the source, and so we see the bare
boundary mass M = z−1

m . The absence of a quadratic
term indicates that there is no condensate of the operator
dual to ψ.

A. Monopole correlation

Now from the discussion around Section II B, we ex-
pect that if we have a charge gap the monopole opera-
tor should develop a vev, suggesting that the D3 brane
should condense. It is interesting to see how this is real-
ized geometrically. The key fact is that as the S2 that the
D5 wraps shrinks in the bulk, the D3 brane – which ends
on this S2 – also wraps a smaller and smaller portion of
the S3, as shown in Figure 5. Its effective 4d mass is now
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zm

FIG. 5. Left: In massive phase D5 brane wraps internal S2

that shrinks to zero size in the interior at z = zm: from
lower dimensional point of view, brane simply ends. Right:
Attached D3 brane wraps a smaller and smaller amount of
the internal S3 as it hangs deeper into the bulk.

position-dependent, decreasing in the bulk:

Rm(z) =
2Nc
π

∫ ψ(z)

0

dψ sin2 ψ

=
Nc
π

cos−1

(
z

zm

)
− z

zm

√
1−

(
z

zm

)2
 .

(4.4)

Once the S2 shrinks to zero size at zm, the monopole
worldline can simply end smoothly in the bulk at z = zm.

Thus the basic physics of the monopole two-point func-
tion can be seen without computation: at small separa-
tions the dominant configuration is a connected worldline
whose action increases with distance, whereas at large
separations the correlator will break into two discon-
nected pieces and the correlation function will saturate
to a nonzero constant that is independent of distance,
as shown in Figure 6. This is precisely the behavior ex-
pected in a phase where the monopole has condensed, as
described in (2.11). Each of the two disconnected pieces
of the correlator should thus be understood as a vev for
the monopole operator, and the fact that the worldline
can end in the bulk should be understood as implement-
ing the idea of a “condensate” – normally thought of
in terms of bulk fields – in the worldline picture. We
note that the presence of a wrapped shrinking cycle caus-
ing a topological transition is a familiar mechanism in
holography, appearing in the holographic representation
of the (Euclidean) screening of quarks at finite tempera-
ture [31, 32] and the saturation of holographic entangle-
ment entropy in a gapped phase [33].

We now present some details of the (quite standard)
computation. To obtain the effective action for the
monopole, we start from the DBI action for the wrapped
D3 brane and integrate over (ψ, θ, φ) to obtain

SD3 =

∫
C

ds m(z(s))

√
GMN (X(s))ẊM ẊN , (4.5)

where M,N run over the AdS4 directions and s
parametrizes the remaining D3 brane direction along the

zm

�x

FIG. 6. Possible configurations contributing to monopole cor-
relator. For small ∆x the connected configuration dominates,
whereas as ∆x is increased eventually bulk worldline breaks
into two pieces. Monopole worldline is allowed to end at zm
as it wraps a shrinking cycle.

worldline. An overdot denotes a derivative with respect
to s. As A = 0 on this background the coupling (3.9)
plays no role in this analysis. We have assumed here
that none of the transverse directions XM (s) depend on
ψ, i.e. that the D3 brane is “rigid” in the way in which
it wraps its half-S3: we will not show that this is the
most energetically favored configuration, and so this will
remain an assumption in this note. We will discuss its
consequences later.

The simplest way to proceed is to define a conformally
rescaled metric that takes into account the radial varia-
tion of the mass:

GMN (x) ≡ GMN (x)m(z)2, (4.6)

after which this takes the form of an ordinary geodesic
action and we may use the usual machinery.

We first solve for the connected solution: we take the
geodesic to extend in the x direction, and so we need to
determine the curve (x(s), z(s)). There is a conserved
momentum

P ≡ ẋGxx, (4.7)

and a constraint arising from reparametrization invari-
ance with respect to s:

Gxxẋ
2 +Gzz ż

2 = 1 (4.8)

Using these relations, we solve for ż and write the net
change in x and the total action S in terms of the con-
served momentum P :

∆x = 2

∫ z?

ε

dz

√
Gzz

1−GxxP 2
G
xx
P (4.9)

SD3 = 2

∫ z?

