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Abstract

The electron-positron pair production due to the dynamical Schwinger process in a slowly

oscillating strong electric field is enhanced by the superposition of a rapidly oscillating weaker

electric field. A systematic account of the enhancement by the resulting bifrequent field is provided

for the residual phase space distribution. The enhancement is explained by a severe reduction of

the suppression in both the tunneling and multiphoton regimes.
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I. INTRODUCTION

The developement of new radiation sources offers opportunities for the investigation

of fundamental physical processes which hitherto could not be accessed experimentally.

In the realm of quantum electrodynamics the Schwinger effect, i.e. the decay of a pure

electromagnetic field into electron-positron pairs, is among the challenges which have escaped

an experimental verification until now. While pair production via perturbative or even

non-linear effects in different forms, mostly including null fields, is well established, the

genuinely non-perturbative Schwinger effect [1] in a static homogenous electric field requires

field strengths far beyond current laboratory capabilities. Much hope has been put on optical

laser facilities where, in fact, high field strengths can be achieved in the focal spots near to

the refraction limit. However, only future developements as, e.g., the pillar-3 part of ELI [2],

could bring the dynamical Schwinger effect (which refers to an alternating electric field) into

realistic reach. Here, synchronized counterpropagating laser beams with suitable polarisation

can produce regions of an alternating field with a dominating electric component in the

vicinity of the antinodes.

In the search for configurations which could enable a verification of the Schwinger effect

as a tunneling process the idea has been put forward to enhance the pair creation rate by the

assistance of a multi-photon process [3, 4]. This set-up is denoted as the assisted dynamical

Schwinger process. There, one can think of the combination of optical high-intensity laser

and XFEL beams, the latter ones representing a fast weak field. In fact, at LCLS such

instrumental prepositions are already at our disposal [5], and the HIBEF collaboration [6] at

the European XFEL in Hamburg plans an analogous installation, albeit with different key

parameters w.r.t. repetition rates, energies and intensities. Further experimental proposals

can be found in [7–9]. Whether such configurations will enable to investigate the Schwinger

effect, or a variant thereof, needs to be elucidated.

Given such a motivation, we are going to consider here a model for pair production by

a bifrequent, spatially homogenous electric field which acts for a finite time interval. The

pair creation process is a non-equilibrium process to be described by a quantum kinetic

equation with a strong non-Markovian feature. Such a framework has been employed in

various previous analyses, e.g., for the superposition of Sauter pulses [10, 11] or periodic

fields and Sauter pulses [12] or for two (or more) periodic fields [13, 14], and for studying
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the temporal structure of particle creation [15–17]. Alternative frameworks make use of

WKB-type approximations [18], worldline instantons [19, 20] or lightfront methods [21, 22].

Our goal is to investigate the dynamical Schwinger effect in bifrequent fields systematically

over a large region in the parameter space spanned by field strengths and frequencies.

II. RESIDUAL PHASE SPACE DISTRIBUTION: ANALYTICAL APPROXIMA-

TIONS

The residual phase space distribution f of pairs in a bifrequent electric E(t) field (fre-

quencies ν1, ν2 = Nν1) which acted for a finite time tf.t. with constant amplitudes E1 and E2

is given by (see Appendix)

f(p, ϕ, tf.t.) ∼=
1

2

∞∑
`≥`min

∣∣F`(p`(ϕ), ϕ
)∣∣2 t2f.t.S(Ω′

(
p`(ϕ), ϕ

)
tf.t.
(
p− p`(ϕ)

))
, (1)

with momentum components perpendicular (p⊥ = p cosϕ) and parallel (p‖ = p sinϕ) to E

(ϕ = −π
2
· · · π

2
). The function S(x) = sin2 x/x2 has a main peak at x = 0, S(0) = 1, of width

2π and an infinite number of side peaks declining as ∼ x−2. This implies that the phase

space distribution (1) for fixed ϕ displays a series of main peaks at p = p`(ϕ), see Fig. 1.

