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The first– and second–order dissipative self force and the first order conservative self force are
applied together with spin–orbit coupling to the quasi–circular motion of a test mass in the spacetime
of a Schwarzschild black hole, for extreme or intermediate mass ratios. The partial dephasing of
the gravitational waveform (at the order that is independent of the system’s mass ratio) due to
the self force is compared with that of spin–orbit coupling. We find that accurate waveforms for
parameter estimation need to include both effects. Specifically, we find a particular value for the
spin parameter such that the spin–orbit effect cancels out the self–force effect on the waveform.
Exclusion of dephasing effects that are independent of the mass ratio therefore might lead to a
non–perturbative error in the estimation of the system’s parameters.
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I. INTRODUCTION

When a small compact object moves in the spacetime
of a much more massive black hole, the orbit of the former
decays and gravitational waves are emitted. The emitted
waves can be observed by spaceborne observatories such
as eLISA, which was chosen as the L3 mission within
the European Space Agency’s Cosmic Vision Program,
tentatively scheduled for launch in 2034.
The evolution of the phase Φ of the gravitational waves

may be expanded in perturbation theory in the mass ratio
ε := µ/M of the system, where µ is the mass of the small
companion, and M is the mass of the central black hole,
such that µ ≪ M . Specifically, we write [1],

Φ = ε−1
[

Φ(0) + εΦ(1) +O(ε2)
]

. (1.1)

Here, we are focusing on quasi–circular orbits around
a Schwarzschild black hole, which allow us to separate
clearly the dissipative and conservative effects. The lead-
ing order term, Φ(0), is contributed by the dissipative self
force (SF) at O(ε2), when the SF is expanded in powers
of ε. (See [2] for the expansion scheme.) This first–order
effect is well understood [3, 4]. The next term, Φ(1), in-
cludes, in addition to contributions from the dissipative
SF at O(ε3) and the conservative SF at O(ε2), also con-
tributions from spin–orbit coupling [5]. The last decade
has seen much progress in the theoretical understanding
of self forces in General Relativity, and also significant
advances in methods for their computation. For recent
reviews see [3, 4, 6].
A non–comprehensive list of previous work on related

topics include the adiabatic evolution of extreme mass ra-
tio inspirals [7], adiabatic evolution including self–force
effects [8], the study of the orbital evolution in eccen-
tric binaries of non–rotating black holes [9], and the self-
consistent evolution for a scalar charge in Schwarzschild
[10]. Spin effects on gravitating systems were considered

in [11], the gravitational self-torque and spin precession
in [12], precession dynamics in numerical relativity and
post–Newtonian approximation in [13], and within the
context of the effective one body approach in [14]. Self–
force effects on the gravitational waveforms contributing
to Φ(1) within the post–Newtonian approach were con-
sidered in [15], and second–order self forces were studied
in Refs. [16, 17].
The quasi–circular Schwarzschild orbits on whose evo-

lution we are focusing are orbits that would be circular in
the absence of orbital degradation. Specifically, the SF
expressions that we use are those derived for circular or-
bits [19]. We therefore introduce an error that results in
an additional dissipation at O(ε3) that also contributes
to Φ(1). To obtain the waveforms at O(ǫ0) one would be
required to include all contribution to Φ(1). Here, how-
ever, we are interested in a more limited goal, specifically,
study the relative importance of the various terms, par-
ticularly the partial dephasing due to spin–orbit coupling
compared with the partial dephasing due to the dissipa-
tive SF at O(ε3) and the conservative SF at O(ε2). We
therefore may neglect the partial dephasing due to our ig-
norance of the corrections to the SF because of the actual
quasi–circular shape of the orbit.
The study of SF effects together with spin–orbit cou-

pling was undertaken in Ref. [5]. However, [5] is lim-
ited in two important senses: First, the orbital evolution
is obtained by a leading–order perturbation expansion;
second, the SF needed for the computation of the orbital
evolution was as yet unknown. The SF was modeled in [5]
to be proportional to its scalar field counterpart. Conse-
quently, the results of [5] are not quantitatively accurate.
In Paper I [20] it was shown that the dephasing Φ(1)