ε

dz

√
Gzz

1−GxxP 2
, (4.10)

where the turning point z? is the solution to G
xx

(z?) =
1
P 2 , and ε is a UV cutoff. By varying P and performing
the integrals numerically we can find SD3[∆x].
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This action should be compared to that of the discon-
nected configuration, which is simply

Sdisc = 2

∫ zm

ε

dz

√
Gzz (4.11)

The results from such an analysis are shown in Figure
7, and display precisely the behavior predicted above.
The critical value of ∆x of the phase transition is found
numerically to be

∆x?M = 0.545 · · · . (4.12)

If we relax the assumption that the transverse coordi-
nates do not depend on ψ, then there may be an energet-
ically preferred configuration that will dominate. This
should affect physics on the scale of the AdS radius R,
and thus may alter the precise value of ∆x?, but we
do not expect it to alter the qualitative shape of the
curve shown in Figure 7, which is essentially measuring a
geodesic length that probes scales much longer than the
AdS radius.

In this framework it is not possible to determine the
precise normalization of the monopole condensate. How-
ever we may track its dependence on the mass: the full
dependence on the mass comes from the UV logarithmic
divergence in the integral, so we find

〈M〉 ∼ exp

(
−
∫ zm

ε

dz

√
Gzz

)
∼ (Mε)

Nc
2 , (4.13)

in agreement with considerations around (2.11).

Dx* M0.3 0.4 0.5 0.6
Dx M

17.0

17.5

18.0

SHDxL

FIG. 7. Monopole action on background with charge gap.
Solid black line represents favored configuration; red and blue
are unfavored branches of the disconnected (i.e. completely
flat) and connected (i.e. swallowtail) configurations respec-
tively. Note first-order transition at ∆x?M ≈ 0.545.

B. Monopole condensation as confinement in the
bulk

We now pause to discuss the bulk interpretation of this
calculation. On the worldvolume of the D5 brane lives
a gauge field A: its dynamics is basically given by the
Maxwell action, and so it is in a Coulomb phase. If the

D5 brane caps off at z = zm, from the 4d point of view,
what happens to A in the region z > zm, where the D-
brane simply does not exist? We are not actually allowed
to simply delete a gauge field in a region of space: rather,
we require an effectively 4d mechanism to remove it from
the spectrum.

In this case, the mechanism is confinement. For z > zm
it is not true that the gauge field has ceased to exist;
rather its electric flux is forced into tight flux tubes that
we normally call fundamental strings. When these strings
end on the D5 brane they cross into a deconfined phase
and their flux is allowed to spill out into A, as shown in
Figure 8. The existence of such electric flux tubes is basi-
cally the definition of confinement. Indeed, confinement
on D-brane worldvolumes and the subsequent realization
of a fundamental string as an electric flux tube has been
argued to play an important role in brane/anti-brane an-
nihilation [34, 35], and the physics here is somewhat sim-
ilar, except that the confinement is localized in space and
(relatedly) should be thought of as confinement only from
the effective 4d point of view.

+"
zm

1
FIG. 8. “Confinement” in the bulk. For z > zm the D5 brane
does not exist, and its worldvolume flux is confined into flux
tubes (fundamental strings) which extend to the (Poincaré)
horizon at z =∞. From the 4d point of view it appears that
the worldvolume gauge field has confined and monopoles have
condensed.

In four dimensions confinement is also associated with
the condensation of magnetic monopoles, and indeed
we have seen explicitly above that monopoles have con-
densed for z > zm. Said slightly differently, there is no
terribly good reason for the D5 brane to exist at all: it
wraps an S2 that is topologically trivial, and so the only
thing stopping it from collapsing to a point is energetics,
i.e. the fact that the slipping mode is dynamically sta-
ble. The magnetic monopole exploits this fact: looking
at Figure 4, we see that it is a localized excitation that
interpolates between an equatorial S2 and a degenerate
S2 that has shrunk to a point. Thus the monopole costs
some energy but uses it to collapse its parent D5 brane
in its vicinity. A condensate of monopoles is equivalent
to closing off the brane over a macroscopic region.

It is interesting that we were able to perform a con-
trolled calculation to observe monopole condensation in
the bulk, normally thought of as a strongly coupled phe-
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nomenon. Indeed it is true that the effective 4d gauge
coupling

1

g2
F

∼ Nc√
λ

Vol(S2) (4.14)

is blowing up as we approach z = zm from the D-brane
side: however the full higher dimensional geometry is
completely regular, a fact that we exploited in our cal-
culation. It would be quite difficult to control such a
calculation in a bottom-up context, and this is the main
reason that we focused on a probe brane construction
in this paper. This provides a simple holographic exam-
ple of confinement in the bulk, and makes it particularly
clear that bulk confinement is dual to a charge gap on
the boundary, as articulated previously by various au-
thors [7, 8] (see also [36] for discussion of non-Abelian
confinement in AdS).