(Accounting for the ϕ degree of freedom gives rise to ridges over the p⊥-p‖ plane, sometimes

called shell structure.) The peak positions p`(ϕ) are determined by the resonance condition

(cf. [23])

2Ω(p`(ϕ), ϕ)− `ν1 = 0 , (2)

Ω(p⊥, p‖) =
m

2π

2π∫
0

dx

(
1 +

p2
⊥
m2

+
(p‖
m
− γ−1

1 cosx− γ−1
2 cosNx

)2
) 1

2

, (3)

where γ1,2 = Ec
E1,2

ν1,2
m

are Keldysh parameters with Ec = m2

e
, −e the electron charge and m

its mass. Since Ω(p`(ϕ), ϕ) > m∗ > m with the effective mass m∗ = Ω(p` = 0) (cf. [24, 25]

for the effective mass concept in the single field case), the values of ` must exceed a certain

threshold, ` ≥ `min = d2m∗
ν1
e, where dxe denotes the smallest integer greater than or equal to

x.

The number of side peaks belonging to p` until the next main peak at p`+1 is about

k = (p`+1−p`) Ω′(p`(ϕ), ϕ) tf.t./π � 1. This means that the spectrum consists, for sufficiently

large tf.t., of well separated main peaks centered at p`(ϕ), with some micro-structures emerging
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Figure 1: Residual phase space distributions at p‖ = 0 (solid curves, from integrating the quantum

kinetic equations, e.g. equations (1-7) in [23]) for field “1” (left panel, E1 = 0.2Ec, ν1 = 0.02m,

i.e. γ1 = 0.1), fields “1+2” (middle panel) and field “2” (right panel, E2 = 0.05Ec, ν2 = 0.5m, i.e.

γ2 = 10). The dashed curves depict the spectral envelope 2
9ν

2
1 t

2
f.t.E(p⊥) with E given by (5). The

flat-top duration is determined as in [23] by ν1tf.t. = 2π · 50 and the C∞ ramping (switching-on)

and deramping (switching-off) periods are such to cover 5 oscillations each. For another example of

the phase space distribution, see [23] where E1 = 0.1Ec was used.

from the superposition of the side peaks encoded in S, which are not resolved on the scale

displayed in Fig. 1. Due to lim
tf.t.→∞

S(atf.t.) = 2πt−1
f.t.δ(a), Eq. (1) asymptotically gets a form

derived in [26] (see also [27]), albeit for a single field and in a low-momentum expansion and

for the rate, which is time (tf.t.) independent. We consider here finite values of tf.t., (i) on the

one hand sufficiently large to accomodate at least a few oscillations of both fields “1” and “2”

within the flat-top (tf.t.) period of the overall shape function of the potential, and (ii) not

too large to avoid the onset of Rabi oscillations [14] which would modify the tf.t. dependence

in (1).

The main peak altitudes are governed by the squared Fourier-coefficients
∣∣F`(p`(ϕ), ϕ

)∣∣2
which contain the spectral envelope function E(p⊥). As pointed out in the Appendix, for

p‖ = 0, they can be approximated by

|F`(p`, ϕ = 0)|2 ≈ 2

9
ν2

1E(p`)
(
1− (−1)`

)
, (4)

E(p⊥) = e
−4 m

ν1
G(p⊥,γ1,γ2,N)

, (5)
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G(p⊥, γ1, γ2, N) =

x0∫
0

dx

(
1 +

p2
⊥
m2
−
(
γ−1

1 sinhx+ γ−1
2 sinhNx

)2
) 1

2

, (6)

for the special case N = 4n+ 1, n = 0, 1, 2, · · · . The quantity x0 is determined by

γ−1
1 sinhx0 + γ−1

2 sinhNx0 =
√

1 + p2
⊥/m

2 . (7)