of the gravitational waveform (at O(ε0)) due to the first–
order conservative piece of the SF at O(ε2) is important
for gravitational wave detection and astronomy. In Pa-
per II [2] we considered the relative importance to the
dephasing of the second–order dissipative piece of the SF
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(at O(ε3)). Specifically, it was shown in Paper II that
for the class of orbits studied there the partial dephas-
ing due to the second–order dissipative SF (at O(ε3))
amounts to 8% of the partial dephasing due to the first–
order conservative SF (at O(ε2)), even though they both
contribute to gravitational wave dephasing at O(ε0). In
this paper we add the effect of spin–orbit coupling, and
study, within the testbed of quasi-circular Schwarzschild
orbits, the relative partial dephasing due to all of the
above effects that contribute to dephasing of the gravi-
tational waveform at O(ε0). The introductions to papers
I and II supplement this introduction, and the reader is
referred to further detail therein. The organization of
this paper is as follows: In Section II we describe the
physical model of the system that we study, and discuss
the assumptions made in the modeling of the SF and
the spin–orbit coupling. Section III discusses the find-
ings of our numerical experiments. First, we discuss the
properties of the gravitational waveforms, and then the
partial dephasing of the gravitational waveforms due to
the effects under consideration.

II. THE PHYSICAL MODEL

We wish to study the relative importance of the partial
dephasing due to spin–orbit coupling compared with that
of the SF, specifically the first–order conservative SF (at
O(ε2)) and the second–order dissipative SF (at O(ε3)).
We therefore specialize to the simplest system that al-
lows us to compare the various partial dephasing effects.
Specifically, we consider quasi-circular Schwarzschild or-
bits of a spinning point mass, where the spin is aligned
(or anti–aligned) with the orbital angular momentum.
Denoting the Pauli–Lubanski spin pseudovector by Sα,
the Papapetrou equations [11] imply that Sα = sµ2/r δαθ
where −1 ≤ s ≤ 1 for a mass representing a black hole
(see [5] for more detail), and the equations of motion
become

µ
Dut

dτ
= f t

SF + 3s
Mµ2

r2

(

1−
2M

r

)

−1

uϕur (2.1)

µ
Dur

dτ
= f r

SF + 3s
Mµ2

r2

(

1−
2M

r

)

uϕut (2.2)

µ
Duϕ

dτ
= 0 , (2.3)

where uα is the four–velocity of the mass µ, τ is its proper
time, r is the radial Schwarzschild coordinate, and the
operator D/dτ denotes covariant differentiation with re-
spect to proper time compatible with the background
Schwarzschild metric. Notice that s is a free parameter,
which we will vary in our numerical experiment. When
s = 0 the problem is reduced to the one studied in Paper
II. The temporal component of the SF, f t

SF, includes both

M
S

v

mu

ISCO

FIG. 1: Schematic representation (not to scale) of our physi-
cal model: a small compact mass µ with spin angular momen-
tum Sα = sµ2/r δαθ which is aligned (as in this drawing) or
anti–aligned with the orbital angular momentum, orbits with
three-velocity ~v a Schwarzschild black hole of mass M in a
quasi–circular orbit. The latter decays because of the com-
bined effects of radiation reaction and spin–orbit coupling, a
trajectory represented by the solid spiral. The ISCO is rep-
resented by a dotted circle.

contributions at O(ε2) and at O(ε3). The radial compo-
nent, f r

SF, includes contributions at O(ε2). For the SF
we use the expressions listed in the Appendix of Paper
II. Specifically, the dissipative SF at O(ε2) and the con-
servative SF at the same order are fully relativistic and
were derived in the Lorenz gauge [19]. The dissipative
SF at O(ε3) is approximated by its 3.5 post–Newtonian
expansion, in the harmonic gauge. The SF is therefore
obtained in a hybrid gauge. At O(ε2) the Lorenz gauge
and the harmonic gauge give results that agree to the
numerical accuracy of our computation. We therefore
propose that our SF is therefore written in a consistent
harmonic gauge to the numerical accuracy of our compu-
tation.

The set up of our physical model is represented
schematically in Fig. 1.

This model is particularly simple not just because the
Pauli–Lubanski pseudovector is known exactly, but pri-
marily because the introduction of the spin does not al-
ter the planar nature of the mass’s trajectory. We may
therefore apply the same computational method that we
applied in Paper II, and the reader is referred there for
detail. Our computational approach is based on using
the method of osculating geodesics [18] for the orbital
evolution, and on solving the Teukolsky equation for a
source based on the resulting orbit for finding the grav-
itational waveforms. As the terms that depend on the
particle’s spin in the source term for the Teukolsky equa-
tion are smaller by a factor of ε than the corresponding
terms that are independent of the particle’s spin, the for-
mer may be neglected. In practice, the numerical exper-
iments reported on here use ε = 10−2. Therefore, our
results for the dephasing are accurate to 1%. Neglect-
ing the spin–coupled terms in the source term for the
Teukolsky equation shortens the computation consider-
ably. Indeed, tests that we have performed show that the
actual error that is introduced in the waveform’s phase
is indeed of the magnitude predicted.