V. FINITE-DENSITY LIQUID

We now set the mass deformation to zero and turn
instead to a finite density phase. Via the normal rules
of AdS/CFT, the field theory charge density ρ is equal
to the boundary value of the bulk electric field, i.e. the
canonical momentum ρ(z) conjugate to the gauge poten-
tial At(z):

ρ(z) ≡ δSD5

δ(∂zAt)
=

2Nc

π
√
λ

∂zAt√
1− z4(2π)2

λ (∂zAt)2

. (5.1)

As there is no charged matter in the bulk the equation
of motion for At is simply the bulk Gauss law:

∂zρ(z) = 0 (5.2)

Thus we can evaluate ρ(z) anywhere in the bulk, and it is
always equal to the field theory charge density ρ, justify-
ing our notational abuse. Note that a finite-density state
requires that the brane always extend to the Poincaré
horizon: there are no explicit bulk sources, and so the
bulk electric field lines can only emerge from the horizon.
This state and its generalizations with nonzero magnetic
field and temperature have been extensively studied and
are host to a rich body of physical phenomena, a sam-
pling of which can be found in [37–42].

Despite extensive study, this state remains somewhat
exotic. It is a finite-density state that does not break the
U(1)B symmetry (and so is not a superfluid) and yet at
first glance also not appear to display the structure in
momentum space required for a Fermi surface (and so is
not a Fermi liquid). Connecting such holographic phases
to a more conventional understanding of states of quan-
tum matter remains an important and open question.

It is nevertheless of interest to understand how the
monopole correlation behaves on this background. The
finite charge density has an important effect that is easy
to understand: the magnetic monopole wants to move

in dual “Landau levels” of the background electric field.
Landau level wavefunctions are Gaussian in space, and
thus we expect the correlation to fall off in a similar fash-
ion. This is precisely what happens, and in the remain-
der of this section we will derive this result through a
Euclidean world-line calculation.

A. Conserved quantities on magnetic backgrounds

The effective Euclidean action for the monopole takes
the form

SD3 = m

∫
ds+ iqm

∫
Ã, (5.3)

The first term is a proper length on AdS4 and the second

is a coupling to Ã, the magnetic dual of A, as shown in
(3.10). We will keep m and qm arbitrary in this section
as the analysis does not require any stringy ingredients.
To understand the factor of i we note that on a real tra-
jectory the coupling to a background gauge field always
generates phases, even in Euclidean signature. Now eval-
uating (3.10) explicitly and using the fact that the only
nonzero component of F is Fzt ∼ ρ, we see from (5.1)

that dÃ takes a very simple form:

dÃ = ρ dx ∧ dy . (5.4)

We need to pick a gauge for Ã: for concreteness we will
use

Ã = −ρy dx, (5.5)

and will comment on the (easily understandable) gauge-
dependence of our answers at the end. It is clear that
the problem we are solving is equivalent after a change
of notation to that of an electric charge moving in a back-
ground magnetic field.

We now need to solve the geodesic equation following
from (5.3):

m
D2XM

ds2
− iqm(dÃ)MN Ẋ

N = 0 (5.6)

This is generally done by finding conserved quantities
associated to Killing vectors ξµ of the background met-
ric, e.g. translation along the spatial directions. The
situation is slightly more complicated here: from (5.5)

we see that Ã does not appear invariant under spatial
translations. It is, however, invariant up to a U(1) gauge
transformation, and one would hope that this would be
just as useful.

Generalizing slightly, denote by Lξ the Lie derivative

along ξ and suppose we have a background (GMN , ÃM )
such that

Lξ(GMN ) = 0 Lξ(ÃM ) = ∂MΛξ (5.7)

with Λξ a scalar function of spacetime. Due to the gauge-
invariance of the action (5.3) this is a symmetry: thus
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by applying the usual Noether procedure to (5.3) with
the infinitesimal transformation δXµ = ξµ we find the
following conserved quantity along the geodesic:

Qξ(s) ≡ ξM
(
mẊM (s) + iqmÃ

M (X(s))
)
−iqmΛξ(X(s)) .

(5.8)
We can also verify directly from (5.6) that d

dsQξ = 0
along the geodesic. We see that there is still a conserved
charge, but it explicitly involves the gauge transforma-
tion parameter Λξ.