In the single field case (E2 → 0, γ2 →∞), G reduces to

G1(p⊥, γ1) = G(γ2 →∞) =
π

4
γ1

(
1 +

p2
⊥
m2

)
g

(
γ1

√
1 +

p2
⊥
m2

)
, (8)

where g(γ) = 1F2(1
2
, 1

2
, 2,−γ2) is a function already introduced in [24], cf. also [26]. We argue

that a handy approximation is provided by

G ≈ π

4

√
1 +

p2
⊥
m2

x0 (9)

and, analogously,

G1 ≈
π

4

√
1 +

p2
⊥
m2

arsinh

(√
1 +

p2
⊥
m2

γ1

)
. (10)

The former is appropriate for x0 < 1 and the latter for

√
1 +

p2⊥
m2 γ1 < 10. The spectral

envelopes are displayed in Fig. 1 by dashed curves using (6). Evidently, the envelopes connect

the peaks of the fairly rich spectra very well, the details of which are only accessible by

integrating the full set of quantum kinetic equations. The approximations (9) and (10) are

suitable for conditions as in the left panel of Fig. 1, while (9) gives some semi-quantitative

account (within factor of two) for the middle panel. Figures 2 and 3 below evidence in fact

that (9, 10) (see dotted curves) provide either a sound approximation to (6, 8) or a useful

guidance.

To understand qualitatively the amplification by a second weak field, as exemplified

in Fig. 1 (further examples in [23]), one can use the approximation (9) for p⊥ � m and

the first-order iterative solution of (7), x0 = arsinh
(
γ1 − γ1

γ2
sinh

[
N arsinh γ1

])
. Supposing

γ1 � 1 and Nγ1 � 1 one finds for large γ2

G(γ1, γ2, N) ≈ G1(γ1)− γ2
1

γ2

N, (11)

i.e. due to the presence of the second field, encoded in γ2, the modulus of the exponential,

4m
ν1
G1, becomes diminished by about 4

(
Ec
E1

)2
E2

Ec
– interestingly independent of ν2 in the

5



given approximation (which is a special case of the expansion of a multi-scale implicit

function). In other words, the spectral envelope of field “1” gets lifted by exp
(

4m
ν1

γ21
γ2
N
)

due to the presence of field “2”. In general we stress that, due to the monotonic behavior

of the hyperbolic sine functions in (6) and the defining equation (7) for x0, one infers

x0(γ1, γ2 → ∞, N) > x0(γ1, γ2, N) > 0 and analogously G1(γ1) > G(γ1, γ2, N) > 0. Since

the negative of G enters the exponential of the envelope function, a dropping of G by the

second weak field causes the anticipated amplification. A quantitative consideration is given

in the next section.

III. DISCUSSION OF THE AMPLIFICATION

A. Single field case

In the following we consider E = exp
(
−4m

ν1
G(p⊥, γ1, γ2, N)

)
as the essential part of

the spectral envelope of the phase space distribution. The benchmark for the following

discussion is the reference distribution for one periodic field, i.e. γ2 → ∞ as realized by

E2 → 0. The exponential 4m
ν1
G1 of the spectral envelope function E1 is displayed in Fig. 2.

The region γ1 < 1 is often termed adiabatic (tunneling) region where the residual pair

density is independent of frequency, while γ1 > 1 is the anti-adiabatic (multi-photon) region

which is weakly dependent on the field strength. Focusing on low-momentum particles,

p⊥/m� 1, the spectral envelope in the adiabatic region behaves as exp
(
−π(Ec/E1)

)
, while

in the anti-adiabatic region it behaves like exp(−4m
ν1

log 4γ1 + 4m
ν1

) in leading order based

on (9). The contours (solid curves) in Fig. 2 are based on (6); they differ marginally on the

approximate estimates (9) (dotted curves). Figure 2 provides a quantitative description of

the landscape of the dynamical Schwinger effect, first qualitatively discussed in [15]. Note

the huge variation over the displayed parameter range by recollecting that the residual phase

density at p‖ = 0 is bounded from above by 2
9
ν2

1t
2
f.t.E1 with E1 = exp

(
−4m

ν1
G1

)
, i.e. in the

blue region one meets a very strong suppression of the pair density, guaranteeing a long

lifetime of the vacuum. Only the red region above the γ1 = 1 line seems to allow for verifying

experimentally Schwinger’s tunneling process in one oscillating field. As pointed out in [23]