The effect of interest is independent of ε, a conclusion
which was tested in detail in Papers I and II. We may
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FIG. 2: The polarization state h+
22 of the gravitational wave-

forms as a function of the time. Shown are the cases s = 0
(solid curve), s = −1 (dash–dotted curve), s = +1 (dashed

curve), and Φ(1) ≡ 0 (dotted curve). All these cases are in
phase at t = 0.

therefore shorten the computation time significantly by
studying a rather large value for ε, in practice 10−2. We
take in practice the orbit to start at r = 10M , and fol-
low the evolution down to the Innermost Stable Circular
Orbit (ISCO) at r = 6M . The orbital evolution of ∼ 50
orbits last about ∼ 9 × 103M . The duration of the mo-
tion, and the number of orbits done vary depending on
the value of s chosen, as detailed below. We show in
practice results for the h22 mode of the field.

III. NUMERICAL RESULTS

A. The waveforms

In all cases, we start with waveforms that at t = 0 are
in phase. We then consider the wave train, and monitor
the relative dephasing. In practice, we pose the following
thought experiment: Consider a number of isolated as-
trophysical systems, each consisting of a binary made of
a Schwarzschild black hole and a spinning black hole in
quasi–circular orbit, with mass ratio ε = 10−2. All the
spin angular momenta are aligned or anti–aligned with
the orbital angular momentum. The various systems are
different in the spin angular momentum of the smaller
black hole, which we vary in the range −1 ≤ s ≤ 1. In
practice, we vary s in increments of ∆s = 0.2.
In Figs. 2 and 3 we show the h+

22 and h×

22 polarizations
states, respectively, for the cases s = −1, 0, 1 and also for
the case that the second order effects in the waveforms
are turned off completely (i.e., with no second–order dis-
sipative effect, no first–order conservative effect, and no
spin–orbit coupling effect, or equivalently Φ(1) ≡ 0). We
find that substantial phase difference builds up between
these cases. Specifically, at a given value of time, the
phase evolution of s = +1 is greater than than of s = 0,
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FIG. 3: Same as Fig. 2 for the h×

22 polarizations state.
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FIG. 4: The waveforms for the two polarization states h+,×
22

for the case s = 0.281 (solid (+) and dashed (×) curves), and

for the Φ(1) ≡ 0 case (◦ (+) and � (×) as functions of the
time t.) For each polarization state, the two waveforms are
in phase at t = 0.

and that of s = −1 is smaller than that of s = 0. The
first–order waveform (Φ(1) ≡ 0) has phase evolution in
between that of s = 0 and s = +1. We quantify these
statements and make them precise below, in Sec. III B
We next raise the following question: can one find a

value for s such that the second–order waveform will over-
lap the first–order (Φ(1) ≡ 0)) waveform? The scenario
we propose is as follows: assume the actual data stream
at the detector is modeled by the second–order waveform.
We then use the first–order waveform as a template. Is
there a source for which the first–order waveform would
give us a good global match, and lead us to an estimation
of the system’s parameters that is not just perturbatively
inaccurate, but incorrect by a large value of the param-
eters?
In Fig. 4 we show the waveforms for h+,×

22 for the
case s = 0.281 (see below in Sec. III B for motivation
for studying this particular value for s) and for the case
Φ(1) ≡ 0 (the latter case implies zero spin–orbit coupling
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FIG. 5: The overlap integral Cmax for either polarization
states h+,×

22 for the case s = 0.281 (represented by + and

× correspondingly) with the corresponding Φ(1) ≡ 0 case as
functions of the length of the interval of the segment being
integrated. The inset shows the same for h×

22 (represented by

◦) for the case Φ(1) ≡ 0 and h+
22 for the case s = 0.281.

in particular). The two sets of waveforms appear to be
almost exactly in phase with each other, as is shown in
Fig. 5, which plots the overlap integral Cmax for either
polarization state of h22 with the first–order waveform
(Φ(1) ≡ 0). The overlap integral is calculated as

Cmax = maxτ
< h1

22(t)|h
2
22(t− τ) >

√

< h1
22(t)|h

1
22(t) > < h2

22(t)|h
2
22(t) >

(3.1)
(see more detail in Paper I). Either overlap integral
changes very little as a function of the integration in-
terval (“window size”), and for all intervals tested was
smaller than unity by less than 10−4 (the longest inter-
val we show corresponds to ∼ 36 orbits). Since the two
waveforms are almost indistinguishable, we may raise the
question of whether we can identify the polarization state
correctly, even when our parameter estimation is off by a
large amount. The inset in Fig. 5 shows the overlap inte-
gral as a function of the integration interval for the tem-
plate waveform in one polarization state, and the data
stream in the other polarization state. The data show
that indeed one could distinguish the two polarization
states even in such a case.