B. Geodesic action

With these conserved quantities it is easy to construct
the on-shell action. We seek a geodesic that intersects
the boundary at (x, y) =

(±∆x
2 , 0

)
. The geodesic will

move in (x, y, z). Using (5.8) we can construct conserved
quantities associated with spatial translations:

Px = mẋGxx(z)− iqmρy
Py = mẏGxx(z) + iqmρx (5.9)

In the gauge (5.5) translational invariance in the x di-
rection is manifest, but that in the y direction requires
the usage of the formalism developed above. The final
expressions are pleasingly symmetric.

We will also use the normalization of the four-velocity

Gxx
(
ẋ2 + ẏ2

)
+Gzz ż

2 = 1 . (5.10)

It is convenient to define a new parameter λ along the
path

Gxx(z(s))
d

ds
=

d

dλ
(5.11)

With the constants of motion (5.9) we can immediately
solve for the dependence of x and y on λ:

x = x0 + α cosh(ωλ) + β sinh(ωλ)

y = y0 − i (α sinh(ωλ) + β cosh(ωλ)) sgn(qmρ) (5.12)

where ω is the cyclotron frequency, defined so that it is
always positive

ω =
|qmρ|
m

(5.13)

and x0, y0, α, β are free integration constants. Note that
if the displacement in x is real, then that in y is neces-
sarily imaginary: the geodesic that we are constructing
will be complex.

Take λ = 0 to be the midpoint of the geodesic: then
our boundary conditions require x0 = α = 0. It remains
to relate β and y0 to the boundary conditions. Now plug-
ging into (5.10) we find

Gxx(z)(ωβ)2 +Gzz(z)ż
2 = 1 (5.14)

Using the AdS4 metric (3.8) we can solve for dz
ds ,

dz

ds
=

z

R

√
1−

(
z

z∗

)2

z∗ ≡
R

ωβ
. (5.15)

Now we can use (5.11) to determine the change in λ along
the path; if we have λ = 0 at the turning point, then at
the initial endpoint we find

λi = −
∫ z∗

0

dz
ds

dz
Gxx = − R

(ωβ)2
(5.16)

Putting this into (5.12) we find the desired relation be-
tween β and ∆x:

β sinh

(
R

ωβ2

)
=

∆x

2
(5.17)

This cannot be explicitly solved for β; however in the
large ∆x limit β is reasonably well-approximated by

β(∆x→∞) ≈ ζ
√√√√ mR

log
(

∆x
ζ
√
mR

) . (5.18)

where we have used (5.13) and defined a correlation
length ζ as

ζ =
1√
|qmρ|

(5.19)

What does ζ measure? If the Dirac condition is satu-
rated we have qm = 2π

qe
and the factor (qmρ)−

1
2 is then a

length scale characterizing the area occupied by a single
field-theoretical quantum of charge in the finite-density
state. In a Fermi liquid this scale would correspond
to the inverse Fermi momentum, ζ =

√
2k−1
F . Such a

length scale can emerge from a holographic calculation
only because of the nonperturbative nature of the mag-
netic monopole, whose magnetic charge knows about the
fundamental electric charge quantum qe [8].

We still need to fix y0: as we would like the geodesic to
start and end at y = 0, we pick y0 = iβ cosh(ωλi). This
completely fixes the solution.

We now compute the on-shell action (5.3) in the large
∆x limit. The geometric portion (at large ∆x) is

m

∫
ds ≈ 2mR log

(
ζ

ε

√
mR log

(
∆x

ζ
√
mR

))
, (5.20)

with ε a UV cutoff. Note that it depends very weakly on
∆x: essentially the geometric portion saturates at the
length scale given by ζ.

The contribution from the coupling to Ã is more inter-
esting. Putting in the explicit solutions (5.12) and using
the form (5.5) we find at large ∆x

iqm

∫
dxÃx ≈

|qmρ|
4

β2 exp

(
2

ωβ2

)
, (5.21)
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which can be further simplified using (5.17) to be

iqm

∫
Ã ≈ |qmρ|

4
(∆x)2 =

1

4

(
∆x

ζ

)2

. (5.22)

It is interesting to note that the seemingly imaginary
coupling has resulted in a real contribution to the action.
This is because the geodesic was also complex, moving
in the imaginary y direction, meaning that we pick up
an extra factor of i from the evaluation of the gauge field
(5.5). The result may be thought of as a WKB derivation
of the familiar Landau level wavefunction (if in curved
space).

We may now assemble the pieces. At large ∆x the ge-
ometric part (5.20) depends very weakly on spatial sepa-
ration and can be neglected. Thus we conclude that the
correlator behaves as

〈M(∆x)M†(0)〉 ∼ exp

(
−|qmρ|

4
(∆x)2

)
(5.23)

In the specific case of the D3 brane one should set
qm = 2π as in (3.9). This computation of the monopole
correlation in a compressible finite-density phase is one
of the main results of this paper. We see that the corre-
lation is very strongly suppressed in space.