(see also [14] and further references therein), the impact of a second field can significantly

reduce the strong suppression due to large values of 4m
ν1
G, i.e., it results in an amplification
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Figure 2: (Color online) Contour plot of the exponential 4mν1G1 = 4mν1G(p⊥ � m, γ1, γ2 →∞) of

the single-field spectral envelope function over the field-frequency (E1/Ec vs. ν1/m) plane (solid

curves: using (6) for G, dotted curves: the approximations (9,10)). Note that the spectral envelope

is given by 2
9ν

2
1 t

2
f.t.E1 with E1 = exp

(
−4mν1G1

)
. Parameters from table 1 in [27] are depicted by

stars, while the bullet is for ELI-NP [28]; the ellipse is a former perspective of ELI used, e.g.,

in [3, 4]. The triangle is for MaRIE at LANL [29]. Point 1 and the square 2 depict parameters

considered in [23], where the validity of Eqs. (1)-(6) can be checked by numerical integration of

the quantum kinetic equations, as is also exemplified in Fig. 1. Short dashed contour curves are

for 2, · · · , 9 between the solid decade contour curves. Long dashed lines depict constant Keldysh

parameters.
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effect, as mentioned above.

B. Two field case: Amplification

The key for an interpretation of the amplification effect by an assisting field (ν2,

E2) is the approximation (9) for p⊥ � m: Since x0(γ1, γ2, N) < x0(γ1, γ2 → ∞),

the spectral envelope function E1 = exp
(
−4m

ν1
G1

)
is lifted by the amount E1+2/E1 =

exp
(
4m
ν1

[
−G(γ1, γ2, N) + G1(γ1)

])
≈ exp

(
πm
ν1

[
−x0(γ1, γ2, N) + x0(γ1, γ2 → ∞)

])
, where

E1+2 = exp
(
−4m

ν1
G(γ1, γ2, N)

)
. Due to the usually considered range of values m

ν1
, even a

moderate reduction of G (or x0) due to the assisting field, e.g. by O(50%), leads to a huge

reduction of the suppression in the subcritical region E1/Ec � 1 and ν1/m� 1 steered either

by m
ν1
γ1 = Ec/E1 in the adiabatic region or by m

ν1
log γ1 in the anti-adiabatic region. A few

examples are exhibited in Fig. 3, where we show the exponential 4m
ν1
G(p⊥ � m, γ1, γ2, N),

entering the spectral envelope 2
9
ν2

1t
2
f.t.E1+2, for a few selected fields E1, ν1 over the E2-ν2

plane. As reference one has to take the spectral envelope function from Fig. 2. The value

of the envelope exponential is trivially reduced by 50% in the points E2 = E1 and ν2 = ν1

(marked by symbols in Fig. 2), i.e. simply doubling the field strength. This is the lowest order

of the multi-field configurations considered in [30]. Further amplification occurs for enlarging

ν2, as signalled by a reduction of 4m
ν1
G. That is, the amplification beyond the field doubling

happens in the region right to the contour curve (heavy grey dashed) going through the

reference point (bullet) E2 = E1, ν2 = ν1. The single field result is recovered by inspection

of E2 → 0, i.e. going down from the reference point at ν1, E1. Note that our amplification

estimate by formula (4) requires E2 < E1 and ν2 = Nν1 with N = 4n + 1, n = 0, 1, 2 · · · ,
that is our result holds true actually only at discrete values of ν2.