B. Waveform Dephasing

We next study the partial dephasing of the wave-
forms due to the spin–orbit coupling effect. In Fig. 6 we
show the evolution of the dephasing of the gravitational
wave for various values of s. The range of values for
the dephasing is ∆φ ∈ [−2.409, 3.089] rad for the range
s ∈ [−1, 1]. In comparison, the magnitude of the second–
order effect without spin–orbit coupling is 0.797 rad, the
latter being contributed mostly from the first–order con-
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FIG. 6: The evolution of the relative phase of the gravitational
waveform between the second–order waveform with s 6= 0
and the case s = 0 (solid (blue) curves) in increments of

∆s = 0.2, and between the first–order waveform (Φ(1) ≡ 0)
and the second–order waveform with s = 0 (dashed (red)
curve). The inset shows the same between the first–order

waveform (Φ(1) ≡ 0) and the second–order waveform with
s = 0.281. On this scale the two polarization states look
indistinguishable.

servative effect (and to a smaller extent by the second–
order dissipative effect).

The inset in Fig. 6 shows the dephasing between the
first–order waveform (Φ(1) ≡ 0) and the second–order
waveform with s = 0.281. This dephasing is nowhere
along the evolution greater than |∆Φ| ∼ 0.03 rad, which
makes them practically nearly indistinguishable from the
observational point of view. This conclusion comple-
ments the observations made based on the overlap in-
tegrals as shown in Fig. 5. In practice, the implication is
that if one were to neglect the dephasing at O(ε0), i.e.,
the term Φ(1), one would make a non–perturbative error
in the estimation of the system’s parameters. Specifically,
if one models the actual data stream for the waveform for
the case s = 0.281 with the waveform including the Φ(1)

term, and uses a template that neglects the Φ(1) term for
the case s = 0, the cross correlation of the data stream
with the template would indicate nearly exact match-
ing, even though the spin parameter of the actual system
is non–perturbatively different than the spin parameter
used for the template.

We next consider the total dephasing ∆Φ as a function
of the spin parameter s over a fixed interval of time, com-
paring the dephasing between the second–order wave-
form with s 6= 0 and with s = 0. Figure 7 suggests a
quadratic dependence of ∆Φ on s. Figure 7 also shows
the dephasing during the same time interval between the
first–order waveform (Φ(1) ≡ 0) and the second–order
waveform with s = 0 (0.797 rad). Equating the best fit
quadratic function for the former to the latter value, we
can solve for the s value that would produce the same
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FIG. 7: The relative phase of the gravitational waveform be-
tween the second–order waveform with s 6= 0 and the case
s = 0 (◦ (blue) and the corresponding best fit curve), and

between the first–order waveform (Φ(1) ≡ 0) and the second–
order waveform with s = 0 (∗ (red)). The values of s shown
are between −1 and +1 in increments of 0.2). All data are
taken at εt/M = 86.40. The fit function is the parabola
∆φ = 0.33817 s2+2.7367 s+9.1375×10−4 . On this scale the
two polarization states look indistinguishable.

dephasing. The dephasing in that case is found when the
spin parameter s = 0.281. We find this value when we
compare the final, cumulative dephasing at the end of
the entire wave train. (The other solution corresponds
to an s value outside the allowed range for black holes.
However, if the compact object is a Neutron star, the
other s value may be relevant, and present two possi-
ble s values, that may both enrich and complicate the
parameter estimation problem.) We have shown above,
nevertheless, that the two corresponding waveforms over-
lap almost precisely over the entire orbital evolution, and
the two phases nowhere are different by more than ∼ 0.03
rad. We leave for future study the question of how this
special value of s depends on the system’s parameters,
specifically on the initial size of the orbit.
The dephasing of the waveform because of the spin–

orbit coupling effect is shown in Fig. 8, which shows the
overlap integral Cmax as a function of the duration of the
integration interval (the “window size”) for two values of
the spin parameter, specifically s = +1 and s = −1. As
expected, the longer the integration interval, the smaller
the overlap integral.
One may ask how long does the integration interval

need to be for the overlap ingress to drop below Ccrit
max =

0.96 for which the detection rate drops by 10%. Figure
9 shows the length of the required integration interval
as a function of the spin parameter s. The data points

suggest a bimodal curve. The data point for s = 0 is not
shown, as that case corresponds for the overlap integral
of the s = 0 wafers with itself.
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the integration interval for the polarization state h+

22. Shown
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the polarization state h+
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