Finally, we should discuss the monopole correlation in
(Euclidean) time. If we separate the endpoints of the
geodesic in time, it does not couple to the background
electric field, and the calculation is the same as in pure
AdS4, i.e.

〈M(∆t)M†(0)〉 ∼ (∆t)−2∆, (5.24)

with ∆ = mR. Thus the correlation is power-law in time
and Gaussian in space.

We briefly comment on the gauge-dependence of our
answer. Any charged correlator in a background field de-
pends on the gauge. Gauge transformations generated by
a gauge parameter Λ(x) will shift the answer by (5.23)
by a phase factor exp(iqm(Λ(∆x) − Λ(0))). Similarly, if
we translate or rotate the correlator (5.23) we will gen-
erally pick up phases, as the gauge choice (5.5) will no
longer exactly line up with the interval choice of a sep-
aration purely in the x-direction. The absolute value of
the correlator will not change.

VI. CONCLUSION

In this work we computed monopole correlation func-
tions from holography by relating a boundary monopole
operator to a bulk magnetically charged excitation. We
worked largely in the context of a particular top-down
brane model, the D3D5 intersection, where the bulk
monopole is a type of wrapped D3 brane. We demon-
strated that in a phase when the boundary U(1) current
jµ is gapped, the bulk monopole can be thought of as be-
ing condensed in the region of space where the D5 brane

does not exist. From a 4d point of view, this looks like
bulk confinement of the worldvolume gauge field, with
the fundamental string being the flux tube. Despite its
somewhat exotic bulk realization, this condensation is
precisely what is expected from a gapped phase on field-
theoretical grounds.

We also presented results on monopole correlations in
a finite-density compressible phase. We found the corre-
lation to die off as a Gaussian in space in (5.23) – this
follows simply from an understanding of the bulk mag-
netic monopole moving in dual “Landau levels” of the
bulk electric field.

Some aspects of the calculation presented here do not
really require holography and can be understood in any
system with a U(1) current jµ. As it is conserved, we
may write it as the curl of an auxiliary gauge field

jµ ≡ i

4π
εµνρ∂νbρ (6.1)

Now the coupling between the source gauge field aµ and
jµ is (after an integration by parts):∫

d3x aµj
µ =

i

4π

∫
d3x εµνρ(∂µaν)bρ =

∫
d3x bµj̃

µ

(6.2)

In words, in any system the topological current j̃ under
which the monopole is charged is coupled to an external
gauge field source b which is related to the ordinary cur-
rent via (6.1). If j has a nonzero charge density, then
b corresponds to an applied magnetic field, and presum-
ably the monopoles which make up the current “feel” this
applied field. This is clearly the physics that is encoded
holographically in the coupling (3.9).

We see that the key ingredient from holography was
not the coupling between the charge density and the
monopole, but rather the relation of the monopole to a
gapped excitation in the bulk whose dynamics could be
easily understood. It is this identification which fails in
a conventional Fermi liquid, where a monopole operator
does not obviously create a well-defined object (see how-
ever [43] for a discussion of vortex-like objects in Fermi
liquids). It would be very interesting to compute the
monopole correlation in a Fermi liquid, perhaps through
an extension of the techniques in [24]. We note that in a
superfluid with a net charge density ρ the monopole cre-
ates a gapped vortex (now in (2 + 1) dimensions). If the
vortex is heavy we can compute its two-point function
in a calculation similar to that above, except in (2+1)
dimensional flat space, and we find precisely the same
Gaussian suppression.

We briefly comment on the relation between the calcu-
lations in this paper and the RPA approach to monopole
correlations described in Section II D. Such an approach
takes into account only the energy stored in the gauge
field: if applied to our system it would entirely miss the
tension of the monopole worldline, a tension that encodes
the fact that the monopole is a nonperturbative object.
In fact if we expand the DBI action about the conformal
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phase and examine the normalization of the Maxwell ki-
netic term we find:

S =
Nc

4π
√
λ

∫
d4x (dA)2, (6.3)

The normalization of the Maxwell action maps to that of
the current-current correlator4 and so if we were to per-
form an RPA-type analysis as in (2.14) we would find a
contribution with an overall scaling O(Nc√

λ
). This should

be compared to the O(Nc) dependence of the monopole
worldline mass, and so is subleading at strong coupling.
The presence of the extra parameter λ in this theory lets
us cleanly separate these two contributions.