The net outcome points to the importance of the frequency ν2, while variations of E2

are subleading. To achieve amplifications which overcome the strong suppression in the

tunneling regime one has to employ frequencies ν2 near or above critical range ν & m,

where essentially the multi-photon process sets the scale, i.e. one has to compare the phase

space population with the one for the ν2, E2 field alone. This is accomplished by inspecting

Fig. 2 for the exponential of the spectral envelope function and by correcting the pre-

exponential factor in (4) by ν1 → ν2. As shown in [23] for selected examples (see also

Fig. 1), the action of the field (ν2, E2) lifts the phase space distribution emerging from (ν1,
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Figure 4: (Color online) Contour plot of the number of main peaks in the inverval p⊥ = 0 · · ·m

at p‖ = 0 for the action of one field characterized by ν and E. Short dashed contour curves are

for 2, · · · , 9 between the solid decade contour curves. Long dashed lines depict constant Keldysh

parameters.

E1) alone above the one of (ν2, E2) alone. A decisive difference is in the density of states

(peaks) in the p⊥(p‖) distributions: The number of peaks within p⊥ = 0 · · ·m is given by

2
ν1

[
Ω(p = m,ϕ = 0, γ1, γ2, N)− Ω(p = 0, ϕ = 0, γ1, γ2, N)

]
, which can be much larger for the

field (ν1, E1) alone than the field (ν2, E2) alone, depending on the locus in the ν-E plane,

see Fig. 4.

IV. DISCUSSION

The goal of our paper is to provide a qualitative understanding for the amplification of the

pair creation rate in a periodic electric field under the resonant assistance of a second faster

and weaker electric field. In the quantum kinetic approach, such an investigation would
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require scans of the four-dimensional parameter space E1,2, ν1,2 for a dense set of points in

the two-dimensional p⊥-p‖ phase space. In addition, the impact of the temporal structure

(details of switching on/off and duration of the flat top time span) should be considered.

To avoid such a cumbersome wealth of information we refrain from considering the harsh

landscape of the phase space distribution by analysing only its spectral envelope instead. As

a consequence, we do not need to consider the details of the peak (ridge) positions, which

are modified by the assistance field. We also rely on the previous observation [23] concerning

the dependence of the residual phase space distribution on the time structure. This in turn

is based on a harmonic analysis in the low-density approximation [23].

Under these conditions, the amplification, observed in several previous investigations which

are restricted to small patches in the parameter space, can be explained as a reduction of

the huge suppression provided by exp(−π(Ec/E1)x0) in the adiabatic or by exp(−4(m/ν)x0)

in the anti-adiabatic regimes: by the assistance field, the quantity x0 (the zero of a simple

function) becomes smaller. Applying these findings to typical parameters which represent

the optical laser–XFEL combination according to [27] we find a promising perspective for

laser intensities only significantly above the present ELI-NP plan [28]. More promising is

the laser-γ beam combination, as already pointed out in [3, 4] for ultra-intense laser beams,

but we see also a good discovery potential for ELI-NP [28] and even multi-PW lasers. The

potentially dangerous γ conversion processes might be rejected by the phase space distribution

of the residual pairs: The amplified tunneling production displays the distinct peak (ridge)

structure dictated by the frequency ν1.

To arrive at such a simple picture we made two restrictions: (i) N = 4n+1, n = 0, 1, 2, · · ·
was selected since the main pole in the complex time plane is then shifted in purely imaginary

direction towards the real axis under the action of the assistance field (see Appendix), thus

allowing for an easy access to the spectral envelope function and (ii) p‖ = 0 was chosen as it

was shown in [23] to provide a proper orientation. The avenues for next generalizations are

obvious: extensions to arbitrary integer N (and further also real N which go beyond the

resonant type patterns) as well as further poles and estimates of the phase space-integrated

residual distribution to arrive at a density. Still, the model is fairly simple and needs further

considerations of important effects, such as spatial inhomogenities which are, for example,

elaborated in [20, 31, 32].
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V. SUMMARY

In summary we provide a comprehensive tool to access the amplification of the dynamical

Schwinger process by a resonantly assisting second field, both acting for a finite duration. A

promising perspective is seen in the combination of ultra-intense optical laser beams with γ

beams, while the optical laser-XFEL combination also allows for huge amplification effects,

however, probably not sufficient to enable an experimental verification.
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Appendix: Derivation of Eqs. (1)-(6)

In the low-density approximation of the quantum kinetic equation [33, 34], the electron-

positron pair density f is given by f(p, t) = 1
2
|I(p, t)|2 with

I(p, t) =

t∫
0

eE(t′)ε⊥
ω(p, t′)2

e2iΘ(p,t′)dt′ , (12)

where we introduced ε⊥ =
√
m2 + p2

⊥, ω(p, t) =
√
m2 + p2

⊥ +
(
p‖ − eA(t)

)2
, Θ(p, t) =

t∫
0

dt′ω(p, t′). The vector potential A(t) and hence the electric field E(t) = −Ȧ(t) are

assumed to be periodic in time, e.g. A = (E1/ν1) cos(ν1t) + (E2/(Nν1)) cos(Nν1t) over a

finite time span tf.t., much longer than the switching-on/off intervals. Accordingly one can

split Θ in a linearly growing and a periodic part, Θ(p, t) = Ω(p)t + P (p, t), to arrive at
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Re t
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Figure 5: (Color online) The integration path Γ1 from −T/2 to +T/2 along the real axis in (15)

is substituted by the sequence Γ2 + Γ3 + Γ4 + Γ5 in the upper half of the complex t plane. Dots

depict the zeros of ω(t)2, where branch cuts (dashed lines) emerge.

I(p, t) =
t∫

0

dt′F (p, t′)e2iΩ(p)t′ with F (p, t) = eE(t)ε⊥
ω(p,t)2

e2iP (p,t). The function F is time periodic

and is decomposed into Fourier modes, F (p, t) =
∑

` F`(p)e−i`νt, so that I turns into

I(p, t) =
∑
`

iF`(p)
e−i
(
`ν−2Ω(p)

)
t − 1

`ν − 2Ω(p)
. (13)

The quantity I becomes large whenever 2Ω(p)− `ν is small, yielding (2) and (3). Employing

polar coordinates one defines the ridge radius p`(ϕ) by 2Ω
(
p`(ϕ), ϕ

)
− `ν = 0. Since Ω(p, ϕ)

as a function of p is strictly monotonous, this resonance equation has solutions only for

` ≥ `min =
⌈

2Ω(0,ϕ)
ν

⌉
. Expanding every summand in I around its corresponding peak position

at p` to first order, and keeping F` fixed, we arrive at

I(p, t) =
∑
`=`min

iF`
(
p`(ϕ), ϕ

)exp
[
2iΩ′

(
p`(ϕ), ϕ

)(
p− p`(ϕ)

)
t
]
− 1

2iΩ′
(
p`(ϕ), ϕ

)(
p− p`(ϕ)

) ; (14)

terms with ` < `min do not contribute and are thus dropped. The prime denotes the derivative

w.r.t. p, i.e. Ω′(p, ϕ) = ∂Ω(p, ϕ)/∂p. To arrive at f one must take the squared modulus

of (14). Terms mixing different `s in this square will go to zero upon switching off, as one

can argue from a slowly varying envelope approximation. So only the non-mixing terms

survive for t > tf.t., yielding in particular the sin2 x/x2 part of Eq. (1), which contains ridge

positions and ridge widths as anticipated in [23]. For larger times tf.t. and small momenta,

the Popov formula [26, 27]) is recovered for the special case E2 = 0.

What remains is a formula for the Fourier coefficients F`, which determine the ridge

heights. This can be achieved by deforming the integration contour in the complex time

13



plane and using the method of steepest descent, similar to [24]. For the single field case, the

Fourier coefficients are given by

F`
(
p`(ϕ), ϕ

)
=

1

T

T/2∫
−T/2

eE(t)ε⊥

ω
(
p`(ϕ), ϕ, t

)2 e2iΘ(p`(ϕ),ϕ,t)dt . (15)