We now discuss some directions for future research.
The monopole correlation function can easily be studied
holographically in more general circumstances, e.g. at fi-
nite temperatures or near phase transitions [44–47], such
as that between Minkowski and black hole embeddings
at finite baryon chemical potential and quark mass. We
note also that the monopoles studied here – which try to
close off the bulk D-brane – seem to be the conjugate ob-
jects to the worldsheet instantons studied in [48], which
try instead to pull the bulk D-brane into the black hole
horizon. Such objects were argued to play an important
role in the aforementioned phase transition at finite λ
[49], and it would be very interesting to understand if
(and how) the monopoles studied here interact with that
story.

Many of the considerations studied in this note may
be extended to higher dimension, and again holography
may be helpful for simple computations. For example,
in a general d-dimensional field theory, the analog of a
monopole operator is a d− 3-dimensional object Σ along
which f is not closed:

df = δ(3)(“x− Σ”) (6.4)

To take the familiar case of (3 + 1) dimensions,
the monopole operator becomes an extended one-
dimensional object, a t’Hooft line. In a phase with
gapped charges, a closed t’Hooft loop will obey a perime-
ter law, which is the analog of the factorization of the
monopole correlator in a gapped phase in (2.11)5.

Finally, we close on a more speculative note. Holo-
graphic phases of compressible matter are somewhat
mysterious: they do not fit easily into a textbook classi-
fication of quantum matter, essentially because they can

4 This statement requires a choice of normalization for the bound-
ary theory current. In this section we discuss the normalization
provided by string theory, but actually similar statements can
also be made in a bottom-up model, where the key physics is
just that the bulk monopole should be sufficiently heavy that
quantum corrections to its mass can be neglected. This is the
case in models that remain weakly coupled in the bulk.

5 The notion of “generalized global symmetries” recently intro-
duced in [50] is useful here and is the extension of the topological

symmetry j̃ to higher dimension.

support a finite density of charge without displaying the
structure in momentum space that is normally associated
with a Fermi surface [51–54]. The situation is slightly less
mysterious in a (2+1) dimensional bulk. It was shown in
[8] that essentially any holographic compressible state in
(2+1) dimensions will exhibit Friedel oscillations in its
density correlation function. Such oscillations are nor-
mally associated with the presence of a Fermi surface,
but in the holographic model they arose from the pres-
ence of a dilute gas of bulk magnetic monopole instantons.
This calculation has not yet been extended to higher di-
mensions, but intuition arising from the low-dimensional
calculation suggests that magnetically charged objects
are likely to be important in any sufficiently fine-grained
description of holographic matter, even in higher dimen-
sion [7]. While further study is required, we hope that
the monopoles studied here will eventually help build a
bridge between a conventional description of compress-
ible phases and that provided by holography.
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Appendix A: Derivation of monopole couplings

The bulk monopole studied in this paper is actually
a D3 brane that wraps a hemispherical S3 ⊂ S5 and
ends on the D5 brane in a manner described in detail in
Section III B. In this Appendix we derive its couplings
to the worldvolume fields living on the D5 brane.

The starting point is the following action:

S =− T5

∫
D5

d6σ
√
−det(γ + 2πα′F )

+ T5

∫
D5

2πα′F ∧ C4 + T3

∫
D3

C4 + · · · (A1)

F is the field strength of the D5 brane worldvolume gauge
field, F = dA. In this action the electric gauge field A
is the dynamical variable, but we know that the edge of
the D3 brane should couple magnetically to A, and so we
need to dualize this action. This is done by treating F as
the dynamical variable rather than A and supplementing
the action with a 3-form Lagrange multiplier K3 to guar-
antee that dF = 0 everywhere except on the edge of the
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D3 brane:

SK =

∫
D5

K3 ∧ dF + qm

∫
∂D3

K3 (A2)

Now the portion of the action involving couplings to the
form fields is

S + SK =

∫
D5

F ∧ (dK3 + 2πα′T5C4)

+ T3

∫
D3

C4 + qm

∫
∂D3

K3 + · · · (A3)

If we proceed to eliminate F from this action using its
equation of motion then K3 will be its 6d magnetic dual.
Now C4 has a gauge transformation under a 3-form gauge
parameter Λ3. For the first term above to be gauge-
invariant we see that we require that K3 also transform
under Λ3:

δΛC4 = dΛ3 δΛK3 = −2πα′T5Λ3 . (A4)

The sum of the second two terms in (A3) will also be
gauge invariant if we pick qm to be

qm =
T3

2πα′T5
= 2π . (A5)

The fact that this coupling is nonzero means that the
edge of the D3 brane couples to K3. Now to interpret this
from the 4d point of view we take the following ansatz
for K3:

K3 =
1

4π
Ã ∧ V2 (A6)

with V2 the volume form of a unit S2 ⊂ S5. The edge
of the D3 brane is a product of this S2 and a one-
dimensional curve C ⊂ AdS4, and integrating over the
S2 we find from (A2):

SK =

∫
AdS4

F ∧ dÃ+ qm

∫
C

Ã (A7)

Ã is the 4d magnetic dual to A, and the second term is
the desired coupling between the monopole (effectively a

particle moving along the worldline C on AdS4) and Ã.

To understand the precise relation between Ã and A we
vary the total action with respect to F to find:

(dÃ)MN

= N
√
−det4 (γ + 2πα′F )[(γ + 2πα′F )−1]PQεPQMN

(A8)

where the normalization N = −4π2α′R2T5, as claimed
in (3.10). This is the generalization of the idea of a mag-
netic dual to the nontrivial gauge kinetic term in the
DBI action. At small F it reduces to the more familiar
dÃ ∼ ?4F of Maxwell electric-magnetic duality.

Appendix B: Transformation of monopole under
global symmetries

Recall that the global symmetry group of the defect
field theory is U(1)B×SU(2)V ×SU(2)H , where the two
SU(2) factors are realized geometrically as the isometry
groups of the two S2 factors inside the S5. The fermions
are charged in the fundamental under SU(2)V (in which
the D5 brane is not extended), and the scalars are in the
fundamental under SU(2)H (which the D5 brane wraps).
In this section we seek to understand how the monopole
operator transforms under this global symmetry group.

We start from the field theory, at zero coupling. We
essentially follow the arguments given in [1], with slight
modifications to deal with the different symmetry group
in our problem. To determine the quantum numbers of
the monopole at large Nc we can study the field theory
on S2 × R with a classical gauge field background cor-
responding to a single unit of U(1)B flux on the S2. As
we are interested in the operator with lowest conformal
dimension, we would like to understand the ground state
of this system.

However there is some ambiguity as to what we mean
by “ground state”, due to the existence of fermion zero
modes bound to the monopole. There are 2Nc zero
modes, one for each fermion species, and we denote them
by cai , where a is a SU(Nc) color index and i an SU(2)V
spinor index. The only (color) gauge-invariant combina-
tion of zero mode creation operators takes the baryonic
form

Ci1i2···iNc = εa1a2···aNc (ca1i1 )†(ca2i2 )† · · · (caNciNc
)†, (B1)

with ε representing the antisymmetric symbol. This ob-
ject is entirely symmetric in its spin indices and so trans-
forms in the Nc + 1 dimensional spin-Nc2 representation
under SU(2)V .

Denote the Fock vacuum – which is annihilated by all
the c’s – by |0〉. To create a gauge-invariant state we
must act with the C’s defined above. Acting with them
once we find the Nc + 1 states described above:

Ci1i2···iNc |0〉 . (B2)

Acting with them twice the only non-vanishing state is

C2|0〉 ≡ εi1j1 · · · εiNc jNcCi1···iNcCj1···jNc |0〉 . (B3)

This state has every zero mode filled and is a singlet un-
der SU(2)V , just like |0〉. Each C carries U(1)B charge
Nc: this fixes the relative charge assignments, but there is
an ambiguity in deciding which state should carry U(1)B
charge 0. It is argued in [1] that a CP-invariant quanti-
zation requires that we assign equal and opposite U(1)B
charge to |0〉 and C2|0〉. This prescription gives |0〉 and
C2|0〉 a U(1)B charge of −Nc and Nc respectively, and
states that the states (B2) carry zero U(1)B charge. Pre-
sumably these are the states we have been studying in
this note.
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This analysis was all performed at zero coupling. As
we go to strong coupling, it is not clear how much of the
physics of these zero modes should survive: in particular,
it seems that interactions could modify the energies of
the charged monopole states |0〉 and C2|0〉 relative to
the charge 0 states (B2). However as the states in (B2)
form an irreducible multiplet under SU(2)V they should
remain degenerate, and so even at strong coupling we
expect the charge-0 monopole to transform as a spin-Nc2
representation under SU(2)V .