The function ω(t)2 has four zeros of first order in the strip −T/2 < Re t < T/2 in the

complex time plane at t0, t
∗
0, −t0 and −t∗0. We deform the integration contour to the

sequence Γ2 + Γ3 + Γ4 + Γ5 shown in Fig. 5. The contributions from Γ2 and Γ5 cancel due to

the periodicity of the integrand. The contribution from Γ4 is the negative of the complex

conjugate of that from Γ3, in symbolic notation
∫

Γ1
= −

∫
Γ3
−
∫

Γ4
= −2i Im

∫
Γ3

. To evaluate

the latter integral approximately, we note that the exponent in the integrand is stationary at

t0. One chooses Γ3 such that Im Θ grows rapidly on Γ3 away from t0, so that e2i Im Θ quickly

goes to zero (method of steepest descent). Then only contributions to the integral close to t0

matter, thus enabling an expansion ω(t)2 = 2iε⊥eE(t0)(t− t0) +O
(
(t− t0)2

)
yielding (we

suppress the momentum arguments)

eE(t)ε⊥
ω(t)2

=
1

2i

1

t− t0
+O(1) . (16)

The expansion of the exponent uses Θ(t) =
∫ t

0
dt′ω(t′) =

∫ t0
0

dt′ω(t′) +
∫ t
t0

dt′ω(t′) = Θ(t0) +∫ t
t0

dt′
√

2eE(t0)ε⊥
√
i(t′ − t0) +O

(
(t− t0)

5
2

)
with the result

Θ(t) = Θ(t0)− 2

3
i
√

2eE(t0)ε⊥
(
i(t− t0)

) 3
2 +O

(
(t− t0)

5
2

)
. (17)

Inserting (16) and (17) into (15) yields our desired result

F` = − 1

T
i Im

∫
Γ3

dt e2iΘ(t0) e
4
3

√
2eE(t0)ε⊥(i(t−t0))

3
2

i(t− t0)
=

4πi

3T
Im e2iΘ(t0) =

2

3
iν Im e2iΘ(t0) . (18)

To generalize to two fields we need to sum over all complex zeros ti of ω2 with 0 ≤ Re ti < T/2,

T = 2π/ν1, and Im ti > 0, leading to

F`
(
p`(ϕ), ϕ

)
≈ 2

3
iν
∑
i

Im e2iΘ(p`(ϕ),ϕ,ti) . (19)

It is instructive to take ϕ = 0, that is we consider the phase space distribution for p‖ = 0.

For the case N = 4n + 1, integer n, a sequence of N + 1 zeros appears at Im t > 0,

−T/2 < Re t < T/2 (see Fig. 6, red squares). In particular, the zeros at ±T/4 + ix0/ν1 get
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Figure 6: (Color online) The distribution of the zeros of ω2 in the upper half plane for field “1+2”

(red [black] squares) for the example of N = 25. The two zeros for field “1” are shown as black

dots, which get shifted down (arrows) upon the impact of field “2”.

shifted down, since x0 is smaller in the two-field case than in the single-field case. The sum

in (19) is dominated by the contribution with the smallest imaginary part, which is the zero

t0 = T/4 + ix0/ν1. Keeping this leading term and using furthermore Θ(T ) = 4Θ(T/4) yields

Θ(t0) =
`π

4
+ i

m

ν

x0∫
0

dx

√
1 +

p2
⊥
m2
−
(

1

γ1

sinhx+
1

γ2

sinhNx

)2

, (20)

finally leading to (4) and (6). The amplification effect by a second assistance field is thus

rooted in a shift of the leading-order pole towards the real axis in the complex t plane. The

condition E2 ≤ E1 ensures the pattern exhibited in Fig. 6 and N = 4n+ 1 is specific for the

shift of the single field zeros (black dots in Fig. 6) parallel to the imaginary t axis. Other

values of N ∈ N cause a more involved motion of the zeros upon increasing E2; numerically

we find, however, agreement within a factor of two with (6). Non-integer values of ν2/ν1

cannot be dealt with in such an analytical approach, but for cases accessible to numerical

integration of the quantum kinetic equations, similar amplification effects are verified.
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