Interestingly, it is actually possible to reproduce this
result from a holographic analysis, to which we now turn.
Consider the metric of a unit S5:

ds2
S5 = dψ2 + sin2 ψ

(
dθ2 + sin2 θdφ2

)
+ cos2 ψ

(
dθ̃2 + sin2 θ̃dφ̃2

)
(B4)

The monopole D3 brane wraps (ψ, θ, φ) and sits at a point

at (θ̃, φ̃). SU(2)V acts nonlinearly as a rotation on (θ̃, φ̃),
and so it appears that that the existence of the D3 brane
at a definite location spontaneously breaks SU(2)V en-
tirely. This cannot be true at the quantum mechanical
level. In the finite-Nc field theory the D3 brane is associ-
ated with a pointlike operator, and the Coleman-Mermin-
Wagner-Hohenberg theorem states that the breaking of
a continuous symmetry can happen only on an object
with at least two extended dimensions [55–57]. In other

words, we should not be able to assign (θ̃, φ̃) a classical
value: rather the wavefunction of the D3 brane in the
bulk is delocalized in the (θ̃, φ̃) directions.

To understand this wavefunction, we should quantize
these two directions. Following the discussion in the field
theory, we study the boundary field theory on S2 × R
with a unit of flux and attempt to understand the Hilbert
space of the monopole. In the bulk we have global AdS4

with the monopole at rest at the origin in the interior
of the geometry. The only low-lying fluctuations are in
(θ̃, φ̃): we study a configuration where these fluctuations
depend only on time and thus trace out a worldline on
the S2 ⊂ S5 representing SU(2)V . The relevant action
is

S = −T3

∫
d4σ
√
−detγ3 + T3

∫
D3

C4 . (B5)

The eigenvalues of the Hamiltonian governing this world-
line quantum mechanics are related to the dimensions of
a tower of operators associated with the monopole using
the usual rules of AdS/CFT. We are interested in the
lowest-energy state.

The coupling of the monopole D3 brane to the back-
ground C4 sourced by the color D3 branes plays an inter-
esting role here. The portion of C4 with legs along the

S5 can be taken to be:

C4 = 8λl4s sin2 ψ cos2 ψdψ ∧ d(cos θ) ∧ dφ ∧ b+ · · · (B6)

where b is a one-form chosen so that db is proportional
to the volume form on S2:

db =
1

2
sin θ̃dθ̃ ∧ dφ̃ . (B7)

This means that b can be interpreted as the gauge po-
tential for a unit-charge magnetic monopole6 at the core
of this S2. Then letting the index α run over (θ̃, φ̃) and
integrating over all compact directions we find that the
coupling to C4 becomes,

T3

∫
D3

C4 = Nc

∫
bα
dXα

dt
dt . (B8)

This looks like the coupling of a charged particle to a
background U(1) gauge field. Now expanding out the
DBI action in derivatives we find

−T3

∫
d4σ
√
−detγ3 =

−Nc
2R

∫
dt

(
1− R2

8

(
˙̃
θ2 + cos2 θ̃

˙̃
φ2
))

+ · · · (B9)

The first term is a classical energy corresponding to the
rest mass of the particle, as in (3.13). The second term
gives dynamics to the S2 coordinates.

Combining (B8) and (B9) we find that the system is
given by a charged particle moving on an S2 with a mag-
netic monopole of charge Nc at its core. This is a well-
studied action, and is in fact the path-integral represen-
tation of a spin-Nc2 system (for a pedagogical review see
e.g. Chapter 7 of [58]). To be more precise, the lowest
Landau level of the particle on the S2 has degeneracy
Nc+ 1 and transforms as a spin-Nc2 representation under
SU(2)V . Pleasingly, this is precisely the representation
expected for the monopole operator on field-theoretical
grounds. It is interesting to see how the fermion zero
modes are geometrized into the quantum mechanics of
the collective coordinate on S2.

From the prefactor of the kinetic term in (B9) we see
that the spacing between this degenerate ground state
and the other bulk energy levels scales like (NcR)−1. As
we take Nc → ∞ all of these states become degenerate,
collapsing onto the ground state and permitting spon-
taneous symmetry breaking of SU(2)V . There is some
similarity between this discussion and that of giant gravi-
tons [59], which is different in detail but where the same
coupling between probe branes and background flux also
allows access to physics that is nonperturbative in Nc.

6 We stress that there are multiple kinds of monopoles involved
here. There is the monopole in U(1)B that we have been study-
ing for this entire paper, which creates flux in the field-theory

directions. This is distinct from the monopole in the background
field b, which is a component of the C4 sourced by the color D3
branes, and creates flux in the compact string-theory directions.
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